1
|
Kano T, Suzuki H, Makita Y, Nihei Y, Fukao Y, Nakayama M, Lee M, Aoki R, Yamada K, Muto M, Suzuki Y. Lessons from IgA Nephropathy Models. Int J Mol Sci 2024; 25:11484. [PMID: 39519036 PMCID: PMC11546737 DOI: 10.3390/ijms252111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
IgA nephropathy (IgAN) is the most common type of primary glomerulonephritis worldwide; however, the underlying mechanisms of this disease are not fully understood. This review explores several animal models that provide insights into IgAN pathogenesis, emphasizing the roles of aberrant IgA1 glycosylation and immune complex formation. It discusses spontaneous, immunization, and transgenic models illustrating unique aspects of IgAN development and progression. The animal models, represented by the grouped ddY (gddY) mouse, have provided guidance concerning the multi-hit pathogenesis of IgAN. In this paradigm, genetic and environmental factors, including the dysregulation of the mucosal immune system, lead to increased levels of aberrantly glycosylated IgA, nephritogenic immune complex formation, and subsequent glomerular deposition, followed by mesangial cell activation and injury. Additionally, this review considers the implications of clinical trials targeting molecular pathways influenced by IgAN (e.g., a proliferation-inducing ligand [APRIL]). Collectively, these animal models have expanded the understanding of IgAN pathogenesis while facilitating the development of therapeutic strategies that are currently under clinical investigation. Animal-model-based studies have the potential to facilitate the development of targeted therapies with reduced side effects for IgAN patients.
Collapse
Affiliation(s)
- Toshiki Kano
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| | - Yuko Makita
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yusuke Fukao
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Maiko Nakayama
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Mingfeng Lee
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Ryosuke Aoki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Koshi Yamada
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Masahiro Muto
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
2
|
Molina Estupiñan JL, Aradottir Pind AA, Foroutan Pajoohian P, Jonsdottir I, Bjarnarson SP. The adjuvants dmLT and mmCT enhance humoral immune responses to a pneumococcal conjugate vaccine after both parenteral or mucosal immunization of neonatal mice. Front Immunol 2023; 13:1078904. [PMID: 36741402 PMCID: PMC9896006 DOI: 10.3389/fimmu.2022.1078904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 01/21/2023] Open
Abstract
Immaturity of the neonatal immune system contributes to increased susceptibility to infectious diseases and poor vaccine responses. Therefore, better strategies for early life vaccination are needed. Adjuvants can enhance the magnitude and duration of immune responses. In this study we assessed the effects of the adjuvants dmLT and mmCT and different immunization routes, subcutaneous (s.c.) and intranasal (i.n.), on neonatal immune response to a pneumococcal conjugate vaccine Pn1-CRM197. Pn1-specific antibody (Ab) levels of neonatal mice immunized with Pn1-CRM197 alone were low. The adjuvants enhanced IgG Ab responses up to 8 weeks after immunization, more after s.c. than i.n. immunization. On the contrary, i.n. immunization with either adjuvant enhanced serum and salivary IgA levels more than s.c. immunization. In addition, both dmLT and mmCT enhanced germinal center formation and accordingly, dmLT and mmCT enhanced the induction and persistence of Pn1-specific IgG+ Ab-secreting cells (ASCs) in spleen and bone marrow (BM), irrespective of the immunization route. Furthermore, i.n. immunization enhanced Pn1-specific IgA+ ASCs in BM more than s.c. immunizatiofimmu.2022.1078904n. However, a higher i.n. dose of the Pn1-CRM197 was needed to achieve IgG response comparable to that elicited by s.c. immunization with either adjuvant. We conclude that dmLT and mmCT enhance both induction and persistence of the neonatal immune response to the vaccine Pn1-CRM197, following mucosal or parenteral immunization. This indicates that dmLT and mmCT are promising adjuvants for developing safe and effective early life vaccination strategies.
Collapse
Affiliation(s)
- Jenny Lorena Molina Estupiñan
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Audur Anna Aradottir Pind
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Poorya Foroutan Pajoohian
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Stefania P. Bjarnarson
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland,*Correspondence: Stefania P. Bjarnarson,
| |
Collapse
|
3
|
Liao J, Zhou Y, Xu X, Huang K, Chen P, Wu Y, Jin B, Hu Q, Chen G, Zhao S. Current knowledge of targeted-release budesonide in immunoglobulin A nephropathy: A comprehensive review. Front Immunol 2023; 13:926517. [PMID: 36685528 PMCID: PMC9846030 DOI: 10.3389/fimmu.2022.926517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy is a common autoimmune kidney disease. Accumulating studies showed that IgA nephropathy may be partially correlated with mucosal immune system dysfunction. Systemic corticosteroid treatment exerts an essential protective effect against renal deterioration in IgA nephropathy. However, long-term use of corticosteroids may cause systemic side effects. The novel targeted-release formulation (TRF) of budesonide has been shown to deliver the drug to the distal ileum with the aim of minimizing adverse events for patients with IgA nephropathy. In this review, we have summarized all the current evidence of the effects of TRF-budesonide protecting against IgA nephropathy. Three randomized controlled trials (RCTs), one cohort, two case reports, and an ongoing Phase 3 trial (Part B, NCT03643965), were under comprehensive review. These included studies demonstrated that TRF-budesonide could remarkably reduce proteinuria, hematuria, and creatinine, as well as preserve renal function. The local immunosuppressive effects exhibited by TRF-budesonide may represent a novel and promising approach to treating IgA nephropathy. However, the current evidence was only derived from limited trials. Therefore, more well-designed RCTs are still warranted to validate the curable profile of TRF-budesonide in treating IgA nephropathy.
Collapse
Affiliation(s)
- Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Yijing Zhou
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Xiuqin Xu
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Ke Huang
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Pengtao Chen
- Department of Clinical Medical School, Taizhou University, Taizhou, Zhejiang, China
| | - Yuhao Wu
- Department of Clinical Medical School, Taizhou University, Taizhou, Zhejiang, China
| | - Biao Jin
- Department of Clinical Medical School, Taizhou University, Taizhou, Zhejiang, China
| | - Qianlong Hu
- Department of Clinical Medical School, Taizhou University, Taizhou, Zhejiang, China
| | - Guanlin Chen
- Department of Clinical Medical School, Taizhou University, Taizhou, Zhejiang, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
4
|
Pracht K, Wittner J, Kagerer F, Jäck HM, Schuh W. The intestine: A highly dynamic microenvironment for IgA plasma cells. Front Immunol 2023; 14:1114348. [PMID: 36875083 PMCID: PMC9977823 DOI: 10.3389/fimmu.2023.1114348] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
To achieve longevity, IgA plasma cells require a sophisticated anatomical microenvironment that provides cytokines, cell-cell contacts, and nutrients as well as metabolites. The intestinal epithelium harbors cells with distinct functions and represents an important defense line. Anti-microbial peptide-producing paneth cells, mucus-secreting goblet cells and antigen-transporting microfold (M) cells cooperate to build a protective barrier against pathogens. In addition, intestinal epithelial cells are instrumental in the transcytosis of IgA to the gut lumen, and support plasma cell survival by producing the cytokines APRIL and BAFF. Moreover, nutrients are sensed through specialized receptors such as the aryl hydrocarbon receptor (AhR) by both, intestinal epithelial cells and immune cells. However, the intestinal epithelium is highly dynamic with a high cellular turn-over rate and exposure to changing microbiota and nutritional factors. In this review, we discuss the spatial interplay of the intestinal epithelium with plasma cells and its potential contribution to IgA plasma cell generation, homing, and longevity. Moreover, we describe the impact of nutritional AhR ligands on intestinal epithelial cell-IgA plasma cell interaction. Finally, we introduce spatial transcriptomics as a new technology to address open questions in intestinal IgA plasma cell biology.
Collapse
Affiliation(s)
- Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Wittner
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fritz Kagerer
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Wittner J, Schulz SR, Steinmetz TD, Berges J, Hauke M, Channell WM, Cunningham AF, Hauser AE, Hutloff A, Mielenz D, Jäck HM, Schuh W. Krüppel-like factor 2 controls IgA plasma cell compartmentalization and IgA responses. Mucosal Immunol 2022; 15:668-682. [PMID: 35347229 PMCID: PMC9259478 DOI: 10.1038/s41385-022-00503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023]
Abstract
Krüppel-like factor 2 (KLF2) is a potent regulator of lymphocyte differentiation, activation and migration. However, its functional role in adaptive and humoral immunity remains elusive. Therefore, by using mice with a B cell-specific deletion of KLF2, we investigated plasma cell differentiation and antibody responses. We revealed that the deletion of KLF2 resulted in perturbed IgA plasma cell compartmentalization, characterized by the absence of IgA plasma cells in the bone marrow, their reductions in the spleen, the blood and the lamina propria of the colon and the small intestine, concomitant with their accumulation and retention in mesenteric lymph nodes and Peyer's patches. Most intriguingly, secretory IgA in the intestinal lumen was almost absent, dimeric serum IgA was drastically reduced and antigen-specific IgA responses to soluble Salmonella flagellin were blunted in KLF2-deficient mice. Perturbance of IgA plasma cell localization was caused by deregulation of CCR9, Integrin chains αM, α4, β7, and sphingosine-1-phosphate receptors. Hence, KLF2 not only orchestrates the localization of IgA plasma cells by fine-tuning chemokine receptors and adhesion molecules but also controls IgA responses to Salmonella flagellin.
