1
|
von Hegedus JH, de Jong AJ, Hoekstra AT, Spronsen E, Zhu W, Cabukusta B, Kwekkeboom JC, Heijink M, Bos E, Berkers CR, Giera MA, Toes REM, Ioan-Facsinay A. Oleic acid enhances proliferation and calcium mobilization of CD3/CD28 activated CD4 + T cells through incorporation into membrane lipids. Eur J Immunol 2024; 54:e2350685. [PMID: 38890809 DOI: 10.1002/eji.202350685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
Unsaturated fatty acids (UFA) are crucial for T-cell effector functions, as they can affect the growth, differentiation, survival, and function of T cells. Nonetheless, the mechanisms by which UFA affects T-cell behavior are ill-defined. Therefore, we analyzed the processing of oleic acid, a prominent UFA abundantly present in blood, adipocytes, and the fat pads surrounding lymph nodes, in CD4+ T cells. We found that exogenous oleic acid increases proliferation and enhances the calcium flux response upon CD3/CD28 activation. By using a variety of techniques, we found that the incorporation of oleic acid into membrane lipids, rather than regulation of cellular metabolism or TCR expression, is essential for its effects on CD4+ T cells. These results provide novel insights into the mechanism through which exogenous oleic acid enhances CD4+ T-cell function.
Collapse
Affiliation(s)
- Johannes Hendrick von Hegedus
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anja J de Jong
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna T Hoekstra
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric Spronsen
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wahwah Zhu
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Birol Cabukusta
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Joanneke C Kwekkeboom
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Bos
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Martin A Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreea Ioan-Facsinay
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Srinivasan S, Zhu C, McShan AC. Structure, function, and immunomodulation of the CD8 co-receptor. Front Immunol 2024; 15:1412513. [PMID: 39253084 PMCID: PMC11381289 DOI: 10.3389/fimmu.2024.1412513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Expressed on the surface of CD8+ T cells, the CD8 co-receptor is a key component of the T cells that contributes to antigen recognition, immune cell maturation, and immune cell signaling. While CD8 is widely recognized as a co-stimulatory molecule for conventional CD8+ αβ T cells, recent reports highlight its multifaceted role in both adaptive and innate immune responses. In this review, we discuss the utility of CD8 in relation to its immunomodulatory properties. We outline the unique structure and function of different CD8 domains (ectodomain, hinge, transmembrane, cytoplasmic tail) in the context of the distinct properties of CD8αα homodimers and CD8αβ heterodimers. We discuss CD8 features commonly used to construct chimeric antigen receptors for immunotherapy. We describe the molecular interactions of CD8 with classical MHC-I, non-classical MHCs, and Lck partners involved in T cell signaling. Engineered and naturally occurring CD8 mutations that alter immune responses are discussed. The applications of anti-CD8 monoclonal antibodies (mABs) that target CD8 are summarized. Finally, we examine the unique structure and function of several CD8/mAB complexes. Collectively, these findings reveal the promising immunomodulatory properties of CD8 and CD8 binding partners, not only to uncover basic immune system function, but to advance efforts towards translational research for targeted immunotherapy.
Collapse
Affiliation(s)
- Shreyaa Srinivasan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew C. McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
3
|
Cubitt CC, Wong P, Dorando HK, Foltz JA, Tran J, Marsala L, Marin ND, Foster M, Schappe T, Fatima H, Becker-Hapak M, Zhou AY, Hwang K, Jacobs MT, Russler-Germain DA, Mace EM, Berrien-Elliott MM, Payton JE, Fehniger TA. Induced CD8α identifies human NK cells with enhanced proliferative fitness and modulates NK cell activation. J Clin Invest 2024; 134:e173602. [PMID: 38805302 PMCID: PMC11291271 DOI: 10.1172/jci173602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
The surface receptor CD8α is present on 20%-80% of human (but not mouse) NK cells, yet its function on NK cells remains poorly understood. CD8α expression on donor NK cells was associated with a lack of therapeutic responses in patients with leukemia in prior studies, thus, we hypothesized that CD8α may affect critical NK cell functions. Here, we discovered that CD8α- NK cells had improved control of leukemia in xenograft models compared with CD8α+ NK cells, likely due to an enhanced capacity for proliferation. Unexpectedly, we found that CD8α expression was induced on approximately 30% of previously CD8α- NK cells following IL-15 stimulation. These induced CD8α+ (iCD8α+) NK cells had the greatest proliferation, responses to IL-15 signaling, and metabolic activity compared with those that sustained existing CD8α expression (sustained CD8α+) or those that remained CD8α- (persistent CD8α-). These iCD8α+ cells originated from an IL-15Rβhi NK cell population, with CD8α expression dependent on the transcription factor RUNX3. Moreover, CD8A CRISPR/Cas9 deletion resulted in enhanced responses through the activating receptor NKp30, possibly by modulating KIR inhibitory function. Thus, CD8α status identified human NK cell capacity for IL-15-induced proliferation and metabolism in a time-dependent fashion, and its presence had a suppressive effect on NK cell-activating receptors.
Collapse
Affiliation(s)
| | - Pamela Wong
- Division of Oncology, Siteman Cancer Center, and
| | - Hannah K. Dorando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | - Mark Foster
- Division of Oncology, Siteman Cancer Center, and
| | | | - Hijab Fatima
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | - Emily M. Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
4
|
Li C, Lanasa D, Park JH. Pathways and mechanisms of CD4 +CD8αα + intraepithelial T cell development. Trends Immunol 2024; 45:288-302. [PMID: 38514370 PMCID: PMC11015970 DOI: 10.1016/j.it.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
The mammalian small intestine epithelium harbors a peculiar population of CD4+CD8αα+ T cells that are derived from mature CD4+ T cells through reprogramming of lineage-specific transcription factors. CD4+CD8αα+ T cells occupy a unique niche in T cell biology because they exhibit mixed phenotypes and functional characteristics of both CD4+ helper and CD8+ cytotoxic T cells. The molecular pathways driving their generation are not fully mapped. However, recent studies demonstrate the unique role of the commensal gut microbiota as well as distinct cytokine and chemokine requirements in the differentiation and survival of these cells. We review the established and newly identified factors involved in the generation of CD4+CD8αα+ intraepithelial lymphocytes (IELs) and place them in the context of the molecular machinery that drives their phenotypic and functional differentiation.
Collapse
Affiliation(s)
- Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Lanasa
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Knezevic L, Wachsmann TLA, Francis O, Dockree T, Bridgeman JS, Wouters A, de Wet B, Cole DK, Clement M, McLaren JE, Gostick E, Ladell K, Llewellyn-Lacey S, Price DA, van den Berg HA, Tabi Z, Sessions RB, Heemskerk MHM, Wooldridge L. High-affinity CD8 variants enhance the sensitivity of pMHCI antigen recognition via low-affinity TCRs. J Biol Chem 2023; 299:104981. [PMID: 37390984 PMCID: PMC10432799 DOI: 10.1016/j.jbc.2023.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023] Open
Abstract
CD8+ T cell-mediated recognition of peptide-major histocompatibility complex class I (pMHCI) molecules involves cooperative binding of the T cell receptor (TCR), which confers antigen specificity, and the CD8 coreceptor, which stabilizes the TCR/pMHCI complex. Earlier work has shown that the sensitivity of antigen recognition can be regulated in vitro by altering the strength of the pMHCI/CD8 interaction. Here, we characterized two CD8 variants with moderately enhanced affinities for pMHCI, aiming to boost antigen sensitivity without inducing non-specific activation. Expression of these CD8 variants in model systems preferentially enhanced pMHCI antigen recognition in the context of low-affinity TCRs. A similar effect was observed using primary CD4+ T cells transduced with cancer-targeting TCRs. The introduction of high-affinity CD8 variants also enhanced the functional sensitivity of primary CD8+ T cells expressing cancer-targeting TCRs, but comparable results were obtained using exogenous wild-type CD8. Specificity was retained in every case, with no evidence of reactivity in the absence of cognate antigen. Collectively, these findings highlight a generically applicable mechanism to enhance the sensitivity of low-affinity pMHCI antigen recognition, which could augment the therapeutic efficacy of clinically relevant TCRs.
