1
|
Selvakumar B, Sekar P, Samsudin AR. Intestinal macrophages in pathogenesis and treatment of gut leakage: current strategies and future perspectives. J Leukoc Biol 2024; 115:607-619. [PMID: 38198217 DOI: 10.1093/jleuko/qiad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Macrophages play key roles in tissue homeostasis, defense, disease, and repair. Macrophages are highly plastic and exhibit distinct functional phenotypes based on micro-environmental stimuli. In spite of several advancements in understanding macrophage biology and their different functional phenotypes in various physiological and pathological conditions, currently available treatment strategies targeting macrophages are limited. Macrophages' high plasticity and diverse functional roles-including tissue injury and wound healing mechanisms-mark them as potential targets to mine for efficient therapeutics to treat diseases. Despite mounting evidence on association of gut leakage with several extraintestinal diseases, there is no targeted standard therapy to treat gut leakage. Therefore, there is an urgent need to develop therapeutic strategies to treat this condition. Macrophages are the cells that play the largest role in interacting with the gut microbiota in the intestinal compartment and exert their intended functions in injury and repair mechanisms. In this review, we have summarized the current knowledge on the origins and phenotypes of macrophages. The specific role of macrophages in intestinal barrier function, their role in tissue repair mechanisms, and their association with gut microbiota are discussed. In addition, currently available therapies and the putative tissue repair mediators of macrophages for treating microbiota dysbiosis induced gut leakage are also discussed. The overall aim of this review is to convey the intense need to screen for microbiota induced macrophage-released prorepair mediators, which could lead to the identification of potential candidates that could be developed for treating the leaky gut and associated diseases.
Collapse
Affiliation(s)
- Balachandar Selvakumar
- Department of Microbiota, Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Priyadharshini Sekar
- Department of Microbiota, Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - A Rani Samsudin
- Department of Microbiota, Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
2
|
Monteiro BEF, da Silva ED, Bezerra GSN, Cavalcante MKDA, Pereira VRA, Castro MCAB, Mendes LG, Guedes DL, Barbosa Júnior WL, de Medeiros ZM. Evaluation of Proinflammatory Chemokines in HIV Patients with Asymptomatic Leishmania Infantum Infection. Trop Med Infect Dis 2023; 8:495. [PMID: 37999614 PMCID: PMC10675805 DOI: 10.3390/tropicalmed8110495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 11/25/2023] Open
Abstract
Asymptomatic Leishmania infantum, when associated with HIV, can become severe and potentially fatal. In this co-infection, the worst prognosis may be influenced by the host's immunological aspects, which are crucial in determining susceptibility. Chemokines play an important role in this process by influencing the cellular composition at affected sites and impacting the disease's outcome. Therefore, the aim of this study was to evaluate proinflammatory chemokines in HIV patients with the asymptomatic L. infantum infection. In this cross-sectional study, the levels of CCL2, CCL5, CXCL8, MIG, and IP-10 were measured in 160 serum samples from co-infected patients (n = 53), patients with HIV (n = 90), and negative controls (n = 17). Quantification was determined by flow cytometry. The obtained data were statistically analyzed using the Kruskal-Wallis test, followed by the Dunn's post-test and the Spearman's correlation coefficient. Significance was set at p < 0.05. The chemokines CCL2, CCL5, MIG, and IP-10 exhibited higher levels in the HIV group compared to co-infection. However, the elevated levels of all these chemokines and their increased connectivity in co-infected patients appear to be important in identifying proinflammatory immune responses associated with the asymptomatic condition. Furthermore, a weak negative correlation was observed between higher levels of CXCL8 and lower viral loads in co-infected patients.
Collapse
Affiliation(s)
- Bruna Eduarda Freitas Monteiro
- Graduate Program in Health Biosciences and Biotechnology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, PE, Brazil;
| | - Elis Dionísio da Silva
- Health and Biotechnology Institute, Federal University of Amazonas, Coari 69460-000, AM, Brazil;
| | - Gilberto Silva Nunes Bezerra
- Department of Nursing & Healthcare, Technological University of the Shannon: Midlands Midwest, N37 HD68 Athlone, Ireland;
| | - Marton Kaique de Andrade Cavalcante
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, PE, Brazil; (M.K.d.A.C.); (M.C.A.B.C.)
| | - Valéria Rêgo Alves Pereira
- Graduate Program in Health Biosciences and Biotechnology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, PE, Brazil;
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, PE, Brazil; (M.K.d.A.C.); (M.C.A.B.C.)
| | - Maria Carolina Accioly Brelaz Castro
- Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, PE, Brazil; (M.K.d.A.C.); (M.C.A.B.C.)
- Parasitology Laboratory, Academic Center of Vitória (CAV), Federal University of Pernambuco, Vitória de Santo Antão 55608-680, PE, Brazil
| | | | - Diego Lins Guedes
- Medical School, Life Sciences Center, Academic Center of Agreste, Federal University of Pernambuco, Caruaru 55014-900, PE, Brazil;
- Faculty of Medical Sciences, University of Pernambuco, Recife 50100-130, PE, Brazil
| | - Walter Lins Barbosa Júnior
- Department of Parasitology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, PE, Brazil;
| | - Zulma Maria de Medeiros
- Graduate Program in Health Biosciences and Biotechnology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, PE, Brazil;
- Department of Parasitology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife 50670-420, PE, Brazil;
- Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, PE, Brazil
| |
Collapse
|
3
|
Yuan J. CCR2: A characteristic chemokine receptor in normal and pathological intestine. Cytokine 2023; 169:156292. [PMID: 37437448 DOI: 10.1016/j.cyto.2023.156292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
C-C motif chemokine receptor 2 (CCR2), together with its ligands, especially C-C motif ligand 2 (CCL2), to which CCR2 has the highest affinity, form a noteworthy signaling pathway in recruiting macrophages for the immune responses among variegated disorders in vivo environment. Scientometric methods are used to analyze intestine-related CCR2 expression. We describe the current knowledge on biological function of CCR2 in physiological intestine in three dimensions, namely its effects on stromal cells, angiogenesis, and remodeling. However, anomalous expression of CCR2 has also been conveyed to correlate with detrimental outcomes in intestine, such as infective colitis, inflammatory bowel disease, carcinogenesis, and colon-related metastasis. In this article, we briefly summarize recent experimental works on CCR2 and its ligands, mostly CCL2, in intestinal-related physiological and pathological states to ravel out their working mechanisms in intestinal diseases.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Maksoud S, El Hokayem J. The cytokine/chemokine response in Leishmania/HIV infection and co-infection. Heliyon 2023; 9:e15055. [PMID: 37082641 PMCID: PMC10112040 DOI: 10.1016/j.heliyon.2023.e15055] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
HIV infection progressively weakens the immune system by infecting and destroying cells involved in host defense. Viral infection symptoms are generated and aggravated as immunosuppression progresses, triggered by the presence of opportunistic infections: among these is leishmaniasis, a disease caused by the intracellular parasite Leishmania. The incidence of this co-infection is growing progressively due to the geographic distribution overlap. Both pathogens infect monocytes/macrophages and dendritic cells, although they can also modulate the activity of other cells without co-infecting, such as T and B lymphocytes. Leishmania/HIV co-infection could be described as a system comprising modulations of cell surface molecule expression, production of soluble factors, and intracellular death activities, leading ultimately to the potentiation of infectivity, replication, and spread of both pathogens. This review describes the cytokine/chemokine response in Leishmania/HIV infection and co-infection, discussing how these molecules modulate the course of the disease and analyzing the therapeutic potential of targeting this network.
Collapse
|
5
|
Xu Y, Li Y, Wang C, Han T, Liu H, Sun L, Hong J, Hashimoto M, Wei J. The reciprocal interactions between microglia and T cells in Parkinson's disease: a double-edged sword. J Neuroinflammation 2023; 20:33. [PMID: 36774485 PMCID: PMC9922470 DOI: 10.1186/s12974-023-02723-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
In Parkinson's disease (PD), neurotoxic microglia, Th1 cells, and Th17 cells are overactivated. Overactivation of these immune cells exacerbates the disease process and leads to the pathological development of pro-inflammatory cytokines, chemokines, and contact-killing compounds, causing the loss of dopaminergic neurons. So far, we have mainly focused on the role of the specific class of immune cells in PD while neglecting the impact of interactions among immune cells on the disease. Therefore, this review demonstrates the reciprocal interplays between microglia and T cells and the associated subpopulations through cytokine and chemokine production that impair and/or protect the pathological process of PD. Furthermore, potential targets and models of PD neuroinflammation are highlighted to provide the new ideas/directions for future research.
Collapse
Affiliation(s)
- Yuxiang Xu
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan International Joint Laboratory for Nuclear Protein Regulation, Henan Medical School, Henan University, Kaifeng, 475004 China
| | - Yongjie Li
- grid.414360.40000 0004 0605 7104Department of Rehabilitation Medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guizhou Provincial Orthopedics Hospital, Guiyang, China
| | - Changqing Wang
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Tingting Han
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Haixuan Liu
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Lin Sun
- grid.256922.80000 0000 9139 560XHenan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004 Henan China
| | - Jun Hong
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Makoto Hashimoto
- grid.272456.00000 0000 9343 3630Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506 Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China. .,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan Medical School, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Ariki S, Ozaka S, Sachi N, Chalalai T, Soga Y, Fukuda C, Kagoshima Y, Ekronarongchai S, Mizukami K, Kamiyama N, Murakami K, Kobayashi T. GM-CSF-producing CCR2 + CCR6 + Th17 cells are pathogenic in dextran sodium sulfate-induced colitis model in mice. Genes Cells 2023; 28:267-276. [PMID: 36641236 DOI: 10.1111/gtc.13008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Although excessive immune responses by Th17 cells, a helper T cell subset, are implicated in the pathogenesis of inflammatory bowel disease (IBD), the mechanism by which its localization in an inflamed colon is regulated remains unclear. Chemokines and their receptors are involved in the pathogenesis of IBD, however, the relative significance of each receptor on Th17 cells remains unknown. We generated C-C motif chemokine receptor 2 (CCR2) knockout (KO) and CCR6 KO mice in the syngeneic background using the CRISPR/Cas9 system and found that the phenotypes of experimental colitis worsened in both mutant mice. Surprisingly, the phenotype of colitis in CCR2/CCR6-double knockout (CCR2/6 DKO) mice was opposite to that of the single-deficient mice, with significantly milder experimental colitis (p < .05). The same was true for the symptoms in CCR6 KO mice, but not in wild type mice treated with a CCR2 inhibitor, propagermanium. Colonic CCR2+ CCR6+ Th17 cells produced a potentially pathogenic cytokine GM-CSF whose levels in the gut were significantly reduced in CCR2/6 DKO mice (p < .05). These results suggest that GM-CSF-producing CCR2+ CCR6+ Th17 cells are pathogenic and are attracted to the inflamed colon by either CCR2 or CCR6 gradient, which subsequently exacerbates experimental colitis in mice.
