1
|
Benam KH. Multidisciplinary approaches in electronic nicotine delivery systems pulmonary toxicology: emergence of living and non-living bioinspired engineered systems. COMMUNICATIONS ENGINEERING 2024; 3:123. [PMID: 39227652 PMCID: PMC11372223 DOI: 10.1038/s44172-024-00276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Technology-based platforms offer crucial support for regulatory agencies in overseeing tobacco products to enhance public health protection. The use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes, has surged exponentially over the past decade. However, the understanding of the impact of ENDS on lung health remains incomplete due to scarcity of physiologically relevant technologies for evaluating their toxicity. This review examines the societal and public health impacts of ENDS, prevalent preclinical approaches in pulmonary space, and the application of emerging Organ-on-Chip technologies and bioinspired robotics for assessing ENDS respiratory toxicity. It highlights challenges in ENDS inhalation toxicology and the value of multidisciplinary bioengineering approaches for generating reliable, human-relevant regulatory data at an accelerated pace.
Collapse
Affiliation(s)
- Kambez H Benam
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Fleischmann M, Jarnicki AG, Brown AS, Yang C, Anderson GP, Garbi N, Hartland EL, van Driel IR, Ng GZ. Cigarette smoke depletes alveolar macrophages and delays clearance of Legionella pneumophila. Am J Physiol Lung Cell Mol Physiol 2023; 324:L373-L384. [PMID: 36719079 PMCID: PMC10026984 DOI: 10.1152/ajplung.00268.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/23/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Legionella pneumophila is the main etiological agent of Legionnaires' disease, a severe bacterial pneumonia. L. pneumophila is initially engulfed by alveolar macrophages (AMs) and subvert normal cellular functions to establish a replicative vacuole. Cigarette smokers are particularly susceptible to developing Legionnaires' disease and other pulmonary infections; however, little is known about the cellular mechanisms underlying this susceptibility. To investigate this, we used a mouse model of acute cigarette smoke exposure to examine the immune response to cigarette smoke and subsequent L. pneumophila infection. Contrary to previous reports, we show that cigarette smoke exposure alone causes a significant depletion of AMs using enzymatic digestion to extract cells, or via imaging intact lung lobes by light-sheet microscopy. Furthermore, treatment of mice deficient in specific types of cell death with smoke suggests that NLRP3-driven pyroptosis is a contributor to smoke-induced death of AMs. After infection, smoke-exposed mice displayed increased pulmonary L. pneumophila loads and developed more severe disease compared with air-exposed controls. We tested if depletion of AMs was related to this phenotype by directly depleting them with clodronate liposomes and found that this also resulted in increased L. pneumophila loads. In summary, our results showed that cigarette smoke depleted AMs from the lung and that this likely contributed to more severe Legionnaires' disease. Furthermore, the role of AMs in L. pneumophila infection is more nuanced than simply providing a replicative niche, and our studies suggest they play a major role in bacterial clearance.
Collapse
Affiliation(s)
- Markus Fleischmann
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Institute for Experimental Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrew G Jarnicki
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew S Brown
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Chao Yang
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Gary P Anderson
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | - Natalio Garbi
- Institute for Experimental Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Ian R van Driel
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Garrett Z Ng
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Costantini E, Carrarini C, Borrelli P, De Rosa M, Calisi D, Consoli S, D’Ardes D, Cipollone F, Di Nicola M, Onofrj M, Reale M, Bonanni L. Different peripheral expression patterns of the nicotinic acetylcholine receptor in dementia with Lewy bodies and Alzheimer's disease. Immun Ageing 2023; 20:3. [PMID: 36647139 PMCID: PMC9843938 DOI: 10.1186/s12979-023-00329-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/26/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The diffuse distribution of nicotinic cholinergic receptors (nAChRs) in both brain and peripheral immune cells points out their involvement in several pathological conditions. Indeed, the