Collapse
Affiliation(s)
- Jens Wittner
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R. Schulz
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tobit D. Steinmetz
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Berges
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manuela Hauke
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - William M. Channell
- grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Adam F. Cunningham
- grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Anja E. Hauser
- grid.6363.00000 0001 2218 4662Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany ,grid.418217.90000 0000 9323 8675Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Andreas Hutloff
- grid.412468.d0000 0004 0646 2097Institute of Immunology and Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dirk Mielenz
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- grid.411668.c0000 0000 9935 6525Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Casali P, Li S, Morales G, Daw CC, Chupp DP, Fisher AD, Zan H. Epigenetic Modulation of Class-Switch DNA Recombination to IgA by miR-146a Through Downregulation of Smad2, Smad3 and Smad4. Front Immunol 2021; 12:761450. [PMID: 34868004 PMCID: PMC8635144 DOI: 10.3389/fimmu.2021.761450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
IgA is the predominant antibody isotype at intestinal mucosae, where it plays a critical role in homeostasis and provides a first line of immune protection. Dysregulation of IgA production, however, can contribute to immunopathology, particularly in kidneys in which IgA deposition can cause nephropathy. Class-switch DNA recombination (CSR) to IgA is directed by TGF-β signaling, which activates Smad2 and Smad3. Activated Smad2/Smad3 dimers are recruited together with Smad4 to the IgH α locus Iα promoter to activate germline Iα-Cα transcription, the first step in the unfolding of CSR to IgA. Epigenetic factors, such as non-coding RNAs, particularly microRNAs, have been shown to regulate T cells, dendritic cells and other immune elements, as well as modulate the antibody response, including CSR, in a B cell-intrinsic fashion. Here we showed that the most abundant miRNA in resting B cells, miR-146a targets Smad2, Smad3 and Smad4 mRNA 3'UTRs and keeps CSR to IgA in check in resting B cells. Indeed, enforced miR-146a expression in B cells aborted induction of IgA CSR by decreasing Smad levels. By contrast, upon induction of CSR to IgA, as directed by TGF-β, B cells downregulated miR-146a, thereby reversing the silencing of Smad2, Smad3 and Smad4, which, once expressed, led to recruitment of Smad2, Smad3 and Smad4 to the Iα promoter for activation of germline Iα-Cα transcription. Deletion of miR-146a in miR-146a-/- mice significantly increased circulating levels of steady state total IgA, but not IgM, IgG or IgE, and heightened the specific IgA antibody response to OVA. In miR-146a-/- mice, the elevated systemic IgA levels were associated with increased IgA+ B cells in intestinal mucosae, increased amounts of fecal free and bacteria-bound IgA as well as kidney IgA deposition, a hallmark of IgA nephropathy. Increased germline Iα-Cα transcription and CSR to IgA in miR-146a-/- B cells in vitro proved that miR-146a-induced Smad2, Smad3 and Smad4 repression is B cell intrinsic. The B cell-intrinsic role of miR-146a in the modulation of CSR to IgA was formally confirmed in vivo by construction and OVA immunization of mixed bone marrow μMT/miR-146a-/- chimeric mice. Thus, by inhibiting Smad2, Smad3 and Smad4 expression, miR-146a plays an important and B cell intrinsic role in modulation of CSR to IgA and the IgA antibody response.
Collapse
Affiliation(s)
- Paolo Casali
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, United States
| | | | | | | | | | | | - Hong Zan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, United States
| |
Collapse
|
7
|
Delaloy C, Schuh W, Jäck HM, Bonaud A, Espéli M. Single cell resolution of Plasma Cell fate programming in health and disease. Eur J Immunol 2021; 52:10-23. [PMID: 34694625 DOI: 10.1002/eji.202149216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Long considered a homogeneous population dedicated to antibody secretion, plasma cell phenotypic and functional heterogeneity is increasingly recognised. Plasma cells were first segregated based on their maturation level, but the complexity of this subset might well be underestimated by this simple dichotomy. Indeed, in the last decade new functions have been attributed to plasma cells including but not limited to cytokine secretion. However, a proper characterization of plasma cell heterogeneity has remained elusive partly due to technical issues and cellular features that are specific to this cell type. Cell intrinsic and cell extrinsic signals could be at the origin of this heterogeneity. Recent advances in technologies like single cell RNA-seq, ATAC-seq or ChIP-seq on low cell numbers helped to elucidate the fate decision in other cell lineages and similar approaches could be implemented to evaluate the heterogeneous fate of activated B cells in health and disease. Here, we summarized published work shedding some lights on the stimuli and genetic program shaping B cell terminal differentiation at the single cell level in mice and men. We also discuss the fate and heterogeneity of plasma cells during immune responses, vaccination and in the frame of human plasma cell disorders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Céline Delaloy
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, LabEx IGO, 2 Av du Pr Léon Bernard, Rennes, 35043, France.,French Germinal Center Club, French Society for Immunology (SFI), Paris, 75015, France
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine III, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | - Amélie Bonaud
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, F-75010, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- French Germinal Center Club, French Society for Immunology (SFI), Paris, 75015, France.,Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, F-75010, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
8
|
Abokor AA, McDaniel GH, Golonka RM, Campbell C, Brahmandam S, Yeoh BS, Joe B, Vijay-Kumar M, Saha P. Immunoglobulin A, an Active Liaison for Host-Microbiota Homeostasis. Microorganisms 2021; 9:2117. [PMID: 34683438 PMCID: PMC8539215 DOI: 10.3390/microorganisms9102117] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces in the gastrointestinal tract are continually exposed to native, commensal antigens and susceptible to foreign, infectious antigens. Immunoglobulin A (IgA) provides dual humoral responses that create a symbiotic environment for the resident gut microbiota and prevent the invasion of enteric pathogens. This review features recent immunological and microbial studies that elucidate the underlying IgA and microbiota-dependent mechanisms for mutualism at physiological conditions. IgA derailment and concurrent microbiota instability in pathological diseases are also discussed in detail. Highlights of this review underscore that the source of IgA and its structural form can dictate microbiota reactivity to sustain a diverse niche where both host and bacteria benefit. Other important studies emphasize IgA insufficiency can result in the bloom of opportunistic pathogens that encroach the intestinal epithelia and disseminate into circulation. The continual growth of knowledge in these subjects can lead to the development of therapeutics targeting IgA and/or the microbiota to treat life threatening diseases.
Collapse
Affiliation(s)
- Ahmed A. Abokor
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Grant H. McDaniel
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Connor Campbell
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Sreya Brahmandam
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Bina Joe
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| |
Collapse
|
9
|
Nguyen DC, Duan M, Ali M, Ley A, Sanz I, Lee FEH. Plasma cell survival: The intrinsic drivers, migratory signals, and extrinsic regulators. Immunol Rev 2021; 303:138-153. [PMID: 34337772 PMCID: PMC8387437 DOI: 10.1111/imr.13013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
Antibody-secreting cells (ASC) are the effectors of protective humoral immunity and the only cell type that produces antibodies or immunoglobulins in mammals. In addition to their formidable capacity to secrete massive quantities of proteins, ASC are terminally differentiated and have unique features to become long-lived plasma cells (LLPC). Upon antigen encounter, B cells are activated through a complex multistep process to undergo fundamental morphological, subcellular, and molecular transformation to become an efficient protein factory with lifelong potential. The ASC survival potential is determined by factors at the time of induction, capacity to migration from induction to survival sites, and ability to mature in the specialized bone marrow microenvironments. In the past decade, considerable progress has been made in identifying factors regulating ASC longevity. Here, we review the intrinsic drivers, trafficking signals, and extrinsic regulators with particular focus on how they impact the survival potential to become a LLPC.
Collapse
Affiliation(s)
- Doan C. Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Meixue Duan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Mohammad Ali
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ariel Ley
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States
| | - F. Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States
| |
Collapse
|
10
|
Klotho supplementation attenuates blood pressure and albuminuria in murine model of IgA nephropathy. J Hypertens 2021; 39:1567-1576. [PMID: 33758157 DOI: 10.1097/hjh.0000000000002845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Klotho interacts with various membrane proteins, such as transforming growth factor-β (TGFβ) and insulin-like growth factor (IGF) receptors. The renal expression of klotho is diminished in chronic kidney disease. METHOD In this study, we assessed the effects of klotho supplementation on a murine model of IgA nephropathy. Twenty-four-week-old hyper serum IgA (HIGA) mice were subcutaneously injected daily with recombinant human klotho protein (20 μg/kg per day) or the vehicle. After 2 months, the mice were killed using an anesthesia overdose and their kidneys were harvested for analysis. RESULTS Supplementation of exogenous klotho protein reduced SBP, albuminuria, 8-epi-prostaglandin F2α excretion, glomerular filtration rate, renal angiotensin II concentration, and angiotensinogen expression in HIGA mice. Additionally, it enhanced renal expression of superoxide dismutase (SOD) and renal klotho itself. The findings using laser-manipulated microdissection demonstrated that klotho supplementation reduced the glomerular expression of TGFβ, fibronectin, and IGF, and increased the glomerular expression of connexin (Cx) 40. CONCLUSION These results indicate that klotho supplementation reduces blood pressure by suppressing the renin--angiotensin system in HIGA mice. Klotho inhibits IGF signaling to preserve glomerular Cx40 levels, ameliorating albuminuria in HIGA mice. Klotho protein supplementation attenuates mesangial expansion by inhibiting TGFβ signaling in HIGA mice.