Collapse
Affiliation(s)
- Shimpei Ariki
- Department of Infectious Disease Control, Oita University, Oita, Japan.,Department of Gastroenterology, Oita University, Oita, Japan
| | - Sotaro Ozaka
- Department of Infectious Disease Control, Oita University, Oita, Japan.,Department of Gastroenterology, Oita University, Oita, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Oita University, Oita, Japan
| | | | - Yasuhiro Soga
- Department of Infectious Disease Control, Oita University, Oita, Japan
| | - Chiaki Fukuda
- Department of Infectious Disease Control, Oita University, Oita, Japan
| | - Yomei Kagoshima
- Department of Infectious Disease Control, Oita University, Oita, Japan.,Department of Gastroenterology, Oita University, Oita, Japan
| | | | - Kazuhiro Mizukami
- Department of Gastroenterology, Oita University, Oita, Japan.,Hospital Clinical Training Institute for Interns, Faculty of Medicine, Oita University, Oita, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Oita University, Oita, Japan
| | | | - Takashi Kobayashi
- Department of Infectious Disease Control, Oita University, Oita, Japan.,Research Center for GLOBAL and LOCAL Infectious Diseases, Oita, Japan
| |
Collapse
|
7
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Sánchez-Martinez H, Gonzalez-Granado JM. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int J Mol Sci 2023; 24:ijms24021526. [PMID: 36675038 PMCID: PMC9863490 DOI: 10.3390/ijms24021526] [Citation(s) in RCA: 109] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation with no exact known cause. Intestinal innate immunity is enacted by neutrophils, monocytes, macrophages, and dendritic cells (DCs), and innate lymphoid cells and NK cells, characterized by their capacity to produce a rapid and nonspecific reaction as a first-line response. Innate immune cells (IIC) defend against pathogens and excessive entry of intestinal microorganisms, while preserving immune tolerance to resident intestinal microbiota. Changes to this equilibrium are linked to intestinal inflammation in the gut and IBD. IICs mediate host defense responses, inflammation, and tissue healing by producing cytokines and chemokines, activating the complement cascade and phagocytosis, or presenting antigens to activate the adaptive immune response. IICs exert important functions that promote or ameliorate the cellular and molecular mechanisms that underlie and sustain IBD. A comprehensive understanding of the mechanisms underlying these clinical manifestations will be important for developing therapies targeting the innate immune system in IBD patients. This review examines the complex roles of and interactions among IICs, and their interactions with other immune and non-immune cells in homeostasis and pathological conditions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Hector Sánchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
8
|
Yao H, Tang G. Macrophages in intestinal fibrosis and regression. Cell Immunol 2022; 381:104614. [PMID: 36182587 DOI: 10.1016/j.cellimm.2022.104614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
Abstract
Intestinal macrophages are heterogenous cell populations with different developmental ontogeny and tissue anatomy. The concerted actions of intestinal macrophage subsets are critical to maintaining tissue homeostasis. However, the dysregulation of macrophages following tissue injury or chronic inflammation could also lead to intestinal fibrosis, with few treatment options in the clinic. In this review, we will characterize the features of intestinal macrophages in light of the latest advances in lineage tracing and single-cell sequencing technology. The roles of macrophages in distinct stages of intestinal fibrosis would be also elaborated. Finally, based on the reciprocal interaction between macrophages and intestinal fibrosis, we will propose the potential macrophage targeting anti-intestinal fibrosis therapies.
Collapse
Affiliation(s)
- Hui Yao
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guoyao Tang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
9
|
Mukanova S, Borissenko A, Kim A, Bolatbek A, Abdrakhmanova A, Vangelista L, Sonnenberg-Riethmacher E, Riethmacher D. Role of periostin in inflammatory bowel disease development and synergistic effects mediated by the CCL5–CCR5 axis. Front Immunol 2022; 13:956691. [PMID: 36341422 PMCID: PMC9632729 DOI: 10.3389/fimmu.2022.956691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/23/2022] [Indexed: 01/08/2023] Open
Abstract
Inflammatory bowel disease (IBD), comprising mainly Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disease of the gastrointestinal tract. In recent years, a wealth of data has been accumulated demonstrating the complex interplay of many different factors in the pathogenesis of IBD. Among these are factors impacting the epithelial barrier function, including vessel and extracellular matrix (ECM) formation, the gut microbiome (e.g., bacterial antigens), and, most importantly, the production of cytokines (pro- and anti-inflammatory) directly shaping the immune response. Patients failing to resolve the acute intestinal inflammation develop chronic inflammation. It has been shown that the expression of the matricellular protein periostin is enhanced during IBD and is one of the drivers of this disease. The C-C chemokine receptor 5 (CCR5) is engaged by the chemotactic mediators CCL3/MIP-1α, CCL4/MIP-1β, and CCL5/RANTES. CCR5 blockade has been reported to ameliorate inflammation in a murine IBD model. Thus, both periostin and CCR5 are involved in the development of IBD. In this study, we investigated the potential crosstalk between the two signaling systems and tested a highly potent CCL5 derivative acting as a CCR5 antagonist in a murine model of IBD. We observed that the absence of periostin influences the CCR5-expressing cell population of the gut. Our data further support the notion that targeted modulation of the periostin and CCR5 signaling systems bears therapeutic potential for IBD.
Collapse
Affiliation(s)
- Saida Mukanova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Anton Borissenko
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Alexey Kim
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Aigerim Bolatbek
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | | | - Luca Vangelista
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Eva Sonnenberg-Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Dieter Riethmacher, ; Eva Sonnenberg-Riethmacher,
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Dieter Riethmacher, ; Eva Sonnenberg-Riethmacher,
| |
Collapse
|
10
|
Lartey NL, Vargas-Robles H, Guerrero-Fonseca IM, Nava P, Kumatia EK, Ocloo A, Schnoor M. Annickia polycarpa extract attenuates inflammation, neutrophil recruitment, and colon damage during colitis. Immunol Lett 2022; 248:99-108. [PMID: 35841974 DOI: 10.1016/j.imlet.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Inflammatory bowel diseases (IBD) including Crohn's disease (CD) and ulcerative colitis (UC) are complex inflammatory disorders of the digestive tract. Dysfunctional intestinal epithelial barrier, uncontrolled neutrophil recruitment into the colon, and oxidative stress are major features of IBD. IBD cannot be cured, but symptoms can be alleviated with anti-inflammatory drugs, which often show adverse effects. Thus, safer alternative treatment options are needed. Given the known anti-inflammatory properties of Annickia polycarpa extract (APE), we hypothesized that APE improves the outcome of the inflammatory response during colitis. We assessed APE effects on colon histology, epithelial barrier function and neutrophil recruitment during DSS-induced colitis in mice treated with APE. APE treatment significantly reduced the disease activity index and prevented DSS-induced colon damage as evidenced by reduced colon shortening, ulcerations, crypt dysplasia, edema formation, and leukocyte infiltration. Expression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were significantly diminished in APE-treated mice. Importantly, APE administration reduced neutrophil infiltration into the lamina propria leading to reduced oxidative stress, tight junction disruption and epithelial permeability in the colon. Thus, we propose APE as additional treatment strategy to attenuate colitis symptoms and enhance life quality of individuals with IBD.
Collapse
Affiliation(s)
- Nathaniel L Lartey
- Department of Molecular Biomedicine, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico; Department of Health and Allied Sciences, Baldwin University College, Osu-Accra, Ghana
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico
| | | | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico
| | - Emmanuel K Kumatia
- Department of Phytochemistry, Centre for Plant Medicine Research. Akuapem-Mampong, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, LG 54, Legon, Ghana
| | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico.
| |
Collapse
|
11
|
Li N, Wang J, Liu P, Li J, Xu C. Multi-omics reveals that Bifidobacterium breve M-16V may alleviate the immune dysregulation caused by nanopolystyrene. ENVIRONMENT INTERNATIONAL 2022; 163:107191. [PMID: 35325770 DOI: 10.1016/j.envint.2022.107191] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
There is a growing attention regarding the toxic effect of microplastics pollutants. However, comprehensive phenotyping- and omics-based strategies for the toxicity evaluation of microplastics on the host remain to be established. To this end, we designed an encompassing phenotyping and multi-omics analysis method to detect the molecular interference of nanopolystyrene (PS)-exposed mice. The exposure time was 28 days with 1000 μg/L PS. We found that PS induced microbial alteration and metabolic disorders, which was closely related to immune disturbances. In addition, the altered expression of some genes related to immune dysregulation was observed. Interestingly, Bifidobacterium breve M-16V (B. breve M-16V) significantly inhibited Th2 and Th17 lymphocyte subset. Simultaneously, B.breve M-16V may activate MyD88 expression and promote Th1-related cytokine IL-12 production. In addition, B. breve M-16V may partially restore the gut microbiota dysbiosis. In summary, we demonstrated that the combined phenotyping and omics-based profiling established a practical framework that allowed us to gain a deeper understanding of the maladaptive consequences of PS exposure. It can be utilized to evaluate the toxicity of other environmental microplastics pollutants. Meanwhile, we found that B. breve M-16V has certain anti-inflammatory and immunomodulatory functions through host-microbiome interactions.
Collapse
Affiliation(s)
- Na Li
- Department of Pediatric, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Jun Wang
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ping Liu
- Department of Pediatric, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhua Li
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, China.
| | - Chundi Xu
- Department of Pediatric, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Feng YQ, Xu ZZ, Wang YT, Xiong Y, Xie W, He YY, Chen L, Liu GY, Li X, Liu J, Wu Q. Targeting C–C Chemokine Receptor 5: Key to Opening the Neurorehabilitation Window After Ischemic Stroke. Front Cell Neurosci 2022; 16:876342. [PMID: 35573839 PMCID: PMC9095921 DOI: 10.3389/fncel.2022.876342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is the world’s second major cause of adult death and disability, resulting in the destruction of brain tissue and long-term neurological impairment; induction of neuronal plasticity can promote recovery after stroke. C–C chemokine receptor 5 (CCR5) can direct leukocyte migration and localization and is a co-receptor that can mediate human immunodeficiency virus (HIV) entry into cells. Its role in HIV infection and immune response has been extensively studied. Furthermore, CCR5 is widely expressed in the central nervous system (CNS), is engaged in various physiological activities such as brain development, neuronal differentiation, communication, survival, and learning and memory capabilities, and is also involved in the development of numerous neurological diseases. CCR5 is differentially upregulated in neurons after stroke, and the inhibition of CCR5 in specific regions of the brain promotes motor and cognitive recovery. The mechanism by which CCR5 acts as a therapeutic target to promote neurorehabilitation after stroke has rarely been systematically reported yet. Thus, this review aims to discuss the function of CCR5 in the CNS and the mechanism of its effect on post-stroke recovery by regulating neuroplasticity and the inflammatory response to provide an effective basis for clinical rehabilitation after stroke.
Collapse
|
13
|
Bauss J, Morris M, Shankar R, Olivero R, Buck LN, Stenger CL, Hinds D, Mills J, Eby A, Zagorski JW, Smith C, Cline S, Hartog NL, Chen B, Huss J, Carcillo JA, Rajasekaran S, Bupp CP, Prokop JW. CCR5 and Biological Complexity: The Need for Data Integration and Educational Materials to Address Genetic/Biological Reductionism at the Interface of Ethical, Legal, and Social Implications. Front Immunol 2021; 12:790041. [PMID: 34925370 PMCID: PMC8674737 DOI: 10.3389/fimmu.2021.790041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
In the age of genomics, public understanding of complex scientific knowledge is critical. To combat reductionistic views, it is necessary to generate and organize educational material and data that keep pace with advances in genomics. The view that CCR5 is solely the receptor for HIV gave rise to demand to remove the gene in patients to create host HIV resistance, underestimating the broader roles and complex genetic inheritance of CCR5. A program aimed at providing research projects to undergraduates, known as CODE, has been expanded to build educational material for genes such as CCR5 in a rapid approach, exposing students and trainees to large bioinformatics databases and previous experiments for broader data to challenge commitment to biological reductionism. Our students organize expression databases, query environmental responses, assess genetic factors, generate protein models/dynamics, and profile evolutionary insights into a protein such as CCR5. The knowledgebase generated in the initiative opens the door for public educational information and tools (molecular videos, 3D printed models, and handouts), classroom materials, and strategy for future genetic ideas that can be distributed in formal, semiformal, and informal educational environments. This work highlights that many factors are missing from the reductionist view of CCR5, including the role of missense variants or expression of CCR5 with neurological phenotypes and the role of CCR5 and the delta32 variant in complex critical care patients with sepsis. When connected to genomic stories in the news, these tools offer critically needed Ethical, Legal, and Social Implication (ELSI) education to combat biological reductionism.