deregulated function of the nAChR was previously correlated with cognitive decline and neuropsychiatric symptoms in Alzheimer's disease (AD) and Dementia with Lewy bodies (DLB). The evaluation in peripheral immune cells of nAChR subtypes, which could reflect their expression in brain regions, is a prominent investigation area. OBJECTIVES This study aims to evaluate the expression levels of both the nAChR subunits and the main known inflammatory cytokines in peripheral blood mononuclear cells (PBMCs) of patients with DLB and AD to better characterize their involvement in these two diseases. RESULTS Higher gene expression levels of TNFα, IL6 and IL1β were observed in DLB and AD patients in comparison with healthy controls (HC). In our cohort, a reduction of nAChRα4, nAChRβ2 and nAChRβ4 was detected in both DLB and AD with respect to HC. Considering nAChR gene expressions in DLB and AD, significant differences were observed for nAChRα3, nAChRα4, nAChRβ2 and nAChRβ4 between the two groups. Moreover, the acetylcholine esterase (AChE) gene expression was significantly higher in DLB than in AD. Correlation analysis points out the relation between different nAChR subtype expressions in DLB (nAChRβ2 vs nAChRα3; nAChRα4 vs nAChRα3) and AD (nAChRα4 vs nAChRα3; nAChRα4 vs nAChRβ4; nAChRα7 vs nAChRα3; nAChRα7 vs nAChRα4). CONCLUSIONS Different gene expressions of both pro-inflammatory cytokines and nAChR subtypes may represent a peripheral link between inflammation and neurodegeneration. Inflammatory cytokines and different nAChRs should be valid and accurate peripheral markers for the clinical diagnosis of DLB and AD. However, although nAChRs show a great biological role in the regulation of inflammation, no significant correlation was detected between nAChR subtypes and the examined cytokines in our cohort of patients.
Collapse
Affiliation(s)
- E. Costantini
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - C. Carrarini
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - P. Borrelli
- grid.412451.70000 0001 2181 4941Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. De Rosa
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - D. Calisi
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - S. Consoli
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - D. D’Ardes
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - F. Cipollone
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. Di Nicola
- grid.412451.70000 0001 2181 4941Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. Onofrj
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - M. Reale
- grid.412451.70000 0001 2181 4941Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - L. Bonanni
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
4
|
Cremin M, Schreiber S, Murray K, Tay EXY, Reardon C. The diversity of neuroimmune circuits controlling lung inflammation. Am J Physiol Lung Cell Mol Physiol 2023; 324:L53-L63. [PMID: 36410021 PMCID: PMC9829467 DOI: 10.1152/ajplung.00179.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
It is becoming increasingly appreciated that the nervous and immune systems communicate bidirectionally to regulate immunological outcomes in a variety of organs including the lung. Activation of neuronal signaling can be induced by inflammation, tissue damage, or pathogens to evoke or reduce immune cell activation in what has been termed a neuroimmune reflex. In the periphery, these reflexes include the cholinergic anti-inflammatory pathway, sympathetic reflex, and sensory nociceptor-immune cell pathways. Continual advances in neuroimmunology in peripheral organ systems have fueled small-scale clinical trials that have yielded encouraging results for a range of immunopathologies such as rheumatoid arthritis. Despite these successes, several limitations should give clinical investigators pause in the application of neural stimulation as a therapeutic for lung inflammation, especially if inflammation arises from a novel pathogen. In this review, the general mechanisms of each reflex, the evidence for these circuits in the control of lung inflammation, and the key knowledge gaps in our understanding of these neuroimmune circuits will be discussed. These limitations can be overcome not only through a better understanding of neuroanatomy but also through a systematic evaluation of stimulation parameters using immune activation in lung tissues as primary readouts. Our rapidly evolving understanding of the nervous and immune systems highlights the importance of communication between these cells in health and disease. This integrative approach has tremendous potential in the development of targeted therapeutics if specific challenges can be overcome.