Collapse
Affiliation(s)
- Lea Knezevic
- Faculty of Health Sciences, University of Bristol, Bristol, UK; Department of Haematology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Tassilo L A Wachsmann
- Department of Haematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ore Francis
- Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Tamsin Dockree
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | | | - Anne Wouters
- Department of Haematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - David K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK; Immunocore, Abingdon, UK
| | - Mathew Clement
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | | | - Zsuzsanna Tabi
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | | | - Mirjam H M Heemskerk
- Department of Haematology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
6
|
West SJ, Boehning D, Akimzhanov AM. Regulation of T cell function by protein S-acylation. Front Physiol 2022; 13:1040968. [PMID: 36467682 PMCID: PMC9709458 DOI: 10.3389/fphys.2022.1040968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 10/26/2023] Open
Abstract
S-acylation, the reversible lipidation of free cysteine residues with long-chain fatty acids, is a highly dynamic post-translational protein modification that has recently emerged as an important regulator of the T cell function. The reversible nature of S-acylation sets this modification apart from other forms of protein lipidation and allows it to play a unique role in intracellular signal transduction. In recent years, a significant number of T cell proteins, including receptors, enzymes, ion channels, and adaptor proteins, were identified as S-acylated. It has been shown that S-acylation critically contributes to their function by regulating protein localization, stability and protein-protein interactions. Furthermore, it has been demonstrated that zDHHC protein acyltransferases, the family of enzymes mediating this modification, also play a prominent role in T cell activation and differentiation. In this review, we aim to highlight the diversity of proteins undergoing S-acylation in T cells, elucidate the mechanisms by which reversible lipidation can impact protein function, and introduce protein acyltransferases as a novel class of regulatory T cell proteins.
Collapse
Affiliation(s)
- Savannah J. West
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, United States
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, United States
| |
Collapse
|
7
|
Souter MN, Awad W, Li S, Pediongco TJ, Meehan BS, Meehan LJ, Tian Z, Zhao Z, Wang H, Nelson A, Le Nours J, Khandokar Y, Praveena T, Wubben J, Lin J, Sullivan LC, Lovrecz GO, Mak JY, Liu L, Kostenko L, Kedzierska K, Corbett AJ, Fairlie DP, Brooks AG, Gherardin NA, Uldrich AP, Chen Z, Rossjohn J, Godfrey DI, McCluskey J, Pellicci DG, Eckle SB. CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells. J Exp Med 2022; 219:213423. [PMID: 36018322 PMCID: PMC9424912 DOI: 10.1084/jem.20210828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
Collapse
Affiliation(s)
- Michael N.T. Souter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Troi J. Pediongco
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bronwyn S. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zehua Tian
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhe Zhao
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Adam Nelson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yogesh Khandokar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jacinta Wubben
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jie Lin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - George O. Lovrecz
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Jeffrey Y.W. Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adam P. Uldrich
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel G. Pellicci
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
| | - Sidonia B.G. Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
8
|
Zhang Y, Qin Z, Sun W, Chu F, Zhou F. Function of Protein S-Palmitoylation in Immunity and Immune-Related Diseases. Front Immunol 2021; 12:661202. [PMID: 34557182 PMCID: PMC8453015 DOI: 10.3389/fimmu.2021.661202] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/23/2021] [Indexed: 02/04/2023] Open
Abstract
Protein S-palmitoylation is a covalent and reversible lipid modification that specifically targets cysteine residues within many eukaryotic proteins. In mammalian cells, the ubiquitous palmitoyltransferases (PATs) and serine hydrolases, including acyl protein thioesterases (APTs), catalyze the addition and removal of palmitate, respectively. The attachment of palmitoyl groups alters the membrane affinity of the substrate protein changing its subcellular localization, stability, and protein-protein interactions. Forty years of research has led to the understanding of the role of protein palmitoylation in significantly regulating protein function in a variety of biological processes. Recent global profiling of immune cells has identified a large body of S-palmitoylated immunity-associated proteins. Localization of many immune molecules to the cellular membrane is required for the proper activation of innate and adaptive immune signaling. Emerging evidence has unveiled the crucial roles that palmitoylation plays to immune function, especially in partitioning immune signaling proteins to the membrane as well as to lipid rafts. More importantly, aberrant PAT activity and fluctuations in palmitoylation levels are strongly correlated with human immunologic diseases, such as sensory incompetence or over-response to pathogens. Therefore, targeting palmitoylation is a novel therapeutic approach for treating human immunologic diseases. In this review, we discuss the role that palmitoylation plays in both immunity and immunologic diseases as well as the significant potential of targeting palmitoylation in disease treatment.
Collapse
|
9
|
Abstract
S-palmitoylation is a reversible posttranslational lipid modification of proteins. It controls protein activity, stability, trafficking and protein–protein interactions. Recent global profiling of immune cells and targeted analysis have identified many S-palmitoylated immunity-associated proteins. Here, we review S-palmitoylated immune receptors and effectors, and their dynamic regulation at cellular membranes to generate specific and balanced immune responses. We also highlight how this understanding can drive therapeutic advances to pharmacologically modulate immune responses.
Collapse
Affiliation(s)
- Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA.,Departments of Immunology and Microbiology, Chemistry, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Mørch AM, Bálint Š, Santos AM, Davis SJ, Dustin ML. Coreceptors and TCR Signaling - the Strong and the Weak of It. Front Cell Dev Biol 2020; 8:597627. [PMID: 33178706 PMCID: PMC7596257 DOI: 10.3389/fcell.2020.597627] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/28/2020] [Indexed: 12/02/2022] Open
Abstract
The T-cell coreceptors CD4 and CD8 have well-characterized and essential roles in thymic development, but how they contribute to immune responses in the periphery is unclear. Coreceptors strengthen T-cell responses by many orders of magnitude - beyond a million-fold according to some estimates - but the mechanisms underlying these effects are still debated. T-cell receptor (TCR) triggering is initiated by the binding of the TCR to peptide-loaded major histocompatibility complex (pMHC) molecules on the surfaces of other cells. CD4 and CD8 are the only T-cell proteins that bind to the same pMHC ligand as the TCR, and can directly associate with the TCR-phosphorylating kinase Lck. At least three mechanisms have been proposed to explain how coreceptors so profoundly amplify TCR signaling: (1) the Lck recruitment model and (2) the pseudodimer model, both invoked to explain receptor triggering per se, and (3) two-step coreceptor recruitment to partially triggered TCRs leading to signal amplification. More recently it has been suggested that, in addition to initiating or augmenting TCR signaling, coreceptors effect antigen discrimination. But how can any of this be reconciled with TCR signaling occurring in the absence of CD4 or CD8, and with their interactions with pMHC being among the weakest specific protein-protein interactions ever described? Here, we review each theory of coreceptor function in light of the latest structural, biochemical, and functional data. We conclude that the oldest ideas are probably still the best, i.e., that their weak binding to MHC proteins and efficient association with Lck allow coreceptors to amplify weak incipient triggering of the TCR, without comprising TCR specificity.
Collapse
Affiliation(s)
- Alexander M. Mørch
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Štefan Bálint
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon J. Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Rath JA, Bajwa G, Carreres B, Hoyer E, Gruber I, Martínez-Paniagua MA, Yu YR, Nouraee N, Sadeghi F, Wu M, Wang T, Hebeisen M, Rufer N, Varadarajan N, Ho PC, Brenner MK, Gfeller D, Arber C. Single-cell transcriptomics identifies multiple pathways underlying antitumor function of TCR- and CD8αβ-engineered human CD4 + T cells. SCIENCE ADVANCES 2020; 6:eaaz7809. [PMID: 32923584 PMCID: PMC7455496 DOI: 10.1126/sciadv.aaz7809] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Transgenic coexpression of a class I-restricted tumor antigen-specific T cell receptor (TCR) and CD8αβ (TCR8) redirects antigen specificity of CD4+ T cells. Reinforcement of biophysical properties and early TCR signaling explain how redirected CD4+ T cells recognize target cells, but the transcriptional basis for their acquired antitumor function remains elusive. We, therefore, interrogated redirected human CD4+ and CD8+ T cells by single-cell RNA sequencing and characterized them experimentally in bulk and single-cell assays and a mouse xenograft model. TCR8 expression enhanced CD8+ T cell function and preserved less differentiated CD4+ and CD8+ T cells after tumor challenge. TCR8+CD4+ T cells were most potent by activating multiple transcriptional programs associated with enhanced antitumor function. We found sustained activation of cytotoxicity, costimulation, oxidative phosphorylation- and proliferation-related genes, and simultaneously reduced differentiation and exhaustion. Our study identifies molecular features of TCR8 expression that can guide the development of enhanced immunotherapies.
Collapse
Affiliation(s)
- Jan A. Rath
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Gagan Bajwa
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
| | - Benoit Carreres
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Elisabeth Hoyer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
| | - Isabelle Gruber
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Yi-Ru Yu
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Nazila Nouraee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
| | - Fatemeh Sadeghi
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, USA
| | - Mengfen Wu
- Biostatistics Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Tao Wang
- Biostatistics Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael Hebeisen
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Rufer
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, USA
| | - Ping-Chih Ho
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Malcolm K. Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David Gfeller
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Rath JA, Arber C. Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy. Cells 2020; 9:E1485. [PMID: 32570906 PMCID: PMC7349724 DOI: 10.3390/cells9061485] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
T cell receptor (TCR)-based adoptive T cell therapies (ACT) hold great promise for the treatment of cancer, as TCRs can cover a broad range of target antigens. Here we summarize basic, translational and clinical results that provide insight into the challenges and opportunities of TCR-based ACT. We review the characteristics of target antigens and conventional αβ-TCRs, and provide a summary of published clinical trials with TCR-transgenic T cell therapies. We discuss how synthetic biology and innovative engineering strategies are poised to provide solutions for overcoming current limitations, that include functional avidity, MHC restriction, and most importantly, the tumor microenvironment. We also highlight the impact of precision genome editing on the next iteration of TCR-transgenic T cell therapies, and the discovery of novel immune engineering targets. We are convinced that some of these innovations will enable the field to move TCR gene therapy to the next level.