Collapse
Affiliation(s)
- Jacob Bauss
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Michele Morris
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Rama Shankar
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Rosemary Olivero
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Infectious Disease, Helen DeVos Children's Hospital, Grand Rapids, MI, United States
| | - Leah N Buck
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Department of Mathematics, University of North Alabama, Florence, AL, United States
| | - Cynthia L Stenger
- Department of Mathematics, University of North Alabama, Florence, AL, United States
| | - David Hinds
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Joshua Mills
- Department of Biology, Grand Valley State University, Allendale, MI, United States
| | - Alexandra Eby
- Department of Science, Davenport University, Grand Rapids, MI, United States
| | - Joseph W Zagorski
- Office of Research, Spectrum Health, Grand Rapids, MI, United States
| | - Caitlin Smith
- Department of Biology, Athens State University, Athens, AL, United States
| | - Sara Cline
- Department of Biology, Athens State University, Athens, AL, United States
| | - Nicholas L Hartog
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Allergy & Immunology, Spectrum Health, Grand Rapids, MI, United States
| | - Bin Chen
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - John Huss
- Department of Philosophy, The University of Akron, Akron, OH, United States
| | - Joseph A Carcillo
- Department of Critical Care Medicine and Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Office of Research, Spectrum Health, Grand Rapids, MI, United States.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, MI, United States
| | - Caleb P Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Medical Genetics, Spectrum Health, Grand Rapids, MI, United States
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
14
|
Gélvez APC, Diniz Junior JAP, Brígida RTSS, Rodrigues APD. AgNP-PVP-meglumine antimoniate nanocomposite reduces Leishmania amazonensis infection in macrophages. BMC Microbiol 2021; 21:211. [PMID: 34253188 DOI: 10.1186/s12866-021-02267-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and presents different clinical manifestations. The adverse effects, immunosuppression and resistant strains associated with this disease necessitate the development of new drugs. Nanoparticles have shown potential as alternative antileishmanial drugs. We showed in a previous study the biosynthesis, characterization and ideal concentration of a nanocomposite that promoted leishmanicidal activity. In the present study, we conducted a specific analysis to show the mechanism of action of AgNP-PVP-MA (silver nanoparticle-polyvinylpyrrolidone-[meglumine antimoniate (Glucantime®)]) nanocomposite during Leishmania amazonensis infection in vitro. RESULTS Through ultrastructural analysis, we observed significant alterations, such as the presence of small vesicles in the flagellar pocket and in the extracellular membrane, myelin-like structure formation in the Golgi complex and mitochondria, flagellum and plasma membrane rupture, and electrodense material deposition at the edges of the parasite nucleus in both evolutive forms. Furthermore, the Leishmania parasite infection index in macrophages decreased significantly after treatment, and nitric oxide and reactive oxygen species production levels were determined. Additionally, inflammatory, and pro-inflammatory cytokine and chemokine production levels were evaluated. The IL-4, TNF-α and MIP-1α levels increased significantly, while the IL-17 A level decreased significantly after treatment. CONCLUSIONS Thus, we demonstrate in this study that the AgNP-PVP-MA nanocomposite has leishmanial potential, and the mechanism of action was demonstrated for the first time, showing that this bioproduct seems to be a potential alternative treatment for leishmaniasis.
Collapse
Affiliation(s)
- Ana Patricia Cacua Gélvez
- Evandro Chagas Institute, Secretary of Health Surveillance, Laboratory of Electron Microscopy, Ministry of Health, Av. Almirante Barroso, 492, Marco, Pará, 66090-000, Belém, Brazil.,Postgraduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, R. Augusto Corrêa, 01 - Guamá, Pará, CEP: 66075-110, Belém, Brazil
| | - José Antonio Picanço Diniz Junior
- Evandro Chagas Institute, Secretary of Health Surveillance, Laboratory of Electron Microscopy, Ministry of Health, Av. Almirante Barroso, 492, Marco, Pará, 66090-000, Belém, Brazil
| | - Rebecca Thereza Silva Santa Brígida
- Evandro Chagas Institute, Secretary of Health Surveillance, Laboratory of Electron Microscopy, Ministry of Health, Av. Almirante Barroso, 492, Marco, Pará, 66090-000, Belém, Brazil.,Postgraduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, R. Augusto Corrêa, 01 - Guamá, Pará, CEP: 66075-110, Belém, Brazil
| | - Ana Paula Drummond Rodrigues
- Evandro Chagas Institute, Secretary of Health Surveillance, Laboratory of Electron Microscopy, Ministry of Health, Av. Almirante Barroso, 492, Marco, Pará, 66090-000, Belém, Brazil.
| |
Collapse
|
15
|
Khajah MA, Hawai S, Szollosi DE, Bill A, Ghoneim O, Edafiogho I. The novel piperazino-enaminone JOAB-40 reduced colitis severity in mice via inhibition tumor necrosis factor-α and interleukin-1β. Biomed Pharmacother 2021; 141:111852. [PMID: 34198045 DOI: 10.1016/j.biopha.2021.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022] Open
Abstract
BRIEF INTRODUCTION The synthetic compound enaminone E121 has an established role as a potent anti-tussive, bronchodilator and anti-inflammatory agent in asthma, cough, and colitis induced animal models. The addition of an N-alkylated piperazine motif to the terminal end of E121 lead to the generation of various analogues such as JOAB-40. JOAB-40 was shown to be more potent than the lead compound E121 in inhibiting the expression of the chemokine receptor CCR2, ERK1/2 phosphorylation, and the release of pro-inflammatory cytokines in vitro. MAIN OBJECTIVE OF THE STUDY We hypothesize that JOAB-40 is more potent than the lead compound E121 in reducing colitis severity in mice in part through inhibiting the release of TNFα and IL-1β. METHODS Colitis was induced by dextran sulfate sodium (DSS) administration using prophylactic and treatment approaches. The severity of the inflammation was determined by the gross (macroscopic) and histological (microscopic) assessments. The levels of TNFα, IL-1β, and IL-10 release in response to lipopolysaccharide (LPS) stimulation from the adherent murine macrophage cell line J774.2 in vitro, and the circulating levels of TNFα in vivo was measured by ELISA-based technique. SIGNIFICANT FINDINGS FROM THE STUDY E121 administration (1-60 mg/kg) in mice with established colitis (treatment approach) did not reduce colitis severity. On the other hand, JOAB-40 administration significantly reduced colitis severity in mice when administered using two approaches; a) prophylactic (given along colitis induction), and b) treatment (given after colitis was established) with doses as low as 10 mg/kg. The degree of inhibition of TNFα and IL-1β (but not IL-10) release from J774.2 cell line in response to LPS stimulation was more potent with JOAB-40 than E121. This was also observed in vivo in regards to the circulating levels of TNFα. RELEVANT CONTRIBUTION TO KNOWLEDGE Our results indicate that JOAB-40 is more potent than E121 in reducing colitis severity in mice and may be a promising future therapeutic target for the management of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Maitham A Khajah
- Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| | - Sanaa Hawai
- Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait
| | - Doreen E Szollosi
- Department of Pharmaceutical Sciences, University of Saint Joseph School of Pharmacy, Hartford, CT 06103, USA
| | - Ashley Bill
- Department of Pharmaceutical Sciences, University of Saint Joseph School of Pharmacy, Hartford, CT 06103, USA
| | - Ola Ghoneim
- Department of Pharmaceutical and Administrative Sciences, Western New England University, College of Pharmacy and Health Sciences, Springfield, MA 01119, USA
| | - Ivan Edafiogho
- Department of Pharmaceutical Sciences, University of Saint Joseph School of Pharmacy, Hartford, CT 06103, USA
| |
Collapse
|
16
|
Stampanoni Bassi M, Drulovic J, Pekmezovic T, Iezzi E, Sica F, Gilio L, Gentile A, Musella A, Mandolesi G, Furlan R, Finardi A, Marfia GA, Bellantonio P, Fantozzi R, Centonze D, Buttari F. Cerebrospinal fluid inflammatory biomarkers predicting interferon-beta response in MS patients. Ther Adv Neurol Disord 2020; 13:1756286420970833. [PMID: 33343708 PMCID: PMC7727083 DOI: 10.1177/1756286420970833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022] Open
Abstract
Background and Aims: Interferon beta (IFNb) is a safe first-line drug commonly used for relapsing-remitting (RR)-MS. Nevertheless, a considerable proportion of patients do not respond to IFNb treatment. Therefore, until now, a number of studies have investigated various markers that could predict the patients who would respond to IFNb therapy. The objective of this study was to identify reliable biomarkers to predict the efficacy of IFNb treatment in MS. Methods: In a group of 116 patients with clinically isolated syndrome (CIS) and RR-MS, we explored the association between CSF detectability of a large set of proinflammatory and anti-inflammatory molecules at the time of diagnosis and response to IFNb after the first year of treatment. The absence of clinical relapses, radiological activity and disability progression (NEDA-3) was assessed at the end of 1-year follow up. The results were compared with those obtained in additional groups of CIS and RR-MS patients treated with other first-line drugs (dimethyl fumarate and glatiramer acetate). Results: CSF undetectability of macrophage inflammatory protein (MIP)-1α was the main predictor of reaching NEDA-3 status after 1 year of IFNb treatment. Moreover, detectable platelet-derived growth factor (PDGF) was associated with higher probability of reaching NEDA-3. Conversely, no associations with the CSF molecules were found in the two other groups of patients treated either with dimethyl fumarate or with glatiramer acetate. Conclusion: MIP-1α and PDGF could potentially represent suitable CSF biomarkers able to predict response to IFNb in MS.
Collapse
Affiliation(s)
| | - Jelena Drulovic
- Clinic of Neurology, Clinical Center of Serbia, Belgrade, Serbia
| | - Tatjana Pekmezovic
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ennio Iezzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesco Sica
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Luana Gilio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
| | | | | | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | | | - Paolo Bellantonio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Roberta Fantozzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Diego Centonze
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
| | - Fabio Buttari
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
17
|
Baier J, Gänsbauer M, Giessler C, Arnold H, Muske M, Schleicher U, Lukassen S, Ekici A, Rauh M, Daniel C, Hartmann A, Schmid B, Tripal P, Dettmer K, Oefner PJ, Atreya R, Wirtz S, Bogdan C, Mattner J. Arginase impedes the resolution of colitis by altering the microbiome and metabolome. J Clin Invest 2020; 130:5703-5720. [PMID: 32721946 PMCID: PMC7598089 DOI: 10.1172/jci126923] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Arginase 1 (Arg1), which converts l-arginine into ornithine and urea, exerts pleiotropic immunoregulatory effects. However, the function of Arg1 in inflammatory bowel disease (IBD) remains poorly characterized. Here, we found that Arg1 expression correlated with the degree of inflammation in intestinal tissues from IBD patients. In mice, Arg1 was upregulated in an IL-4/IL-13- and intestinal microbiota-dependent manner. Tie2-Cre Arg1fl/fl mice lacking Arg1 in hematopoietic and endothelial cells recovered faster from colitis than Arg1-expressing (Arg1fl/fl) littermates. This correlated with decreased vessel density, compositional changes in intestinal microbiota, diminished infiltration by myeloid cells, and an accumulation of intraluminal polyamines that promote epithelial healing. The proresolving effect of Arg1 deletion was reduced by an l-arginine-free diet, but rescued by simultaneous deletion of other l-arginine-metabolizing enzymes, such as Arg2 or Nos2, demonstrating that protection from colitis requires l-arginine. Fecal microbiota transfers from Tie2-Cre Arg1fl/fl mice into WT recipients ameliorated intestinal inflammation, while transfers from WT littermates into Arg1-deficient mice prevented an advanced recovery from colitis. Thus, an increased availability of l-arginine as well as altered intestinal microbiota and metabolic products accounts for the accelerated resolution from colitis in the absence of Arg1. Consequently, l-arginine metabolism may serve as a target for clinical intervention in IBD patients.