Collapse
|
11
|
Hayashi R, Ueno Y, Tanaka S, Onishi K, Takasago T, Wakai M, Naito T, Sasaki K, Doi S, Masaki T, Chayama K. Clinical characteristics of inflammatory bowel disease patients with immunoglobulin A nephropathy. Intest Res 2020; 19:430-437. [PMID: 33153254 PMCID: PMC8566828 DOI: 10.5217/ir.2020.00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022] Open
Abstract
Background/Aims Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract. Some patients with this condition have been reported to present with immunoglobulin A nephropathy (IgAN), a renal complication that can cause end-stage renal failure, but the frequency of this comorbidity has not been described. Thus, the aim of this study was to investigate the frequency of IgAN in patients with IBD. Methods This study included 620 patients with IBD (338 with ulcerative colitis [UC] and 282 with Crohn’s disease [CD]) from the Hiroshima University Hospital outpatient department. IgAN cases were identified from medical interviews, blood examinations (serum immunoglobulin A), and urinalyses (occult blood, proteinuria). Definitive IgAN cases were diagnosed by renal biopsies, while those detected through the clinical course and test results, but not clinically recommended for renal biopsy, were defined as suspected IgAN. Results We analyzed 427 cases meeting the inclusion criteria (220 with UC and 207 with CD). The incidence of IgAN across all patients with IBD was 3.0%. The frequency of IgAN was significantly higher in patients with CD (11/207, 5.3%) than in those with UC (2/220, 0.9%) (P< 0.01). Moreover, a significant correlation was found between CD patients with ileostomy or colostomy and a diagnosis of IgAN. Conclusions Patients with IBD present a high incidence of IgAN, especially those with CD who have undergone ileostomy or colostomy.
Collapse
Affiliation(s)
- Ryohei Hayashi
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Yoshitaka Ueno
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Kana Onishi
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Takeshi Takasago
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Masaki Wakai
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshikatsu Naito
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan.,Institute of Physical and Chemical Research (RIKEN) Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
12
|
Comparative proteomic analysis of renal proteins from IgA nephropathy model mice and control mice. Clin Exp Nephrol 2020; 24:666-679. [PMID: 32436031 DOI: 10.1007/s10157-020-01898-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND High-IgA ddY (HIGA) mice, an animal model of human IgA nephropathy (IgAN), spontaneously develop nephropathy with glomerular IgA deposition and markedly elevated serum IgA levels from 25 weeks of age. METHODS We performed a comparative proteomic analysis of the renal proteins collected from HIGA mice and control C57BL/6 mice at 5 or 38 weeks of age (the H5, H38, C5, and C38 groups) (n = 4 in each group). Proteins were extracted from the left whole kidney of each mouse and analyzed using nano-liquid chromatography-tandem mass spectrometry. The right kidneys were used for histopathological examinations. RESULTS Immunohistochemical examinations showed glomerular deposition of IgA and the immunoglobulin joining (J) chain, and increased numbers of interstitial IgA- and J-chain-positive plasma cells in the H38 group. In the proteomic analysis, > 5000 proteins were identified, and 33 proteins with H38/H5 ratios of > 5.0, H38/C38 ratios of > 5.0, and C38/C5 ratios of < 1.5 were selected. Among them, there were various proteins that are known to be involved in human IgAN and/or animal IgAN models. Immunohistochemical examinations validated the proteomic results for some proteins. Furthermore, two proteins that are known to be associated with kidney disease displayed downregulated expression (H38/H5 ratio: 0.01) in the H38 group. CONCLUSIONS The results of comparative proteomic analysis of renal proteins were consistent with previous histopathological and serological findings obtained in ddY and HIGA mice. Various proteins that are known to be involved in kidney disease, including IgAN, and potential disease marker proteins exhibited markedly altered levels in HIGA mice.
Collapse
|
13
|
Abstract
Antibody-secreting plasma cells are the central pillars of humoral immunity. They are generated in a fundamental cellular restructuring process from naive B cells upon contact with antigen. This outstanding process is guided and controlled by a complex transcriptional network accompanied by a fascinating morphological metamorphosis, governed by the combined action of Blimp-1, Xbp-1 and IRF-4. The survival of plasma cells requires the intimate interaction with a specific microenvironment, consisting of stromal cells and cells of hematopoietic origin. Cell-cell contacts, cytokines and availability of metabolites such as glucose and amino acids modulate the survival abilities of plasma cells in their niches. Moreover, plasma cells have been shown to regulate immune responses by releasing cytokines. Furthermore, plasma cells are central players in autoimmune diseases and malignant transformation of plasma cells can result in the generation of multiple myeloma. Hence, the development of sophisticated strategies to deplete autoreactive plasma cells and myeloma cells represents a challenge for current and future research.
Collapse
Affiliation(s)
- Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger Center, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Abstract
The connection between a dysregulated gut-associated lymphoid tissue and IgA nephropathy (IgAN) was supposed decades ago after the observation of increased association of IgAN with celiac disease. Pivotal studies have shown a role for alimentary antigens, particularly gliadin in developing IgAN in BALB/c mice, and a reduction in IgA antigliadin antibodies and proteinuria was reported after gluten free-diet in patients with IgAN. Recently a genome-wide association study showed that most loci associated with IgAN also are associated with immune-mediated inflammatory bowel diseases, maintenance of the intestinal barrier, and response to gut pathogens. Transgenic mice that overexpress the B-cell activating factor develop hyper-IgA with IgAN modulated by alimentary components and intestinal microbiota. Mice expressing human IgA1 and a soluble form of the IgA receptor (sCD89) develop IgAN, which is regulated by dietary gluten. Recent observations have confirmed gut-associated lymphoid tissue hyper-reactivity in IgAN patients with IgA against alimentary components. Interesting results were provided by the NEFIGAN randomized controlled trial, which adopted an enteric controlled-release formulation of the corticosteroid budesonide targeted to Peyer's patches. After 9 months of treatment, a reduction in proteinuria was observed with stabilized renal function and limited adverse events. The gut-renal connection is an area of promising new treatment approaches for patients with IgAN.
Collapse
|
15
|
Romero-Ramírez S, Navarro-Hernandez IC, Cervantes-Díaz R, Sosa-Hernández VA, Acevedo-Ochoa E, Kleinberg-Bild A, Valle-Rios R, Meza-Sánchez DE, Hernández-Hernández JM, Maravillas-Montero JL. Innate-like B cell subsets during immune responses: Beyond antibody production. J Leukoc Biol 2018; 105:843-856. [PMID: 30457676 DOI: 10.1002/jlb.mr0618-227r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
B lymphocytes are recognized for their crucial role in the adaptive immunity since they represent the only leukocyte lineage capable of differentiating into Ab-secreting cells. However, it has been demonstrated that these lymphocytes can exert several Ab-independent functions, including engulfing and processing Ags for presentation to T cells, secreting soluble mediators, providing co-stimulatory signals, and even participating in lymphoid tissues development. Beyond that, several reports claiming the existence of multiple B cell subsets contributing directly to innate immune responses have appeared. These "innate-like" B lymphocytes, whose phenotype, development pathways, tissue distribution, and functions are in most cases notoriously different from those of conventional B cells, are crucial to early protective responses against pathogens by exerting "crossover" defensive strategies that blur the established boundaries of innate and adaptive branches of immunity. Examples of these mechanisms include the rapid secretion of the polyspecific natural Abs, increased susceptibility to innate receptors-mediated activation, cytokine secretion, downstream priming of other innate cells, usage of specific variable immunoglobulin gene-segments, and other features. As these new insights emerge, it is becoming preponderant to redefine the functionality of B cells beyond their classical adaptive-immune tasks.
Collapse
Affiliation(s)
- Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itze C Navarro-Hernandez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ernesto Acevedo-Ochoa
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Ari Kleinberg-Bild
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ricardo Valle-Rios
- División de Investigación de la Facultad de Medicina, Universidad Nacional Autónoma de México y Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - David E Meza-Sánchez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José M Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
16
|
Hartono C, Chung M, Perlman AS, Chevalier JM, Serur D, Seshan SV, Muthukumar T. Bortezomib for Reduction of Proteinuria in IgA Nephropathy. Kidney Int Rep 2018; 3:861-866. [PMID: 29988921 PMCID: PMC6035125 DOI: 10.1016/j.ekir.2018.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 11/26/2022] Open
Abstract
Introduction IgA nephropathy is the most common glomerulonephritis in the world. We conducted a pilot trial (NCT01103778) to test the effect of bortezomib in patients with IgA nephropathy and significant proteinuria. Methods We treated 8 consecutive subjects from July 2011 until March 2016 with 4 doses of bortezomib. All subjects had biopsy-proven IgA nephropathy and proteinuria of greater than 1 g per day. They were given 4 doses of bortezomib i.v. at 1.3 mg/m2 of body surface area per dose. Changes in proteinuria and renal function were followed for 1 year after enrollment. The primary endpoint was full remission defined as proteinuria of less than 300 mg per day. Results All 8 subjects received and tolerated 4 doses of bortezomib over a 2-week period during enrollment. The median baseline daily proteinuria was 2.46 g (interquartile range: 2.29–3.16 g). At 1-year follow-up, 3 subjects (38%) had achieved the primary endpoint. The 3 subjects who had complete remission had Oxford classification T scores of 0 before enrollment. Of the remaining 5 subjects, 1 was lost to follow-up within 1 month of enrollment and 4 (50%) did not have any response or had progression of disease. Conclusion Proteasome inhibition by bortezomib may reduce significant proteinuria in select cases of IgA nephropathy. Subjects who responded to bortezomib had Oxford classification T score of 0 and normal renal function.