Collapse
Affiliation(s)
- Michael Cremin
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California
| | - Sierra Schreiber
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California
| | - Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California
| | - Emmy Xue Yun Tay
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California
| | - Colin Reardon
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California
| |
Collapse
|
5
|
Sallam MY, El-Gowilly SM, El-Mas MM. Central α7 and α4β2 nicotinic acetylcholine receptors offset arterial baroreceptor dysfunction in endotoxic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1587-1598. [PMID: 36100757 DOI: 10.1007/s00210-022-02289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Cardiac autonomic neuropathy is a prominent feature of endotoxemia. Given the defensive role of the cholinergic pathway in inflammation, we assessed the roles of central homomeric α7 and heteromeric α4β2 nAChRs in arterial baroreceptor dysfunction caused by endotoxemia in rats. Endotoxemia was induced by i.v. administration of lipopolysaccharides (LPS, 10 mg/kg), and baroreflex activity was measured by the vasoactive method, which assesses reflex chronotropic responses to increments (phenylephrine, PE) or decrements (sodium nitroprusside, SNP) in blood pressure. Shifts caused by LPS in PE/SNP baroreflex curves and associated decreases in baroreflex sensitivity (BRS) were dose-dependently reversed by nicotine (25-100 μg/kg, i.v.). The nicotine effect disappeared after intracisternal administration of methyllycaconitine (MLA) or dihydro-β-erythroidine (DHβE), selective blockers of α7 and α4β2 receptors, respectively. The advantageous effect of nicotine on BRSPE was replicated in rats treated with PHA-543613 (α7-nAChR agonist) or 5-iodo-A-85380 (5IA, α4β2-nAChRs agonist) in dose-dependent fashions. Conversely, the depressed BRSSNP of endotoxic rats was improved after combined, but not individual, treatments with PHA and 5IA. Central α7 and α4β2 nAChR activation underlies the nicotine counteraction of arterial baroreflex dysfunction induced by endotoxemia. Moreover, the contribution of these receptors depends on the nature of the reflex chronotropic response (bradycardia vs. tachycardia).
Collapse
Affiliation(s)
- Marwa Y Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita, Alexandria, 21521, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita, Alexandria, 21521, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita, Alexandria, 21521, Egypt.
- Department of Pharmacology and Toxicology, College of Medicine, Health Sciences Center, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
6
|
Obi ON, Saketkoo LA, Russell AM, Baughman RP. Sarcoidosis: Updates on therapeutic drug trials and novel treatment approaches. Front Med (Lausanne) 2022; 9:991783. [PMID: 36314034 PMCID: PMC9596775 DOI: 10.3389/fmed.2022.991783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Sarcoidosis is a systemic granulomatous inflammatory disease of unknown etiology. It affects the lungs in over 90% of patients yet extra-pulmonary and multi-organ involvement is common. Spontaneous remission of disease occurs commonly, nonetheless, over 50% of patients will require treatment and up to 30% of patients will develop a chronic progressive non-remitting disease with marked pulmonary fibrosis leading to significant morbidity and death. Guidelines outlining an immunosuppressive treatment approach to sarcoidosis were recently published, however, the strength of evidence behind many of the guideline recommended drugs is weak. None of the drugs currently used for the treatment of sarcoidosis have been rigorously studied and prescription of these drugs is often based on off-label” indications informed by experience with other diseases. Indeed, only two medications [prednisone and repository corticotropin (RCI) injection] currently used in the treatment of sarcoidosis are approved by the United States Food and Drug Administration. This situation results in significant reimbursement challenges especially for the more advanced (and often more effective) drugs that are favored for severe and refractory forms of disease causing an over-reliance on corticosteroids known to be associated with significant dose and duration dependent toxicities. This past decade has seen a renewed interest in developing new drugs and exploring novel therapeutic pathways for the treatment of sarcoidosis. Several of these trials are active randomized controlled trials (RCTs) designed to recruit relatively large numbers of patients with a goal to determine the safety, efficacy, and tolerability of these new molecules and therapeutic approaches. While it is an exciting time, it is also necessary to exercise caution. Resources including research dollars and most importantly, patient populations available for trials are limited and thus necessitate that several of the challenges facing drug trials and drug development in sarcoidosis are addressed. This will ensure that currently available resources are judiciously utilized. Our paper reviews the ongoing and anticipated drug trials in sarcoidosis and addresses the challenges facing these and future trials. We also review several recently completed trials and draw lessons that should be applied in future.
