1
|
Sanami S, Shamsabadi S, Dayhimi A, Pirhayati M, Ahmad S, Pirhayati A, Ajami M, Hemati S, Shirvani M, Alagha A, Abbarin D, Alizadeh A, Pazoki-Toroudi H. Association between cytomegalovirus infection and neurological disorders: A systematic review. Rev Med Virol 2024; 34:e2532. [PMID: 38549138 DOI: 10.1002/rmv.2532] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Cytomegalovirus (CMV) belongs to the Herpesviridae family and is also known as human herpesvirus type 5. It is a common virus that usually doesn't cause any symptoms in healthy individuals. However, once infected, the virus remains in the host's body for life and can reactivate when the host's immune system weakens. This virus has been linked to several neurological disorders, including Alzheimer's disease, Parkinson's disease, Autism spectrum disorder, Huntington's disease (HD), ataxia, Bell's palsy (BP), and brain tumours, which can cause a wide range of symptoms and challenges for those affected. CMV may influence inflammation, contribute to brain tissue damage, and elevate the risk of moderate-to-severe dementia. Multiple studies suggest a potential association between CMV and ataxia in various conditions, including Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, acute cerebellitis, etc. On the other hand, the evidence regarding CMV involvement in BP is conflicting, and also early indications of a link between CMV and HD were challenged by subsequent research disproving CMV's presence. This systematic review aims to comprehensively investigate any link between the pathogenesis of CMV and its potential role in neurological disorders and follows the preferred reporting items for systematic review and meta-analysis checklist. Despite significant research into the potential links between CMV infection and various neurological disorders, the direct cause-effect relationship is not fully understood and several gaps in knowledge persist. Therefore, continued research is necessary to gain a better understanding of the role of CMV in neurological disorders and potential treatment avenues.
Collapse
Affiliation(s)
- Samira Sanami
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shahnam Shamsabadi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Dayhimi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Pirhayati
- Psychiatric Department, Rasool Akram Hospital, Iran University of Medical Science, Tehran, Iran
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | | | - Marjan Ajami
- National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Hemati
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Masoud Shirvani
- Department of Neurosurgery, Salamat-Farda Hospital, Tehran, Iran
| | - Ahmad Alagha
- Department of Neurosurgery, Salamat-Farda Hospital, Tehran, Iran
| | - Davood Abbarin
- Department of Neurosurgery, Salamat-Farda Hospital, Tehran, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamidreza Pazoki-Toroudi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Bister J, Filipovic I, Sun D, Crona-Guterstam Y, Cornillet M, Ponzetta A, Michaëlsson J, Gidlöf S, Ivarsson MA, Strunz B, Björkström NK. Tissue-specific nonheritable influences drive endometrial immune system variation. Sci Immunol 2024; 9:eadj7168. [PMID: 38579017 DOI: 10.1126/sciimmunol.adj7168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Although human twin studies have revealed the combined contribution of heritable and environmental factors in shaping immune system variability in blood, the contribution of these factors to immune system variability in tissues remains unexplored. The human uterus undergoes constant regeneration and is exposed to distinct environmental factors. To assess uterine immune system variation, we performed a system-level analysis of endometrial and peripheral blood immune cells in monozygotic twins. Although most immune cell phenotypes in peripheral blood showed high genetic heritability, more variation was found in endometrial immune cells, indicating a stronger influence by environmental factors. Cytomegalovirus infection was identified to influence peripheral blood immune cell variability but had limited effect on endometrial immune cells. Instead, hormonal contraception shaped the local endometrial milieu and immune cell composition with minor influence on the systemic immune system. These results highlight that the magnitude of human immune system variation and factors influencing it can be tissue specific.
Collapse
Affiliation(s)
- Jonna Bister
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Dan Sun
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ylva Crona-Guterstam
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Gidlöf
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Martin A Ivarsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
4
|
Beltrami S, Rizzo S, Schiuma G, Speltri G, Di Luca D, Rizzo R, Bortolotti D. Gestational Viral Infections: Role of Host Immune System. Microorganisms 2023; 11:1637. [PMID: 37512810 PMCID: PMC10383666 DOI: 10.3390/microorganisms11071637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Viral infections in pregnancy are major causes of maternal and fetal morbidity and mortality. Infections can develop in the neonate transplacentally, perinatally, or postnatally (from breast milk or other sources) and lead to different clinical manifestations, depending on the viral agent and the gestational age at exposure. Viewing the peculiar tolerogenic status which characterizes pregnancy, viruses could exploit this peculiar immunological status to spread or affect the maternal immune system, adopting several evasion strategies. In fact, both DNA and RNA virus might have a deep impact on both innate and acquired immune systems. For this reason, investigating the interaction with these pathogens and the host's immune system during pregnancy is crucial not only for the development of most effective therapies and diagnosis but mostly for prevention. In this review, we will analyze some of the most important DNA and RNA viruses related to gestational infections.
Collapse
Affiliation(s)
- Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Kim HJ, Lee Y, Lee S, Park B. HCMV-encoded viral protein US12 promotes autophagy by inducing autophagy flux. Biochem Biophys Res Commun 2023; 654:94-101. [PMID: 36898229 DOI: 10.1016/j.bbrc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The human cytomegalovirus (HCMV)-encoded US12 gene family is a group of ten predicted seven-transmembrane domain proteins that are structurally similar to G-protein-coupled receptors or transmembrane Bax inhibitor-1 motif-containing proteins; however, the roles of US12 family proteins in virus-host interactions remain to be discovered. Here, we suggest a new function of the US12 protein in regulating cellular autophagy. US12 is predominantly located to the lysosome and interacts with the lysosomal membrane protein 2 (LAMP2). A liquid chromatography-mass spectrometry (MS)/MS-based targeted proteomics analysis shows that US12 is tightly correlated with autophagy. US12 induces autophagy via upregulating ULK1 phosphorylation and subsequent LC3-II conversion, thereby accelerating autophagic flux. Moreover, HeLa cells overexpressing US12 displays intense LC3-specific staining and autolysosome formation even under nutrient-sufficient conditions. Furthermore, the physical interaction of p62/SQSTM1 with US12 is involved in the resistance to the degradation of p62/SQSTM1 by autophagy, despite the induction of both autolysosome formation and autophagic flux. Although the effect of US12 expression in HCMV infection on autophagy remains undetermined, these findings provide new insights into the viral drivers of host autophagy during HCMV evolution and pathogenesis.
Collapse
Affiliation(s)
- Hyung Jin Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Yoora Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Sungwook Lee
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
6
|
Ashley CL, McSharry BP, McWilliam HEG, Stanton RJ, Fielding CA, Mathias RA, Fairlie DP, McCluskey J, Villadangos JA, Rossjohn J, Abendroth A, Slobedman B. Suppression of MR1 by human cytomegalovirus inhibits MAIT cell activation. Front Immunol 2023; 14:1107497. [PMID: 36845106 PMCID: PMC9950634 DOI: 10.3389/fimmu.2023.1107497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction The antigen presentation molecule MHC class I related protein-1 (MR1) is best characterized by its ability to present bacterially derived metabolites of vitamin B2 biosynthesis to mucosal-associated invariant T-cells (MAIT cells). Methods Through in vitro human cytomegalovirus (HCMV) infection in the presence of MR1 ligand we investigate the modulation of MR1 expression. Using coimmunoprecipitation, mass spectrometry, expression by recombinant adenovirus and HCMV deletion mutants we investigate HCMV gpUS9 and its family members as potential regulators of MR1 expression. The functional consequences of MR1 modulation by HCMV infection are explored in coculture activation assays with either Jurkat cells engineered to express the MAIT cell TCR or primary MAIT cells. MR1 dependence in these activation assays is established by addition of MR1 neutralizing antibody and CRISPR/Cas-9 mediated MR1 knockout. Results Here we demonstrate that HCMV infection efficiently suppresses MR1 surface expression and reduces total MR1 protein levels. Expression of the viral glycoprotein gpUS9 in isolation could reduce both cell surface and total MR1 levels, with analysis of a specific US9 HCMV deletion mutant suggesting that the virus can target MR1 using multiple mechanisms. Functional assays with primary MAIT cells demonstrated the ability of HCMV infection to inhibit bacterially driven, MR1-dependent activation using both neutralizing antibodies and engineered MR1 knockout cells. Discussion This study identifies a strategy encoded by HCMV to disrupt the MR1:MAIT cell axis. This immune axis is less well characterized in the context of viral infection. HCMV encodes hundreds of proteins, some of which regulate the expression of antigen presentation molecules. However the ability of this virus to regulate the MR1:MAIT TCR axis has not been studied in detail.