Collapse
Affiliation(s)
- Choli Hartono
- Department of Medicine, Division of Nephrology and Hypertension, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York, USA.,The Rogosin Institute, New York, New York, USA
| | - Miriam Chung
- Department of Medicine, Division of Nephrology, Mount Sinai Hospital, New York, New York, USA
| | - Alan S Perlman
- Department of Medicine, Division of Nephrology and Hypertension, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York, USA.,The Rogosin Institute, New York, New York, USA
| | - James M Chevalier
- Department of Medicine, Division of Nephrology and Hypertension, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York, USA.,The Rogosin Institute, New York, New York, USA
| | - David Serur
- Department of Medicine, Division of Nephrology and Hypertension, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York, USA.,The Rogosin Institute, New York, New York, USA
| | - Surya V Seshan
- Department of Pathology, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York, USA
| | - Thangamani Muthukumar
- Department of Medicine, Division of Nephrology and Hypertension, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York, USA
| |
Collapse
|
17
|
Wilmore JR, Gaudette BT, Gomez Atria D, Hashemi T, Jones DD, Gardner CA, Cole SD, Misic AM, Beiting DP, Allman D. Commensal Microbes Induce Serum IgA Responses that Protect against Polymicrobial Sepsis. Cell Host Microbe 2018; 23:302-311.e3. [PMID: 29478774 DOI: 10.1016/j.chom.2018.01.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023]
Abstract
Serum immunoglobulin A (IgA) antibodies are readily detected in mice and people, but the mechanisms underlying the induction of serum IgA and its role in host protection remain uncertain. We report that select commensal bacteria induce several facets of systemic IgA-mediated immunity. Exposing conventional mice to a unique but natural microflora that included several members of the Proteobacteria phylum led to T cell-dependent increases in serum IgA levels and the induction of large numbers of IgA-secreting plasma cells in the bone marrow. The resulting serum IgA bound to a restricted collection of bacterial taxa, and antigen-specific serum IgA antibodies were readily induced after intestinal colonization with the commensal bacterium Helicobacter muridarum. Finally, movement to a Proteobacteria-rich microbiota led to serum IgA-mediated resistance to polymicrobial sepsis. We conclude that commensal microbes overtly influence the serum IgA repertoire, resulting in constitutive protection against bacterial sepsis.
Collapse
Affiliation(s)
- Joel R Wilmore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA
| | - Daniela Gomez Atria
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA
| | - Tina Hashemi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA
| | - Derek D Jones
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA
| | - Christopher A Gardner
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA
| | - Stephen D Cole
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Ana M Misic
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Daniel P Beiting
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA.
| |
Collapse
|
18
|
The gut-kidney axis in IgA nephropathy: role of microbiota and diet on genetic predisposition. Pediatr Nephrol 2018; 33:53-61. [PMID: 28389744 DOI: 10.1007/s00467-017-3652-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
Recent data suggest that gut-associated lymphoid tissue (GALT) plays a major role in the development of immunoglobulin A (IgA) nephropathy (IgAN). A genome-wide association study showed that most loci associated with the risk of IgAN are also associated with immune-mediated inflammatory bowel diseases, maintenance of the intestinal barrier and regulation of response to gut pathogens. Studies involving experimental models have demonstrated a pivotal role of intestinal microbiota in the development of IgAN in mice producing high levels of IgA and in transgenic mice overexpressing BAFF, a B-cell factor crucial for IgA synthesis, indicating the role of genetic background, B-cell activity, GALT intestinal immunity and diet. The effect of diet was suggested by pilot studies carried out 30 years ago which showed that a gluten-rich diet induced IgAN in mice and that some patients benefited from a gluten-free diet. A recent experimental model in mice expressing human IgA1 and Fc alpha receptor CD89 reported clinical and histological improvement after a gluten-free diet. Clinical observations have elicited new interest in GALT hyper-reactivity in IgAN patients. In a pilot study, a reduction in proteinuria was attained using an enteric controlled-release formulation of the corticosteroid budesonide targeted to the Peyer's patches at the ileocecal junction. This formulation was tested in the placebo-controlled NEFIGAN phase 2b trial, with a reduction in proteinuria after 9 months of treatment together with stabilization of renal function in patients with persistent proteinuria. In conclusion, the gut-kidney axis modulated by microbiota and diet is a promising target for focused treatment of IgAN in genetically predisposed patients at risk of progression.
Collapse
|
19
|
Sutherland DB, Suzuki K, Fagarasan S. Fostering of advanced mutualism with gut microbiota by Immunoglobulin A. Immunol Rev 2016; 270:20-31. [PMID: 26864102 DOI: 10.1111/imr.12384] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunoglobulin A (IgA), the most abundantly secreted antibody isotype in mammals, not only provides direct immune protection to neonates via maternal milk but also helps program the infant immune system by regulating the microbiota. IgA continues to maintain dynamic interactions with the gut microbiota throughout life and this influences immune system homeostasis as well as other physiological processes. The secretory IgA produced independently of T-cell selection are commonly referred to as natural or innate antibodies. Our studies have shown that innate-IgA, while effective at excluding microorganisms from the gut, does not promote mutualism with the microbiota in the same way as adaptive-IgA that is selected in T cell-dependent germinal center reactions. Adaptive-IgA fosters more advanced mutualism with the microbiota than innate-IgA by selecting and diversifying beneficial microbial communities. In this review, we suggest that the diversified microbiota resulting from adaptive-IgA pressure was pivotal in promoting ecological adaptability and speciation potential of mammals.
Collapse
Affiliation(s)
- Duncan B Sutherland
- Laboratory of Intestinal Immunology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Keiichiro Suzuki
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| |
Collapse
|
20
|
The microbiota and chronic kidney diseases: a double-edged sword. Clin Transl Immunology 2016; 5:e86. [PMID: 27757226 PMCID: PMC5067952 DOI: 10.1038/cti.2016.36] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022] Open
Abstract
Recent findings regarding the influence of the microbiota in many inflammatory processes have provided a new way to treat diseases. Now, one may hypothesize that the origin of a plethora of diseases is related to the health of the gut microbiota and its delicate, although complex, interface with the epithelial and immune systems. The ‘westernization' of diets, for example, is associated with alterations in the gut microbiota. Such alterations have been found to correlate directly with the increased incidence of diabetes and hypertension, the main causes of chronic kidney diseases (CKDs), which, in turn, have a high estimated prevalence. Indeed, data have arisen showing that the progression of kidney diseases is strictly related to the composition of the microbiota. Alterations in the gut microbiota diversity during CKDs do not only have the potential to exacerbate renal injury but may also contribute to the development of associated comorbidities, such as cardiovascular diseases and insulin resistance. In this review, we discuss how dysbiosis through alterations in the gut barrier and the consequent activation of immune system could intensify the progression of CKD and vice versa, how CKDs can modify the gut microbiota diversity and abundance.
Collapse
|
21
|
Xu X, Meng Q, Erben U, Wang P, Glauben R, Kühl AA, Wu H, Ma CW, Hu M, Wang Y, Sun W, Jia J, Wu X, Chen W, Siegmund B, Qin Z. Myeloid-derived suppressor cells promote B-cell production of IgA in a TNFR2-dependent manner. Cell Mol Immunol 2016; 14:597-606. [PMID: 27133471 DOI: 10.1038/cmi.2015.103] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 12/31/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are well known for their capacity to suppress antitumor T-cell responses, but their effects on B-cell function and antibody production remain unclear. Here, we found that MDSCs that accumulated around the germinal center in the spleen of tumor-bearing mice co-located with B cells. In the presence of MDSCs, the antibody reaction to a surrogate antigen was significantly enhanced in mice, especially the immunoglobulin (Ig)A subtype. Co-culture with MDSCs promoted both proliferation and differentiation of B cells into IgA-producing plasma cells in vitro. Interestingly, the cross talk between MDSCs and B cells required cell-cell contact. MDSCs from tumor necrosis factor receptor (TNFR) 2-/- mice, but not from TNFR1-/- mice, failed to promote B-cell responses. Further investigation suggested that interleukin-10 and transforming growth factor-β1 were crucial for the MDSC-mediated promotion of IgA responses. These results demonstrate a novel mechanism of MDSC-mediated immune regulation during tumor growth.
Collapse
Affiliation(s)
- Xia Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinghong Meng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ulrike Erben
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin 12200, Germany
| | - Peigang Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rainer Glauben
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin 12200, Germany
| | - Anja A Kühl
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin 12200, Germany
| | - Hao Wu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chung Wah Ma
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou 510665, China
| | - Minghua Hu
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou 510665, China
| | - Yuanyuan Wang
- Infinitus Chinese Herbal Immunity Research Centre, Guangzhou 510665, China
| | - Wei Sun
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine Berlin-Buch, Berlin 13125, Germany
| | - Junying Jia
- Key Laboratory of Protein and Peptide Pharmaceuticals, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyi Wu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Chen
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine Berlin-Buch, Berlin 13125, Germany
| | - Britta Siegmund
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin 12200, Germany
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
22
|
Lemke A, Kraft M, Roth K, Riedel R, Lammerding D, Hauser AE. Long-lived plasma cells are generated in mucosal immune responses and contribute to the bone marrow plasma cell pool in mice. Mucosal Immunol 2016; 9:83-97. [PMID: 25943272 DOI: 10.1038/mi.2015.38] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 03/24/2015] [Indexed: 02/04/2023]
Abstract
During systemic immune responses, plasma blasts are generated in secondary lymphoid organs and migrate to the bone marrow, where they can become long-lived, being responsible for the maintenance of long-term antibody titers. Plasma blasts generated in mucosal immune responses of the small intestine home to the lamina propria (LP), producing mainly immunoglobulin A. The migration of these antibody-secreting cells is well characterized during acute immune responses. Less is known about their lifetime and contribution to the long-lived bone marrow compartment. Here we investigate the lifetime of plasma cells (PCs) and the relationship between the PC compartments of the gut and bone marrow after oral immunization. Our findings indicate that PCs in the LP can survive for extended time periods. PCs specific for orally administered antigens can be detected in the bone marrow for at least 9 months after immunization, indicating that the mucosal PC compartment can contribute to the long-lived PC pool in this organ, independent of the participation of splenic B cells. Our findings suggest that the compartmentalization between mucosal and systemic PC pools is less strict than previously thought. This may have implications for the development of vaccines as well as for autoantibody-mediated diseases.