Collapse
Affiliation(s)
- Julia Baier
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | | | - Claudia Giessler
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Harald Arnold
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Mercedes Muske
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Ulrike Schleicher
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | | | | | | | | | - Arndt Hartmann
- Pathologisches Institut, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen (OICE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Tripal
- Optical Imaging Centre Erlangen (OICE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Dettmer
- Institut für Funktionelle Genomik, Universität Regensburg, Regensburg, Germany
| | - Peter J. Oefner
- Institut für Funktionelle Genomik, Universität Regensburg, Regensburg, Germany
| | - Raja Atreya
- Medizinische Klinik 1–Gastroenterologie, Pneumologie and Endokrinologie, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1–Gastroenterologie, Pneumologie and Endokrinologie, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Vrablicova Z, Soltys K, Krajcovicova A, Stuchlikova K, Sturdik I, Koller T, Huorka M, Payer J, Killinger Z, Jackuliak P, Tkacik M, Stuchlik S, Sekac J, Hlavaty T. Impact of smoking cigarette on the mRNA expression of cytokines in mucosa of inflammatory bowel disease. Physiol Res 2020; 68:S183-S192. [PMID: 31842582 DOI: 10.33549/physiolres.934301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is well known that smoking is the risk factor in the development and clinical course of Crohn s disease (CD), but on the other hand, smoking is a protective factor against ulcerative colitis (UC). The pathways that are influenced by smoking in CD and UC are poorly understood. The aim of our study was to analyse the influence of smoking on the mRNA expression of cytokines in mucosa in patients with CD and UC. We performed a cross-sectional study. The cohort consisted of 86 IBD patients (48 CD patients and 38 UC patients) and took place at the IBD Centre at the University Hospital Bratislava-Ružinov. We took the demographic and clinical data of each patient, including information about their smoking habits. We performed a colonoscopy on each patient and took biopsies from both inflamed and non-inflamed sigma (CD, UC) and terminal ileum (CD). mRNA was extracted from mucosal biopsy samples for each cytokine and was normalized to a housekeeping gene (GAPDH). Finally, we compared the mRNA expression of target cytokines in the mucosa of smokers and non-smokers in IBD patients. Smokers with Crohn s disease have a significantly higher mRNA expression of pro-inflammatory cytokine TNF ? (p=0.003) in inflamed mucosa in sigma compared with non-smokers. In smokers with ulcerative colitis, we observed significantly higher mRNA expression of anti-inflammatory cytokine IL 10 (p=0.022) in non-inflamed mucosa of sigma. Similarly, smokers with UC have a significantly decreased mRNA expression of cytokine TLR 2 (p=0.024) and CCR1 (p=0.049) in non-inflamed mucosa of sigma. Based on our results, smoking has a positive influence on cessation and the clinical course of UC due to the stimulation of anti-inflammatory cytokine IL 10 in mucosa. On the other hand, smokers with CD have a higher expression of pro-inflammatory cytokine TNF ?, which could be associated with a worsening of the disease and response to therapy.
Collapse
Affiliation(s)
- Z Vrablicova
- 5th Department of Internal Medicine, Sub-department of Gastroenterology and Hepatology, Faculty of Medicine, Comenius University Bratislava, University Hospital Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice. Commun Biol 2020; 3:130. [PMID: 32188932 PMCID: PMC7080761 DOI: 10.1038/s42003-020-0842-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Comprehensive development is critical for gut macrophages being essential for the intestinal immune system. However, the underlying mechanisms of macrophage development in the colon remain elusive. To investigate the function of branched-chain amino acids in the development of gut macrophages, an inducible knock-out mouse model for the branched-chain amino acid transporter CD98hc in CX3CR1+ macrophages was generated. The relatively selective deletion of CD98hc in macrophage populations leads to attenuated severity of chemically-induced colitis that we assessed by clinical, endoscopic, and histological scoring. Single-cell RNA sequencing of colonic lamina propria macrophages revealed that conditional deletion of CD98hc alters the “monocyte waterfall”-development to MHC II+ macrophages. The change in the macrophage development after deletion of CD98hc is associated with increased apoptotic gene expression. Our results show that CD98hc deletion changes the development of colonic macrophages. CD98hc in macrophages attenuates the severity of colitis. This change in the macrophage development is associated with increased expression of apoptotic genes, suggesting that CD98hc maintains the gut homeostasis by ensuring the development of gut macrophages.
Collapse
|
20
|
Koeninger L, Armbruster NS, Brinch KS, Kjaerulf S, Andersen B, Langnau C, Autenrieth SE, Schneidawind D, Stange EF, Malek NP, Nordkild P, Jensen BAH, Wehkamp J. Human β-Defensin 2 Mediated Immune Modulation as Treatment for Experimental Colitis. Front Immunol 2020; 11:93. [PMID: 32076420 PMCID: PMC7006816 DOI: 10.3389/fimmu.2020.00093] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022] Open
Abstract
Defensins represents an integral part of the innate immune system serving to ward off potential pathogens and to protect the intestinal barrier from microbial encroachment. In addition to their antimicrobial activities, defensins in general, and human β-defensin 2 (hBD2) in particular, also exhibit immunomodulatory capabilities. In this report, we assessed the therapeutic efficacy of systemically administered recombinant hBD2 to ameliorate intestinal inflammation in three distinct animal models of inflammatory bowel disease; i.e., chemically induced mucosal injury (DSS), loss of mucosal tolerance (TNBS), and T-cell transfer into immunodeficient recipient mice. Treatment efficacy was confirmed in all tested models, where systemically administered hBD2 mitigated inflammation, improved disease activity index, and hindered colitis-induced body weight loss on par with anti-TNF-α and steroids. Treatment of lipopolysaccharide (LPS)-activated human peripheral blood mononuclear cells with rhBD2 confirmed the immunomodulatory capacity in the circulatory compartment. Subsequent analyzes revealed dendritic cells (DCs) as the main target population. Suppression of LPS-induced inflammation was dependent on chemokine receptor 2 (CCR2) expression. Mechanistically, hBD2 engaged with CCR2 on its DC target cell to decrease NF-κB, and increase CREB phosphorylation, hence curbing inflammation. To our knowledge, this is the first study showing in vivo efficacy of a systemically administered defensin in experimental disease.
Collapse
Affiliation(s)
- Louis Koeninger
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Nicole S Armbruster
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | | | | | | | - Carolin Langnau
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Stella E Autenrieth
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Dominik Schneidawind
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Eduard F Stange
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | | | - Benjamin A H Jensen
- Department of Medicine, Faculty of Medicine, Cardiology Axis, Quebec Heart and Lung Institute, Laval University, Quebec, QC, Canada.,Section for Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jan Wehkamp
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Bhattacharya S, Kawamura A. Using evasins to target the chemokine network in inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:1-38. [PMID: 31997766 DOI: 10.1016/bs.apcsb.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation, is driven by a network comprising cytokines, chemokines, their target receptors and leukocytes, and is a major pathologic mechanism that adversely affects organ function in diverse human diseases. Despite being supported by substantial target validation, no successful anti-chemokine therapeutic to treat inflammatory disease has yet been developed. This is in part because of the robustness of the chemokine network, which emerges from a large total chemokine load in disease, promiscuous expression of receptors on leukocytes, promiscuous and synergistic interactions between chemokines and receptors, and feedforward loops created by secretion of chemokines by leukocytes themselves. Many parasites, including viruses, helminths and ticks, evade the chemokine network by producing proteins that bind promiscuously to chemokines or their receptors. Evasins - three small glycoproteins identified in the saliva of the brown dog tick - bind multiple chemokines, and are active in several animal models of inflammatory disease. Over 50 evasin homologs have recently been identified from diverse tick species. Characterization of the chemokine binding patterns of evasins show that several have anti-chemokine activities that extend substantially beyond those previously described. These studies indicate that evasins function at the site of the tick bite by reducing total chemokine load. This not only reduces chemokine signaling to receptors, but also interrupts feedforward loops, thus disabling the chemokine network. Taking the lead from nature, a goal for the development of new anti-chemokine therapeutics would be to reduce the total chemokine load in disease. This could be achieved by administering appropriate evasin combinations or by smaller peptides that mimic evasin action.
Collapse
Affiliation(s)
- Shoumo Bhattacharya
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Akane Kawamura
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Transcriptome analysis identifies a robust gene expression program in the mouse intestinal epithelium on aging. Sci Rep 2019; 9:10410. [PMID: 31320724 PMCID: PMC6639340 DOI: 10.1038/s41598-019-46966-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelium undergoes constant regeneration driven by intestinal stem cells. How old age affects the transcriptome in this highly dynamic tissue is an important, but poorly explored question. Using transcriptomics on sorted intestinal stem cells and adult enterocytes, we identified candidate genes, which change expression on aging. Further validation of these on intestinal epithelium of multiple middle-aged versus old-aged mice highlighted the consistent up-regulation of the expression of the gene encoding chemokine receptor Ccr2, a mediator of inflammation and several disease processes. We observed also increased expression of Strc, coding for stereocilin, and dramatically decreased expression of Rps4l, coding for a ribosome subunit. Ccr2 and Rps4l are located close to the telomeric regions of chromosome 9 and 6, respectively. As only few genes were differentially expressed and we did not observe significant protein level changes of identified ageing markers, our analysis highlights the overall robustness of murine intestinal epithelium gene expression to old age.
Collapse
|
23
|
Nunes NS, Chandran P, Sundby M, Visioli F, da Costa Gonçalves F, Burks SR, Paz AH, Frank JA. Therapeutic ultrasound attenuates DSS-induced colitis through the cholinergic anti-inflammatory pathway. EBioMedicine 2019; 45:495-510. [PMID: 31253515 PMCID: PMC6642284 DOI: 10.1016/j.ebiom.2019.06.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/05/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ulcerative Colitis (UC) is an Inflammatory Bowel Disease (IBD) characterized by uncontrolled immune response, diarrhoea, weight loss and bloody stools, where sustained remission is not currently achievable. Dextran Sulphate Sodium (DSS)-induced colitis is an animal model that closely mimics human UC. Ultrasound (US) has been shown to prevent experimental acute kidney injury through vagus nerve (VN) stimulation and activation of the cholinergic anti-inflammatory pathway (CAIP). Since IBD patients may present dysfunctional VN activity, our aim was to determine the effects of therapeutic ultrasound (TUS) in DSS-induced colitis. METHODS Acute colitis was induced by 2% DSS in drinking water for 7 days and TUS was administered to the abdominal area for 7 min/day from days 4-10. Clinical symptoms were analysed, and biological samples were collected for proteomics, macroscopic and microscopic analysis, flow cytometry and immunohistochemistry. FINDINGS TUS attenuated colitis by reducing clinical scores, colon shortening and histological damage, inducing proteomic tolerogenic response in the gut during the injury phase and early recovery of experimental colitis. TUS did not improve clinical and pathological outcomes in splenectomised mice, while α7nAChR (α7 nicotinic acetylcholine receptor - indicator of CAIP involvement) knockout animals presented with disease worsening. Increased levels of colonic F4/80+α7nAChR+ macrophages in wild type mice suggest CAIP activation. INTERPRETATION These results indicate TUS improved DSS-induced colitis through stimulation of the splenic nerve along with possible contribution by VN with CAIP activation. FUND: Intramural Research Programs of the Clinical Centre, the National Institute of Biomedical Imaging and Bioengineering at the NIH and CAPES/Brazil.