Collapse
Affiliation(s)
- Ogugua Ndili Obi
- Division of Pulmonary Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, United States,*Correspondence: Ogugua Ndili Obi,
| | - Lesley Ann Saketkoo
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, LA, United States,University Medical Center—Comprehensive Pulmonary Hypertension Center and Interstitial Lung Disease Clinic Programs, New Orleans, LA, United States,Section of Pulmonary Medicine, Louisiana State University School of Medicine, New Orleans, LA, United States,Department of Undergraduate Honors, Tulane University School of Medicine, New Orleans, LA, United States
| | - Anne-Marie Russell
- Exeter Respiratory Institute University of Exeter, Exeter, United Kingdom,Royal Devon and Exeter NHS Foundation Trust, Devon, United Kingdom,Faculty of Medicine, Imperial College and Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Robert P. Baughman
- Department of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
7
|
Dahdah A, Jaggers RM, Sreejit G, Johnson J, Kanuri B, Murphy AJ, Nagareddy PR. Immunological Insights into Cigarette Smoking-Induced Cardiovascular Disease Risk. Cells 2022; 11:3190. [PMID: 36291057 PMCID: PMC9600209 DOI: 10.3390/cells11203190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 01/19/2023] Open
Abstract
Smoking is one of the most prominent addictions of the modern world, and one of the leading preventable causes of death worldwide. Although the number of tobacco smokers is believed to be at a historic low, electronic cigarette use has been on a dramatic rise over the past decades. Used as a replacement for cigarette smoking, electronic cigarettes were thought to reduce the negative effects of burning tobacco. Nonetheless, the delivery of nicotine by electronic cigarettes, the most prominent component of cigarette smoke (CS) is still delivering the same negative outcomes, albeit to a lesser extent than CS. Smoking has been shown to affect both the structural and functional aspects of major organs, including the lungs and vasculature. Although the deleterious effects of smoking on these organs individually is well-known, it is likely that the adverse effects of smoking on these organs will have long-lasting effects on the cardiovascular system. In addition, smoking has been shown to play an independent role in the homeostasis of the immune system, leading to major sequela. Both the adaptive and the innate immune system have been explored regarding CS and have been demonstrated to be altered in a way that promotes inflammatory signals, leading to an increase in autoimmune diseases, inflammatory diseases, and cancer. Although the mechanism of action of CS has not been fully understood, disease pathways have been explored in both branches of the immune system. The pathophysiologically altered immune system during smoking and its correlation with cardiovascular diseases is not fully understood. Here we highlight some of the important pathological mechanisms that involve cigarette smoking and its many components on cardiovascular disease and the immune systems in order to have a better understanding of the mechanisms at play.
Collapse
Affiliation(s)
- Albert Dahdah
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Robert M. Jaggers
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Gopalkrishna Sreejit
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jillian Johnson
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Babunageswararao Kanuri
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Andrew J. Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3010, Australia
| | - Prabhakara R. Nagareddy
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Erin N, Shurin GV, Baraldi JH, Shurin MR. Regulation of Carcinogenesis by Sensory Neurons and Neuromediators. Cancers (Basel) 2022; 14:2333. [PMID: 35565462 PMCID: PMC9102554 DOI: 10.3390/cancers14092333] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Interactions between the immune system and the nervous system are crucial in maintaining homeostasis, and disturbances of these neuro-immune interactions may participate in carcinogenesis and metastasis. Nerve endings have been identified within solid tumors in humans and experimental animals. Although the involvement of the efferent sympathetic and parasympathetic innervation in carcinogenesis has been extensively investigated, the role of the afferent sensory neurons and the neuropeptides in tumor development, growth, and progression is recently appreciated. Similarly, current findings point to the significant role of Schwann cells as part of neuro-immune interactions. Hence, in this review, we mainly focus on local and systemic effects of sensory nerve activity as well as Schwann cells in carcinogenesis and metastasis. Specific denervation of vagal sensory nerve fibers, or vagotomy, in animal models, has been reported to markedly increase lung metastases of breast carcinoma as well as pancreatic and gastric tumor growth, with the formation of liver metastases demonstrating the protective role of vagal sensory fibers against cancer. Clinical studies have revealed that patients with gastric ulcers who have undergone a vagotomy have a greater risk of stomach, colorectal, biliary tract, and lung cancers. Protective effects of vagal activity have also been documented by epidemiological studies demonstrating that high vagal activity predicts longer survival rates in patients with colon, non-small cell lung, prostate, and breast cancers. However, several studies have reported that inhibition of sensory neuronal activity reduces the development of solid tumors, including prostate, gastric, pancreatic, head and neck, cervical, ovarian, and skin cancers. These contradictory findings are likely to be due to the post-nerve injury-induced activation of systemic sensory fibers, the level of aggressiveness of the tumor model used, and the local heterogeneity of sensory fibers. As the aggressiveness of the tumor model and the level of the inflammatory response increase, the protective role of sensory nerve fibers is apparent and might be mostly due to systemic alterations in the neuro-immune response. Hence, more insights into inductive and permissive mechanisms, such as systemic, cellular neuro-immunological mechanisms of carcinogenesis and metastasis formation, are needed to understand the role of sensory neurons in tumor growth and spread.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, Immunopharmacology, and Immuno-Oncology Unit, School of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, 15213 PA, USA; (G.V.S.); (M.R.S.)
| | - James H. Baraldi
- Department of Neuroscience, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, 15213 PA, USA;
| | - Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, 15213 PA, USA; (G.V.S.); (M.R.S.)