Collapse
Affiliation(s)
- A Lemke
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - M Kraft
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Charitéplatz 1, Berlin, Germany
| | - K Roth
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - R Riedel
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - D Lammerding
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Charitéplatz 1, Berlin, Germany
| | - A E Hauser
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Charitéplatz 1, Berlin, Germany
| |
Collapse
|
23
|
Gluten exacerbates IgA nephropathy in humanized mice through gliadin–CD89 interaction. Kidney Int 2015; 88:276-85. [DOI: 10.1038/ki.2015.94] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 01/20/2015] [Accepted: 02/05/2015] [Indexed: 12/13/2022]
|
24
|
Esser-von Bieren J, Volpe B, Sutherland DB, Bürgi J, Verbeek JS, Marsland BJ, Urban JF, Harris NL. Immune antibodies and helminth products drive CXCR2-dependent macrophage-myofibroblast crosstalk to promote intestinal repair. PLoS Pathog 2015; 11:e1004778. [PMID: 25806513 PMCID: PMC4373753 DOI: 10.1371/journal.ppat.1004778] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/03/2015] [Indexed: 12/12/2022] Open
Abstract
Helminth parasites can cause considerable damage when migrating through host tissues, thus making rapid tissue repair imperative to prevent bleeding and bacterial dissemination particularly during enteric infection. However, how protective type 2 responses targeted against these tissue-disruptive multicellular parasites might contribute to homeostatic wound healing in the intestine has remained unclear. Here, we observed that mice lacking antibodies (Aid-/-) or activating Fc receptors (Fcrg-/-) displayed impaired intestinal repair following infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb), whilst transfer of immune serum could partially restore chemokine production and rescue wound healing in Aid-/- mice. Impaired healing was associated with a reduced expression of CXCR2 ligands (CXCL2/3) by macrophages (MΦ) and myofibroblasts (MF) within intestinal lesions. Whilst antibodies and helminths together triggered CXCL2 production by MΦ in vitro via surface FcR engagement, chemokine secretion by intestinal MF was elicited by helminths directly via Fcrg-chain/dectin2 signaling. Blockade of CXCR2 during Hpb challenge infection reproduced the delayed wound repair observed in helminth infected Aid-/- and Fcrg-/- mice. Finally, conditioned media from human MΦ stimulated with infective larvae of the helminth Ascaris suum together with immune serum, promoted CXCR2-dependent scratch wound closure by human MF in vitro. Collectively our findings suggest that helminths and antibodies instruct a chemokine driven MΦ-MF crosstalk to promote intestinal repair, a capacity that may be harnessed in clinical settings of impaired wound healing. To complete their lifecycles, helminth parasites have to migrate through tissues such as the skin, lung, liver and intestine. This migration causes severe tissue damage, resulting in the need for rapid repair to restore the integrity and function of damaged tissues. Protective type 2 immune responses against helminths can repair acute lung damage, but they can also promote liver fibrosis. However, how protective immune mechanisms might contribute to wound healing during enteric nematode infection has remained unclear. Here we show that during a protective antibody response, where helminth larvae are trapped in the intestinal mucosa, macrophages and myofibroblasts secrete chemokines, which promote the repair of helminth-caused lesions. Chemokine secretion by macrophages was triggered by antibodies and helminth products, whilst myofibroblasts produced chemokines directly in response to innate recognition of helminth products. The same chemokines that instructed intestinal repair in mice were also secreted by human macrophages, when co-cultured with immune serum and helminths. Finally, human myofibroblasts closed in vitro scratch wounds more rapidly, when stimulated with the chemokine secretions of helminth-antibody activated human macrophages. Thus, our findings reveal a novel mechanism, by which a protective antibody response can promote the repair of intestinal injury during helminth infection.
Collapse
Affiliation(s)
- Julia Esser-von Bieren
- Laboratory of Intestinal Immunology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center of Allergy and Environment (ZAUM), member of the German Center for Lung Research (DZL), Technische Universität and Helmholtz Center Munich, Munich, Germany
| | - Beatrice Volpe
- Laboratory of Intestinal Immunology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| | - Duncan B. Sutherland
- Laboratory of Intestinal Immunology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| | - Jérôme Bürgi
- Laboratory of Cell and Membrane Biology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - J. Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin J. Marsland
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Joseph F. Urban
- Diet, Genomics, & Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Nicola L. Harris
- Laboratory of Intestinal Immunology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
25
|
Esser-von Bieren J, Volpe B, Kulagin M, Sutherland DB, Guiet R, Seitz A, Marsland BJ, Verbeek JS, Harris NL. Antibody-mediated trapping of helminth larvae requires CD11b and Fcγ receptor I. THE JOURNAL OF IMMUNOLOGY 2014; 194:1154-63. [PMID: 25548226 DOI: 10.4049/jimmunol.1401645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infections with intestinal helminths severely impact on human and veterinary health, particularly through the damage that these large parasites inflict when migrating through host tissues. Host immunity often targets the motility of tissue-migrating helminth larvae, which ideally should be mimicked by anti-helminth vaccines. However, the mechanisms of larval trapping are still poorly defined. We have recently reported an important role for Abs in the rapid trapping of tissue-migrating larvae of the murine parasite Heligmosomoides polygyrus bakeri. Trapping was mediated by macrophages (MΦ) and involved complement, activating FcRs, and Arginase-1 (Arg1) activity. However, the receptors and Ab isotypes responsible for MΦ adherence and Arg1 induction remained unclear. Using an in vitro coculture assay of H. polygyrus bakeri larvae and bone marrow-derived MΦ, we now identify CD11b as the major complement receptor mediating MΦ adherence to the larval surface. However, larval immobilization was largely independent of CD11b and instead required the activating IgG receptor FcγRI (CD64) both in vitro and during challenge H. polygyrus bakeri infection in vivo. FcγRI signaling also contributed to the upregulation of MΦ Arg1 expression in vitro and in vivo. Finally, IgG2a/c was the major IgG subtype from early immune serum bound by FcγRI on the MΦ surface, and purified IgG2c could trigger larval immobilization and Arg1 expression in MΦ in vitro. Our findings reveal a novel role for IgG2a/c-FcγRI-driven MΦ activation in the efficient trapping of tissue-migrating helminth larvae and thus provide important mechanistic insights vital for anti-helminth vaccine development.
Collapse
Affiliation(s)
- Julia Esser-von Bieren
- Swiss Vaccine Research Institute, Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Beatrice Volpe
- Swiss Vaccine Research Institute, Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Manuel Kulagin
- Swiss Vaccine Research Institute, Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Duncan B Sutherland
- Swiss Vaccine Research Institute, Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Romain Guiet
- Bioimaging and Optics Core Facility, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Arne Seitz
- Bioimaging and Optics Core Facility, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Benjamin J Marsland
- Faculty of Biology and Medicine, Respiratory Division, University Hospital, Vaud, University of Lausanne, 1011 Lausanne, Switzerland; and
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Nicola L Harris
- Swiss Vaccine Research Institute, Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
26
|
|
27
|
Takechi H, Mawatari K, Harada N, Nakaya Y, Asakura M, Aihara M, Takizawa H, Goto M, Nishino T, Minato T, Furukita Y, Yamamoto Y, Yuasa Y, Yamai H, Yoshida T, Seike J, Tangoku A. Glutamine protects the small intestinal mucosa in anticancer drug-induced rat enteritis model. THE JOURNAL OF MEDICAL INVESTIGATION 2014; 61:59-64. [DOI: 10.2152/jmi.61.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Hirokazu Takechi
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Kazuaki Mawatari
- Department of Preventive Environent and Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Nagakatsu Harada
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Yutaka Nakaya
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Megumi Asakura
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Mutsumi Aihara
- Department of Preventive Environent and Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Masakazu Goto
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Takeshi Nishino
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Takuya Minato
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Yoshihito Furukita
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Yota Yamamoto
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Yasuhiro Yuasa
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Hiromichi Yamai
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Takahiro Yoshida
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Junichi Seike
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Health Biosciences, the University of Tokushima Graduate School
| |
Collapse
|
28
|
Roth K, Oehme L, Zehentmeier S, Zhang Y, Niesner R, Hauser AE. Tracking plasma cell differentiation and survival. Cytometry A 2013; 85:15-24. [PMID: 24700574 DOI: 10.1002/cyto.a.22355] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/22/2013] [Accepted: 08/18/2013] [Indexed: 01/21/2023]
Abstract
Plasma cells play a crucial role for the humoral immune response as they represent the body's factories for antibody production. The differentiation from a B cell into a plasma cell is controlled by a complex transcriptional network and happens within secondary lymphoid organs. Based on their lifetime, two types of antibody secreting cells can be distinguished: Short-lived plasma cells are located in extrafollicular sites of secondary lymphoid organs such as lymph node medullary cords and the splenic red pulp. A fraction of plasmablasts migrate from secondary lymphoid organs to the bone marrow where they can become long-lived plasma cells. Bone marrow plasma cells reside in special microanatomical environments termed survival niches, which provide factors promoting their longevity. Reticular stromal cells producing the chemokine CXCL12, which is known to attract plasmablasts to the bone marrow but also to promote plasma cell survival, play a crucial role in the maintenance of these niches. In addition, hematopoietic cells are contributing to the niches by providing other soluble survival factors. Here, we review the current knowledge on the factors involved in plasma cell differentiation, their localization and migration. We also give an overview on what is known regarding the maintenance of long lived plasma cells in survival niches of the bone marrow.