Collapse
Affiliation(s)
- Caroline L. Ashley
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Brian P. McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Hamish E. G. McWilliam
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Institute of Molecular Science and Biotechnology (Bio21), The University of Melbourne, Melbourne, VIC, Australia
| | - Richard J. Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ceri A. Fielding
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rommel A. Mathias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - David P. Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Jose A. Villadangos
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Institute of Molecular Science and Biotechnology (Bio21), The University of Melbourne, Melbourne, VIC, Australia
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Espino A, Gouilly J, Chen Q, Colin P, Guerby P, Izopet J, Amara A, Tabiasco J, Al-Daccak R, El Costa H, Jabrane-Ferrat N. The mechanisms underlying the immune control of Zika virus infection at the maternal-fetal interface. Front Immunol 2022; 13:1000861. [PMID: 36483552 PMCID: PMC9723234 DOI: 10.3389/fimmu.2022.1000861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
Unlike other Flaviviruses, Zika virus (ZIKV) infection during the first trimester of pregnancy causes severe pregnancy outcomes including the devastating microcephaly and diseases associated with placental dysfunctions. We have previously reported that the maternal decidua basalis, the major maternal-fetal interface, serves as a replication platform enabling virus amplification before dissemination to the fetal compartment. However, the rate of congenital infection is quite low, suggesting the presence of a natural barrier against viral infection. Using primary cells from first-trimester pregnancy samples, we investigated in this study how the maternal decidua can interfere with ZIKV infection. Our study reveals that whether through their interactions with dNK cells, the main immune cell population of the first-trimester decidua, or their production of proinflammatory cytokines, decidual stromal cells (DSCs) are the main regulators of ZIKV infection during pregnancy. We also validate the functional role of AXL as a crucial receptor for ZIKV entry in DSCs and demonstrate that targeted inhibition of ligand-receptor interaction at the early stage of the infection is effective in drastically reducing virus pathogenesis at the maternal-fetal interface. Collectively, our results provide insights into the mechanisms through which ZIKV infection and spreading can be limited. The strategy of circumventing viral entry at the maternal-fetus interface limits virus dissemination to fetal tissues, thereby preventing congenital abnormalities.
Collapse
Affiliation(s)
- Ana Espino
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Jordi Gouilly
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Qian Chen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Philippe Colin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Paul Guerby
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France,Department of Obstetrics and Gynecology, Paule de Viguier Hospital, Toulouse, France
| | - Jacques Izopet
- Department of Virology, Institut Fédératif de Biologie, Toulouse, France
| | - Ali Amara
- CNRS 7212, INSERM U944, University Paris Cité, Hôpital Saint-Louis, Paris, France
| | - Julie Tabiasco
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Reem Al-Daccak
- INSERM UMRS976, University Paris Cité, Hôpital Saint-Louis, Paris, France
| | - Hicham El Costa
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Nabila Jabrane-Ferrat
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), CNRS UMR5051, INSERM UMR1291, University of Toulouse III, Toulouse, France,*Correspondence: Nabila Jabrane-Ferrat,
| |
Collapse
|
8
|
Sethumadhavan S, Barth M, Spaapen RM, Schmidt C, Trowitzsch S, Tampé R. Viral immune evasins impact antigen presentation by allele-specific trapping of MHC I at the peptide-loading complex. Sci Rep 2022; 12:1516. [PMID: 35087068 PMCID: PMC8795405 DOI: 10.1038/s41598-022-05000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides to cytotoxic T cells to eliminate infected or cancerous cells. The transporter associated with antigen processing (TAP) shuttles proteasomally generated peptides into the ER for MHC I loading. As central part of the peptide-loading complex (PLC), TAP is targeted by viral factors, which inhibit peptide supply and thereby impact MHC I-mediated immune responses. However, it is still poorly understood how antigen presentation via different MHC I allotypes is affected by TAP inhibition. Here, we show that conditional expression of herpes simplex viral ICP47 suppresses surface presentation of HLA-A and HLA-C, but not of HLA-B, while the human cytomegaloviral US6 reduces surface levels of all MHC I allotypes. This marked difference in HLA-B antigen presentation is echoed by an enrichment of HLA-B allomorphs at US6-arrested PLC in comparison to ICP47-PLC. Although both viral factors prevent TAP-mediated peptide supply, our data imply that MHC I allomorphs favor different conformationally arrested states of the PLC, leading to differential downregulation of MHC I surface presentation. These findings will help understand MHC I biology in general and will even advance the targeted treatment of infections depending on patients' allotypes.
Collapse
Affiliation(s)
- Sunesh Sethumadhavan
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
9
|
Vollmers S, Lobermeyer A, Körner C. The New Kid on the Block: HLA-C, a Key Regulator of Natural Killer Cells in Viral Immunity. Cells 2021; 10:cells10113108. [PMID: 34831331 PMCID: PMC8620871 DOI: 10.3390/cells10113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/01/2022] Open
Abstract
The human leukocyte antigen system (HLA) is a cluster of highly polymorphic genes essential for the proper function of the immune system, and it has been associated with a wide range of diseases. HLA class I molecules present intracellular host- and pathogen-derived peptides to effector cells of the immune system, inducing immune tolerance in healthy conditions or triggering effective immune responses in pathological situations. HLA-C is the most recently evolved HLA class I molecule, only present in humans and great apes. Differentiating from its older siblings, HLA-A and HLA-B, HLA-C exhibits distinctive features in its expression and interaction partners. HLA-C serves as a natural ligand for multiple members of the killer-cell immunoglobulin-like receptor (KIR) family, which are predominately expressed by natural killer (NK) cells. NK cells are crucial for the early control of viral infections and accumulating evidence indicates that interactions between HLA-C and its respective KIR receptors determine the outcome and progression of viral infections. In this review, we focus on the unique role of HLA-C in regulating NK cell functions and its consequences in the setting of viral infections.
Collapse
|
10
|
Njue A, Coyne C, Margulis AV, Wang D, Marks MA, Russell K, Das R, Sinha A. The Role of Congenital Cytomegalovirus Infection in Adverse Birth Outcomes: A Review of the Potential Mechanisms. Viruses 2020; 13:v13010020. [PMID: 33374185 PMCID: PMC7823935 DOI: 10.3390/v13010020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (CMV) is a major cause of nonhereditary adverse birth outcomes, including hearing and visual loss, neurologic deficits, and intrauterine growth retardation (IUGR), and may contribute to outcomes such as stillbirth and preterm delivery. However, the mechanisms by which CMV could cause adverse birth outcomes are not fully understood. This study reviewed proposed mechanisms underlying the role of CMV in stillbirth, preterm birth, and IUGR. Targeted literature searches were performed in PubMed and Embase to identify relevant articles. Several potential mechanisms were identified from in vitro studies in which laboratory-adapted and low-passage strains of CMV and various human placental models were used. Potential mechanisms identified included impairment of trophoblast progenitor stem cell differentiation and function, impairment of extravillous trophoblast invasiveness, dysregulation of Wnt signaling pathways in cytotrophoblasts, tumor necrosis factor-α mediated apoptosis of trophoblasts, CMV-induced cytokine changes in the placenta, inhibition of indoleamine 2,3-dioxygenase activity, and downregulation of trophoblast class I major histocompatibility complex molecules. Inherent challenges for the field remain in the identification of suitable in vivo animal models. Nonetheless, we believe that our review provides useful insights into the mechanisms by which CMV impairs placental development and function and how these changes could result in adverse birth outcomes.
Collapse
Affiliation(s)
- Annete Njue
- RTI Health Solutions, Manchester M20 2LS, UK
- Correspondence:
| | - Carolyn Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | | | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Morgan A. Marks
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Kevin Russell
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Rituparna Das
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| | - Anushua Sinha
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.W.); (M.A.M.); (K.R.); (R.D.); (A.S.)
| |
Collapse
|
11
|
Fetal HLA-G mediated immune tolerance and interferon response in preeclampsia. EBioMedicine 2020; 59:102872. [PMID: 32680723 PMCID: PMC7502669 DOI: 10.1016/j.ebiom.2020.102872] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fetal immune tolerance is crucial for pregnancy success. We studied the link between preeclampsia, a severe pregnancy disorder with uncertain pathogenesis, and fetal human leukocyte antigen G (HLA-G) and other genes regulating maternal immune responses. METHODS We assessed sex ratios and regulatory HLA-G haplotypes in population cohorts and series of preeclampsia and stillbirth. We studied placental mRNA expression of 136 genes by sequencing and HLA-G and interferon alpha (IFNα) protein expression by immunohistochemistry. FINDINGS We found underrepresentation of males in preeclamptic births, especially those delivered preterm or small for gestational age. Balancing selection at HLA-G associated with the sex ratio, stillbirth, and preeclampsia. We observed downregulation of HLA-G, its receptors, and many other tolerogenic genes, and marked upregulation of IFNA1 in preeclamptic placentas. INTERPRETATION These findings indicate that an evolutionary trade-off between immune tolerance and protection against infections at the maternal-fetal interface promotes genetic diversity in fetal HLA-G, thereby affecting survival, preeclampsia, and sex ratio. We highlight IFNA1 as a potential mediator of preeclampsia and a target for therapeutic trials. FUNDING Finnish Medical Foundation, Päivikki and Sakari Sohlberg Foundation, Karolinska Institutet Research Foundation, Scandinavia-Japan Sasakawa Foundation, Japan Eye Bank Association, Astellas Foundation for Research on Metabolic Disorders, Japan Society for the Promotion of Science, Knut and Alice Wallenberg Foundation, Swedish Research Council, Medical Society Liv och Hälsa, Sigrid Jusélius Foundation, Helsinki University Hospital and University of Helsinki, Jane and Aatos Erkko Foundation, Academy of Finland, Finska Läkaresällskapet, Novo Nordisk Foundation, Finnish Foundation for Pediatric Research, and Emil Aaltonen Foundation.