Collapse
Affiliation(s)
- Natalia Schneider Nunes
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Centre, NIH, Bethesda, MD, United States; Gastroenterology and Hepatology Sciences Graduate Program, UFRGS, Porto Alegre, RS, Brazil.
| | - Parwathy Chandran
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Centre, NIH, Bethesda, MD, United States
| | - Maggie Sundby
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Centre, NIH, Bethesda, MD, United States
| | - Fernanda Visioli
- Faculty of Dentistry, Oral Pathology, UFRGS, Porto Alegre, RS, Brazil
| | | | - Scott Robert Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Centre, NIH, Bethesda, MD, United States
| | - Ana Helena Paz
- Gastroenterology and Hepatology Sciences Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | - Joseph Alan Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Centre, NIH, Bethesda, MD, United States; National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, United States
| |
Collapse
|
24
|
Pathogenesis, Host Innate Immune Response, and Aerosol Transmission of Influenza D Virus in Cattle. J Virol 2019; 93:JVI.01853-18. [PMID: 30674628 DOI: 10.1128/jvi.01853-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
The recently discovered influenza D virus (IDV) of the Orthomyxoviridae family has been detected in swine and ruminants with a worldwide distribution. Cattle are considered to be the primary host and reservoir, and previous studies suggested a tropism of IDV for the upper respiratory tract and a putative role in the bovine respiratory disease complex. This study aimed to characterize the pathogenicity of IDV in naive calves as well as the ability of this virus to transmit by air. Eight naive calves were infected by aerosol with a recent French isolate, D/bovine/France/5920/2014. Results show that IDV replicates not only in the upper respiratory tract but also in the lower respiratory tract (LRT), inducing moderate bronchopneumonia with restricted lesions of interstitial pneumonia. Inoculation was followed by IDV-specific IgG1 production as early as 10 days postchallenge and likely both Th1 and Th2 responses. Study of the innate immune response in the LRT of IDV-infected calves indicated the overexpression of pathogen recognition receptors and of chemokines CCL2, CCL3, and CCL4, but without overexpression of genes involved in the type I interferon pathway. Finally, virological examination of three aerosol-sentinel animals, housed 3 m apart from inoculated calves (and thus subject to infection by aerosol transmission), and IDV detection in air samples collected in different areas showed that IDV can be airborne transmitted and infect naive contact calves on short distances. This study suggests that IDV is a respiratory virus with moderate pathogenicity and probably a high level of transmission. It consequently can be considered predisposing to or a cofactor of respiratory disease.IMPORTANCE Influenza D virus (IDV), a new genus of the Orthomyxoviridae family, has a broad geographical distribution and can infect several animal species. Cattle are so far considered the primary host for IDV, but the pathogenicity and the prevalence of this virus are still unclear. We demonstrated that under experimental conditions (in a controlled environment and in the absence of coinfecting pathogens), IDV is able to cause mild to moderate disease and targets both the upper and lower respiratory tracts. The virus can transmit by direct as well as aerosol contacts. While this study evidenced overexpression of pathogen recognition receptors and chemokines in the lower respiratory tract, IDV-specific IgG1 production as early as 10 days postchallenge, and likely both Th1 and Th2 responses, further studies are warranted to better understand the immune responses triggered by IDV and its role as part of the bovine respiratory disease complex.
Collapse
|
25
|
Bain CC, Schridde A. Origin, Differentiation, and Function of Intestinal Macrophages. Front Immunol 2018; 9:2733. [PMID: 30538701 PMCID: PMC6277706 DOI: 10.3389/fimmu.2018.02733] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Macrophages are increasingly recognized as essential players in the maintenance of intestinal homeostasis and as key sentinels of the intestinal immune system. However, somewhat paradoxically, they are also implicated in chronic pathologies of the gastrointestinal tract, such as inflammatory bowel disease (IBD) and are therefore considered potential targets for novel therapies. In this review, we will discuss recent advances in our understanding of intestinal macrophage heterogeneity, their ontogeny and the potential factors that regulate their origin. We will describe how the local environment of the intestine imprints the phenotypic and functional identity of the macrophage compartment, and how this changes during intestinal inflammation and infection. Finally, we highlight key outstanding questions that should be the focus of future research.
Collapse
Affiliation(s)
- Calum C Bain
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Anika Schridde
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Juvenile stress leads to long-term immunological metaplasticity-like effects on inflammatory responses in adulthood. Neurobiol Learn Mem 2018; 154:12-21. [DOI: 10.1016/j.nlm.2017.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
|
27
|
TLR2 ligand-synthetic long peptide conjugates effectively stimulate tumor-draining lymph node T cells of cervical cancer patients. Oncotarget 2018; 7:67087-67100. [PMID: 27564262 PMCID: PMC5341859 DOI: 10.18632/oncotarget.11512] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/10/2016] [Indexed: 02/07/2023] Open
Abstract
The potency of human papillomavirus type 16 (HPV16)-encoded synthetic long peptides (SLP), conjugated to an optimized Toll-like receptor 2 ligand (TLR2-L), was assessed in ex vivo activation of HPV16+ cancer patient-derived T cells. Two highly immunogenic SLP sequences derived from the oncogenic E6 protein of HPV16 were selected and conjugated to a Pam3CSK4-based TLR2-L under GMP conditions. Both conjugates were able to mature human DCs in vitro and to activate human skin-derived antigen-presenting cells (APCs) upon intradermal injection in an ex vivo skin model, associated with induction of a favorable chemokine profile to attract and activate T cells. The conjugated SLPs were efficiently processed by APCs, since HPV16-specific CD4+ and CD8+ T-cell clones isolated from HPV16+ cervical tumors proliferated in response to both conjugates. The TLR2-L SLP conjugates significantly enhanced ex vivo T helper type 1 T-cell activation in cell suspensions obtained from tumor-draining lymph nodes (LN) resected during hysterectomy of HPV16+ cervical cancer patients. These results show that TLR2-L SLP conjugates can activate circulating or LN-derived tumor-specific T cells, a promising outcome for studying these two conjugates in a phase I/II clinical safety and immunogenicity trial.
Collapse
|
28
|
The PSMP-CCR2 interactions trigger monocyte/macrophage-dependent colitis. Sci Rep 2017; 7:5107. [PMID: 28698550 PMCID: PMC5506041 DOI: 10.1038/s41598-017-05255-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/25/2017] [Indexed: 12/25/2022] Open
Abstract
Monocytes/macrophages have been found to be an important component of colitis. However, the key chemokine that initiates the CCR2+ monocytes migration from circulation to colitis tissue remains to be undiscovered. PC3-secreted microprotein (PSMP) is a novel chemokine whose receptor is CCR2. The physiological and pathological functions of PSMP have not yet been reported. In this study, PSMP was found to be expressed in colitis and colonic tumor tissues from patients and significantly up-regulated in mouse DSS-induced colitis tissues. PSMP overexpression in the colon aggravated the DSS-induced colitis and the anti-PSMP neutralizing antibody mollified the colitis by reducing macrophage infiltration and inhibiting the expression of IL-6, TNF-α and CCL2. Furthermore, we demonstrated that lipopolysaccharide and muramyl dipeptide induced PSMP expression in the colonic epithelial cells. PSMP was up-regulated in the initial stage prior to IL-6, TNF-α and CCL2 up-regulated expression in DSS colitis and promoted the M1 macrophages to produce CCL2. PSMP chemo-attracted Ly6Chi monocytes in a CCR2 dependent manner via in situ chemotaxis and adoptive transfer assays. Our data identify PSMP as a key molecule in ulcerative colitis, which provides a novel mechanism of monocyte/macrophage migration that affects gut innate immunity and makes PSMP a potential target for controlling colitis.
Collapse
|
29
|
Bakos E, Thaiss CA, Kramer MP, Cohen S, Radomir L, Orr I, Kaushansky N, Ben-Nun A, Becker-Herman S, Shachar I. CCR2 Regulates the Immune Response by Modulating the Interconversion and Function of Effector and Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4659-4671. [PMID: 28507030 DOI: 10.4049/jimmunol.1601458] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/14/2017] [Indexed: 11/19/2022]
Abstract
Chemokines and chemokine receptors establish a complex network modulating immune cell migration and localization. These molecules were also suggested to mediate the differentiation of leukocytes; however, their intrinsic, direct regulation of lymphocyte fate remained unclear. CCR2 is the main chemokine receptor inducing macrophage and monocyte recruitment to sites of inflammation, and it is also expressed on T cells. To assess whether CCR2 directly regulates T cell responses, we followed the fates of CCR2-/- T cells in T cell-specific inflammatory models. Our in vitro and in vivo results show that CCR2 intrinsically mediates the expression of inflammatory T cell cytokines, and its absence on T cells results in attenuated colitis progression. Moreover, CCR2 deficiency in T cells promoted a program inducing the accumulation of Foxp3+ regulatory T cells, while decreasing the levels of Th17 cells in vivo, indicating that CCR2 regulates the immune response by modulating the effector/regulatory T ratio.
Collapse
Affiliation(s)
- Eszter Bakos
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Christoph A Thaiss
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Matthias P Kramer
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Sivan Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Lihi Radomir
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Irit Orr
- Life Sciences Core Facilities, Department of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nathali Kaushansky
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Avraham Ben-Nun
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Shirly Becker-Herman
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; and
| |
Collapse
|
30
|
Neudecker V, Haneklaus M, Jensen O, Khailova L, Masterson JC, Tye H, Biette K, Jedlicka P, Brodsky KS, Gerich ME, Mack M, Robertson AAB, Cooper MA, Furuta GT, Dinarello CA, O'Neill LA, Eltzschig HK, Masters SL, McNamee EN. Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. J Exp Med 2017; 214:1737-1752. [PMID: 28487310 PMCID: PMC5460990 DOI: 10.1084/jem.20160462] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 01/22/2017] [Accepted: 03/28/2017] [Indexed: 12/16/2022] Open
Abstract
Neudecker et al. define a role for a microRNA, miR-223, in regulating the inflammatory tone of the intestine by constraining nlrp3 inflammasome activation in CCR2+ monocytes and attenuating excessive IL-1β–driven inflammation. Therapeutic nanoparticle delivery of miR-223 mimetics limits experimental colitis. MicroRNA (miRNA)-mediated RNA interference regulates many immune processes, but how miRNA circuits orchestrate aberrant intestinal inflammation during inflammatory bowel disease (IBD) is poorly defined. Here, we report that miR-223 limits intestinal inflammation by constraining the nlrp3 inflammasome. miR-223 was increased in intestinal biopsies from patients with active IBD and in preclinical models of intestinal inflammation. miR-223-/y mice presented with exacerbated myeloid-driven experimental colitis with heightened clinical, histopathological, and cytokine readouts. Mechanistically, enhanced NLRP3 inflammasome expression with elevated IL-1β was a predominant feature during the initiation of colitis with miR-223 deficiency. Depletion of CCR2+ inflammatory monocytes and pharmacologic blockade of IL-1β or NLRP3 abrogated this phenotype. Generation of a novel mouse line, with deletion of the miR-223 binding site in the NLRP3 3′ untranslated region, phenocopied the characteristics of miR-223-/y mice. Finally, nanoparticle-mediated overexpression of miR-223 attenuated experimental colitis, NLRP3 levels, and IL-1β release. Collectively, our data reveal a previously unappreciated role for miR-223 in regulating the innate immune response during intestinal inflammation.