Collapse
Affiliation(s)
- Katrin Roth
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Key Points
IgA and IgM human plasma cells express a functional BCR on their cell surface and can therefore respond to antigenic stimulation.
Collapse
|
30
|
Yanagibashi T, Hosono A, Oyama A, Tsuda M, Suzuki A, Hachimura S, Takahashi Y, Momose Y, Itoh K, Hirayama K, Takahashi K, Kaminogawa S. IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells. Immunobiology 2012; 218:645-51. [PMID: 22940255 DOI: 10.1016/j.imbio.2012.07.033] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 07/31/2012] [Indexed: 12/12/2022]
Abstract
It has been demonstrated that intestinal commensal bacteria induce immunoglobulin (Ig) A production by promoting the development of gut-associated lymphoid tissues in the small intestine. However, the precise mechanism whereby these bacteria modulate IgA production in the large intestine, which harbors the majority of intestinal commensals, is poorly understood. In addition, it is not known which commensal bacteria induce IgA production in the small intestine and which induce production in the large intestine. To address these issues, we generated gnotobiotic mice mono-associated with different murine commensal bacteria by inoculating germ-free (GF) mice with Lactobacillus johnsonii or Bacteroides acidifaciens. In GF mice, IgA production was barely detectable in the small intestine and was not detected in the large intestine. Interestingly, total IgA secretion in the large intestinal mucosa of B. acidifaciens mono-associated (BA) mice was significantly greater than that of GF and L. johnsonii mono-associated (LJ) mice. However, there was no difference in total IgA production in the small intestine of GF, LJ and BA mice. In addition, in the large intestine of BA mice, the expression of IgA(+) cells and germinal center formation were more remarkable than in GF and LJ mice. Furthermore, B. acidifaciens-specific IgA was detected in the large intestine of BA mice. These results suggest that the production of IgA in the large intestine may be modulated by a different mechanism than that in the small intestine, and that B. acidifaciens is one of the predominant bacteria responsible for promoting IgA production in the large intestine.
Collapse
Affiliation(s)
- Tsutomu Yanagibashi
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa 252-0880, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
IgA synthesis: a form of functional immune adaptation extending beyond gut. Curr Opin Immunol 2012; 24:261-8. [PMID: 22503962 DOI: 10.1016/j.coi.2012.03.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 12/12/2022]
Abstract
Immunoglobulin A (IgA) is the most abundantly produced antibody isotype in mammals. The primary function of IgA is to maintain homeostasis at mucosal surfaces. IgA is generated in specialized gut associated lymphoid tissues (GALT) by T cell-dependent and T cell-independent mechanisms. Studies in mice have demonstrated that IgA diversification has an essential role in the regulation of gut microbiota. Aberrant bacterial growth, by activating innate and adaptive immune cells, has emerged as a risk factor for inflammatory diseases such as metabolic disorders and autoimmune diseases. Dynamic diversification of IgA shields bacterial antigens preventing inflammatory responses, but when IgA regulation is suboptimal aberrant bacterial growth and inflammation can ensue.
Collapse
|
32
|
Kaneko Y, Otsuka T, Tsuchida Y, Gejyo F, Narita I. Integrin α1/β1 and α2/β1 as a receptor for IgA1 in human glomerular mesangial cells in IgA nephropathy. Int Immunol 2012; 24:219-32. [DOI: 10.1093/intimm/dxr125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
33
|
Mesin L, Di Niro R, Thompson KM, Lundin KEA, Sollid LM. Long-lived plasma cells from human small intestine biopsies secrete immunoglobulins for many weeks in vitro. THE JOURNAL OF IMMUNOLOGY 2011; 187:2867-74. [PMID: 21841131 DOI: 10.4049/jimmunol.1003181] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To understand the biology of Ab-secreting cells in the human small intestine, we examined Ab production of intestinal biopsies kept in culture. We found sustained IgA and IgM secretion as well as viable IgA- or IgM-secreting cells after >4 wk of culture. The Ab-secreting cells were nonproliferating and expressing CD27 and CD138, thus having a typical plasma cell phenotype. Culturing of biopsies without tissue disruption gave the highest Ab production and plasma cell survival suggesting that the environment regulates plasma cell longevity. Cytokine profiling of the biopsy cultures demonstrated a sustained presence of IL-6 and APRIL. Blocking of the activity of endogenous APRIL and IL-6 with BCMA-Fc and anti-human IL-6 Ab demonstrated that both these factors were essential for plasma cell survival and Ab secretion in the biopsy cultures. This study demonstrates that the human small intestine harbors a population of nonproliferating plasma cells that are instructed by the microenvironment for prolonged survival and Ab secretion.
Collapse
Affiliation(s)
- Luka Mesin
- Center for Immune Regulation, University of Oslo, Q3 N-0027 Oslo, Norway.
| | | | | | | | | |
Collapse
|
34
|
Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat Immunol 2011; 12:264-70. [PMID: 21258321 DOI: 10.1038/ni.1991] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/29/2010] [Indexed: 02/07/2023]
Abstract
To elucidate the specific role of somatic hypermutation (SHM) in mucosal immunity, we generated mice carrying a knock-in point mutation in Aicda, which encodes activation-induced cytidine deaminase (AID), an enzyme essential to SHM and class-switch recombination (CSR). These mutant AID(G23S) mice had much less SHM but had normal amounts of immunoglobulin in both serum and intestinal secretions. AID(G23S) mice developed hyperplasia of germinal center B cells in gut-associated lymphoid tissues, accompanied by expansion of microflora in the small intestine. Moreover, AID(G23S) mice had more translocation of Yersinia enterocolitica into mesenteric lymph nodes and were more susceptible than wild-type mice to oral challenge with cholera toxin. Together our results indicate that SHM is critical in maintaining intestinal homeostasis and efficient mucosal defense.
Collapse
|
35
|
A new fluorescent imaging of renal inflammation with RCP. J Control Release 2010; 148:351-8. [DOI: 10.1016/j.jconrel.2010.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/02/2010] [Accepted: 09/08/2010] [Indexed: 11/23/2022]
|
36
|
Tsuji M, Suzuki K, Kitamura H, Maruya M, Kinoshita K, Ivanov II, Itoh K, Littman DR, Fagarasan S. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 2008; 29:261-71. [PMID: 18656387 DOI: 10.1016/j.immuni.2008.05.014] [Citation(s) in RCA: 354] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/24/2008] [Accepted: 05/19/2008] [Indexed: 11/28/2022]
Abstract
Immunoglobulin A (IgA) is generated in the gut by both T cell-dependent and T cell-independent processes. The sites and the mechanisms for T cell-independent IgA synthesis remain elusive. Here we show that isolated lymphoid follicles (ILFs) were sites where induction of activation-induced cytidine deaminase (AID) and IgA class switching of B cells took place in the absence of T cells. We also show that formation of ILFs was regulated by interactions between lymphoid tissue-inducer cells expressing the nuclear receptor ROR gamma t (ROR gamma t(+)LTi cells) and stromal cells (SCs). Activation of SCs by ROR gamma t(+)LTi cells through lymphotoxin (LT)-beta receptor (LT beta R) and simultaneously by bacteria through TLRs induced recruitment of dendritic cells (DCs) and B cells and formation of ILFs. These findings provide insight into the crosstalk between bacteria, ROR gamma t(+)LTi cells, SCs, DCs, and B cells required for ILF formation and establish a critical role of ILFs in T cell-independent IgA synthesis in gut.
Collapse
Affiliation(s)
- Masayuki Tsuji
- Laboratory for Mucosal Immunity, Research Center for Allergy and Immunology, RIKEN Yokohama 1-7-22, Tsurumi, Yokohama, 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
An IFN-gamma-IL-18 signaling loop accelerates memory CD8+ T cell proliferation. PLoS One 2008; 3:e2404. [PMID: 18545704 PMCID: PMC2408965 DOI: 10.1371/journal.pone.0002404] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 05/05/2008] [Indexed: 11/19/2022] Open
Abstract
Rapid proliferation is one of the important features of memory CD8+ T cells, ensuring rapid clearance of reinfection. Although several cytokines such as IL-15 and IL-7 regulate relatively slow homeostatic proliferation of memory T cells during the maintenance phase, it is unknown how memory T cells can proliferate more quickly than naïve T cells upon antigen stimulation. To examine antigen-specific CD8+ T cell proliferation in recall responses in vivo, we targeted a model antigen, ovalbumin(OVA), to DEC-205+ dendritic cells (DCs) with a CD40 maturation stimulus. This led to the induction of functional memory CD8+ T cells, which showed rapid proliferation and multiple cytokine production (IFN-γ, IL-2, TNF-α) during the secondary challenge to DC-targeted antigen. Upon antigen-presentation, IL-18, an IFN-γ-inducing factor, accumulated at the DC:T cell synapse. Surprisingly, IFN-γ receptors were required to augment IL-18 production from DCs. Mice genetically deficient for IL-18 or IFN-γ-receptor 1 also showed delayed expansion of memory CD8+ T cells in vivo. These results indicate that a positive regulatory loop involving IFN-γ and IL-18 signaling contributes to the accelerated memory CD8+ T cell proliferation during a recall response to antigen presented by DCs.