Collapse
|
12
|
Gabor F, Jahn G, Sedmak DD, Sinzger C. In vivo Downregulation of MHC Class I Molecules by HCMV Occurs During All Phases of Viral Replication but Is Not Always Complete. Front Cell Infect Microbiol 2020; 10:283. [PMID: 32596168 PMCID: PMC7304332 DOI: 10.3389/fcimb.2020.00283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Based on cell culture data, MHC class I downregulation by HCMV on infected cells has been suggested as a means of immune evasion by this virus. In order to address this issue in vivo, an immunohistochemical analysis of tissue sections from biopsy and autopsy materials of HCMV infected organs was performed. HCMV antigens from the immediate early, early, and late phase of viral replication, and cellular MHC class I molecules were detected simultaneously or in serial sections by immuno-peroxidase and immuno-alkaline phosphatase techniques. Investigated organs included lung, gastrointestinal tract, and placenta. Colocalization of MHC molecules with sites of viral replication as well as MHC expression in individual infected cells were analyzed. To detect immune effector cells at sites of viral replication, leukocytes, CD8+ lymphocytes, and HCMV antigens were stained in serial sections. While strong MHC class I expression was detected in the cells surrounding infected cells, it appeared downregulated in the majority of infected cells themselves, particularly in the late replication phase. Despite significantly reduced MHC class I signals on infected cells, sites of infection were infiltrated by inflammatory cells that consisted predominantly of CD8+ lymphocytes. The extent of inflammatory infiltrates was negatively correlated with the extent of HCMV infected cells. Taken together, our findings indicate that HCMV can downmodulate MHC class I expression in vivo, whereas cytokines originating from infiltrating immune effector cells probably up regulates MHC class I expression in noninfected bystander cells. The presence of cytotoxic lymphocytes in close contact to infected cells may reflect control of viral spread by these cells despite MHC class I downmodulation.
Collapse
Affiliation(s)
- Florin Gabor
- Institute of Medical Virology, University of Tübingen, Tübingen, Germany
| | - Gerhard Jahn
- Institute of Medical Virology, University of Tübingen, Tübingen, Germany
| | - Daniel D Sedmak
- Institute of Pathology, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
13
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
14
|
Rölle A, Jäger D, Momburg F. HLA-E Peptide Repertoire and Dimorphism-Centerpieces in the Adaptive NK Cell Puzzle? Front Immunol 2018; 9:2410. [PMID: 30386347 PMCID: PMC6199380 DOI: 10.3389/fimmu.2018.02410] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022] Open
Abstract
Adaptive Natural Killer (NK) cells, a heterogenous subpopulation of human NK cells with a unique phenotypic and functional signature, became arguably one of the central areas of interest in the field. While their existence seems closely associated with prior exposure to human cytomegalovirus (HCMV), many questions regarding their origin and regulation remain unanswered. However, a common denominator for the majority of adaptive NK cells is the expression of the activating heterodimeric receptor CD94/NKG2C that binds to HLA-E, a non-classical HLA molecule, that displays a comparably restricted expression pattern, very limited polymorphism and presents a distinct set of peptides. Recent studies suggest that-in analogy to T cell responses-peptides presented on HLA-E could play an unexpectedly decisive role for the biology of adaptive NK cells. Here, we discuss how this perspective on the CD94/NKG2C-HLA-E axis aligns with the existing literature and speculate about possible translational implication.
Collapse
Affiliation(s)
- Alexander Rölle
- Department of Medical Oncology, National Center for Tumor Diseasesm, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity (D120), German Cancer Research Center, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseasesm, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity (D120), German Cancer Research Center, Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group (D121), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Slawinski BL, Talge N, Ingersoll B, Smith A, Glazier A, Kerver J, Paneth N, Racicot K. Maternal cytomegalovirus sero-positivity and autism symptoms in children. Am J Reprod Immunol 2018; 79:e12840. [PMID: 29520885 PMCID: PMC5978736 DOI: 10.1111/aji.12840] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/10/2018] [Indexed: 12/28/2022] Open
Abstract
PROBLEM Autism spectrum disorder (ASD) is one of the most commonly diagnosed neurodevelopmental disorders in the United States. While ASD can be significantly influenced by genetics, prenatal exposure to maternal infections has also been implicated in conferring risk. Despite this, the effects of several important maternal pathogens, such as cytomegalovirus (CMV) and herpes simplex virus 2 (HSV2), remain unknown. METHOD OF STUDY We tested whether maternal CMV and/or HSV2 sero-positivity was associated with ASD symptoms in children. ELISA was used to assay for CMV IgG and HSV2 IgG in serum from the mothers of 82 children whose ASD symptoms were assessed at 3-6 years of age using the Social Responsiveness Scale version 2 (SRS-2). RESULTS Associations between maternal viral serostatus and SRS-2 scores were estimated using linear regression with covariate adjustments. The children of mothers sero-positive for CMV, but not for HSV2, had SRS-2 scores 3.6-4.2 points higher, depending on the adjustment model, than sero-negative women, a significant finding, robust to several statistical adjustments. CONCLUSION Our results suggest that maternal CMV infections may influence ASD symptoms. These findings are being further evaluated in ongoing prospective studies with larger population samples.
Collapse
Affiliation(s)
- Brooke L. Slawinski
- Department of Psychology, College of Social Sciences, Michigan State University, East Lansing, MI
| | - Nicole Talge
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Brooke Ingersoll
- Department of Psychology, College of Social Sciences, Michigan State University, East Lansing, MI
| | - Arianna Smith
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Alicynne Glazier
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Jean Kerver
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Karen Racicot
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI
| |
Collapse
|
16
|
Guberina H, Tomoya Michita R, Dolff S, Bienholz A, Trilling M, Heinemann FM, Horn PA, Kribben A, Witzke O, Rebmann V. Recipient HLA-G +3142 CC Genotype and Concentrations of Soluble HLA-G Impact on Occurrence of CMV Infection after Living-Donor Kidney Transplantation. Int J Mol Sci 2017; 18:ijms18112338. [PMID: 29113092 PMCID: PMC5713307 DOI: 10.3390/ijms18112338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 11/26/2022] Open
Abstract
The expression modulation of the immunosuppressive non-classical Human leukocyte antigen-G (HLA-G) molecule and its soluble isoforms is an immune evasion strategy being deployed by cytomegalovirus (CMV). The +3142 C>G single nucleotide polymorphism (SNP) located within the 3′ untranslated region (3′UTR) is of crucial importance for the regulation of HLA-G expression. Therefore, we analyzed the influence of the +3142 C>G HLA-G SNP on the occurrence of CMV infection in a cohort of 178 living-donor kidney recipients and their 178 corresponding donors. In addition, soluble HLA-G (sHLA-G) levels were quantified before and after transplantation. The presence of the HLA-G +3142 CC genotype in recipients, but not donors of our cohort as along with elevated sHLA-G levels (≥6.1 ng/mL) were associated with higher susceptibility to CMV infection after transplantation. Our results provided evidence that (i) HLA-G is implicated in the establishment of CMV after living-donor kidney transplantation and (ii) recipient HLA-G +3142 CC genotype and sHLA-G concentration levels could represent important predictive risk markers for CMV infection.
Collapse
Affiliation(s)
- Hana Guberina
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Rafael Tomoya Michita
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Sebastian Dolff
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Anja Bienholz
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
17
|
The pathogenesis of microcephaly resulting from congenital infections: why is my baby’s head so small? Eur J Clin Microbiol Infect Dis 2017; 37:209-226. [DOI: 10.1007/s10096-017-3111-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
|
18
|
Albayati Z, Alyami A, Alomar S, Middleton D, Bonnett L, Aleem S, Flanagan BF, Christmas SE. The Influence of Cytomegalovirus on Expression of HLA-G and its Ligand KIR2DL4 by Human Peripheral Blood Leucocyte Subsets. Scand J Immunol 2017; 86:396-407. [PMID: 28817184 DOI: 10.1111/sji.12594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/11/2017] [Indexed: 01/23/2023]
Abstract
HLA-G is a non-classical class I HLA antigen, normally expressed in high levels only on extravillous cytotrophoblast. It has immunosuppressive properties in pregnancy and has also been found to be upregulated on leucocytes in viral infection. In this study, proportions of all leucocyte subsets expressing HLA-G were found to be low in healthy subjects positive or negative for cytomegalovirus (CMV). Significantly greater proportions of CD4+ CD69+ and CD56+ T cells expressed HLA-G compared to other T cells. However, following stimulation with CMV antigens or intact CMV, proportions of CD4+, CD8+, CD69+ and CD56+ T cells, and also B cells expressing HLA-G, were significantly increased in CMV+ subjects. Despite some subjects having alleles of HLA-G associated with high levels of expression, no relationship was found between HLA-G genotype and expression levels. Purified B cells from CMV+ subjects stimulated in mixed culture with CMV antigens showed significantly increased HLA-G mRNA expression by real-time polymerase chain reaction. Serum levels of soluble HLA-G were similar in CMV- and CMV+ subjects but levels in culture supernatants were significantly higher in cells from CMV+ than from CMV- subjects stimulated with CMV antigens. The HLA-G ligand KIR2DL4 was mainly expressed on NK cells and CD56+ T cells with no differences between CMV+ and CMV- subjects. Following stimulation with IL-2, an increase in the proportion of CD56+ T cells positive for KIR2DL4 was found, together with a significant decrease in CD56dimCD16+ NK cells. The results show that CMV influences HLA-G expression in healthy subjects and may contribute to viral immune evasion.
Collapse
Affiliation(s)
- Z Albayati
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - A Alyami
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - S Alomar
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - D Middleton
- Transplant Immunology, Royal Liverpool & Broadgreen University Hospital Trust, Liverpool, UK
| | - L Bonnett
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - S Aleem
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, UK.,Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - B F Flanagan
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - S E Christmas
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Abstract
Despite the prevalence of viral infections in the American population, we still have a limited understanding of how they affect pregnancy and fetal development. Viruses can gain access to the decidua and placenta by ascending from the lower reproductive tract or via hematogenous transmission. Viral tropism for the decidua and placenta is then dependent on viral entry receptor expression in these tissues as well as on the maternal immune response to the virus. These factors vary by cell type and gestational age and can be affected by changes to the in utero environment and maternal immunity. Some viruses can directly infect the fetus at specific times during gestation, while some only infect the placenta. Both scenarios can result in severe birth defects or pregnancy loss. Systemic maternal viral infections can also affect the pregnancy, and these can be especially dangerous, because pregnant women suffer higher virus-associated morbidity and mortality than do nonpregnant counterparts. In this Review, we discuss the potential contributions of maternal, placental, and fetal viral infection to pregnancy outcome, fetal development, and maternal well-being.