Collapse
MESH Headings
- Biomedical Engineering
- Cell Engineering
- Cell- and Tissue-Based Therapy/adverse effects
- Cell- and Tissue-Based Therapy/methods
- Cell- and Tissue-Based Therapy/trends
- Gene Editing
- Genetic Therapy
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Lymphocyte Activation
- Molecular Targeted Therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Safety
- Synthetic Biology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
| | - Caroline Arber
- Department of oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
13
|
Takahara M, Kamiya N. Synthetic Strategies for Artificial Lipidation of Functional Proteins. Chemistry 2020; 26:4645-4655. [DOI: 10.1002/chem.201904568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical EngineeringNational Institute of TechnologyKitakyushu College 5-20-1 Shii Kokuraminamiku Kitakyushu 802-0985 Japan
| | - Noriho Kamiya
- Department of Applied ChemistryGraduate School of Engineering 744 Motooka Nishiku Fukuoka 819-0395 Japan
- Division of Biotechnology, Center for Future ChemistryKyushu University 744 Motooka Nishiku Fukuoka 819-0395 Japan
| |
Collapse
|
14
|
Wang Y, Lu H, Fang C, Xu J. Palmitoylation as a Signal for Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:399-424. [DOI: 10.1007/978-981-15-3266-5_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Liu Y, Cuendet MA, Goffin L, Šachl R, Cebecauer M, Cariolato L, Guillaume P, Reichenbach P, Irving M, Coukos G, Luescher IF. CD8 Binding of MHC-Peptide Complexes in cis or trans Regulates CD8 + T-cell Responses. J Mol Biol 2019; 431:4941-4958. [PMID: 31704286 DOI: 10.1016/j.jmb.2019.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 11/19/2022]
Abstract
The coreceptor CD8αβ can greatly promote activation of T cells by strengthening T-cell receptor (TCR) binding to cognate peptide-MHC complexes (pMHC) on antigen presenting cells and by bringing p56Lck to TCR/CD3. Here, we demonstrate that CD8 can also bind to pMHC on the T cell (in cis) and that this inhibits their activation. Using molecular modeling, fluorescence resonance energy transfer experiments on living cells, biochemical and mutational analysis, we show that CD8 binding to pMHC in cis involves a different docking mode and is regulated by posttranslational modifications including a membrane-distal interchain disulfide bond and negatively charged O-linked glycans near positively charged sequences on the CD8β stalk. These modifications distort the stalk, thus favoring CD8 binding to pMHC in cis. Differential binding of CD8 to pMHC in cis or trans is a means to regulate CD8+ T-cell responses and provides new translational opportunities.
Collapse
Affiliation(s)
- Yang Liu
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Michel A Cuendet
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA
| | - Laurence Goffin
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Radek Šachl
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, 18223 Prague, Czech Republic
| | - Luca Cariolato
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Philippe Guillaume
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Patrick Reichenbach
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
| | - Immanuel F Luescher
- Ludwig Institute for Cancer Research, University of Lausanne, and Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland.
| |
Collapse
|
16
|
Perianes-Cachero A, Lobo MVT, Hernández-Pinto AM, Busto R, Lasunción-Ripa MA, Arilla-Ferreiro E, Puebla-Jiménez L. Oxidative Stress and Lymphocyte Alterations in Chronic Relapsing Experimental Allergic Encephalomyelitis in the Rat Hippocampus and Protective Effects of an Ethanolamine Phosphate Salt. Mol Neurobiol 2019; 57:860-878. [DOI: 10.1007/s12035-019-01774-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/01/2019] [Indexed: 01/20/2023]
|
17
|
Glatzová D, Cebecauer M. Dual Role of CD4 in Peripheral T Lymphocytes. Front Immunol 2019; 10:618. [PMID: 31001252 PMCID: PMC6454155 DOI: 10.3389/fimmu.2019.00618] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/08/2019] [Indexed: 01/07/2023] Open
Abstract
The interaction of T-cell receptors (TCRs) with self- and non-self-peptides in the major histocompatibility complex (MHC) stimulates crucial signaling events, which in turn can activate T lymphocytes. A variety of accessory molecules further modulate T-cell signaling. Of these, the CD4 and CD8 coreceptors make the most critical contributions to T cell sensitivity in vivo. Whereas, CD4 function in T cell development is well-characterized, its role in peripheral T cells remains incompletely understood. It was originally suggested that CD4 stabilizes weak interactions between TCRs and peptides in the MHC and delivers Lck kinases to that complex. The results of numerous experiments support the latter role, indicating that the CD4-Lck complex accelerates TCR-triggered signaling and controls the availability of the kinase for TCR in the absence of the ligand. On the other hand, extremely low affinity of CD4 for MHC rules out its ability to stabilize the receptor-ligand complex. In this review, we summarize the current knowledge on CD4 in T cells, with a special emphasis on the spatio-temporal organization of early signaling events and the relevance for CD4 function. We further highlight the capacity of CD4 to interact with the MHC in the absence of TCR. It drives the adhesion of T cells to the cells that express the MHC. This process is facilitated by the CD4 accumulation in the tips of microvilli on the surface of unstimulated T cells. Based on these observations, we suggest an alternative model of CD4 role in T-cell activation.
Collapse
Affiliation(s)
- Daniela Glatzová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
18
|
Herrero A, Reis-Cardoso M, Jiménez-Gómez I, Doherty C, Agudo-Ibañez L, Pinto A, Calvo F, Kolch W, Crespo P, Matallanas D. Characterisation of HRas local signal transduction networks using engineered site-specific exchange factors. Small GTPases 2018; 11:371-383. [PMID: 29172991 DOI: 10.1080/21541248.2017.1406434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ras GTPases convey signals from different types of membranes. At these locations, different Ras isoforms, interactors and regulators generate different biochemical signals and biological outputs. The study of Ras localisation-specific signal transduction networks has been hampered by our inability to specifically activate each of these Ras pools. Here, we describe a new set of site-specific tethered exchange factors, engineered by fusing the RasGRF1 CDC25 domain to sub-localisation-defining cues, whereby Ras pools at specific locations can be precisely activated. We show that the CDC25 domain has a high specificity for activating HRas but not NRas and KRas. This unexpected finding means that our constructs mainly activate endogenous HRas. Hence, their use enabled us to identify distinct pathways regulated by HRas in endomembranes and plasma membrane microdomains. Importantly, these new constructs unveil different patterns of HRas activity specified by their subcellular localisation. Overall, the targeted GEFs described herein constitute ideal tools for dissecting spatially-defined HRas biochemical and biological functions.
Collapse
Affiliation(s)
- Ana Herrero
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| | | | - Iñaki Jiménez-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Carolanne Doherty
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| | - Lorena Agudo-Ibañez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Adán Pinto
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,Conway Institute, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander , Spain.,Centro de Investigación Biomédica en Red CIBERONC, Instituto de Salud Calos III , Madrid, Spain
| | - David Matallanas
- Systems Biology Ireland, University College Dublin , Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin , Dublin, Ireland
| |
Collapse
|
19
|
Kurioka A, Jahun AS, Hannaway RF, Walker LJ, Fergusson JR, Sverremark-Ekström E, Corbett AJ, Ussher JE, Willberg CB, Klenerman P. Shared and Distinct Phenotypes and Functions of Human CD161++ Vα7.2+ T Cell Subsets. Front Immunol 2017; 8:1031. [PMID: 28912775 PMCID: PMC5582200 DOI: 10.3389/fimmu.2017.01031] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/09/2017] [Indexed: 01/03/2023] Open
Abstract
Human mucosal-associated invariant T (MAIT) cells are an important T cell subset that are enriched in tissues and possess potent effector functions. Typically such cells are marked by their expression of Vα7.2-Jα33/Jα20/Jα12 T cell receptors, and functionally they are major histocompatibility complex class I-related protein 1 (MR1)-restricted, responding to bacterially derived riboflavin synthesis intermediates. MAIT cells are contained within the CD161++ Vα7.2+ T cell population, the majority of which express the CD8 receptor (CD8+), while a smaller fraction expresses neither CD8 or CD4 coreceptor (double negative; DN) and a further minority are CD4+. Whether these cells have distinct homing patterns, phenotype and functions have not been examined in detail. We used a combination of phenotypic staining and functional assays to address the similarities and differences between these CD161++ Vα7.2+ T cell subsets. We find that most features are shared between CD8+ and DN CD161++ Vα7.2+ T cells, with a small but detectable role evident for CD8 binding in tuning functional responsiveness. By contrast, the CD4+ CD161++ Vα7.2+ T cell population, although showing MR1-dependent responsiveness to bacterial stimuli, display reduced T helper 1 effector functions, including cytolytic machinery, while retaining the capacity to secrete interleukin-4 (IL-4) and IL-13. This was consistent with underlying changes in transcription factor (TF) expression. Although we found that only a proportion of CD4+ CD161++ Vα7.2+ T cells stained for the MR1-tetramer, explaining some of the heterogeneity of CD4+ CD161++ Vα7.2+ T cells, these differences in TF expression were shared with CD4+ CD161++ MR1-tetramer+ cells. These data reveal the functional diversity of human CD161++ Vα7.2+ T cells and indicate potentially distinct roles for the different subsets in vivo.