Collapse
Affiliation(s)
- Viola Neudecker
- Clinic for Anesthesiology, University Hospital of Ludwig-Maximilians-University, 80539 Munich, Germany.,Department of Anesthesiology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Moritz Haneklaus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Owen Jensen
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Ludmila Khailova
- Department of Anesthesiology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Joanne C Masterson
- Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Colorado, Aurora, CO 80045.,Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Hazel Tye
- Division of Inflammation, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathryn Biette
- Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Colorado, Aurora, CO 80045.,Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Paul Jedlicka
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Kelley S Brodsky
- Department of Anesthesiology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Mark E Gerich
- Division of Gastroenterology and Hepatology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045.,Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Avril A B Robertson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane City, QLD 4067, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane City, QLD 4067, Australia
| | - Glenn T Furuta
- Gastrointestinal Eosinophilic Disease Program, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Colorado, Aurora, CO 80045.,Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Charles A Dinarello
- Department of Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.,Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Texas Medical School at Houston, Houston, TX 77030.,Department of Anesthesiology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Seth L Masters
- Division of Inflammation, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Eóin N McNamee
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 .,Department of Anesthesiology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
31
|
Ye X, Liu S, Hu M, Song Y, Huang H, Zhong Y. CCR5 expression in inflammatory bowel disease and its correlation with inflammatory cells and β-arrestin2 expression. Scand J Gastroenterol 2017; 52:551-557. [PMID: 28140695 DOI: 10.1080/00365521.2017.1281435] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To elucidate the correlation of expression of CC chemokine receptor 5 (CCR5) with degrees of inflammatory cells infiltration and expression of β-arrestin2 in biopsic intestinal mucosa of the patients with inflammatory bowel disease (IBD). METHODS Paraffin sections were derived from 53 patients with active IBD, 26 patients with remissive IBD and 30 healthy people. Immunohistochemical envision two-step method was used to test the expression of CCR5 and β-arrestin2 in biopsic intestinal mucosa. HE and toluidine blue staining were used to detect the pathological cytological analysis and classification in lamina propria of colonic mucosa. RESULTS The positive rate, strong positive rate and immunohistochemical score of CCR5 expression in active IBD were significantly higher than that in normal controls and remissive IBD (p < .05). CCR5 expression had no obvious correlation with clinical severity, lesion distribution and endoscopic classification of active IBD. Neutrophils, eosinophils and lymphocytes in active IBD were significantly higher than that in normal controls and remissive IBD (p < .05), while the lymphocyte grade had a positive correlation with CCR5 expression (p = .042, r = .286). Mastocytes in active IBD, remissive IBD and normal controls had no obvious difference (p > .05). β-arrestin2 expression was significantly lower in active IBD than that in remissive IBD and normal controls, and it had a negative correlation with CCR5 expression (p = .01, r = -.247). CONCLUSIONS CCR5 is highly expressed in active IBD, and it has positive correlation with lymphocyte grade and negative correlation with expression of β-arrestin2.
Collapse
Affiliation(s)
- Xiaoyan Ye
- a Department of Gastroenterology and Hepatology , Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University , Guangzhou , China
- b Department of Gastroenterology and Hepatology , the First Affiliated Hospital of Guangdong Pharmaceutical University , Guangzhou , China
| | - Sixue Liu
- a Department of Gastroenterology and Hepatology , Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University , Guangzhou , China
- c Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes of Sun Yat-Sen University , Guangzhou , China
| | - Mei Hu
- a Department of Gastroenterology and Hepatology , Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University , Guangzhou , China
- c Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes of Sun Yat-Sen University , Guangzhou , China
| | - Yangda Song
- a Department of Gastroenterology and Hepatology , Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University , Guangzhou , China
- c Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes of Sun Yat-Sen University , Guangzhou , China
| | - Huarong Huang
- c Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes of Sun Yat-Sen University , Guangzhou , China
- d Department of Pediatrics , Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Yingqiang Zhong
- a Department of Gastroenterology and Hepatology , Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University , Guangzhou , China
- c Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes of Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
32
|
Raghu H, Lepus CM, Wang Q, Wong HH, Lingampalli N, Oliviero F, Punzi L, Giori NJ, Goodman SB, Chu CR, Sokolove JB, Robinson WH. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann Rheum Dis 2016; 76:914-922. [PMID: 27965260 DOI: 10.1136/annrheumdis-2016-210426] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/21/2016] [Accepted: 11/19/2016] [Indexed: 01/16/2023]
Abstract
OBJECTIVES While various monocyte chemokine systems are increased in expression in osteoarthritis (OA), the hierarchy of chemokines and chemokine receptors in mediating monocyte/macrophage recruitment to the OA joint remains poorly defined. Here, we investigated the relative contributions of the CCL2/CCR2 versus CCL5/CCR5 chemokine axes in OA pathogenesis. METHODS Ccl2-, Ccr2-, Ccl5- and Ccr5-deficient and control mice were subjected to destabilisation of medial meniscus surgery to induce OA. The pharmacological utility of blocking CCL2/CCR2 signalling in mouse OA was investigated using bindarit, a CCL2 synthesis inhibitor, and RS-504393, a CCR2 antagonist. Levels of monocyte chemoattractants in synovial tissues and fluids from patients with joint injuries without OA and those with established OA were investigated using a combination of microarray analyses, multiplexed cytokine assays and immunostains. RESULTS Mice lacking CCL2 or CCR2, but not CCL5 or CCR5, were protected against OA with a concomitant reduction in local monocyte/macrophage numbers in their joints. In synovial fluids from patients with OA, levels of CCR2 ligands (CCL2, CCL7 and CCL8) but not CCR5 ligands (CCL3, CCL4 and CCL5) were elevated. We found that CCR2+ cells are abundant in human OA synovium and that CCR2+ macrophages line, invade and are associated with the erosion of OA cartilage. Further, blockade of CCL2/CCR2 signalling markedly attenuated macrophage accumulation, synovitis and cartilage damage in mouse OA. CONCLUSIONS Our findings demonstrate that monocytes recruited via CCL2/CCR2, rather than by CCL5/CCR5, propagate inflammation and tissue damage in OA. Selective targeting of the CCL2/CCR2 system represents a promising therapeutic approach for OA.
Collapse
Affiliation(s)
- Harini Raghu
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Christin M Lepus
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Qian Wang
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Heidi H Wong
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Nithya Lingampalli
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Leonardo Punzi
- Rheumatology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Nicholas J Giori
- VA Palo Alto Health Care System, Palo Alto, California, USA.,Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopedic Surgery and Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Constance R Chu
- VA Palo Alto Health Care System, Palo Alto, California, USA.,Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jeremy B Sokolove
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
33
|
Murine macrophage response from peritoneal cavity requires signals mediated by chemokine receptor CCR-2 during Staphylococcus aureus infection. Immunol Res 2016; 64:213-32. [PMID: 26616292 DOI: 10.1007/s12026-015-8739-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
C-C chemokine receptor-2 (CCR-2) is a cognate receptor for monocyte chemotactic protein-1 (MCP-1), and recent studies revealed that MCP-1-CCR-2 signaling is involved in several inflammatory diseases characterized by macrophage infiltration. Currently, there is no study on the involvement of CCR-2 in the killing of S. aureus by macrophages of Swiss albino mice, and its substantial role in host defense against S. aureus infection in murine macrophages is still unclear. Therefore, the present study was aimed to investigate the functional and interactive role of CCR-2 and MCP-1 in regulating peritoneal macrophage responses with respect to acute S. aureus infection. We found that phagocytosis of S. aureus can serve as an important stimulus for MCP-1 production by peritoneal macrophages, which is dependent directly or indirectly on cytokines, reactive oxygen species and nitric oxide. Neutralization of CCR-2 in macrophages leads to increased production of IL-10 and decreased production of IFN-γ and IL-6. In CCR-2 blocked macrophages, pretreatment with specific blocker of NF-κB or p38-MAPK causes elevation in MCP-1 level and subsequent downregulation of CCR-2 itself. We speculate that CCR-2 is involved in S. aureus-induced MCP-1 production via NF-κB or p38-MAPK signaling. We also hypothesized that unnaturally high level of MCP-1 that build up upon CCR-2 neutralization might allow promiscuous binding to one or more other chemokine receptors, a situation that would not occur in CCR-2 non-neutralized condition. This may be the plausible explanation for such observed Th-2 response in CCR-2 blocked macrophages infected with S. aureus in the present study.
Collapse
|
34
|
Mencarelli A, Cipriani S, Francisci D, Santucci L, Baldelli F, Distrutti E, Fiorucci S. Highly specific blockade of CCR5 inhibits leukocyte trafficking and reduces mucosal inflammation in murine colitis. Sci Rep 2016; 6:30802. [PMID: 27492684 PMCID: PMC4974621 DOI: 10.1038/srep30802] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/07/2016] [Indexed: 01/09/2023] Open
Abstract
Targeted disruption of leukocyte trafficking to the gut represents a promising approach for the treatment of inflammatory bowel diseases (IBDs). CCR5, the shared receptor for MIP1α and β and RANTES, is expressed by multiple leukocytes. Here, we aimed to determine the role of CCR5 in mediating leukocyte trafficking in models of colitis, and evaluate the therapeutic potential of maraviroc, an orally active CCR5 antagonist used in the treatment of CCR5-tropic HIV. Acute and chronic colitis were induced by administration of DSS or TNBS to wild-type and CCR5−/− mice or adoptive transfer of splenic naïve CD4+ T-cells from wild type or CCR5−/− mice into RAG-1−/−. CCR5 gene ablation reduced the mucosal recruitment and activation of CCR5-bearing CD4+ and CD11b+ leukocytes, resulting in profound attenuation of signs and symptoms of inflammation in the TNBS and transfer models of colitis. In the DSS/TNBS colitis and in the transfer model, maraviroc attenuated development of intestinal inflammation by selectively reducing the recruitment of CCR5 bearing leukocytes. In summary, CCR5 regulates recruitment of blood leukocytes into the colon indicating that targeting CCR5 may offer therapeutic options in IBDs.
Collapse
Affiliation(s)
- Andrea Mencarelli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sabrina Cipriani
- Dipartimento di Medicina, Università di Perugia, Piazza L. Severi 1, Perugia 06132, Italy
| | - Daniela Francisci
- Dipartimento di Medicina, Università di Perugia, Piazza L. Severi 1, Perugia 06132, Italy
| | | | - Franco Baldelli
- Dipartimento di Medicina, Università di Perugia, Piazza L. Severi 1, Perugia 06132, Italy
| | | | - Stefano Fiorucci
- Dipartimento di Scienze Chirurgiche e Biomediche, Università di Perugia, Piazza L. Severi 1, Perugia 06132, Italy
| |
Collapse
|
35
|
Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils. J Immunol Res 2016; 2016:6530410. [PMID: 27446967 PMCID: PMC4942661 DOI: 10.1155/2016/6530410] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/10/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Neutrophils have a traditional role in inflammatory process and act as the first line of defense against infections. Although their contribution to tumorigenesis and progression is still controversial, accumulating evidence recently has demonstrated that tumor-associated neutrophils (TANs) play a key role in multiple aspects of cancer biology. Here, we detected that chemokine CXCL1 was dramatically elevated in serum from 3LL tumor-bearing mice. In vitro, 3LL cells constitutively expressed and secreted higher level of CXCL1. Furthermore, knocking down CXCL1 expression in 3LL cells significantly hindered tumor growth by inhibiting recruitment of neutrophils from peripheral blood into tumor tissues. Additionally, tumor-infiltrated neutrophils expressed higher levels of MPO and Fas/FasL, which may be involved in TAN-mediated inhibition of CD4+ and CD8+ T cells. These results demonstrate that tumor-derived CXCL1 contributes to TANs infiltration in lung cancer which promotes tumor growth.
Collapse
|
36
|
Abstract
BACKGROUND Inflammation-associated lymphangiogenesis (IAL) is frequently observed in inflammatory bowel diseases. IAL is believed to limit inflammation by enhancing fluid and immune cell clearance. Although monocytes/macrophages (MΦ) are known to contribute to intestinal pathology in inflammatory bowel disease, their role in intestinal IAL has never been studied mechanistically. We investigated contributions of monocytes/MΦ to the development of intestinal inflammation and IAL. METHODS Because inflammatory monocytes express CC chemokine receptor 2 (CCR2), we used CCR2 diphtheria toxin receptor transgenic (CCR2.DTR) mice, in which monocytes can be depleted by diphtheria toxin injection, and CCR2 mice, which have reduced circulating monocytes. Acute or chronic colitis was induced by dextran sodium sulfate or adoptive transfer of CD4CD45RB T cells, respectively. Intestinal inflammation was assessed by flow cytometry, immunofluorescence, disease activity, and histopathology, whereas IAL was assessed by lymphatic vessel morphology and density. RESULTS We demonstrated that intestinal MΦ expressed vascular endothelial growth factor-C/D. In acute colitis, monocyte-depleted mice were protected from intestinal injury and showed reduced IAL, which was reversed after transfer of wild-type monocytes into CCR2 mice. In chronic colitis, CCR2 deficiency did not attenuate inflammation but reduced IAL. CONCLUSIONS We propose a dual role of MΦ in (1) promoting acute inflammation and (2) contributing to IAL. Our data suggest that intestinal inflammation and IAL could occur independently, because IAL was reduced in the absence of monocytes/MΦ, even when inflammation was present. Future inflammatory bowel disease therapies might exploit promotion of IAL and suppression of MΦ independently, to restore lymphatic clearance and reduce inflammation.