Collapse
|
20
|
Xia Z, Xu G, Yang X, Peng N, Zuo Q, Zhu S, Hao H, Liu S, Zhu Y. Inducible TAP1 Negatively Regulates the Antiviral Innate Immune Response by Targeting the TAK1 Complex. THE JOURNAL OF IMMUNOLOGY 2017; 198:3690-3704. [PMID: 28356387 DOI: 10.4049/jimmunol.1601588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
The innate immune response is critical for host defense and must be tightly controlled, but the molecular mechanisms responsible for its negative regulation are not yet completely understood. In this study, we report that transporter 1, ATP-binding cassette, subfamily B (TAP1), a virus-inducible endoplasmic reticulum-associated protein, negatively regulated the virus-triggered immune response. In this study, we observed upregulated expression of TAP1 following virus infection in human lung epithelial cells (A549), THP-1 monocytes, HeLa cells, and Vero cells. The overexpression of TAP1 enhanced virus replication by inhibiting the virus-triggered activation of NF-κB signaling and the production of IFNs, IFN-stimulated genes, and proinflammatory cytokines. TAP1 depletion had the opposite effect. In response to virus infection, TAP1 interacted with the TGF-β-activated kinase (TAK)1 complex and impaired the phosphorylation of TAK1, subsequently suppressing the phosphorylation of the IκB kinase complex and NF-κB inhibitor α (IκBα) as well as NF-κB nuclear translocation. Our findings collectively suggest that TAP1 plays a novel role in the negative regulation of virus-triggered NF-κB signaling and the innate immune response by targeting the TAK1 complex.
Collapse
Affiliation(s)
- Zhangchuan Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gang Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaodan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Nanfang Peng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Zuo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shengli Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Hao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shi Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Study of Soluble HLA-G in Congenital Human Cytomegalovirus Infection. J Immunol Res 2016; 2016:3890306. [PMID: 27699182 PMCID: PMC5029053 DOI: 10.1155/2016/3890306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a nonclassical HLA class I antigen that is expressed during pregnancy contributing to maternal-fetal tolerance. HLA-G can be expressed as membrane-bound and soluble forms. HLA-G expression increases strongly during viral infections such as congenital human cytomegalovirus (HCMV) infections, with functional consequences in immunoregulation. In this work we investigated the expression of soluble (s)HLA-G and beta-2 microglobulin (component of HLA) molecules in correlation with the risk of transmission and severity of congenital HCMV infection. We analyzed 182 blood samples from 130 pregnant women and 52 nonpregnant women and 56 amniotic fluid samples from women experiencing primary HCMV infection. The median levels of sHLA-G in maternal serum of women with primary HCMV infection were higher in comparison with nonprimary and uninfected pregnant women (p < 0.001). AF from HCMV symptomatic fetuses presented higher sHLA-G levels in comparison with infected asymptomatic fetuses (p < 0.001), presence of HLA-G free-heavy chain, and a concentration gradient from amniotic fluid to maternal blood. No significant statistical difference of beta-2 microglobulin median levels was observed between all different groups. Our results suggest the determination of sHLA-G molecules in both maternal blood and amniotic fluid as a promising biomarker of diagnosis of maternal HCMV primary infection and fetal HCMV disease.
Collapse
|
22
|
Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets—but how many arrows in the quiver? Cell Mol Immunol 2014; 12:139-53. [PMID: 25418469 PMCID: PMC4654289 DOI: 10.1038/cmi.2014.105] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
Major mechanisms for the recognition of pathogens by immune cells have evolved to employ classical and non-classical major histocompatibility complex class I (MHC I) molecules. Classical MHC I molecules present antigenic peptide ligands on infected cells to CD8+ T cells, whereas a key function for non-classical MHC I molecules is to mediate inhibitory or activating stimuli in natural killer (NK) cells. The structural diversity of MHC I puts immense pressure on persisting viruses, including cytomegaloviruses. The very large coding capacity of the human cytomegalovirus allows it to express a whole arsenal of immunoevasive factors assigned to individual MHC class I targets. This review summarizes achievements from more than two decades of intense research on how human cytomegalovirus manipulates MHC I molecules and escapes elimination by the immune system.
Collapse
|
23
|
Weisblum Y, Panet A, Haimov-Kochman R, Wolf DG. Models of vertical cytomegalovirus (CMV) transmission and pathogenesis. Semin Immunopathol 2014; 36:615-25. [PMID: 25291972 DOI: 10.1007/s00281-014-0449-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Despite the considerable clinical impact of congenital human cytomegalovirus (HCMV) infection, the mechanisms of maternal-fetal transmission and the resultant placental and fetal damage are largely unknown. Here, we discuss animal models for the evaluation of CMV vaccines and virus-induced pathology and particularly explore surrogate human models for HCMV transmission and pathogenesis in the maternal-fetal interface. Studies in floating and anchoring placental villi and more recently, ex vivo modeling of HCMV infection in integral human decidual tissues, provide unique insights into patterns of viral tropism, spread, and injury, defining the outcome of congenital infection, and the effect of potential antiviral interventions.
Collapse
Affiliation(s)
- Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
24
|
Ameres S, Besold K, Plachter B, Moosmann A. CD8 T cell-evasive functions of human cytomegalovirus display pervasive MHC allele specificity, complementarity, and cooperativity. THE JOURNAL OF IMMUNOLOGY 2014; 192:5894-905. [PMID: 24808364 DOI: 10.4049/jimmunol.1302281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunoevasive proteins ("evasins") of human CMV (HCMV) modulate stability and localization of MHC class I (MHC I) molecules, and their supply of antigenic peptides. However, it is largely unknown to what extent these evasins interfere with recognition by virus-specific CD8 T cells. We analyzed the recognition of HCMV-infected cells by a panel of CD8 T cells restricted through one of nine different MHC I allotypes. We employed a set of HCMV mutants deleted for three or all four of the MHC I modulatory genes US2, US3, US6, and US11. We found that different HCMV evasins exhibited different allotype-specific patterns of interference with CD8 T cell recognition of infected cells. In contrast, recognition of different epitopes presented by the same given MHC I allotype was uniformly reduced. For some allotypes, single evasins largely abolished T cell recognition; for others, a concerted action of evasins was required to abrogate recognition. In infected cells whose Ag presentation efficiency had been enhanced by IFN-γ pretreatment, HCMV evasins cooperatively impared T cell recognition for several different MHC I allotypes. T cell recognition and MHC I surface expression under influence of evasins were only partially congruent, underscoring the necessity to probe HCMV immunomodulation using specific T cells. We conclude that the CD8 T cell evasins of HCMV display MHC I allotype specificity, complementarity, and cooperativity.
Collapse
Affiliation(s)
- Stefanie Ameres
- Klinische Kooperationsgruppe Immunonkologie, Medizinische Klinik III, Klinikum der Universität München, 81377 Munich, Germany; Abteilung Genvektoren, Helmholtz Zentrum München, 81377 Munich, Germany; German Center for Infection Research, 81675 Munich, Germany; and
| | - Katrin Besold
- Institut für Virologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, 55131 Mainz, Germany
| | - Bodo Plachter
- Institut für Virologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, 55131 Mainz, Germany
| | - Andreas Moosmann
- Klinische Kooperationsgruppe Immunonkologie, Medizinische Klinik III, Klinikum der Universität München, 81377 Munich, Germany; Abteilung Genvektoren, Helmholtz Zentrum München, 81377 Munich, Germany; German Center for Infection Research, 81675 Munich, Germany; and
| |
Collapse
|
25
|
Amiot L, Vu N, Samson M. Immunomodulatory properties of HLA-G in infectious diseases. J Immunol Res 2014; 2014:298569. [PMID: 24839609 PMCID: PMC4009271 DOI: 10.1155/2014/298569] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 12/04/2022] Open
Abstract
HLA-G is a nonclassical major histocompatibility complex molecule first described at the maternal-fetal interface, on extravillous cytotrophoblasts. Its expression is restricted to some tissues in normal conditions but increases strongly in pathological conditions. The expression of this molecule has been studied in detail in cancers and is now also beginning to be described in infectious diseases. The relevance of studies on HLA-G expression lies in the well known inhibitory effect of this molecule on all cell types involved in innate and adaptive immunity, favoring escape from immune control. In this review, we summarize the features of HLA-G expression by type of infections (i.e, bacterial, viral, or parasitic) detailing the state of knowledge for each pathogenic agent. The polymorphism, the interference of viral proteins with HLA-G intracellular trafficking, and various cytokines have been described to modulate HLA-G expression during infections. We also discuss the cellular source of HLA-G, according to the type of infection and the potential role of HLA-G. New therapeutic approaches based on synthetic HLA-G-derived proteins or antibodies are emerging in mouse models of cancer or transplantation, and these new therapeutic tools may eventually prove useful for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Laurence Amiot
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche sur la Santé, l'Environnement, et le Travail (IRSET), 2 Avenue du Pr. Leon Bernard CS 34317, 35043 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
- Fédération de Recherche BioSit de Rennes UMS 3480, 35043 Rennes, France
- Department of Biology, University Hospital Pontchaillou, CHU Pontchaillou, 35033 Rennes, France
| | - Nicolas Vu
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche sur la Santé, l'Environnement, et le Travail (IRSET), 2 Avenue du Pr. Leon Bernard CS 34317, 35043 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
- Fédération de Recherche BioSit de Rennes UMS 3480, 35043 Rennes, France
| | - Michel Samson
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche sur la Santé, l'Environnement, et le Travail (IRSET), 2 Avenue du Pr. Leon Bernard CS 34317, 35043 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
- Fédération de Recherche BioSit de Rennes UMS 3480, 35043 Rennes, France
| |
Collapse
|
26
|
Ameres S, Mautner J, Schlott F, Neuenhahn M, Busch DH, Plachter B, Moosmann A. Presentation of an immunodominant immediate-early CD8+ T cell epitope resists human cytomegalovirus immunoevasion. PLoS Pathog 2013; 9:e1003383. [PMID: 23717207 PMCID: PMC3662661 DOI: 10.1371/journal.ppat.1003383] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 04/10/2013] [Indexed: 02/07/2023] Open
Abstract
Control of human cytomegalovirus (HCMV) depends on CD8+ T cell responses that are shaped by an individual's repertoire of MHC molecules. MHC class I presentation is modulated by a set of HCMV-encoded proteins. Here we show that HCMV immunoevasins differentially impair T cell recognition of epitopes from the same viral antigen, immediate-early 1 (IE-1), that are presented by different MHC class I allotypes. In the presence of immunoevasins, HLA-A- and HLA-B-restricted T cell clones were ineffective, but HLA-C*0702-restricted T cell clones recognized and killed infected cells. Resistance of HLA-C*0702 to viral immunoevasins US2 and US11 was mediated by the alpha3 domain and C-terminal region of the HLA heavy chain. In healthy donors, HLA-C*0702-restricted T cells dominated the T cell response to IE-1. The same HLA-C allotype specifically protected infected cells from attack by NK cells that expressed a corresponding HLA-C-specific KIR. Thus, allotype-specific viral immunoevasion allows HCMV to escape control by NK cells and HLA-A- and HLA-B-restricted T cells, while the virus becomes selectively vulnerable to an immunodominant population of HLA-C-restricted T cells. Our work identifies a T cell population that may be of particular efficiency in HCMV-specific immunotherapy.