Collapse
|
38
|
Kumazaki K, Tirosh B, Maehr R, Boes M, Honjo T, Ploegh HL. AID-/-mus-/- mice are agammaglobulinemic and fail to maintain B220-CD138+ plasma cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:2192-203. [PMID: 17277124 DOI: 10.4049/jimmunol.178.4.2192] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The terminal stage of B cell differentiation culminates in the formation of plasma cells (PC), which secrete large quantities of Igs. Despite recent progress in understanding the molecular aspect of PC differentiation and maintenance, the requirement for the synthesis of secretory Igs as a contributing factor has not been explored. To address this issue, we generated activation-induced cytidine deaminase (AID)/secretory mu-chain (mus) double-knockout mice, in which a normally diverse repertoire of B cell receptors is retained, yet B cells are unable to synthesize secretory Igs. These mice possess polyclonal B cells but have no serum Igs. Following immunization in vivo, PCs, identified by CD138 expression and loss of the B220 marker, were starkly reduced in number in spleen and bone marrow of AID(-/-)mus(-/-) agammaglobulinemic mice compared with wild-type mice. Upon mitogenic stimulation in vitro, AID(-/-)mus(-/-) B cells differentiated into plasmablasts to some extent, but showed reduced survival compared with wild-type B cells. We found no evidence that this reduced survival was attributable to accumulation of membrane IgM. Our results indicate that the synthesis of secretory Igs is a requirement for maintenance of B220(-)CD138(+) PCs.
Collapse
Affiliation(s)
- Kaori Kumazaki
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
39
|
McCarthy DD, Chiu S, Gao Y, Summers-deLuca LE, Gommerman JL. BAFF induces a hyper-IgA syndrome in the intestinal lamina propria concomitant with IgA deposition in the kidney independent of LIGHT. Cell Immunol 2006; 241:85-94. [PMID: 16987502 DOI: 10.1016/j.cellimm.2006.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/01/2006] [Accepted: 08/03/2006] [Indexed: 11/21/2022]
Abstract
BAFF is a peripheral B cell survival factor and can mediate antibody (Ab) class switching. Over-expression of BAFF in mice results in B cell hyperplasia, elevated serum immunoglobulin (Ig), spontaneous germinal centre (GC) reactions and mild glomerulonephritis (GN). Here we show that, in addition to driving excessive levels of serum IgA, BAFF over-expression results in increased IgA levels within the intestinal lamina propria (LP) and deposition of IgA immune complexes in the renal glomerular mesangium. LIGHT has been previously shown to mediate a similar phenotype via signaling through the lymphotoxin-beta receptor (LTbetaR). We evaluated if LIGHT and BAFF cooperate in the etiology of a hyper-IgA syndrome in BAFF-overexpressing transgenic (BAFF-Tg) mice. We find that LIGHT-deficient BAFF-Tg mice exhibit similar levels of IgA in the serum, gut and kidney and develop nephritis to the same degree as LIGHT-sufficient BAFF-Tg mice. Therefore, in the context of BAFF over-expression, LIGHT is dispensable for the generation of a hyper-IgA syndrome accompanied by nephritis.
Collapse
Affiliation(s)
- Douglas D McCarthy
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ont., Canada M5S 1A8
| | | | | | | | | |
Collapse
|
40
|
Kennel-De March A, Prin-Mathieu C, Kohler CH, Kolopp-Sarda MN, Faure GC, Béné MV. Back-pack mice as a model of renal mesangial IgA dimers deposition. Int J Immunopathol Pharmacol 2006; 18:701-8. [PMID: 16388718 DOI: 10.1177/039463200501800412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mesangial IgA in IgA nephropathy are dimers with a J chain but no poly-Ig receptor. This molecular structure has led to the hypothesis that these IgA are issued from the lamina propria of mucosal areas, reaching the kidney by way of the peripheral blood. The availability of hybridomas producing IgA dimers provided an opportunity to test this hypothesis in a new experimental model of IgA nephropathy. Mice were injected subcutaneously (back-pack mice) or intraperitoneally with hybridoma cells secreting either monoclonal IgA dimers, or monoclonal IgA monomers. The influence of immune complex formation was also tested in both these models. Renal IgA deposition was investigated 12 days after the injection of hybridoma cells. Backpack mice developed highly vascularized subcutaneous tumors. Mesangial IgA deposits were observed only in dimeric IgA hybridoma back-pack animals. No significant staining was observed in glomeruli from animals injected with hybridoma cells producing monomeric IgA. None of the hybridomas induced mesangial deposition when injected intraperitoneally. This animal model demonstrates the capacity of circulating IgA dimers to spontaneously form mesangial deposits and contributes to confirm the involvement of abnormalities of mucosal immunity in the pathogenesis of IgA nephropathy.
Collapse
Affiliation(s)
- A Kennel-De March
- Laboratoire d'Immunologie, Faculté de Médecine and CHU de Nancy, 54500 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
41
|
Vallon-Eberhard A, Landsman L, Yogev N, Verrier B, Jung S. Transepithelial Pathogen Uptake into the Small Intestinal Lamina Propria. THE JOURNAL OF IMMUNOLOGY 2006; 176:2465-9. [PMID: 16456006 DOI: 10.4049/jimmunol.176.4.2465] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The lamina propria that underlies and stabilizes the gut lining epithelium is densely populated with strategically located mononuclear phagocytes. Collectively, these lamina propria macrophages and dendritic cells (DC) are believed to be crucial for tissue homeostasis as well as the innate and adaptive host defense. Lamina propria DC were recently shown to gain direct access to the intestinal lumen by virtue of epithelium-penetrating dendrites. However, the role of these structures in pathogen uptake remains under debate. In this study, we report that entry of a noninvasive model pathogen (Aspergillus fumigatus conidia) into the murine small intestinal lamina propria persists in the absence of either transepithelial dendrites or lamina propria DC and macrophages. Our results suggest the existence of multiple pathogen entry pathways and point at the importance of villus M cells in the uptake of gut lumen Ags. Interestingly, transepithelial dendrites seem altogether absent from the small intestine of BALB/c mice suggesting that the function of lamina propria DC extensions resides in their potential selectivity for luminal Ags, rather than in general uptake or gut homeostasis.
Collapse
|
42
|
Nogaki F, Oida E, Kamata T, Kobayashi I, Nomura K, Suyama K, Tahara S, Ono T, Miyawaki S, Serikawa T, Yoshida H, Kita T, Muso E. Chromosomal mapping of hyperserum IgA and glomerular IgA deposition in a high IgA (HIGA) strain of DdY mice. Kidney Int 2005; 68:2517-25. [PMID: 16316328 DOI: 10.1111/j.1523-1755.2005.00659.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The high IgA (HIGA) strain of ddY mice is an inbred model of IgA nephropathy (IgAN), established by selective mating of outbred ddY mice. HIGA mice show high levels of serum IgA and glomerulonephritis with mesangial IgA deposition. To identify the genetic loci responsible for hyperserum IgA and glomerular IgA deposition in this strain, quantitative trait loci analysis was carried out. METHODS By crossing HIGA with BALB/c mice, 244 F2 generations were produced. Serum IgA levels and glomerular IgA deposition were examined at 40 weeks of age. Genetic markers were typed at 105 microsatellites and the quantitative trait loci of hyperserum IgA and glomerular IgA deposition were confirmed using Map Manager QTX software. RESULTS Two significant quantitative trait loci of hyperserum IgA were identified on chromosome 2 [logarithm of odds (LOD) = 5.01] and chromsome 4 (LOD = 4.45), and a suggestive quantitative trait locus of hyperserum IgA was located on chromosome 1 (LOD = 3.49). On chromosome 15, a significant quantitative trait locus of glomerular IgA deposition was identified (LOD = 4.40) without the hyperserum IgA locus. Serum IgA level was weakly correlated with the intensity of glomerular IgA in 244 F2 mice; however, the quantitative trait loci of hyperserum IgA were not significantly associated with glomerular IgA deposition. CONCLUSION These findings indicate that, in HIGA mice, glomerular IgA deposition is mainly regulated by a quantitative trait locus on chromosome 15, and hyperserum IgA synergistically but weakly affect glomerular IgA deposition. The immune disturbance similar to IgAN was revealed to be under multigenic control in HIGA mice.
Collapse
Affiliation(s)
- Fumiaki Nogaki
- Department of Cardiovascular Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Unniraman S, Zhou S, Schatz DG. Identification of an AID-independent pathway for chromosomal translocations between the Igh switch region and Myc. Nat Immunol 2004; 5:1117-23. [PMID: 15489857 DOI: 10.1038/ni1127] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 09/22/2004] [Indexed: 11/09/2022]
Abstract
Chromosomal translocations involving immunoglobulin heavy chain (Igh) switch regions and an oncogene such as Myc represent initiating events in the development of many B cell malignancies. These translocations are widely thought to result from aberrant class-switch recombination. To test this model, we measured translocations in mice deficient in activation-induced cytidine deaminase (AID) that lack class-switch recombination. We found that AID made no measurable contribution to the generation of initial translocations, indicating that the intrinsic fragility of the switch regions or a pathway unrelated to AID is responsible for these translocations. In contrast, the outgrowth of translocation-positive cells was dependent on AID, raising the possibility that AID is important in tumor progression, perhaps by virtue of its mutagenic properties.