Collapse
Affiliation(s)
- Ayako Kurioka
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Aminu S Jahun
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Rachel F Hannaway
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Lucy J Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joannah R Fergusson
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Dockree T, Holland CJ, Clement M, Ladell K, McLaren JE, van den Berg HA, Gostick E, L Miners K, Llewellyn-Lacey S, Bridgeman JS, Man S, Bailey M, Burrows SR, Price DA, Wooldridge L. CD8 + T-cell specificity is compromised at a defined MHCI/CD8 affinity threshold. Immunol Cell Biol 2017; 95:68-76. [PMID: 27670790 PMCID: PMC5215125 DOI: 10.1038/icb.2016.85] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
Abstract
The CD8 co-receptor engages peptide-major histocompatibility complex class I (pMHCI) molecules at a largely invariant site distinct from the T-cell receptor (TCR)-binding platform and enhances the sensitivity of antigen-driven activation to promote effective CD8+ T-cell immunity. A small increase in the strength of the pMHCI/CD8 interaction (~1.5-fold) can disproportionately amplify this effect, boosting antigen sensitivity by up to two orders of magnitude. However, recognition specificity is lost altogether with more substantial increases in pMHCI/CD8 affinity (~10-fold). In this study, we used a panel of MHCI mutants with altered CD8-binding properties to show that TCR-mediated antigen specificity is delimited by a pMHCI/CD8 affinity threshold. Our findings suggest that CD8 can be engineered within certain biophysical parameters to enhance the therapeutic efficacy of adoptive T-cell transfer irrespective of antigen specificity.
Collapse
Affiliation(s)
- Tamsin Dockree
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | - Mathew Clement
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - James E McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kelly L Miners
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Sian Llewellyn-Lacey
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - John S Bridgeman
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Stephen Man
- Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Mick Bailey
- Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Scott R Burrows
- Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
21
|
Clement M, Pearson JA, Gras S, van den Berg HA, Lissina A, Llewellyn-Lacey S, Willis MD, Dockree T, McLaren JE, Ekeruche-Makinde J, Gostick E, Robertson NP, Rossjohn J, Burrows SR, Price DA, Wong FS, Peakman M, Skowera A, Wooldridge L. Targeted suppression of autoreactive CD8 + T-cell activation using blocking anti-CD8 antibodies. Sci Rep 2016; 6:35332. [PMID: 27748447 PMCID: PMC5066216 DOI: 10.1038/srep35332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/09/2016] [Indexed: 01/12/2023] Open
Abstract
CD8+ T-cells play a role in the pathogenesis of autoimmune diseases such as multiple sclerosis and type 1 diabetes. However, drugs that target the entire CD8+ T-cell population are not desirable because the associated lack of specificity can lead to unwanted consequences, most notably an enhanced susceptibility to infection. Here, we show that autoreactive CD8+ T-cells are highly dependent on CD8 for ligand-induced activation via the T-cell receptor (TCR). In contrast, pathogen-specific CD8+ T-cells are relatively CD8-independent. These generic differences relate to an intrinsic dichotomy that segregates self-derived and exogenous antigen-specific TCRs according to the monomeric interaction affinity with cognate peptide-major histocompatibility complex class I (pMHCI). As a consequence, “blocking” anti-CD8 antibodies can suppress autoreactive CD8+ T-cell activation in a relatively selective manner. These findings provide a rational basis for the development and in vivo assessment of novel therapeutic strategies that preferentially target disease-relevant autoimmune responses within the CD8+ T-cell compartment.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - James A Pearson
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | | | - Anya Lissina
- Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | - Mark D Willis
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff CF14 4XN, UK
| | - Tamsin Dockree
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Julia Ekeruche-Makinde
- Mucosal Infection and Immunity Group, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff CF14 4XN, UK
| | - Jamie Rossjohn
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK.,Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Mark Peakman
- Department of Immunobiology, King's College London, London SE1 9RT, UK
| | - Ania Skowera
- Department of Immunobiology, King's College London, London SE1 9RT, UK
| | - Linda Wooldridge
- Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
22
|
Rapoport B, McLachlan SM. TSH Receptor Cleavage Into Subunits and Shedding of the A-Subunit; A Molecular and Clinical Perspective. Endocr Rev 2016; 37:114-34. [PMID: 26799472 PMCID: PMC4823380 DOI: 10.1210/er.2015-1098] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/14/2016] [Indexed: 02/07/2023]
Abstract
The TSH receptor (TSHR) on the surface of thyrocytes is unique among the glycoprotein hormone receptors in comprising two subunits: an extracellular A-subunit, and a largely transmembrane and cytosolic B-subunit. Unlike its ligand TSH, whose subunits are encoded by two genes, the TSHR is expressed as a single polypeptide that subsequently undergoes intramolecular cleavage into disulfide-linked subunits. Cleavage is associated with removal of a C-peptide region, a mechanism similar in some respects to insulin cleavage into disulfide linked A- and B-subunits with loss of a C-peptide region. The potential pathophysiological importance of TSHR cleavage into A- and B-subunits is that some A-subunits are shed from the cell surface. Considerable experimental evidence supports the concept that A-subunit shedding in genetically susceptible individuals is a factor contributing to the induction and/or affinity maturation of pathogenic thyroid-stimulating autoantibodies, the direct cause of Graves' disease. The noncleaving gonadotropin receptors are not associated with autoantibodies that induce a "Graves' disease of the gonads." We also review herein current information on the location of the cleavage sites, the enzyme(s) responsible for cleavage, the mechanism by which A-subunits are shed, and the effects of cleavage on receptor signaling.
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| |
Collapse
|
23
|
Rapoport B, McLachlan SM. Withdrawn: TSH Receptor Cleavage Into Subunits and Shedding of the A-Subunit; A Molecular and Clinical Perspective. Endocr Rev 2016; 2016:23-42. [PMID: 27454362 PMCID: PMC6958993 DOI: 10.1210/er.2015-1098.2016.1.test] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/14/2016] [Indexed: 12/29/2022]
Abstract
The TSH receptor (TSHR) on the surface of thyrocytes is unique among the glycoprotein hormone receptors in comprising two subunits: an extracellular A-subunit, and a largely transmembrane and cytosolic B-subunit. Unlike its ligand TSH, whose subunits are encoded by two genes, the TSHR is expressed as a single polypeptide that subsequently undergoes intramolecular cleavage into disulfide-linked subunits. Cleavage is associated with removal of a C-peptide region, a mechanism similar in some respects to insulin cleavage into disulfide linked A- and B-subunits with lossofaC-peptideregion. The potential pathophysiological importance of TSHR cleavage into A-and B-subunits is that some A-subunits are shed from the cell surface. Considerable experimental evidence supports the concept that A-subunit shedding in genetically susceptible individuals is a factor contributing to the induction and/or affinity maturation of pathogenic thyroid-stimulating autoantibodies, the direct cause of Graves' disease. The noncleaving gonadotropin receptors are not associated with autoantibodies that induce a "Graves' disease of the gonads." We also review herein current information on the location of the cleavage sites, the enzyme(s) responsible for cleavage, the mechanism by which A-subunits are shed, and the effects of cleavage on receptor signaling. (Endocrine Reviews 37: 114-134, 2016).