Collapse
Affiliation(s)
- Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Department of Medicine III, Klinikum der Universität München, and Department of Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- DZIF – German Center for Infection Research, Munich, Germany
| | - Josef Mautner
- DZIF – German Center for Infection Research, Munich, Germany
- Clinical Cooperation Group Pediatric Tumor Immunology, Helmholtz Zentrum München, and Children's Hospital, Technische Universität München, Munich, Germany
| | - Fabian Schlott
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Michael Neuenhahn
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Dirk H. Busch
- DZIF – German Center for Infection Research, Munich, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Clinical Cooperation Group Immune Monitoring, Helmholtz Zentrum München and Technische Universität München, Munich, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center, Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Department of Medicine III, Klinikum der Universität München, and Department of Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- DZIF – German Center for Infection Research, Munich, Germany
- * E-mail:
| |
Collapse
|
27
|
Noriega V, Redmann V, Gardner T, Tortorella D. Diverse immune evasion strategies by human cytomegalovirus. Immunol Res 2013; 54:140-51. [PMID: 22454101 DOI: 10.1007/s12026-012-8304-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Members of the Herpesviridae family have the capacity to undergo both lytic and latent infection to establish a lifelong relationship with their host. Following primary infection, human cytomegalovirus (HCMV) can persist as a subclinical, recurrent infection for the lifetime of an individual. This quiescent portion of its life cycle is termed latency and is associated with periodic bouts of reactivation during times of immunosuppression, inflammation, or stress. In order to exist indefinitely and establish infection, HCMV encodes a multitude of immune modulatory mechanisms devoted to escaping the host antiviral response. HCMV has become a paradigm for studies of viral immune evasion of antigen presentation by both major histocompatibility complex (MHC) class I and II molecules. By restricting the presentation of viral antigens during both productive and latent infection, HCMV limits elimination by the human immune system. This review will focus on understanding how the virus manipulates the pathways of antigen presentation in order to modulate the host response to infection.
Collapse
Affiliation(s)
- Vanessa Noriega
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | | | | | | |
Collapse
|
28
|
Tilburgs T, Strominger JL. CD8+ effector T cells at the fetal-maternal interface, balancing fetal tolerance and antiviral immunity. Am J Reprod Immunol 2013; 69:395-407. [PMID: 23432707 DOI: 10.1111/aji.12094] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/16/2013] [Indexed: 12/20/2022] Open
Abstract
During pregnancy CD8+ effector T cells need optimal immune regulation to prevent a detrimental response to allogeneic fetal cells while providing immune protection to infections. A significant proportion of (prospective) mothers carry naïve or memory CD8+ T cells with a TCR that can directly bind to paternal MHC molecules. In addition, a high percentage of pregnant women develop specific T cell responses to fetal minor histocompatibility antigens (mHags). Under normal conditions, fetal-maternal MHC and mHag mismatches lead to elevated lymphocyte activation but do not induce pregnancy failure. Furthermore, viral infections alter the maternal CD8+ T cell response by changing the CD8+ T cell repertoire and increasing the influx of CD8+ T cells to decidual tissue. The normally high T cell activation threshold at the fetal-maternal interface may prevent efficient clearance of viral infections. Conversely, the increased inflammatory response due to viral infections may break fetal-maternal tolerance and lead to pregnancy complications. The aim of this review is to discuss the recent studies of CD8+ T cells in pregnancy, identify potential mechanisms for antigen-specific immune recognition of fetal extravillous trophoblast (EVT) cells by CD8+ T cells, and discuss the impact of viral infections and virus-specific CD8+ T cells during pregnancy.
Collapse
Affiliation(s)
- Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | | |
Collapse
|
29
|
Abstract
Delivery of isotope-labeled IDPs into mammalian cells for the purpose of generating suitable in-cell NMR samples can also be facilitated by action of pore-forming bacterial toxins. In the course of this procedure, mammalian cell membranes are permeated for short periods of time in order to enable the influx of exogenous proteins via a concentration gradient between the outside and the inside of the targeted "host" cells. In contrast to CPP-mediated IDP uptake, toxins offer the advantage that cellular protein transduction does not rely on active biological processes like endocytosis, but on simple passive diffusion. Therefore, proteins that are to be delivered into mammalian cells are not required to contain additional "targeting" sequences, and can be employed in their native contexts. The protocol outlined here employs isotope-labeled human α-synuclein, adherent human HeLa cells, and the Streptococcus pyogenes endotoxin Streptolysin O (SLO).
Collapse
Affiliation(s)
- Beata Bekei
- Department of NMR-assisted Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Berlin, Germany
| | | | | | | |
Collapse
|
30
|
Fainardi E, Castellazzi M, Stignani M, Morandi F, Sana G, Gonzalez R, Pistoia V, Baricordi OR, Sokal E, Peña J. Emerging topics and new perspectives on HLA-G. Cell Mol Life Sci 2011; 68:433-51. [PMID: 21080027 PMCID: PMC11114687 DOI: 10.1007/s00018-010-0584-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 02/07/2023]
Abstract
Following the Fifth International Conference on non-classical HLA-G antigens (HLA-G), held in Paris in July 2009, we selected some topics which focus on emerging aspects in the setting of HLA-G functions. In particular, HLA-G molecules could play a role in: (1) various inflammatory disorders, such as multiple sclerosis, intracerebral hemorrhage, gastrointestinal, skin and rheumatic diseases, and asthma, where they may act as immunoregulatory factors; (2) the mechanisms to escape immune surveillance utilized by several viruses, such as human cytomegalovirus, herpes simplex virus type 1, rabies virus, hepatitis C virus, influenza virus type A and human immunodeficiency virus 1 (HIV-1); and (3) cytokine/chemokine network and stem cell transplantation, since they seem to modulate cell migration by the downregulation of chemokine receptor expression and mesenchymal stem cell activity blocking of effector cell functions and the generation of regulatory T cells. However, the immunomodulatory circuits mediated by HLA-G proteins still remain to be clarified.
Collapse
Affiliation(s)
- Enrico Fainardi
- Neuroradiology Unit, Department of Neurosciences and Rehabilitation, Azienda Ospedaliera-Universitaria, Arcispedale S. Anna, Corso della Giovecca 203, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Robert-Gangneux F, Gangneux JP, Vu N, Jaillard S, Guiguen C, Amiot L. High level of soluble HLA-G in amniotic fluid is correlated with congenital transmission of Toxoplasma gondii. Clin Immunol 2010; 138:129-34. [PMID: 21185786 DOI: 10.1016/j.clim.2010.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/06/2010] [Accepted: 12/06/2010] [Indexed: 01/08/2023]
Abstract
The expression of human leukocyte antigen (HLA)-G on cytotrophoblast cells contributes to maternal-fetal tolerance. Soluble forms of HLA-G (sHLA-G) can be detected in amniotic fluid (AF) and a decrease of sHLA-G is known to be correlated to fetal loss. In this work we investigated the role of sHLA-G in the transplacental passage of the protozoan parasite Toxoplasma gondii, responsible for congenital toxoplasmosis in about 30% of fetuses when primary infection (PI) occurs during pregnancy. We determined the sHLA-G concentration in 61 AF from women with PI and 24 controls. Our results showed higher sHLA-G levels in AF from PI than in controls (p<0.001). Moreover sHLA-G level from congenitally infected fetuses (n=12) was higher than in fetus in whom congenital infection was ruled out (n=49, p<0.05). These data suggest that sHLA-G could participate in immunomodulation necessary to avoid fetal loss due to Toxoplasma infection, but that over-expression could favor congenital transmission.