- Department of Immunology, University of Pittsburgh Medical Center and University of Pittsburgh Cancer Institute, Pittsburgh, 15213 PA, USA
| |
Collapse
|
9
|
Hu JN, Liu Y, Liu SC, Zhang T, Chen GB, Zhao J, Ma T. The α7 Nicotinic Acetylcholine Receptor Agonist GTS-21 Improves Bacterial Clearance via Regulation of Monocyte Recruitment and Activity in Polymicrobial Septic Peritonitis. Front Immunol 2022; 13:839290. [PMID: 35309361 PMCID: PMC8931331 DOI: 10.3389/fimmu.2022.839290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
The cholinergic anti-inflammatory pathway has been identified as an effective pathway to modify inflammatory responses. Here, we verified that delayed administration with a selective α7nAChR agonist GTS-21 enables a more efficient elimination of the offending pathogens, diminished inflammatory response and organ injury, and improved survival rates in the polymicrobial septic peritonitis model. We illustrated that the improved bacterial clearance upon GTS-21 stimulation was accompanied by enhanced recruitment of monocytes into the peritoneal cavity and simultaneously increased phagocytic activity and iNOS expression of these recruited monocytes. Mechanically, splenectomy prior to administration of GTS-21 attenuated the recruitment of monocytes into the peritoneal cavity and abolished the protective benefits of GTS-21 treatment. Meanwhile, GTS-21 administration accelerates the deployment of splenic monocytes during septic peritonitis. Collectively, these data suggested that appropriate selective pharmacological α7nAChR activation promotes monocytes trafficking in a spleen-dependent manner and upregulates the antibacterial activity of recruited monocytes during septic peritonitis, which may be utilized as a promising therapeutic modality for patients suffering from septic peritonitis.
Collapse
Affiliation(s)
- Jian-nan Hu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Liu
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Shu-chang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Gui-bing Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
10
|
Rodas L, Martínez S, Riera-Sampol A, Moir HJ, Tauler P. Blood Cell In Vitro Cytokine Production in Response to Lipopolysaccharide Stimulation in a Healthy Population: Effects of Age, Sex, and Smoking. Cells 2021; 11:cells11010103. [PMID: 35011664 PMCID: PMC8750398 DOI: 10.3390/cells11010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 01/03/2023] Open
Abstract
Immune system functionality has been commonly assessed by a whole-blood or isolated-cell stimulation assay. The aim of this study was to determine whether cytokine production in whole-blood-stimulated samples is influenced by age, sex, and smoking. A descriptive cross-sectional study in 253 healthy participants aged 18-55 years was conducted. Whole blood samples were stimulated for 24 h with LPS and concentrations of IL-6, IL-10, and TNF-α were determined in the culture media. Among parameters considered, statistical regression analysis indicated that smoking (change in R2 = 0.064, p < 0.001) and sex (change in R2 = 0.070, p < 0.001) were the main predictors for IL-10 production, with higher values for women and non-smokers. Age was also found to be a significant predictor (change in R2 = 0.021, p < 0.001), with higher values for younger ages. Age (change in R2 = 0.089, p = 0.013) and smoking (change in R2 = 0.037, p = 0.002) were found to be negative predictors for IL-6 production. Regarding TNF-α-stimulated production, age (change in R2 = 0.029, p = 0.009) and smoking (change in R2 = 0.022, p = 0.022) were found to be negative predictors. Furthermore, sex (change in R2 = 0.016, p = 0.045) was found to be a significant predictor, with lower values for women. In conclusion, sex, age, and smoking were found to be independent determinants of stimulated cytokine production. While female sex is associated with higher IL-10 and lower TNF-α production, aging and smoking are associated with lower IL-6, IL-10, and TNF-α production.