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| |
Collapse
|
24
|
Monk JM, Liddle DM, Brown MJ, Zarepoor L, De Boer AA, Ma DWL, Power KA, Robinson LE. Anti-inflammatory and anti-chemotactic effects of dietary flaxseed oil on CD8+
T cell/adipocyte-mediated cross-talk. Mol Nutr Food Res 2015; 60:621-30. [DOI: 10.1002/mnfr.201500541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/28/2015] [Accepted: 10/15/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Jennifer M. Monk
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
- Guelph Food Research Centre; Agriculture Agri-Food Canada; Guelph ON Canada
| | - Danyelle M. Liddle
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| | - Morgan J. Brown
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| | - Leila Zarepoor
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
- Guelph Food Research Centre; Agriculture Agri-Food Canada; Guelph ON Canada
| | - Anna A. De Boer
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| | - David W. L. Ma
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| | - Krista A. Power
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
- Guelph Food Research Centre; Agriculture Agri-Food Canada; Guelph ON Canada
| | - Lindsay E. Robinson
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| |
Collapse
|
25
|
Liu Y, Bezverbnaya K, Zhao T, Parsons MJ, Shi M, Treanor B, Ehrhardt GRA. Involvement of the HCK and FGR src-family kinases in FCRL4-mediated immune regulation. THE JOURNAL OF IMMUNOLOGY 2015; 194:5851-60. [PMID: 25972488 DOI: 10.4049/jimmunol.1401533] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 04/18/2015] [Indexed: 12/26/2022]
Abstract
FCRL4 is an immunoregulatory receptor expressed by a subpopulation of memory B cells. These tissue-based cells express increased levels of the src-family kinases HCK and FGR. In this study, we investigate the roles of these src-family kinases in FCRL4-mediated immunoregulation of B cells in the context of previously unrecognized palmitoylation of the receptor. We observed enhanced phosphorylation of FCRL4 on tyrosine residues in the presence of the HCK p59 or FGR. This phosphorylation was markedly reduced in assays using a palmitoylation-defective mutant of FCRL4. In reporter gene studies, we observe that FCRL4 expression enhances CpG-mediated activation of NF-κB signaling. Surprisingly, using a reporter gene linked to activation of the MAPK substrate Elk-1 in response to Ag receptor ligation, we find that FCRL4 has inhibitory activity in cells coexpressing FGR but an activating function in cells coexpressing HCK p59. We provide evidence that in primary memory B cells, expression of FCRL4 leads to increased expression of IL-10 in the presence of FGR or HCK p59 in response to CpG, but increased levels of IFN-γ only in the context of coexpression of FGR. Our study supports the specific requirement of HCK p59 and FGR src-family kinases for FCRL4-mediated immunomodulatory activity and indicates that palmitoylation serves as an additional level of regulatory control of FCRL4.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Ksenia Bezverbnaya
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Tiantian Zhao
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Marion J Parsons
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Mengyao Shi
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Bebhinn Treanor
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Götz R A Ehrhardt
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| |
Collapse
|
26
|
Monk JM, Liddle DM, De Boer AA, Brown MJ, Power KA, Ma DW, Robinson LE. Fish-oil-derived n-3 PUFAs reduce inflammatory and chemotactic adipokine-mediated cross-talk between co-cultured murine splenic CD8+ T cells and adipocytes. J Nutr 2015; 145:829-38. [PMID: 25833786 DOI: 10.3945/jn.114.205443] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/30/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Obese adipose tissue (AT) inflammation is characterized by dysregulated adipokine production and immune cell accumulation. Cluster of differentiation (CD) 8+ T cell AT infiltration represents a critical step that precedes macrophage infiltration. n-3 (ω-3) Polyunsaturated fatty acids (PUFAs) exert anti-inflammatory effects in obese AT, thereby disrupting AT inflammatory paracrine signaling. OBJECTIVE We assessed the effect of n-3 PUFAs on paracrine interactions between adipocytes and primary CD8+ T cells co-cultured at the cellular ratio observed in obese AT. METHODS C57BL/6 mice were fed either a 3% menhaden fish-oil + 7% safflower oil (FO) diet (wt:wt) or an isocaloric 10% safflower oil (wt:wt) control (CON) for 3 wk, and splenic CD8+ T cells were isolated by positive selection (via magnetic microbeads) and co-cultured with 3T3-L1 adipocytes. Co-cultures were unstimulated (cells alone), T cell receptor stimulated, or lipopolysaccharide (LPS) stimulated for 24 h. RESULTS In LPS-stimulated co-cultures, FO reduced secreted protein concentrations of interleukin (IL)-6 (-42.6%), tumor necrosis factor α (-67%), macrophage inflammatory protein (MIP) 1α (-52%), MIP-1β (-62%), monocyte chemotactic protein (MCP) 1 (-23%), and MCP-3 (-19%) vs. CON, which coincided with a 74% reduction in macrophage chemotaxis toward secreted chemotaxins in LPS-stimulated FO-enriched co-culture-conditioned media. FO increased mRNA expression of the inflammatory signaling negative regulators monocyte chemoattractant 1-induced protein (Mcpip; +9.3-fold) and suppressor of cytokine signaling 3 (Socs3; +1.7-fold), whereas FO reduced activation of inflammatory transcription factors nuclear transcription factor κB (NF-κB) p65 and signal transducer and activator of transcription 3 (STAT3) by 27% and 33%, respectively. Finally, mRNA expression of the inflammasome components Caspase1 (-36.4%), Nod-like receptor family pyrin domain containing 3 (Nlrp3; -99%), and Il1b (-68.8%) were decreased by FO compared with CON (P ≤ 0.05). CONCLUSION FO exerted an anti-inflammatory and antichemotactic effect on the cross-talk between CD8+ T cells and adipocytes and has implications in mitigating macrophage-centered AT-driven components of the obese phenotype.
Collapse
Affiliation(s)
- Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada; and Guelph Food Research Centre, Agriculture Agri-Food Canada, Guelph, Canada
| | - Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada; and
| | - Anna A De Boer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada; and
| | - Morgan J Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada; and
| | - Krista A Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada; and Guelph Food Research Centre, Agriculture Agri-Food Canada, Guelph, Canada
| | - David Wl Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada; and
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada; and
| |
Collapse
|
27
|
Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol 2015; 36:81-91. [PMID: 25592731 DOI: 10.1016/j.it.2014.12.005] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 12/25/2022]
Abstract
The specific regulation of cellular metabolic processes is of major importance for directing immune cell differentiation and function. We review recent evidence indicating that changes in basic cellular lipid metabolism have critical effects on T cell proliferation and cell fate decisions. While induction of de novo fatty acid (FA) synthesis is essential for activation-induced proliferation and differentiation of effector T cells, FA catabolism via β-oxidation is important for the development of CD8(+) T cell memory as well as for the differentiation of CD4(+) regulatory T cells. We consider the influence of lipid metabolism and metabolic intermediates on the regulation of signaling and transcriptional pathways via post-translational modifications, and discuss how an improved understanding of FA metabolism may reveal strategies for manipulating immune responses towards therapeutic outcomes.
Collapse
Affiliation(s)
- Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.
| |
Collapse
|
28
|
van den Berg HA, Ladell K, Miners K, Laugel B, Llewellyn-Lacey S, Clement M, Cole DK, Gostick E, Wooldridge L, Sewell AK, Bridgeman JS, Price DA. Cellular-level versus receptor-level response threshold hierarchies in T-cell activation. Front Immunol 2013; 4:250. [PMID: 24046768 PMCID: PMC3763380 DOI: 10.3389/fimmu.2013.00250] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/09/2013] [Indexed: 12/02/2022] Open
Abstract
Peptide-MHC (pMHC) ligand engagement by T-cell receptors (TCRs) elicits a variety of cellular responses, some of which require substantially more TCR-mediated stimulation than others. This threshold hierarchy could reside at the receptor level, where different response pathways branch off at different stages of the TCR/CD3 triggering cascade, or at the cellular level, where the cumulative TCR signal registered by the T-cell is compared to different threshold values. Alternatively, dual-level thresholds could exist. In this study, we show that the cellular hypothesis provides the most parsimonious explanation consistent with data obtained from an in-depth analysis of distinct functional responses elicited in a clonal T-cell system by a spectrum of biophysically defined altered peptide ligands across a range of concentrations. Further, we derive a mathematical model that describes how ligand density, affinity, and off-rate all affect signaling in distinct ways. However, under the kinetic regime prevailing in the experiments reported here, the TCR/pMHC class I (pMHCI) dissociation rate was found to be the main governing factor. The CD8 coreceptor modulated the TCR/pMHCI interaction and altered peptide ligand potency. Collectively, these findings elucidate the relationship between TCR/pMHCI kinetics and cellular function, thereby providing an integrated mechanistic understanding of T-cell response profiles.