Collapse
Affiliation(s)
- Florence Robert-Gangneux
- Laboratoire de Parasitologie, Faculté de Médecine et Centre Hospitalier Universitaire de Rennes, Rennes, France.
| | | | | | | | | | | |
Collapse
|
32
|
Human cytomegalovirus early protein pUL21a promotes efficient viral DNA synthesis and the late accumulation of immediate-early transcripts. J Virol 2010; 85:663-74. [PMID: 21047969 DOI: 10.1128/jvi.01599-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that a newly annotated gene of human cytomegalovirus (HCMV), UL21a, encodes an early viral protein termed pUL21a. Most notably, the virions of a UL21a deletion virus had markedly reduced infectivity, indicating that UL21a is required to establish an efficient productive infection. In this study, we infected fibroblasts with equal numbers of DNA-containing viral particles and identified where in the viral life cycle pUL21a acted. The UL21a deletion virus entered cells and initiated viral gene expression efficiently; however, it synthesized viral DNA poorly and accumulated several immediate-early (IE) transcripts at reduced levels at late times of infection. The defect in viral DNA synthesis preceded that in gene expression, and inhibition of viral DNA synthesis reduced the late accumulation of IE transcripts in both wild-type and mutant virus-infected cells to equivalent levels. This suggests that reduced viral DNA synthesis is the cause of reduced IE gene expression in the absence of UL21a. The growth of UL21a deletion virus was similar to that of recombinant HCMV in which pUL21a expression was abrogated by stop codon mutations, and the defect was rescued in pUL21a-expressing fibroblasts. pUL21a expression in trans was sufficient to restore viral DNA synthesis and gene expression of mutant virus produced from normal fibroblasts, whereas mutant virus produced from complementing cells still exhibited the defect in normal fibroblasts. Thus, pUL21a does not promote the functionality of HCMV virions; rather, its de novo synthesis facilitates viral DNA synthesis, which is necessary for the late accumulation of IE transcripts and establishment of a productive infection.
Collapse
|
33
|
Park B, Spooner E, Houser BL, Strominger JL, Ploegh HL. The HCMV membrane glycoprotein US10 selectively targets HLA-G for degradation. J Exp Med 2010; 207:2033-41. [PMID: 20713594 PMCID: PMC2931171 DOI: 10.1084/jem.20091793] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 07/19/2010] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes an endoplasmic reticulum (ER)-resident transmembrane glycoprotein, US10, expressed early in the replicative cycle of HCMV as part of the same cluster that encodes the known immunoevasins US2, US3, US6, and US11. We show that US10 down-regulates cell surface expression of HLA-G, but not that of classical class I MHC molecules. The unique and short cytoplasmic tail of HLA-G (RKKSSD) is essential in its role as a US10 substrate, and a tri-leucine motif in the cytoplasmic tail of US10 is responsible for down-regulation of HLA-G. Both the kinetics of HLA-G degradation and the mechanisms responsible appear to be distinct from those used by the US2 and US11 pathways, suggesting the existence of a third route of protein dislocation from the ER. We show that US10-mediated degradation of HLA-G interferes with HLA-G-mediated NK cell inhibition. Given the role of HLA-G in protecting the fetus from attack by the maternal immune system and in directing the differentiation of human dendritic cells to promote the evolution of regulatory T cells, HCMV likely targets the HLA-G-dependent axis of immune recognition no less efficiently than it interferes with classical class I MHC-restricted antigen presentation.
Collapse
Affiliation(s)
- Boyoun Park
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02115
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02115
| | - Brandy L. Houser
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Jack L. Strominger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02115
| |
Collapse
|
34
|
Heterogeneous pathways of maternal-fetal transmission of human viruses (review). Pathol Oncol Res 2010; 15:451-65. [PMID: 19350418 DOI: 10.1007/s12253-009-9166-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/24/2009] [Indexed: 12/18/2022]
Abstract
Several viruses can pass the maternal-fetal barrier, and cause diseases of the fetus or the newborn. Recently, however, it became obvious, that viruses may invade fetal cells and organs through different routes without acute consequences. Spermatozoa, seminal fluid and lymphocytes in the sperm may transfer viruses into the human zygotes. Viruses were shown to be integrated into human chromosomes and transferred into fetal tissues. The regular maternal-fetal transport of maternal cells has also been discovered. This transport might implicate that lymphotropic viruses can be released into the fetal organs following cellular invasion. It has been shown that many viruses may replicate in human trophoblasts and syncytiotrophoblast cells thus passing the barrier of the maternal-fetal interface. The transport of viral immunocomplexes had also been suggested, and the possibility has been put forward that even anti-idiotypes mimicking viral epitopes might be transferred by natural mechanisms into the fetal plasma, in spite of the selective mechanisms of apical to basolateral transcytosis in syncytiotrophoblast and basolateral to apical transcytosis in fetal capillary endothelium. The mechanisms of maternal-fetal transcytosis seem to be different of those observed in differentiated cells and tissue cultures. Membrane fusion and lipid rafts of high cholesterol content are probably the main requirements of fetal transcytosis. The long term presence of viruses in fetal tissues and their interactions with the fetal immune system might result in post partum consequences as far as increased risk of the development of malignancies and chronic pathologic conditions are discussed.
Collapse
|
35
|
Human herpesvirus 7 u21 downregulates classical and nonclassical class I major histocompatibility complex molecules from the cell surface. J Virol 2010; 84:3738-51. [PMID: 20106916 DOI: 10.1128/jvi.01782-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses have evolved numerous strategies to evade detection by the immune system. Notably, most of the herpesviruses interfere with viral antigen presentation to cytotoxic T lymphocytes (CTLs) by removing class I major histocompatibility complex (MHC) molecules from the infected cell surface. Clearly, since the herpesviruses have evolved an extensive array of mechanisms to remove class I MHC molecules from the cell surface, this strategy serves them well. However, class I MHC molecules often serve as inhibitory ligands for NK cells, so viral downregulation of all class I MHC molecules should leave the infected cell open to NK cell attack. Some viruses solve this problem by selectively downregulating certain class I MHC products, leaving other class I products at the cell surface to serve as inhibitory NK cell ligands. Here, we show that human herpesvirus 7 (HHV-7) U21 binds to and downregulates all of the human class I MHC gene products, as well as the murine class I molecule H-2K(b). HHV-7-infected cells must therefore possess other means of escaping NK cell detection.
Collapse
|
36
|
Biassoni R. Human natural killer receptors, co-receptors, and their ligands. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 14:14.10.1-14.10.40. [PMID: 19235767 DOI: 10.1002/0471142735.im1410s84] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. Our laboratory has contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. Only in the last ten years has it become possible to characterize the NK triggering receptors mediating natural cytotoxicity, leading to an appreciation of the existence of a cellular interaction network between effectors of both natural and adaptive immunity. This report reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells.
Collapse
Affiliation(s)
- Roberto Biassoni
- Instituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| |
Collapse
|
37
|
Miller-Kittrell M, Sparer TE. Feeling manipulated: cytomegalovirus immune manipulation. Virol J 2009; 6:4. [PMID: 19134204 PMCID: PMC2636769 DOI: 10.1186/1743-422x-6-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/09/2009] [Indexed: 02/03/2023] Open
Abstract
No one likes to feel like they have been manipulated, but in the case of cytomegalovirus (CMV) immune manipulation, we do not really have much choice. Whether you call it CMV immune modulation, manipulation, or evasion, the bottom line is that CMV alters the immune response in such a way to allow the establishment of latency with lifelong shedding. With millions of years of coevolution within their hosts, CMVs, like other herpesviruses, encode numerous proteins that can broadly influence the magnitude and quality of both innate and adaptive immune responses. These viral proteins include both homologues of host proteins, such as MHC class I or chemokine homologues, and proteins with little similarity to any other known proteins, such as the chemokine binding protein. Although a strong immune response is launched against CMV, these virally encoded proteins can interfere with the host's ability to efficiently recognize and clear virus, while others induce or alter specific immune responses to benefit viral replication or spread within the host. Modulation of host immunity allows survival of both the virus and the host. One way of describing it would be a kind of "mutually assured survival" (as opposed to MAD, Mutually Assured Destruction). Evaluation of this relationship provides important insights into the life cycle of CMV as well as a greater understanding of the complexity of the immune response to pathogens in general.
Collapse
Affiliation(s)
- Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Ave, Knoxville, TN, USA.
| | | |
Collapse
|
38
|
Kim Y, Park B, Cho S, Shin J, Cho K, Jun Y, Ahn K. Human cytomegalovirus UL18 utilizes US6 for evading the NK and T-cell responses. PLoS Pathog 2008; 4:e1000123. [PMID: 18688275 PMCID: PMC2483941 DOI: 10.1371/journal.ppat.1000123] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 07/11/2008] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses. HCMV establishes a lifelong latent infection and causes serious disease in immunocompromised individuals. Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells are the primary effectors for the immune defense against HCMV. However, HCMV has evolved to evade both the innate and adaptive cellular immunity to viral infection. HCMV US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I, while HCMV UL18 is an MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite significant sequence and structural homology between UL18 and MHC class I molecules, US6 down regulates surface expression of MHC class I, but not UL18. Here, we describe a mechanism by which UL18 circumvents the self-derived TAP inhibitor, US6. UL18 abrogates US6 inhibition of TAP-ATP binding and restores TAP-mediated peptide translocation, thereby making peptides available for the assembly and subsequent surface expression of UL18. Together UL18 and US6 inhibit binding of MHC class I to TAP, thus down regulating surface expression of MHC class I molecules. UL18 represents a unique immune evasion protein resistant to both the NK and T cell immune responses. Our data provide a molecular basis for persistent HCMV infection and will aid in the development of a therapeutic vaccine.