Collapse
Affiliation(s)
- Lluis Rodas
- Research Group on Evidence, Lifestyles and Health, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma, Spain;
| | - Sonia Martínez
- Research Group on Evidence, Lifestyles and Health, Department of Nursing and Physiotherapy, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Correspondence: (S.M.); (P.T.); Tel.: +34-971-172858 (P.T.)
| | - Aina Riera-Sampol
- Research Group on Evidence, Lifestyles and Health, Department of Nursing and Physiotherapy, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Hannah J. Moir
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK;
| | - Pedro Tauler
- Research Group on Evidence, Lifestyles and Health, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma, Spain;
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Correspondence: (S.M.); (P.T.); Tel.: +34-971-172858 (P.T.)
| |
Collapse
|
11
|
He X, Wang L, Liu L, Gao J, Long B, Chi F, Hu T, Wan Y, Gong Z, Li L, Zhen P, Zhang T, Cao H, Huang SH. Endogenous α7 nAChR Agonist SLURP1 Facilitates Escherichia coli K1 Crossing the Blood-Brain Barrier. Front Immunol 2021; 12:745854. [PMID: 34721415 PMCID: PMC8552013 DOI: 10.3389/fimmu.2021.745854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Alpha 7 nicotinic acetylcholine receptor (α7 nAChR) is critical for the pathogenesis of Escherichia coli (E. coli) K1 meningitis, a severe central nervous system infection of the neonates. However, little is known about how E. coli K1 manipulates α7 nAChR signaling. Here, through employing immortalized cell lines, animal models, and human transcriptional analysis, we showed that E. coli K1 infection triggers releasing of secreted Ly6/Plaur domain containing 1 (SLURP1), an endogenous α7 nAChR ligand. Exogenous supplement of SLURP1, combined with SLURP1 knockdown or overexpression cell lines, showed that SLURP1 is required for E. coli K1 invasion and neutrophils migrating across the blood-brain barrier (BBB). Furthermore, we found that SLURP1 is required for E. coli K1-induced α7 nAChR activation. Finally, the promoting effects of SLURP1 on the pathogenesis of E. coli K1 meningitis was significantly abolished in the α7 nAChR knockout mice. These results reveal that E. coli K1 exploits SLURP1 to activate α7 nAChR and facilitate its pathogenesis, and blocking SLURP1-α7 nAChR interaction might represent a novel therapeutic strategy for E. coli K1 meningitis.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Infectious Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Lei Wang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liqun Liu
- Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Infectious Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Beiguo Long
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Feng Chi
- Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Tongtong Hu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li Li
- Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| | - Peilin Zhen
- Department of Infectious Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| | - Tiesong Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Sheng-He Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| |
Collapse
|
12
|
Corleis B, Cho JL, Gates SJ, Linder AH, Dickey A, Lisanti-Park AC, Schiff AE, Ghebremichael M, Kohli P, Winkler T, Harris RS, Medoff BD, Kwon DS. Smoking and HIV-1 Infection Promote Retention of CD8+ T Cells in the Airway Mucosa. Am J Respir Cell Mol Biol 2021; 65:513-520. [PMID: 34166603 DOI: 10.1165/rcmb.2021-0168oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Smoking and HIV-1 infection are risk factors for COPD, which is among the most common comorbid conditions in people living with HIV-1. HIV-1 infection leads to persistent expansion of CD8+ T cells, and CD8+ T cell-mediated inflammation has been implicated in COPD pathogenesis. In this study, we investigated the effects of HIV-1 infection and smoking on T cell dynamics in patients at risk of COPD. Bronchoalveolar lavage (BAL), endobronchial brushings and blood from HIV-1 infected and uninfected non-smokers and smokers were analyzed by flow cytometry, and lungs were imaged by computed tomography. Chemokines were measured in BAL fluid, and CD8+ T cell chemotaxis in the presence of cigarette smoke extract was assessed in vitro. HIV-1 infection increased CD8+ T cells in the BAL, but this increase was abrogated by smoking. Smokers had reduced BAL levels of the T cell-recruiting chemokines CXCL10 and CCL5, and cigarette smoke extract inhibited CXCL10 and CCL5 production by macrophages and CD8+ T cell transmigration in vitro. In contrast to the BAL, CD8+ T cells in endobronchial brushings were increased in HIV-1 infected smokers, driven by an accumulation of effector memory T cells in the airway mucosa and an increase in tissue resident memory T cells. Mucosal CD8+ T cell numbers inversely correlated with lung aeration, suggesting an association with inflammation and remodeling. HIV-1 infection and smoking lead to retention of CD8+ T cells within the airway mucosa.