Collapse
|
37
|
Pérez-Bosque A, Miró L, Maijó M, Polo J, Campbell JM, Russell L, Crenshaw JD, Weaver E, Moretó M. Oral Serum-Derived Bovine Immunoglobulin/Protein Isolate Has Immunomodulatory Effects on the Colon of Mice that Spontaneously Develop Colitis. PLoS One 2016; 11:e0154823. [PMID: 27139220 PMCID: PMC4854409 DOI: 10.1371/journal.pone.0154823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/19/2016] [Indexed: 12/30/2022] Open
Abstract
Dietary immunoglobulin concentrates prepared from animal plasma can modulate the immune response of gut-associated lymphoid tissue (GALT). Previous studies have revealed that supplementation with serum-derived bovine immunoglobulin/protein isolate (SBI) ameliorates colonic barrier alterations in the mdr1a-/- genetic mouse model of IBD. Here, we examine the effects of SBI on mucosal inflammation in mdr1a-/- mice that spontaneously develop colitis. Wild type (WT) mice and mice lacking the mdr1a gene (KO) were fed diets supplemented with either SBI (2% w/w) or milk proteins (Control diet), from day 21 (weaning) until day 56. Leucocytes in mesenteric lymph nodes (MLN) and in lamina propria were determined, as was mucosal cytokine production. Neutrophil recruitment and activation in MLN and lamina propria of KO mice were increased, but were significantly reduced in both by SBI supplementation (p < 0.05). The increased neutrophil recruitment and activation observed in KO mice correlated with increased colon oxidative stress (p < 0.05) and SBI supplementation reduced this variable (p < 0.05). The Tact/Treg lymphocyte ratios in MLN and lamina propria were also increased in KO animals, but SBI prevented these changes (both p < 0.05). In the colon of KO mice, there was an increased production of mucosal pro-inflammatory cytokines such as IL-2 (2-fold), IL-6 (26-fold) and IL-17 (19-fold), and of chemokines MIP-1β (4.5-fold) and MCP-1 (7.2-fold). These effects were significantly prevented by SBI (p < 0.05). SBI also significantly increased TGF-β secretion in the colon mucosa, suggesting a role of this anti-inflammatory cytokine in the modulation of GALT and the reduction of the severity of the inflammatory response during the onset of colitis.
Collapse
Affiliation(s)
- Anna Pérez-Bosque
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona (UB), Barcelona, Spain
- * E-mail:
| | - Lluïsa Miró
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mònica Maijó
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona (UB), Barcelona, Spain
| | | | | | | | | | - Eric Weaver
- EnteraHealth, Cary, NC, United States of America
| | - Miquel Moretó
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
38
|
Hondo T, Someya S, Nagasawa Y, Terada S, Watanabe H, Chen X, Watanabe K, Ohwada S, Kitazawa H, Rose MT, Nochi T, Aso H. Cyclophilin A is a new M cell marker of bovine intestinal epithelium. Cell Tissue Res 2016; 364:585-597. [DOI: 10.1007/s00441-015-2342-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022]
|
39
|
Wang D, DuBois RN. Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis 2015; 36:1085-93. [PMID: 26354776 DOI: 10.1093/carcin/bgv123] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 08/16/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation contributes to cancer development via multiple mechanisms. One potential mechanism is that chronic inflammation can generate an immunosuppressive microenvironment that allows advantages for tumor formation and progression. The immunosuppressive environment in certain chronic inflammatory diseases and solid cancers is characterized by accumulation of proinflammatory mediators, infiltration of immune suppressor cells and activation of immune checkpoint pathways in effector T cells. In this review, we highlight recent advances in our understanding of how immunosuppression contributes to cancer and how proinflammatory mediators induce the immunosuppressive microenvironment via induction of immunosuppressive cells and activation of immune checkpoint pathways.
Collapse
Affiliation(s)
- Dingzhi Wang
- Laboratory for Inflammation and Cancer, The Biodesign Institute and
| | - Raymond N DuBois
- Laboratory for Inflammation and Cancer, The Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, PO Box 875001, 1001 S. McAllister Ave., Tempe, AZ 85287, USA and Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, AZ 85259, USA
| |
Collapse
|
40
|
Alonso MN, Gregorio JG, Davidson MG, Gonzalez JC, Engleman EG. Depletion of inflammatory dendritic cells with anti-CD209 conjugated to saporin toxin. Immunol Res 2015; 58:374-7. [PMID: 24781193 DOI: 10.1007/s12026-014-8511-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monocytes rapidly infiltrate inflamed tissues and differentiate into CD209(+) inflammatory dendritic cells (DCs) that promote robust immunity or, if unregulated, inflammatory disease. Previous studies in experimental animal models indicate that inflammatory DC depletion through systemic elimination of their monocyte precursors with clodronate-loaded liposomes ameliorates the development of psoriasis and other diseases. However, translation of systemic monocyte depletion strategies is difficult due to the importance of monocytes during homeostasis and infection clearance. Here, we describe a strategy that avoids the monocyte intermediates to deplete inflammatory DCs through antibody-loaded toxin. Mice with an abundance of inflammatory DCs as a consequence of lipopolysaccharide exposure were treated with anti-CD209 antibody conjugated to saporin, a potent ribosome inactivator. The results demonstrate depletion of CD209(+) DCs. This strategy could prove useful for the targeted reduction of inflammatory DCs in disease.
Collapse
Affiliation(s)
- Michael N Alonso
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Jakobsson T, Vedin LL, Hassan T, Venteclef N, Greco D, D'Amato M, Treuter E, Gustafsson JÅ, Steffensen KR. The oxysterol receptor LXRβ protects against DSS- and TNBS-induced colitis in mice. Mucosal Immunol 2014; 7:1416-28. [PMID: 24803164 DOI: 10.1038/mi.2014.31] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/01/2014] [Indexed: 02/04/2023]
Abstract
We examined the function of the oxysterol receptors (LXRs) in inflammatory bowel disease (IBD) through studying dextran sodium sulfate (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice and by elucidating molecular mechanisms underlying their anti-inflammatory action. We observed that Lxr-deficient mice are more susceptible to colitis. Clinical indicators of colitis including weight loss, diarrhea and blood in feces appeared earlier and were more severe in Lxr-deficient mice and particularly LXRβ protected against symptoms of colitis. Addition of an LXR agonist led to faster recovery and increased survival. In contrast, Lxr-deficient mice showed slower recovery and decreased survival. In Lxr-deficient mice, inflammatory cytokines and chemokines were increased together with increased infiltration of immune cells in the colon epithelium. Activation of LXRs strongly suppressed expression of inflammatory mediators including TNFα. While LXRα had anti-inflammatory effects in CD11b(+) immune cell populations, LXRβ in addition had anti-inflammatory effects in colon epithelial cells. Lack of LXRβ also induced CD4(+)/CD3(+) immune cell recruitment to the inflamed colon. Expression of both LXRA and LXRB was significantly suppressed in inflamed colon from subjects with IBD compared with non-inflamed colon. Taken together, our observations suggest that the LXRs could provide interesting targets to reduce the inflammatory responses in IBD.
Collapse
Affiliation(s)
- T Jakobsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - L-L Vedin
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - T Hassan
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - N Venteclef
- Institute of Cardiometabolism and Nutrition, INSERM, Université Pierre et Marie Curie-Paris 6, Cordeliers Research Center, Paris, France
| | - D Greco
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - M D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - E Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - J-Å Gustafsson
- 1] Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden [2] Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - K R Steffensen
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
43
|
Bär F, Föh B, Pagel R, Schröder T, Schlichting H, Hirose M, Lemcke S, Klinger A, König P, Karsten CM, Büning J, Lehnert H, Fellermann K, Ibrahim SM, Sina C. Carboxypeptidase E modulates intestinal immune homeostasis and protects against experimental colitis in mice. PLoS One 2014; 9:e102347. [PMID: 25051500 PMCID: PMC4106776 DOI: 10.1371/journal.pone.0102347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 06/18/2014] [Indexed: 12/24/2022] Open
Abstract
Enteroendocrine cells (EEC) produce neuropeptides, which are crucially involved in the maintenance of the intestinal barrier. Hence, EEC dysfunction is suggested to be involved in the complex pathophysiology of inflammatory bowel disease (IBD), which is characterized by decreased intestinal barrier function. However, the underlying mechanisms for EEC dysfunction are not clear and suitable models for a better understanding are lacking. Here, we demonstrate that Carboxypeptidase E (CPE) is specifically expressed in EEC of the murine colon and ileum and that its deficiency is associated with reduced intestinal levels of Neuropeptide Y (NPY) and Peptide YY (PYY), which are both produced by EEC. Moreover, cpe−/− mice exhibit an aggravated course of DSS-induced chronic colitis compared to wildtype littermates. In addition, we observed elevated mucosal IL-6 and KC transcript levels already at baseline conditions in cpe−/− mice. Moreover, supernatants obtained from isolated intestinal crypts of cpe−/− mice lead to increased IL-6 and KC expression in MODE-K cells in the presence of LPS. This effect was reversible by co-administration of recombinant NPY, suggesting a CPE mediated immunosuppressive effect in the intestines by influencing the processing of specific neuropeptides. In this context, the chemotaxis of bone marrow derived macrophages towards respective supernatants was enhanced. In conclusion, our data point to an anti-inflammatory role of CPE in the intestine by influencing local cytokine levels and thus regulating the migration of myeloid immune cells into the mucosa. These findings highlight the importance of EEC for intestinal homeostasis and propose EEC as potential therapeutic targets in IBD.
Collapse
Affiliation(s)
- Florian Bär
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Bandik Föh
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - René Pagel
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Torsten Schröder
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Heidi Schlichting
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Misa Hirose
- Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Susanne Lemcke
- Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Antje Klinger
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jürgen Büning
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Hendrik Lehnert
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Klaus Fellermann
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Saleh M. Ibrahim
- Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christian Sina
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
- * E-mail:
| |
Collapse
|
44
|
Peroxisome proliferator-activated receptor δ promotes colonic inflammation and tumor growth. Proc Natl Acad Sci U S A 2014; 111:7084-9. [PMID: 24763687 DOI: 10.1073/pnas.1324233111] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although epidemiologic and experimental evidence strongly implicates chronic inflammation and dietary fats as risk factors for cancer, the mechanisms underlying their contribution to carcinogenesis are poorly understood. Here we present genetic evidence demonstrating that deletion of peroxisome proliferator-activated receptor δ (PPARδ) attenuates colonic inflammation and colitis-associated adenoma formation/growth. Importantly, PPARδ is required for dextran sodium sulfate induction of proinflammatory mediators, including chemokines, cytokines, COX-2, and prostaglandin E2 (PGE2), in vivo. We further show that activation of PPARδ induces COX-2 expression in colonic epithelial cells. COX-2-derived PGE2 stimulates macrophages to produce proinflammatory chemokines and cytokines that are responsible for recruitment of leukocytes from the circulation to local sites of inflammation. Our results suggest that PPARδ promotes colonic inflammation and colitis-associated tumor growth via the COX-2-derived PGE2 signaling axis that mediates cross-talk between tumor epithelial cells and macrophages.