Collapse
Affiliation(s)
- Youngkyun Kim
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Boyoun Park
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Sunglim Cho
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jinwook Shin
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kwangmin Cho
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Youngsoo Jun
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kwangseog Ahn
- National Creative Research Initiatives Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
39
|
Fu H, Ding J, Flutter B, Gao B. Investigation of endogenous antigen processing by delivery of an intact protein into cells. J Immunol Methods 2008; 335:90-7. [DOI: 10.1016/j.jim.2008.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 02/28/2008] [Accepted: 02/28/2008] [Indexed: 11/30/2022]
|
40
|
Viral proteins interfering with antigen presentation target the major histocompatibility complex class I peptide-loading complex. J Virol 2008; 82:8246-52. [PMID: 18448533 DOI: 10.1128/jvi.00207-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
41
|
Biancotto A, Iglehart SJ, Lisco A, Vanpouille C, Grivel JC, Lurain NS, Reichelderfer PS, Margolis LB. Upregulation of human cytomegalovirus by HIV type 1 in human lymphoid tissue ex vivo. AIDS Res Hum Retroviruses 2008; 24:453-62. [PMID: 18327985 DOI: 10.1089/aid.2007.0155] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 copathogens are believed to play a critical role in progression to AIDS. Human cytomegalovirus (HCMV) has a high prevalence in the general population and is a common copathogen in HIV-1-infected individuals. Important events in copathogen interactions with HIV-1 take place in lymphoid tissue where critical events in HIV-1 disease occur. Here, we used an experimental system of human lymphoid tissue ex vivo to investigate interactions of HCMV with HIV-1. We inoculated ex vivo blocks of human lymphoid tissue with a recombinant strain of HCMV, expressing the green fluorescent protein, and HIV-1 and monitored viral replication and the phenotype of productively infected cells. HCMV readily replicated in tissue blocks as revealed by the release of HCMV viral DNA and an increasing number of viral-positive cells. Immunophenotyping of HCMV-infected cells showed a preferential infection of activated lymphocytes. The number of these cells significantly increased in HIV-1-coinfected tissues. Accordingly, HCMV replication was enhanced 2- to-3 fold. This upregulation occurred in tissues infected with either CXCR4- or CCR5-utilizing HIV-1. Thus, HIV-1 creates new targets for HCMV, which may explain the strong association of HCMV with HIV-1 infection in vivo. Ex vivo-infected human lymphoid tissue constitutes a model to study the mechanisms of HCMV tissue pathogenesis and its interactions with HIV-1 and this model may provide new targets for anti-HIV-1 therapy.
Collapse
Affiliation(s)
- Angélique Biancotto
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Sarah J. Iglehart
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Andrea Lisco
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Christophe Vanpouille
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Jean-Charles Grivel
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Nell S. Lurain
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois 60612
| | - Patricia S. Reichelderfer
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | - Leonid B. Margolis
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| |
Collapse
|
42
|
Ogino T, Moriai S, Ishida Y, Ishii H, Katayama A, Miyokawa N, Harabuchi Y, Ferrone S. Association of immunoescape mechanisms with Epstein-Barr virus infection in nasopharyngeal carcinoma. Int J Cancer 2007; 120:2401-10. [PMID: 17315195 DOI: 10.1002/ijc.22334] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have investigated the association of immunoescape mechanisms in nasopharyngeal carcinoma (NPC) lesions with Epstein-Barr virus (EBV) infection and clinical course of the disease. Tumor biopsy specimens obtained from 36 Japanese NPC patients were examined for antigen processing machinery component and HLA class I antigen expression, CD8(+) T cell infiltration, and Fas, Fas ligand (FasL) and IL-10 expression using immunohistochemical staining. The results were correlated with the histopathological characteristics of the lesions, the clinical course of the disease and EBV infection. LMP2, TAP1, tapasin and HLA class I antigens were downregulated in more than 65% of the lesions tested, while FasL, Fas and IL-10 were expressed in at least 60% of the lesions. Statistical analysis showed that (i) HLA class I antigen expression was significantly correlated with LMP2 and tapasin expression (r = 0.39 and 0.45, respectively); (ii) CD8(+) T cell infiltration into tumor lesions was significantly correlated with HLA class I antigen, LMP2 and Fas expression (r = 0.34, 0.49 and 0.44, respectively); (iii) LMP2 and FasL expression was significantly correlated with IL-10 expression (r = 0.49 and 0.52, respectively); (iv) IL-10 expression was significantly associated with EBERs and EBV oncoprotein LMP1 expression (p = 0.00078 and 0.015, respectively) and (v) FasL overexpression was significantly associated with reduced patients' survival (p = 0.033). Multivariate analysis identified FasL overexpression as an independent unfavorable prognostic marker. These results suggest that NPC cells may utilize multiple immunoescape mechanisms, including dysfunction of HLA class I antigens and Fas/FasL apoptosis pathways. Furthermore, FasL expression appears to be associated with IL-10 upregulation in EBV positive NPC cells.
Collapse
Affiliation(s)
- Takeshi Ogino
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical College, Asahikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Poehlmann TG, Schaumann A, Busch S, Fitzgerald JS, Aguerre-Girr M, Le Bouteiller P, Schleussner E, Markert UR. Inhibition of term decidual NK cell cytotoxicity by soluble HLA-G1. Am J Reprod Immunol 2006; 56:275-85. [PMID: 17076671 DOI: 10.1111/j.1600-0897.2006.00420.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Soluble (s)HLA-G1 is produced by trophoblast cells. Aim was to analyze the capacities and mechanisms of sHLA-G1 to regulate interleukin (IL)-2-induced cytotoxicity of natural killer (NK) cells from human deciduas. METHODS Natural killer cells were isolated from decidual layers of term placentae, stimulated or not with IL-2 and supplemented with various concentrations of recombinant soluble HLA-G1 (sHLA-G1). For NK cell cytotoxicity assays, K562 cells were used as targets. Expression of signal transducer and activator of transcription 3 (STAT3) and perforin was analyzed by Western blotting. Apoptosis was examined by assessment of poly(ADP-ribose) polymerase cleavage. NK cells were analyzed by flow cytometry for IL-2receptor-alpha (IL-2R alpha; CD25) and transferrin receptor CD71 expression. RESULTS Interleukin-2 increases CD71, STAT3, perforin expression and cytotoxic potential of NK cells. Expression of CD71, STAT3 and perforin decreased simultaneously with cytotoxicity and dose-dependently when sHLA-G1 (1.6 micro g/mL-1.6 ng/mL) was added to IL-2 stimulated cultures. sHLA-G1 did not induce apoptosis and CD25 expression was not affected. CONCLUSION Interleukin-2R alpha expression is not controlled by sHLA-G1, but its signal transducer STAT3 as well as several downstream effects, such as perforin expression, proliferation and cytotoxicity. The control of STAT3 bioavailability through sHLA-G1 may be a key regulator of the mentioned effects.
Collapse
Affiliation(s)
- Tobias G Poehlmann
- Placenta-Labor, Department of Obstetrics, Friedrich-Schiller-University, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Aikhionbare FO, Kumaresan K, Shamsa F, Bond VC. HLA-G DNA sequence variants and risk of perinatal HIV-1 transmission. AIDS Res Ther 2006; 3:28. [PMID: 17059603 PMCID: PMC1634865 DOI: 10.1186/1742-6405-3-28] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 10/23/2006] [Indexed: 12/16/2022] Open
Abstract
Background HLA-G gene is a non-classical MHC class 1 molecule that is highly expressed in the trophoblast at the maternal-fetal interface. In an attempt to elucidate possible immunological mechanisms facilitating protection of infants born to human immunodeficiency virus type (HIV-1) infected mothers, we have been studying genetic variations in the coding and untranslated regions of HLA-G antigen between HIV-1-infected mothers and their infected or uninfected infants. This study investigated whether HLA-G DNA sequence variants are associated with perinatal HIV-1 transmission. Results Genomic DNA samples were obtained from a nested case-control study of 34 mother-child pairs co-enrolled in a cohort of the Perinatal AIDS Collaborative Transmission Study in New York. The samples were from two groups predominantly of African-American and Hispanic origin: In the first group, both mother and child were HIV-1-infected; in the second group, only the mother was infected while the child remained uninfected. Genotyping of HLA-G gene were performed on the extracted DNA from peripheral blood mononuclear cells using PCR based sequencing and restriction fragment-length polymorphism analyses. Among the studied HLA-G exons, dissimilarities in HLA-G DNA sequence variants between the HIV-1 non-transmitting mother child pairs were mostly observed in exon 8-3'-untranslated region at nucleotide positions T3742A, C3743T, G3777C (P = 0.001). Non-transmitting HIV-1 mother child pairs exhibited dissimilarities at nucleotide position C3743T allele with decreased risk of perinatal HIV-1 transmission, compared with HIV-1 transmitting mother-child pairs carrying this allele (odds ratio 0.02 [95% confidence interval 0.00–0.15] P = 0.00001). In addition, heterozygous dissimilarities at nucleotide positions C634G and 714 insT/G in the 5'-upstream regulatory region were observed between the mother child pairs of the HIV-1-non-transmitting group while homozygous similarities of C634C, and either 714insG/G or mother-child pairs with similar 714insT/G were observed among the transmitting group in the same region. Conclusion This study identified new variants in the HLA-G gene and provides further evidence that dissimilarities in the HLA-G DNA sequence variants could influence the transmission of HIV-1 from infected mothers to their infants.