Collapse
|
29
|
Abstract
The covalent attachment of palmitate to proteins can alter protein-lipid and protein-protein interactions thereby influencing protein function. Palmitoylation is a reversible post-translational modification. Thus, like protein phosphorylation, protein palmitoylation can function in activation-dependent signaling pathways. This review will provide an overview of the mechanisms and regulation of protein palmitoylation and focus on the role of palmitoylation in signal transduction pathways of lymphocytes and platelets.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Beth Israel Deaconess Medical Center, Harvard Medical School, Division of Hemostasis and Thrombosis, Department of Medicine, Boston, MA, 02215, USA.
| | | |
Collapse
|
30
|
Thakral D, Coman MM, Bandyopadhyay A, Martin S, Riley JL, Kavathas PB. The human CD8β M-4 isoform dominant in effector memory T cells has distinct cytoplasmic motifs that confer unique properties. PLoS One 2013; 8:e59374. [PMID: 23533620 PMCID: PMC3606432 DOI: 10.1371/journal.pone.0059374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/14/2013] [Indexed: 11/23/2022] Open
Abstract
The CD8 co-receptor influences T cell recognition and responses in both anti-tumor and anti-viral immunity. During evolution in the ancestor of humans and chimpanzees, the CD8B gene acquired two additional exons. As a result, in humans, there are four CD8β splice variants (M1 to M4) that differ in their cytoplasmic tails. The M-1 isoform which is the equivalent of murine CD8β, is predominantly expressed in naïve T cells, whereas, the M-4 isoform is predominantly expressed in effector memory T cells. The characteristics of the M-4 isoform conferred by its unique 36 amino acid cytoplasmic tail are not known. In this study, we identified a dihydrophobic leucine-based receptor internalization motif in the cytoplasmic tail of M-4 that regulated its cell surface expression and downregulation after activation. Further the M-4 cytoplasmic tail was able to associate with ubiquitinated targets in 293T cells and mutations in the amino acids NPW, a potential EH domain binding site, either enhanced or inhibited the interaction. In addition, the M-4 tail was itself mono-ubiquitinated on a lysine residue in both 293T cells and a human T cell line. When peripheral blood human T cells expressed CD8αβ M-4, the frequency of MIP-1β secreting cells responding to antigen presenting cells was two-fold higher as compared to CD8αβ M-1 expressing T cells. Thus, the cytoplasmic tail of the CD8β M-4 isoform has unique characteristics, which likely contributed to its selective expression and function in human effector memory T cells.
Collapse
Affiliation(s)
- Deepshi Thakral
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maria M. Coman
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Arunima Bandyopadhyay
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sunil Martin
- Abramson Family Cancer Research Institute and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - James L. Riley
- Abramson Family Cancer Research Institute and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Paula B. Kavathas
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
31
|
Emerging roles for protein S-palmitoylation in immunity from chemical proteomics. Curr Opin Chem Biol 2013; 17:27-33. [PMID: 23332315 DOI: 10.1016/j.cbpa.2012.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 02/08/2023]
Abstract
The activation of innate and adaptive immune signaling pathways and effector functions often occur at cellular membranes and are regulated by complex mechanisms. Here we review the growing number of proteins which are known to be regulated by S-palmitoylation in immune cells emerging from recent advances in chemical proteomics. These chemical proteomic studies have highlighted the roles of this dynamic lipid modification in regulating the specificity and strength of immune responses in different lymphocyte populations.
Collapse
|
32
|
Abstract
The recognition of peptide/MHC antigens by T-cells has continued to challenge the imagination of immunologists, biochemists, and cell biologists alike. This is at least in part because T-cell recognition connects a diversity of issues and transcends many scientific disciplines. A fundamental unsolved issue is how T-cells manage to detect even a single molecule of an agonist pMHC complex, which is vastly outnumbered by endogenous pMHCs, many of which involve the same MHC molecule. They do so although TCRs are cross-reactive and typically low in affinity when measured in isolation. Importantly, T-cell antigen recognition takes place within the contact zone between a T-cell and the antigen-presenting cell, termed the immunological synapse. This bimembrane structure sets the stage for the antigen-binding events and all subsequent molecular recognition events. There is increasing evidence that the molecular dynamics of receptor-ligand interactions are not only dependent on the intrinsic properties of the binding partners but also become transformed by cell biological parameters such as the geometrical constraints within the immune synapse, mechanical forces, and local molecular crowding. To appreciate the complete picture, we think a multidisciplinary approach is imperative, which includes genetics, biochemistry, and structure determination and also biophysical analyses and the latest molecular imaging techniques. Here, we review earlier pioneering work and also recent developments in the fascinating and interdisciplinary science of T-cell antigen recognition. In many ways, this work may present a useful "roadmap" for work in other systems of cell-cell recognition, which underlie many fundamental biological phenomenons of interest.
Collapse
|
33
|
Cole DK, Laugel B, Clement M, Price DA, Wooldridge L, Sewell AK. The molecular determinants of CD8 co-receptor function. Immunology 2012; 137:139-48. [PMID: 22804746 DOI: 10.1111/j.1365-2567.2012.03625.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CD8(+) T cells respond to signals mediated through a specific interaction between the T-cell receptor (TCR) and a composite antigen in the form of an epitopic peptide bound between the polymorphic α1 and α2 helices of an MHC class I (MHCI) molecule. The CD8 glycoprotein 'co-receives' antigen by binding to an invariant region of the MHCI molecule and can enhance ligand recognition by up to 1 million-fold. In recent years, a number of structural and biophysical investigations have shed light on the role of the CD8 co-receptor during T-cell antigen recognition. Here, we provide a collated resource for these data, and discuss how the structural and biophysical parameters governing CD8 co-receptor function further our understanding of T-cell cross-reactivity and the productive engagement of low-affinity antigenic ligands.
Collapse
Affiliation(s)
- David K Cole
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Hrdinka M, Otahal P, Horejsi V. The transmembrane region is responsible for targeting of adaptor protein LAX into "heavy rafts". PLoS One 2012; 7:e36330. [PMID: 22662118 PMCID: PMC3360738 DOI: 10.1371/journal.pone.0036330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/04/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The importance of membrane compartmentalization into specific membrane microdomains has been shown in many biological processes such as immunoreceptor signaling, membrane trafficking, pathogen infection, and tumor progression. Microdomains like lipid rafts, caveolae and tetraspanin enriched microdomains are relatively resistant to solubilization by some detergents. Large detergent-resistant membrane fragments (DRMs) resulting from such membrane solubilization can be conveniently isolated by density gradient ultracentrifugation or gel filtration. Recently, we described a novel type of raft-like membrane microdomains producing, upon detergent Brij98 solubilization, "heavy DRMs" and containing a number of functionally relevant proteins. Transmembrane adaptor protein LAX is a typical "heavy raft" protein. The present study was designed to identify the molecular determinants targeting LAX-derived constructs to heavy rafts. METHODOLOGY/PRINCIPAL FINDINGS We prepared several constructs encoding chimeric proteins containing various informative segments of the LAX sequence and evaluated their effects on targeting to heavy rafts. Replacement of the polybasic membrane-proximal part of LAX by CD3ε-derived membrane-proximal part had no effect on LAX solubilization. Similarly, the membrane-proximal part of LAX, when introduced into non-raft protein CD25 did not change CD25 detergent solubility. These results indicated that membrane-proximal part of LAX is not important for LAX targeting to heavy rafts. On the other hand, the replacement of transmembrane part of CD25 by the transmembrane part of LAX resulted in targeting into heavy rafts. We also show that LAX is not S-acylated, thus palmitoylation is not involved in LAX targeting to heavy rafts. Also, covalent dimerization was excluded as a cause of targeting into heavy rafts. CONCLUSIONS/SIGNIFICANCE We identified the transmembrane domain of LAX as a first motif targeting transmembrane protein constructs to detergent-resistant heavy rafts, a novel type of membrane microdomains containing a number of physiologically important proteins.
Collapse
Affiliation(s)
- Matous Hrdinka
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Otahal
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vaclav Horejsi
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
35
|
Bridgeman JS, Sewell AK, Miles JJ, Price DA, Cole DK. Structural and biophysical determinants of αβ T-cell antigen recognition. Immunology 2012; 135:9-18. [PMID: 22044041 DOI: 10.1111/j.1365-2567.2011.03515.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular rules that govern MHC restriction, and allow T-cells to differentiate between peptides derived from healthy cells and those from diseased cells, remain poorly understood. Here we provide an overview of the structural constraints that enable the T-cell receptor (TCR) to discriminate between self and non-self peptides, and summarize studies that have attempted to correlate the biophysical parameters of TCR/peptide-major histocompatibility complex (pMHC) binding with T-cell activation. We further review how the antigenic origin of peptide epitopes affects TCR binding parameters and the 'quality' of a T-cell response. Understanding the principles that govern pMHC recognition by T-cells will unlock pathways to the rational development of immunotherapeutic approaches for the treatment of infectious disease, cancer and autoimmunity.