Collapse
|
45
|
Chemokine receptor CCR8 is required for lipopolysaccharide-triggered cytokine production in mouse peritoneal macrophages. PLoS One 2014; 9:e94445. [PMID: 24714157 PMCID: PMC3979852 DOI: 10.1371/journal.pone.0094445] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/16/2014] [Indexed: 02/02/2023] Open
Abstract
Chemokine (C-C motif) receptor 8 (CCR8), the chemokine receptor for chemokine (C-C motif) ligand 1 (CCL1), is expressed in T-helper type-2 lymphocytes and peritoneal macrophages (PMφ) and is involved in various pathological conditions, including peritoneal adhesions. However, the role of CCR8 in inflammatory responses is not fully elucidated. To investigate the function of CCR8 in macrophages, we compared cytokine secretion from mouse PMφ or bone marrow-derived macrophages (BMMφ) stimulated with various Toll-like receptor (TLR) ligands in CCR8 deficient (CCR8-/-) and wild-type (WT) mice. We found that CCR8-/- PMφ demonstrated attenuated secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 when stimulated with lipopolysaccharide (LPS). In particular, LPS-induced IL-10 production absolutely required CCR8. CCR8-dependent cytokine secretion was characteristic of PMφ but not BMMφ. To further investigate this result, we selected the small molecule compound R243 from a library of compounds with CCR8-antagonistic effects on CCL1-induced Ca2+ flux and CCL1-driven PMφ aggregation. Similar to CCR8-/- PMφ, R243 attenuated secretion of TNF-α, IL-6, and most strikingly IL-10 from WT PMφ, but not BMMφ. CCR8-/- PMφ and R243-treated WT PMφ both showed suppressed c-jun N-terminal kinase activity and nuclear factor-κB signaling after LPS treatment when compared with WT PMφ. A c-Jun signaling pathway inhibitor also produced an inhibitory effect on LPS-induced cytokine secretion that was similar to that of CCR8 deficiency or R243 treatment. As seen in CCR8-/- mice, administration of R243 attenuated peritoneal adhesions in vivo. R243 also prevented hapten-induced colitis. These results are indicative of cross talk between signaling pathways downstream of CCR8 and TLR-4 that induces cytokine production by PMφ. Through use of CCR8-/- mice and the new CCR8 inhibitor, R243, we identified a novel macrophage innate immune response pathway that involves a chemokine receptor.
Collapse
|
46
|
Tschammer N, Kokornaczyk AK, Strunz AK, Wünsch B. Selective and Dual Targeting of CCR2 and CCR5 Receptors: A Current Overview. CHEMOKINES 2014; 14. [PMCID: PMC7123309 DOI: 10.1007/7355_2014_40] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chemokine receptor 2 (CCR2) and chemokine receptor 5 (CCR5) are important mediators of leukocyte trafficking in inflammatory processes. The emerging evidence for a role of CCR2 and CCR5 receptors in human inflammatory diseases led to a growing interest in CCR2- and CCR5-selective antagonists. In this review, we focus on the recent development of selective CCR2/CCR5 receptor ligands and dual antagonists. Several compounds targeting CCR2, e.g., INCB8761 and MK0812, were developed as promising candidates for clinical trials, but failed to show clinical efficacy as presumed from preclinical models. The role of CCR5 receptors as the second co-receptor for the HIV-host cell fusion led to the development of various CCR5-selective ligands. Maraviroc is the first CCR5-targeting drug for the treatment of HIV-1 infections on the market. The role of CCR5 receptors in the progression of inflammatory processes fueled the use of CCR5 antagonists for the treatment of rheumatoid arthritis. Unfortunately, the use of maraviroc for the treatment of rheumatoid arthritis failed due to its inefficacy. Some of the ligands, e.g., TAK-779 and TAK-652, were also found to be dual antagonists of CCR2 and CCR5 receptors. The fact that CCR2 and CCR5 receptor antagonists contribute to the treatment of inflammatory diseases renders the development of dual antagonists as promising novel therapeutic strategy.
Collapse
Affiliation(s)
- Nuska Tschammer
- Dept. of Chemistry and Pharmacy, Friedrich Alexander University, Erlangen, Germany
| | | | | | | |
Collapse
|
47
|
Katoh H, Wang D, Daikoku T, Sun H, Dey SK, DuBois RN. CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 2013; 24:631-44. [PMID: 24229710 PMCID: PMC3928012 DOI: 10.1016/j.ccr.2013.10.009] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/09/2013] [Accepted: 10/03/2013] [Indexed: 12/21/2022]
Abstract
A large body of evidence indicates that chronic inflammation is one of several key risk factors for cancer initiation, progression, and metastasis. However, the underlying mechanisms responsible for the contribution of inflammation and inflammatory mediators to cancer remain elusive. Here, we present genetic evidence that loss of CXCR2 dramatically suppresses chronic colonic inflammation and colitis-associated tumorigenesis through inhibiting infiltration of myeloid-derived suppressor cells (MDSCs) into colonic mucosa and tumors in a mouse model of colitis-associated cancer. CXCR2 ligands were elevated in inflamed colonic mucosa and tumors and induced MDSC chemotaxis. Adoptive transfer of wild-type MDSCs into Cxcr2(-/-) mice restored AOM/DSS-induced tumor progression. MDSCs accelerated tumor growth by inhibiting CD8(+) T cell cytotoxic activity.
Collapse
Affiliation(s)
- Hiroshi Katoh
- Laboratory for Inflammation and Cancer, the Biodesign Institute at Arizona State University, Tempe, AZ 85287
| | - Dingzhi Wang
- Laboratory for Inflammation and Cancer, the Biodesign Institute at Arizona State University, Tempe, AZ 85287
| | - Takiko Daikoku
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, OH 45229
| | - Haiyan Sun
- Laboratory for Inflammation and Cancer, the Biodesign Institute at Arizona State University, Tempe, AZ 85287
| | - Sudhansu K. Dey
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, OH 45229
| | - Raymond N. DuBois
- Laboratory for Inflammation and Cancer, the Biodesign Institute at Arizona State University, Tempe, AZ 85287
- Department of Chemistry and Biology, Arizona State University, Tempe, AZ 85287
- Correspondence to: Raymond N. DuBois, MD. Ph.D., Executive Director of the Biodesign Institute at Arizona State University, PO Box 875001, 1001, S. McAllister Ave. Tempe, AZ 85287, Tel: 480-965-1228 and Fax: 480-727-9550,
| |
Collapse
|
48
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 653] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mango RL, Wu QP, West M, McCook EC, Serody JS, van Deventer HW. C-C chemokine receptor 5 on pulmonary mesenchymal cells promotes experimental metastasis via the induction of erythroid differentiation regulator 1. Mol Cancer Res 2013; 12:274-82. [PMID: 24197118 DOI: 10.1158/1541-7786.mcr-13-0164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED C-C Chemokine receptor 5 knockout (Ccr5(-/-)) mice develop fewer experimental pulmonary metastases than wild-type (WT) mice. This phenomenon was explored by applying gene expression profiling to the lungs of mice with these metastases. Consequently, erythroid differentiation regulator 1 (Erdr1) was identified as upregulated in the WT mice. Though commonly associated with bone marrow stroma, Erdr1 was differentially expressed in WT pulmonary mesenchymal cells (PMC) and murine embryonic fibroblasts (MEF). Moreover, the Ccr5 ligand Ccl4 increased its expression by 3.36 ± 0.14-fold. Ccr5 signaling was dependent on the mitogen-activated protein kinase kinase (Map2k) but not the phosphoinositide 3-kinase (Pi3k) pathway because treatment with U0126 inhibited upregulation of Erdr1, but treatment with LY294002 increased the expression by 3.44 ± 0.92-fold (P < 0.05). The effect Erdr1 on B16-F10 melanoma metastasis was verified by the adoptive transfer of WT MEFs into Ccr5(-/-) mice. In this model, MEFs that had been transduced with Erdr1 short hairpin RNA (shRNA) lowered metastasis by 33% compared with control transduced MEFs. The relevance of ERDR1 on human disease was assessed by coculturing chronic lymphocytic leukemia (CLL) cells with M2-10B4 stromal cells that had been transfected with shRNA or control plasmids. After 96 hours of coculture, the cell counts were higher with control cell lines than with Erdr1 knockdown lines [odds ratio (OR), 1.88 ± 0.27, 2.52 ± 0.66, respectively]. This increase was associated with a decrease in apoptotic cells (OR, 0.69 ± 0.18, 0.58 ± 0.12, respectively). IMPLICATIONS Therefore, ERDR1 is a stromal-derived factor that promotes cancer cell survival in vitro and in an experimental metastasis model.
Collapse
Affiliation(s)
- Robert L Mango
- University of North Carolina, CB 7305, 170 Manning Drive, Chapel Hill, NC 27599-7305.
| | | | | | | | | | | |
Collapse
|
50
|
Ng YL, Klopcic B, Lloyd F, Forrest C, Greene W, Lawrance IC. Secreted protein acidic and rich in cysteine (SPARC) exacerbates colonic inflammatory symptoms in dextran sodium sulphate-induced murine colitis. PLoS One 2013; 8:e77575. [PMID: 24204877 PMCID: PMC3804578 DOI: 10.1371/journal.pone.0077575] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/10/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Secreted Protein Acidic and Rich in Cysteine (SPARC) is expressed during tissue repair and regulates cellular proliferation, migration and cytokine expression. The aim was to determine if SPARC modifies intestinal inflammation. METHODS Wild-type (WT) and SPARC-null (KO) mice received 3% dextran sodium sulphate (DSS) for 7 days. Inflammation was assessed endoscopically, clinically and histologically. IL-1β, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-12/IL23p40, TNF-α, IFN-γ, RANTES, MCP-1, MIP-1α, MIP-1β, MIG and TGF-β1 levels were measured by ELISA and cytometric bead array. Inflammatory cells were characterised by CD68, Ly6G, F4/80 and CD11b immunofluorescence staining and regulatory T cells from spleen and mesenteric lymph nodes were assessed by flow cytometry. RESULTS KO mice had less weight loss and diarrhoea with less endoscopic and histological inflammation than WT animals. By day 35, all (n = 13) KO animals completely resolved the inflammation compared to 7 of 14 WT mice (p<0.01). Compared to WTs, KO animals at day 7 had less IL1β (p= 0.025) and MIG (p = 0.031) with higher TGFβ1 (p = 0.017) expression and a greater percentage of FoxP3+ regulatory T cells in the spleen and draining lymph nodes of KO animals (p<0.01). KO mice also had fewer CD68+ and F4/80+ macrophages, Ly6G+ neutrophils and CD11b+ cells infiltrating the inflamed colon. CONCLUSIONS Compared to WT, SPARC KO mice had less inflammation with fewer inflammatory cells and more regulatory T cells. Together, with increased TGF-β1 levels, this could aid in the more rapid resolution of inflammation and restoration of the intestinal mucosa suggesting that the presence of SPARC increases intestinal inflammation.
Collapse
Affiliation(s)
- Yoke-Leng Ng
- Centre for Inflammatory Bowel Diseases, School of Medicine and Pharmacology, University of Western Australia, Fremantle, Western Australia, Australia
- School of Veterinary and Biomedical Sciences, Murdoch University, Perth, Western Australia, Australia
- * E-mail:
| | - Borut Klopcic
- Centre for Inflammatory Bowel Diseases, School of Medicine and Pharmacology, University of Western Australia, Fremantle, Western Australia, Australia
| | - Frances Lloyd
- Centre for Inflammatory Bowel Diseases, School of Medicine and Pharmacology, University of Western Australia, Fremantle, Western Australia, Australia
| | - Cynthia Forrest
- School of Pathology and Laboratory Medicine, University of Western Australia, Fremantle, Western Australia, Australia
| | - Wayne Greene
- School of Veterinary and Biomedical Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Ian C. Lawrance
- Centre for Inflammatory Bowel Diseases, School of Medicine and Pharmacology, University of Western Australia, Fremantle, Western Australia, Australia
| |
Collapse
|