Collapse
Affiliation(s)
- Felix O Aikhionbare
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - K Kumaresan
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Falah Shamsa
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Vincent C Bond
- Department of Microbiology/Biochemistry/Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
45
|
Cerboni C, Achour A, Wärnmark A, Mousavi-Jazi M, Sandalova T, Hsu ML, Cosman D, Kärre K, Carbone E. Spontaneous mutations in the human CMV HLA class I homologue UL18 affect its binding to the inhibitory receptor LIR-1/ILT2/CD85j. Eur J Immunol 2006; 36:732-41. [PMID: 16479538 DOI: 10.1002/eji.200425220] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) down-regulates cell surface expression of HLA class I molecules (HLA-I). UL18, an HCMV-encoded HLA-I homologue, has been proposed to protect virus-infected cells against NK cell recognition by engaging the inhibitory receptor leukocyte Ig-like receptor (LIR)-1, which also binds a broad spectrum of HLA-I alleles, including HLA-G1. Because genetic and biological differences exist among HCMV strains, we characterized laboratory (AD169) and clinical (4636, 13B, 109B) strain-derived UL18 proteins. Compared to the known AD169-derived UL18, mutations were found in clinical strain-derived UL18. They were clustered in the alpha3 domain (13B), previously shown to be critical for LIR-1 binding, or in the alpha1 domain (4636). Iotan cytotoxicity assays, pretreatment of LIR-1+ NKL with soluble 4636-UL18 completely abolished LIR-1-dependent protection from NK lysis, conferred by the expression of HLA-G1 on target cells (721.221-HLA-G1+). Similarly, flow cytometry, Biacore and ELISA experiments showed 4636-UL18 and 13B-UL18 to have the strongest binding capacity to LIR-1. Our results suggest the importance of two independent UL18 regions for LIR-1 binding, one localized on the tip of the alpha3 domain, and another composed of two loops that emerge from the alpha1 domain. Strain variations in these domains may result in different UL18-mediated effects on LIR-1+ cells during the course of HCMV infection.
Collapse
Affiliation(s)
- Cristina Cerboni
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lafon M, Prehaud C, Megret F, Lafage M, Mouillot G, Roa M, Moreau P, Rouas-Freiss N, Carosella ED. Modulation of HLA-G expression in human neural cells after neurotropic viral infections. J Virol 2005; 79:15226-37. [PMID: 16306594 PMCID: PMC1316015 DOI: 10.1128/jvi.79.24.15226-15237.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 09/07/2005] [Indexed: 01/17/2023] Open
Abstract
HLA-G is a nonclassical human major histocompatibility complex class I molecule. It may promote tolerance, leading to acceptance of the semiallogeneic fetus and tumor immune escape. We show here that two viruses-herpes simplex virus type 1 (HSV-1), a neuronotropic virus inducing acute infection and neuron latency; and rabies virus (RABV), a neuronotropic virus triggering acute neuron infection-upregulate the neuronal expression of several HLA-G isoforms, including HLA-G1 and HLA-G5, the two main biologically active isoforms. RABV induces mostly HLA-G1, and HSV-1 induces mostly HLA-G3 and HLA-G5. HLA-G expression is upregulated in infected cells and neighboring uninfected cells. Soluble mediators, such as beta interferon (IFN-beta) and IFN-gamma, upregulate HLA-G expression in uninfected cells. The membrane-bound HLA-G1 isoform was detected on the surface of cultured RABV-infected neurons but not on the surface of HSV-1-infected cells. Thus, neuronotropic viruses that escape the host immune response totally (RABV) or partially (HSV-1) regulate HLA-G expression on human neuronal cells differentially. HLA-G may therefore be involved in the escape of certain viruses from the immune response in the nervous system.
Collapse
Affiliation(s)
- Monique Lafon
- Unité de Neuroimmunologie Virale, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kopcow HD, Allan DSJ, Chen X, Rybalov B, Andzelm MM, Ge B, Strominger JL. Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci U S A 2005; 102:15563-8. [PMID: 16230631 PMCID: PMC1266146 DOI: 10.1073/pnas.0507835102] [Citation(s) in RCA: 247] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In early pregnancy invading fetal trophoblasts encounter abundant maternal decidual natural killer cells (dNK). dNK express perforin, granzymes A and B and the activating receptors NKp30, NKp44, NKp46, NKG2D, and 2B4 as well as LFA-1. Even though they are granular and express the essential molecules required for lysis, fresh dNK displayed very reduced lytic activity on classical MHC I negative targets K562 and 721.221, approximately 15% of that of peripheral NK cells. dNK formed conjugates and activating immune synapses with 721.221 and K562 cells in which CD2, LFA-1 and actin were polarized toward the contact site. However, in contrast to peripheral NK cells, they failed to polarize their microtubule organizing centers and perforin-containing granules to the synapse, accounting for their lack of cytotoxicity.
Collapse
Affiliation(s)
- Hernan D Kopcow
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Sartelet H, Schleiermacher D, Le-Hesran JY, Graesslin O, Gaillard D, Fe M, Lechki C, Gaye A, Le Bouteiller P, Birembaut P. Less HLA-G expression in Plasmodium falciparum-infected third trimester placentas is associated with more natural killer cells. Placenta 2005; 26:505-11. [PMID: 15950065 DOI: 10.1016/j.placenta.2004.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2004] [Indexed: 10/26/2022]
Abstract
During pregnancy, maternal immune tolerance of the fetal semi-allogeneic graft is partly the consequence of extravillous trophoblast HLA-G expression and its interaction with natural killer (NK) cells. Plasmodium falciparum malaria is frequently associated with maternal and fetal complications. Local HLA-G expression and the number of NK cells were evaluated immunohistochemically in P. falciparum-infected and uninfected placentas (15 each) collected in a seasonal malaria-hypoendemic area. In control placentas, HLA-G was almost always expressed in extravillous trophoblast whereas, in infected placentas, it was significantly more weakly expressed in extravillous trophoblast but was also detected in intervillous space macrophages. NK cells were evaluated in intervillous and intravillous spaces and in basal plate. NK cells were always more abundant in basal plate than in intervillous and intravillous spaces in infected or control placentas. For each area, more NK cells were seen in infected than control placentas. These data suggest that HLA-G down-regulation and more NK cells in placentas may be among the mechanisms involved in poor birth outcome associated with P. falciparum infection.
Collapse
Affiliation(s)
- H Sartelet
- Laboratoire Pol Bouin, Centre Hospitalier Universitaire de Reims, Reims, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hviid TVF, Larsen LG, Hoegh AM, Bzorek M. HLA-G Expression in Placenta in Relation to HLA-G Genotype and Polymorphisms. Am J Reprod Immunol 2004; 52:212-7. [PMID: 15373761 DOI: 10.1111/j.1600-0897.2004.00208.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PROBLEM The expression of the non-classical human leukocyte antigen (HLA) class Ib gene, HLA-G, seems to be important at the feto-maternal interface. The HLA-G molecule is almost monomorphic and expressed in both membrane-bound and soluble isoforms. It has been shown to inhibit natural killer cell -mediated lysis and influence cytokine expression. HLA-G gene polymorphism has been linked to differences in gene expression profile of alternatively spliced HLA-G transcripts and levels of specific HLA-G messenger RNA (mRNA) isoforms. Furthermore, aberrant HLA-G expression has been reported in preeclamptic placentas. On this background it is of general interest to further elucidate any associations between HLA-G polymorphism and protein expression. METHODS We have investigated HLA-G protein expression by immunohistochemistry in HLA-G genotyped placentas from term. HLA-G mRNA expression in preeclamptic placentas and in control placentas was also studied by microarray technology. RESULTS AND CONCLUSIONS The studies of HLA-G protein expression in term placentas by immunohistochemical analysis showed no clear associations with HLA-G genotypes although this could be because of the very semi-quantitative nature of this technique. However, we found a tendency towards reduction of HLA-G mRNA expression in placentas from preeclamptic cases compared to matched controls with the use of microarray technology.
Collapse
Affiliation(s)
- Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen Ø, Denmark.
| | | | | | | |
Collapse
|
50
|
Leis M, Marschall M, Stamminger T. Downregulation of the cellular adhesion molecule Thy-1 (CD90) by cytomegalovirus infection of human fibroblasts. J Gen Virol 2004; 85:1995-2000. [PMID: 15218185 DOI: 10.1099/vir.0.79818-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The deregulation of cellular adhesion molecules by human cytomegalovirus (HCMV) appears to be correlated with the development of vascular disease. In this study, it was investigated whether the expression of Thy-1 (CD90), a member of the immunoglobulin superfamily of adhesion molecules with constitutive expression on fibroblast cells, is modulated following infection with HCMV. It was observed that Thy-1 cell surface expression decreased significantly during the course of infection. Addition of neutralizing antibodies, as well as UV inactivation of virus, prevented Thy-1 downregulation. In contrast, inhibition of virus replication by cidofovir did not alter Thy-1 regulation by HCMV, indicating that immediate-early (IE) and/or early (E) gene products are responsible. Interestingly, after infection of fibroblasts with a recombinant GFP-expressing virus, infected as well as non-infected cells showed a reduced Thy-1 cell surface expression. From these findings, it is concluded that IE or E gene products of HCMV induce a so far unidentified soluble factor that mediates Thy-1 downregulation.
Collapse
Affiliation(s)
- Martina Leis
- Institut für Klinische und Molekulare Virologie, Schlossgarten 4, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institut für Klinische und Molekulare Virologie, Schlossgarten 4, 91054 Erlangen, Germany
| | - Thomas Stamminger
- Institut für Klinische und Molekulare Virologie, Schlossgarten 4, 91054 Erlangen, Germany
| |
Collapse
|