Collapse
Affiliation(s)
- John S Bridgeman
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, UK
| | | | | | | | | |
Collapse
|
36
|
Laugel B, Cole DK, Clement M, Wooldridge L, Price DA, Sewell AK. The multiple roles of the CD8 coreceptor in T cell biology: opportunities for the selective modulation of self-reactive cytotoxic T cells. J Leukoc Biol 2011; 90:1089-99. [PMID: 21954283 DOI: 10.1189/jlb.0611316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Short peptide fragments generated by intracellular protein cleavage are presented on the surface of most nucleated cells bound to highly polymorphic MHCI molecules. These pMHCI complexes constitute an interface that allows the immune system to identify and eradicate anomalous cells, such as those that harbor infectious agents, through the activation of CTLs. Molecular recognition of pMHCI complexes is mediated primarily by clonally distributed TCRs expressed on the surface of CTLs. The coreceptor CD8 contributes to this antigen-recognition process by binding to a largely invariant region of the MHCI molecule and by promoting intracellular signaling, the effects of which serve to enhance TCR stimuli triggered by cognate ligands. Recent investigations have shed light on the role of CD8 in the activation of MHCI-restricted, antigen-experienced T cells and in the processes of T cell selection and lineage commitment in the thymus. Here, we review these data and discuss their implications for the development of potential therapeutic strategies that selectively target pathogenic CTL responses erroneously directed against self-derived antigens.
Collapse
Affiliation(s)
- Bruno Laugel
- School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN Wales, UK.
| | | | | | | | | | | |
Collapse
|
37
|
CD8αα and -αβ isotypes are equally recruited to the immunological synapse through their ability to bind to MHC class I. EMBO Rep 2011; 12:1251-6. [PMID: 22081144 DOI: 10.1038/embor.2011.209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 11/08/2022] Open
Abstract
Bimolecular fluorescence complementation was used to engineer CD8 molecules so that CD8αα and CD8αβ dimers can be independently visualized on the surface of a T cell during antigen recognition. Using this approach, we show that CD8αα is recruited to the immunological synapse almost as well as CD8αβ, but because the kinase Lck associates preferentially with CD8αβ in lipid rafts, CD8αα is the weaker co-receptor. During recognition of the strong CD8αα ligand H2-TL, CD8αα is preferentially recruited. Thus, recruitment of the two CD8 species correlates with their relative binding to the available ligands, rather than with the co-receptor functions of the CD8 species.
Collapse
|
38
|
Puech PH, Nevoltris D, Robert P, Limozin L, Boyer C, Bongrand P. Force measurements of TCR/pMHC recognition at T cell surface. PLoS One 2011; 6:e22344. [PMID: 21799834 PMCID: PMC3142151 DOI: 10.1371/journal.pone.0022344] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 06/25/2011] [Indexed: 01/07/2023] Open
Abstract
The rupture forces and adhesion frequencies of single recognition complexes between an affinity selected peptide/MHC complex and a TCR at a murine hybridoma surface were measured using Atomic Force Microscopy. When the CD8 coreceptor is absent, the adhesion frequency depends on the nature of the peptide but the rupture force does not. When CD8 is present, no effect of the nature of the peptide is observed. CD8 is proposed to act as a time and distance lock, enabling the shorter TCR molecule to bridge the pMHC and have time to finely read the peptide. Ultimately, such experiments could help the dissection of the sequential steps by which the TCR reads the peptide/MHC complex in order to control T cell activation.
Collapse
Affiliation(s)
- Pierre-Henri Puech
- Laboratoire Adhésion et Inflammation, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | | | | | | | | | | |
Collapse
|
39
|
Clement M, Ladell K, Ekeruche-Makinde J, Miles JJ, Edwards ESJ, Dolton G, Williams T, Schauenburg AJA, Cole DK, Lauder SN, Gallimore AM, Godkin AJ, Burrows SR, Price DA, Sewell AK, Wooldridge L. Anti-CD8 antibodies can trigger CD8+ T cell effector function in the absence of TCR engagement and improve peptide-MHCI tetramer staining. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:654-63. [PMID: 21677135 PMCID: PMC3145095 DOI: 10.4049/jimmunol.1003941] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells recognize immunogenic peptides presented at the cell surface bound to MHCI molecules. Ag recognition involves the binding of both TCR and CD8 coreceptor to the same peptide-MHCI (pMHCI) ligand. Specificity is determined by the TCR, whereas CD8 mediates effects on Ag sensitivity. Anti-CD8 Abs have been used extensively to examine the role of CD8 in CD8(+) T cell activation. However, as previous studies have yielded conflicting results, it is unclear from the literature whether anti-CD8 Abs per se are capable of inducing effector function. In this article, we report on the ability of seven monoclonal anti-human CD8 Abs to activate six human CD8(+) T cell clones with a total of five different specificities. Six of seven anti-human CD8 Abs tested did not activate CD8(+) T cells. In contrast, one anti-human CD8 Ab, OKT8, induced effector function in all CD8(+) T cells examined. Moreover, OKT8 was found to enhance TCR/pMHCI on-rates and, as a consequence, could be used to improve pMHCI tetramer staining and the visualization of Ag-specific CD8(+) T cells. The anti-mouse CD8 Abs, CT-CD8a and CT-CD8b, also activated CD8(+) T cells despite opposing effects on pMHCI tetramer staining. The observed heterogeneity in the ability of anti-CD8 Abs to trigger T cell effector function provides an explanation for the apparent incongruity observed in previous studies and should be taken into consideration when interpreting results generated with these reagents. Furthermore, the ability of Ab-mediated CD8 engagement to deliver an activation signal underscores the importance of CD8 in CD8(+) T cell signaling.
Collapse
Affiliation(s)
- Mathew Clement
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Kristin Ladell
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Julia Ekeruche-Makinde
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - John J. Miles
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Emily S. J. Edwards
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Garry Dolton
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Tamsin Williams
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Andrea J. A. Schauenburg
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - David K. Cole
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Sarah N. Lauder
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Awen M. Gallimore
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Andrew J. Godkin
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Scott R. Burrows
- Cellular Immunology Laboratory, Department of Infectious Disease and Immunology, Queensland Institute of Medical Research, Brisbane 4029, Australia
| | - David A. Price
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Andrew K. Sewell
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Linda Wooldridge
- Department of Infection, Immunity and Biochemisty, Henry Wellcome Building, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
40
|
Abstract
The intraepithelial lymphocytes (IELs) that reside within the epithelium of the intestine form one of the main branches of the immune system. As IELs are located at this critical interface between the core of the body and the outside environment, they must balance protective immunity with an ability to safeguard the integrity of the epithelial barrier: failure to do so would compromise homeostasis of the organism. In this Review, we address how the unique development and functions of intestinal IELs allow them to achieve this balance.
Collapse
|
41
|
Sharma SK, Alexander-Miller MA. Increased sensitivity to antigen in high avidity CD8(+) T cells results from augmented membrane proximal T-cell receptor signal transduction. Immunology 2011; 133:307-17. [PMID: 21501160 DOI: 10.1111/j.1365-2567.2011.03440.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The functional avidity of a cytotoxic T lymphocyte (CTL) is known to be a critical determinant of the efficacy with which it clears pathogens. High avidity cells, which are by definition highly sensitive to peptide antigen, are superior for elimination of viruses and tumours. Our studies have established the ability of T cells to undergo avidity modulation as a result of antigen encounter. High and low avidity cells established in this manner exhibit significant differences in the amount of peptide required to elicit effector function. However, how signalling is regulated in these cells as it relates to the control of peptide sensitivity remains to be defined. To address this question, we compared T-cell receptor (TCR) signal transduction events in high and low avidity CTL generated from OT-I(rag2-) TCR transgenic mice. Our data suggest that divergent signalling is initiated at the TCR-associated CD3ζ, with low avidity CTL requiring higher amounts of pMHC to achieve threshold levels of phosphorylated CD3ζ compared with high avidity CTL. Further, this difference is transduced further downstream to mitogen-activated protein kinase and Ca(2+) signalling pathways. These results suggest that regulated control of the initiation of TCR signalling in high versus low avidity cells determines the amount of peptide required for T-cell activation.