Collapse
Affiliation(s)
- Shyam Unniraman
- Howard Hughes Medical Institute, and Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
44
|
Wang J, Anders RA, Wu Q, Peng D, Cho JH, Sun Y, Karaliukas R, Kang HS, Turner JR, Fu YX. Dysregulated LIGHT expression on T cells mediates intestinal inflammation and contributes to IgA nephropathy. J Clin Invest 2004; 113:826-35. [PMID: 15067315 PMCID: PMC362120 DOI: 10.1172/jci20096] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 01/06/2004] [Indexed: 01/21/2023] Open
Abstract
Whether and how T cells contribute to the pathogenesis of immunoglobulin A nephropathy (IgAN) has not been well defined. Here, we explore a murine model that spontaneously develops T cell-mediated intestinal inflammation accompanied by pathological features similar to those of human IgAN. Intestinal inflammation mediated by LIGHT, a ligand for lymphotoxin beta receptor (LTbetaR), not only stimulates IgA overproduction in the gut but also results in defective IgA transportation into the gut lumen, causing a dramatic increase in serum polymeric IgA. Engagement of LTbetaR by LIGHT is essential for both intestinal inflammation and hyperserum IgA syndrome in our LIGHT transgenic model. Impressively, the majority of patients with inflammatory bowel disease showed increased IgA-producing cells in the gut, elevated serum IgA levels, and severe hematuria, a hallmark of IgAN. These observations indicate the critical contributions of dysregulated LIGHT expression and intestinal inflammation to the pathogenesis of IgAN.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, Fagarasan S. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci U S A 2004; 101:1981-6. [PMID: 14766966 PMCID: PMC357038 DOI: 10.1073/pnas.0307317101] [Citation(s) in RCA: 522] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism to maintain homeostasis of the gut microbiota remains largely unknown despite its critical role in the body defense. In the intestines of mice with deficiency of activation-induced cytidine deaminase (AID), the absence of hypermutated IgA is partially compensated for by the presence of large amounts of unmutated IgM and normal expression levels of defensins and angiogenins. We show here a predominant and persistent expansion of segmented filamentous bacteria throughout the small intestine of AID(-/-) mice. Reconstitution of lamina propria IgA production in AID(-/-) mice recovered the normal composition of gut flora and abolished the local and systemic activation of the immune system. The results indicate that secretions of IgAs rather than innate defense peptides are critical to regulation of commensal bacterial flora and that the segmented filamentous bacteria antigens are strong stimuli of the mucosal immune system.
Collapse
Affiliation(s)
- Keiichiro Suzuki
- Departments of Medical Chemistry and Gastroenterology, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Underhill GH, Kolli KP, Kansas GS. Complexity within the plasma cell compartment of mice deficient in both E- and P-selectin: implications for plasma cell differentiation. Blood 2003; 102:4076-83. [PMID: 12881311 DOI: 10.1182/blood-2003-03-0947] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibody-secreting plasma cells represent the critical end-stage effector cells of the humoral immune response. Here, we show that several distinct plasma cell subsets are concurrently present in the lymph nodes, spleen, and bone marrow of mice deficient in both E- and P-selectin. One of these subsets was a B220-negative immunoglobulin g (IgG) plasma cell population expressing low to negative surface levels of syndecan-1. Examination of the chemotactic responsiveness of IgG plasma cell subsets revealed that migration toward stromal cell-derived factor 1/CXC ligand 12 (SDF-1/CXCL12) was primarily limited to the B220-lo subset regardless of tissue source. Although B220-negative plasma cells did not migrate efficiently in response to CXCL12 or to other chemokines for which receptor mRNA was expressed, these cells expressed substantial surface CXC chemokine receptor-4 (CXCR4), and CXCL12 stimulation rapidly induced extracellular signal regulated kinase 1 (ERK1)/ERK2 phosphorylation, demonstrating that CXCR4 retained signaling capacity. Therefore, B220-negative plasma cells exhibit a selective uncoupling of chemokine receptor expression and signaling from migration. Taken together, our findings document the presence of significant heterogeneity within the plasma cell compartment, which suggests a complex step-wise scheme of plasma cell differentiation in which the degree of differentiation and tissue location can influence the chemotactic responsiveness of IgG plasma cells.
Collapse
Affiliation(s)
- Gregory H Underhill
- Department of Microbiology-Immunology, Northwestern Medical School, 303 E Chicago Ave, Chicago, IL 60611, USA
| | | | | |
Collapse
|
47
|
Uren TK, Johansen FE, Wijburg OLC, Koentgen F, Brandtzaeg P, Strugnell RA. Role of the polymeric Ig receptor in mucosal B cell homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2531-9. [PMID: 12594279 DOI: 10.4049/jimmunol.170.5.2531] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Secretory IgA (SIgA) is the most characteristic component of the mucosal immune system and has long been considered the major protective factor that prevents pathogens from invading hosts through the mucosae. Recent studies, however, have suggested that complete immunity against a range of mucosal bacterial and viral pathogens can be achieved in the absence of IgA. Therefore, to further dissect the role of SIgA, we generated mice deficient in the polymeric Ig receptor (pIgR(-/-) mice). As a result of an inability to transport dimeric IgA to the secretions, pIgR(-/-) mice are deficient in SIgA and accumulate circulating dimeric IgA, with serum levels 100-fold greater than those observed in normal mice. Examination of lamina propria mononuclear cells showed that pIgR(-/-) mice had approximately 3 times as many IgA-secreting cells as C57BL/6 mice. Further analysis showed that these cells displayed the differentiated IgA(+) B220(-) phenotype and accounted for a 2-fold increase in the number of lamina propria blast cells in the pIgR(-/-) mice. Subsequent experiments showed that OVA-specific CD4(+) T cell expansion following OVA feeding was not elevated in pIgR(-/-) mice. Furthermore, no differences in CD8(+) T cell tolerance or induction of influenza virus-specific CD8(+) T cells were detected in pIgR(-/-) mice compared with controls. Therefore, while SIgA is clearly involved in maintaining some parameters of mucosal homeostasis in the intestine, the mechanisms associated with its barrier function and the clinical consequences of its deficiency are yet to be identified.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibody-Producing Cells/cytology
- Antibody-Producing Cells/immunology
- Antibody-Producing Cells/metabolism
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Dimerization
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Homeostasis/genetics
- Homeostasis/immunology
- IgA Deficiency/genetics
- IgA Deficiency/immunology
- Immunoglobulin A/biosynthesis
- Immunoglobulin A/blood
- Immunoglobulin A, Secretory/genetics
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mouth Mucosa/immunology
- Mouth Mucosa/metabolism
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Receptors, Polymeric Immunoglobulin/deficiency
- Receptors, Polymeric Immunoglobulin/genetics
- Receptors, Polymeric Immunoglobulin/physiology
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Tania K Uren
- Department of Microbiology and Immunology and Cooperative Research Center for Vaccine Technology, University of Melbourne, Parkville, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Kuroda K, Han H, Tani S, Tanigaki K, Tun T, Furukawa T, Taniguchi Y, Kurooka H, Hamada Y, Toyokuni S, Honjo T. Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity 2003; 18:301-12. [PMID: 12594956 DOI: 10.1016/s1074-7613(03)00029-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We found that Msx2-interacting nuclear target protein (MINT) competed with the intracellular region of Notch for binding to a DNA binding protein RBP-J and suppressed the transactivation activity of Notch signaling. Although MINT null mutant mice were embryonic lethal, MINT-deficient splenic B cells differentiated about three times more efficiently into marginal zone B cells with a concomitant reduction of follicular B cells. MINT is expressed in a cell-specific manner: high in follicular B cells and low in marginal zone B cells. Since Notch signaling directs differentiation of marginal zone B lymphocytes and suppresses that of follicular B lymphocytes in mouse spleen, the results indicate that high levels of MINT negatively regulate Notch signaling and block differentiation of precursor B cells into marginal zone B cells. MINT may serve as a functional homolog of Drosophila Hairless.
Collapse
Affiliation(s)
- Kazuki Kuroda
- Department of Medical Chemistry, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gärdby E, Wrammert J, Schön K, Ekman L, Leanderson T, Lycke N. Strong differential regulation of serum and mucosal IgA responses as revealed in CD28-deficient mice using cholera toxin adjuvant. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:55-63. [PMID: 12496383 DOI: 10.4049/jimmunol.170.1.55] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we show that costimulation required for mucosal IgA responses is strikingly different from that needed for systemic responses, including serum IgA. Following oral immunization with cholera toxin (CT) adjuvant we found that whereas CTLA4-H1 transgenic mice largely failed to respond, CD28-/- mice developed near normal gut mucosal IgA responses but poor serum Ab responses. The local IgA response was functional in that strong antitoxic protection developed in CT-immunized CD28-/- mice. This was in spite of the fact that no germinal centers (GC) were observed in the Peyer's patches, spleen, or other peripheral lymph nodes. Moreover, significant somatic hypermutation was found in isolated IgA plasma cells from gut lamina propria of CD28-/- mice. Thus, differentiation to functional gut mucosal IgA responses against T cell-dependent Ags does not require signaling through CD28 and can be independent of GC formations and isotype-switching in Peyer's patches. By contrast, serum IgA responses, similar to IgG-responses, are dependent on GC and CD28. However, both local and systemic responses are impaired in CTLA4-Hgamma1 transgenic mice, indicating that mucosal IgA responses are dependent on the B7-family ligands, but require signaling via CTLA4 or more likely a third related receptor. Therefore, T-B cell interactions leading to mucosal as opposed to serum IgA responses are uniquely regulated and appear to represent separate events. Although CT is known to strongly up-regulate B7-molecules, we have demonstrated that it acts as a potent mucosal adjuvant in the absence of CD28, suggesting that alternative costimulatory pathways are involved.
Collapse
Affiliation(s)
- Eva Gärdby
- Department of Clinical Immunology, University of Göteborg, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Immunoglobulin A is the most abundant immunoglobulin isotype in mucosal secretions. In this review, we summarize recent advances in our understanding of the sites, mechanisms and functions of intestinal IgA synthesis in mice. On the basis of these recent findings, we propose an updated model for the induction and regulation of IgA responses in the gut. In addition, we discuss new insights into the role of IgA in the maintenance of gut homeostasis and into the reciprocal interactions between gut B cells and the bacterial flora.
Collapse
Affiliation(s)
- Sidonia Fagarasan
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|