Collapse
Affiliation(s)
- Sharad K Sharma
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
42
|
Ladygina N, Martin BR, Altman A. Dynamic palmitoylation and the role of DHHC proteins in T cell activation and anergy. Adv Immunol 2011; 109:1-44. [PMID: 21569911 DOI: 10.1016/b978-0-12-387664-5.00001-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although protein S-palmitoylation was first characterized >30 years ago, and is implicated in the function, trafficking, and localization of many proteins, little is known about the regulation and physiological implications of this posttranslational modification. Palmitoylation of various signaling proteins required for TCR-induced T cell activation is also necessary for their proper function. Linker for activation of T cells (LAT) is an essential scaffolding protein involved in T cell development and activation, and we found that its palmitoylation is selectively impaired in anergic T cells. The recent discovery of the DHHC family of palmitoyl acyl transferases and the establishment of sensitive and quantitative proteomics-based methods for global analysis of the palmitoyl proteome led to significant progress in studying the biology and underlying mechanisms of cellular protein palmitoylation. We are using these approaches to explore the palmitoyl proteome in T lymphocytes and, specifically, the mechanistic basis for the impaired palmitoylation of LAT in anergic T cells. This chapter reviews the history of protein palmitoylation and its role in T cell activation, the DHHC family and new methodologies for global analysis of the palmitoyl proteome, and summarizes our recent work in this area. The new methodologies will accelerate the pace of research and provide a greatly improved mechanistic and molecular understanding of the complex process of protein palmitoylation and its regulation, and the substrate specificity of the novel DHHC family. Reversible protein palmitoylation will likely prove to be an important posttranslational mechanism that regulates cellular responses, similar to protein phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Nadejda Ladygina
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, California, USA
| | | | | |
Collapse
|
43
|
Li L, Dong L, Xia L, Li T, Zhong H. Chemical and genetic probes for analysis of protein palmitoylation. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 879:1316-24. [PMID: 21163712 DOI: 10.1016/j.jchromb.2010.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 10/23/2010] [Accepted: 11/16/2010] [Indexed: 12/25/2022]
Abstract
Reversible protein palmitoylation is one of the most important posttranslational modifications that has been implicated in the regulation of protein signaling, trafficking, localizing and enzymatic activities in cells and tissues. In order to achieve a precise understanding of mechanisms and functions of protein palmitoylation as well as its roles in physiological processes and disease progression, it is necessary to develop techniques that can qualitatively and quantitatively monitor the dynamic protein palmitoylation in vivo and in vitro. This review will highlight recent advances in both chemical and genetic encoded probes that have been developed for accurate analysis of protein palmitoylation, including identification and quantification of acyl moieties and palmitoylated proteins, localization of amino acid residues on which acyl moieties are attached, and imaging of cellular distributions of palmitoylated proteins. The role of major techniques of fluorescence microscopy and mass spectrometry in facilitating the analysis of protein palmitoylation will also be explored.
Collapse
Affiliation(s)
- Lun Li
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, PR China
| | | | | | | | | |
Collapse
|
44
|
TL and CD8αα: Enigmatic partners in mucosal immunity. Immunol Lett 2010; 134:1-6. [PMID: 20850477 DOI: 10.1016/j.imlet.2010.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/09/2010] [Indexed: 11/23/2022]
Abstract
The intestinal mucosa represents a large surface area that is in contact with an immense antigenic load. The immune system associated with the intestinal mucosa needs to distinguish between innocuous food antigens, commensal microorganisms, and pathogenic microorganisms, without triggering an exaggerated immune response that may lead to excessive inflammation and/or development of inflammatory bowel disease. The thymus leukemia (TL) antigen and CD8αα are interacting surface molecules that are expressed at the frontline of the mucosal immune system: TL is expressed in intestinal epithelial cells (IEC) whereas CD8αα is expressed in lymphocytes, known as intraepithelial lymphocytes, that reside in between the IEC. In this review we discuss the significance of the interaction between TL and CD8αα in mucosal immunity during health and disease.
Collapse
|
45
|
Levental I, Grzybek M, Simons K. Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 2010; 49:6305-16. [PMID: 20583817 DOI: 10.1021/bi100882y] [Citation(s) in RCA: 311] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that biological membranes can be laterally subdivided into domains enriched in specific lipid and protein components and that these domains may be involved in the regulation of a number of vital cellular processes. An example is membrane rafts, which are lipid-mediated domains dependent on preferential association between sterols and sphingolipids and inclusive of a specific subset of membrane proteins. While the lipid and protein composition of rafts has been extensively characterized, the structural details determining protein partitioning to these domains remain unresolved. Here, we review evidence suggesting that post-translation modification by saturated lipids recruits both peripheral and transmembrane proteins to rafts, while short, unsaturated, and/or branched hydrocarbon chains prevent raft association. The most widely studied group of raft-associated proteins are glycophosphatidylinositol-anchored proteins (GPI-AP), and we review a variety of evidence supporting raft-association of these saturated lipid-anchored extracellular peripheral proteins. For transmembrane and intracellular peripheral proteins, S-acylation with saturated fatty acids mediates raft partitioning, and the dynamic nature of this modification presents an exciting possibility of enzymatically regulated raft association. The other common lipid modifications, that is, prenylation and myristoylation, are discussed in light of their likely role in targeting proteins to nonraft membrane regions. Finally, although the association between raft affinity and lipid modification is well-characterized, we discuss several open questions regarding regulation and remodeling of these post-translational modifications as well as their role in transbilayer coupling of membrane domains.
Collapse
Affiliation(s)
- Ilya Levental
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, Germany
| | | | | |
Collapse
|
46
|
Durrant LG, Pudney V, Spendlove I, Metheringham RL. Vaccines as early therapeutic interventions for cancer therapy: neutralising the immunosuppressive tumour environment and increasing T cell avidity may lead to improved responses. Expert Opin Biol Ther 2010; 10:735-48. [DOI: 10.1517/14712591003769790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Wooldridge L, Clement M, Lissina A, Edwards ESJ, Ladell K, Ekeruche J, Hewitt RE, Laugel B, Gostick E, Cole DK, Debets R, Berrevoets C, Miles JJ, Burrows SR, Price DA, Sewell AK. MHC class I molecules with Superenhanced CD8 binding properties bypass the requirement for cognate TCR recognition and nonspecifically activate CTLs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:3357-66. [PMID: 20190139 PMCID: PMC3024536 DOI: 10.4049/jimmunol.0902398] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) CTLs are essential for effective immune defense against intracellular microbes and neoplasia. CTLs recognize short peptide fragments presented in association with MHC class I (MHCI) molecules on the surface of infected or dysregulated cells. Ag recognition involves the binding of both TCR and CD8 coreceptor to a single ligand (peptide MHCI [pMHCI]). The TCR/pMHCI interaction confers Ag specificity, whereas the pMHCI/CD8 interaction mediates enhanced sensitivity to Ag. Striking biophysical differences exist between the TCR/pMHCI and pMHCI/CD8 interactions; indeed, the pMHCI/CD8 interaction can be >100-fold weaker than the cognate TCR/pMHCI interaction. In this study, we show that increasing the strength of the pMHCI/CD8 interaction by approximately 15-fold results in nonspecific, cognate Ag-independent pMHCI tetramer binding at the cell surface. Furthermore, pMHCI molecules with superenhanced affinity for CD8 activate CTLs in the absence of a specific TCR/pMHCI interaction to elicit a full range of effector functions, including cytokine/chemokine release, degranulation and proliferation. Thus, the low solution binding affinity of the pMHCI/CD8 interaction is essential for the maintenance of CTL Ag specificity.
Collapse
Affiliation(s)
- Linda Wooldridge
- Department of Infection, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Clarke RL, Thiemann S, Refaeli Y, Werlen G, Potter TA. A new function for LAT and CD8 during CD8-mediated apoptosis that is independent of TCR signal transduction. Eur J Immunol 2009; 39:1619-31. [PMID: 19449311 DOI: 10.1002/eji.200839062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The majority (>95%) of thymocytes undergo apoptosis during selection in the thymus. Several mechanisms have been proposed to explain how apoptosis of thymocytes that are not positively selected occurs; however, it is unknown whether thymocytes die purely by "neglect" or whether signaling through a cell-surface receptor initiates an apoptotic pathway. We have previously demonstrated that on double positive thymocytes the ligation of CD8 in the absence of TCR engagement results in apoptosis and have postulated this is a mechanism to remove thymocytes that have failed positive selection. On mature single positive T cells CD8 acts as a co-receptor to augment signaling through the TCR that is dependent on the phosphorylation of the adaptor protein, linker for activation of T cells (LAT). Here, we show that during CD8-mediated apoptosis of double positive thymocytes there is an increase in the association of CD8 with LAT and an increase in LAT tyrosine phosphorylation. Decreasing LAT expression and mutation of tyrosine residues of LAT reduced apoptosis upon crosslinking of CD8. Our results identify novel functions for both CD8 and LAT that are independent of TCR signal transduction and suggest a mechanism for signal transduction leading to apoptosis upon CD8 crosslinking.
Collapse
Affiliation(s)
- Raedun L Clarke
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA.
| | | | | | | | | |
Collapse
|
50
|
Collins EJ, Riddle DS. TCR-MHC docking orientation: natural selection, or thymic selection? Immunol Res 2009; 41:267-94. [PMID: 18726714 DOI: 10.1007/s12026-008-8040-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cell receptors (TCR) dock on their peptide-major histocompatibility complex (pMHC) targets in a conserved orientation. Since amino acid sidechains are the foundation of specific protein-protein interactions, a simple explanation for the conserved docking orientation is that key amino acids encoded by the TCR and MHC genes have been selected and maintained through evolution in order to preserve TCR/pMHC binding. Expectations that follow from the hypothesis that TCR and MHC evolved to interact are discussed in light of the data that both support and refute them. Finally, an alternative and equally simple explanation for the driving force behind the conserved docking orientation is described.
Collapse
Affiliation(s)
- Edward J Collins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 804 Mary Ellen Jones Building, Chapel Hill, NC 27510, USA.
| | | |
Collapse
|