Collapse
Affiliation(s)
- Björn Corleis
- Ragon Institute, 200750, Charlestown, Massachusetts, United States.,Friedrich-Loeffler-Institute Federal Research Institute for Animal Health, 39023, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Josalyn L Cho
- University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Department of Internal Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, Iowa City, Iowa, United States;
| | - Samantha J Gates
- Ragon Institute, 200750, Charlestown, Massachusetts, United States
| | - Alice H Linder
- Ragon Institute, 200750, Charlestown, Massachusetts, United States
| | - Amy Dickey
- Massachusetts General Hospital, 2348, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States
| | | | - Abigail E Schiff
- Ragon Institute, 200750, Charlestown, Massachusetts, United States
| | | | - Puja Kohli
- Massachusetts General Hospital, 2348, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States
| | - Tilo Winkler
- Massachusetts General Hospital, 2348, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States
| | - R Scott Harris
- Massachusetts General Hospital, 2348, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States
| | - Benjamin D Medoff
- Massachusetts General Hospital, 2348, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States
| | - Douglas S Kwon
- Massachusetts General Hospital, 2348, Department of Medicine, Division of Infectious Diseases, Boston, Massachusetts, United States.,Ragon Institute, 200750, Charlestown, Massachusetts, United States
| |
Collapse
|
13
|
AlQasrawi D, Naser E, Naser SA. Nicotine Increases Macrophage Survival through α7nAChR/NF-κB Pathway in Mycobacterium avium paratuberculosis Infection. Microorganisms 2021; 9:microorganisms9051086. [PMID: 34070119 PMCID: PMC8158352 DOI: 10.3390/microorganisms9051086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 11/25/2022] Open
Abstract
Recently, we reported that nicotine plays a role in the failure of the macrophage in the clearance of Mycobacterium avium subspecies paratuberculosis (MAP) during infection in Crohn’s disease smokers. We also demonstrated that nicotine enhances macrophages cellular survival during MAP infection. Blocking α7 nicotinic acetylcholine receptor (α7nAChR) with the pharmacological antagonist—mecamylamine—subverted the anti-inflammatory effect of nicotine in macrophages. Yet, it is still unknown how α7nAChR is involved in the modulation of the macrophage response during MAP infection. Here, we studied the mechanistic role of nicotine-α7nAChR interaction in modulating NF-ĸB survival pathway, autophagy, and effect on cathelicidin production in MAP-infected macrophages using THP-1 cell lines. Our results showed that nicotine upregulated α7nAChR expression by 5-folds during MAP infection compared to controls. Bcl-2 expression was also significantly increased after nicotine exposure. Moreover, Nicotine inhibited autophagosome formation whereas infection with MAP in absence of nicotine has significantly increased LC-3b in macrophages. Nicotine also further upregulated NF-ĸB subunits expression including Rel-B and p100, and increased nuclear translocation of p52 protein. We also discovered that cathelicidin production was significantly suppressed in MAP-infected macrophages, treatment with nicotine showed no effect. Overall, the study provides new insight toward understanding the cellular role of nicotine through α7nAChR/NF-ĸB p100/p52 signaling pathway in inducing anti-apoptosis and macrophage survival during MAP infection in Crohn’s disease smokers.
Collapse
Affiliation(s)
- Dania AlQasrawi
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Ebraheem Naser
- College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Saleh A Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
14
|
Han QQ, Deng MY, Liu H, Ali U, Li XY, Wang YX. Cynandione A and PHA-543613 inhibit inflammation and stimulate macrophageal IL-10 expression following α7 nAChR activation. Biochem Pharmacol 2021; 190:114600. [PMID: 33992630 DOI: 10.1016/j.bcp.2021.114600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Cynandione A, an acetophenone isolated from Cynanchum Wilfordii Radix, attenuates inflammation. The present study aimed to study the mechanisms underlying cynandione A-induced antiinflammation. Treatment with cynandione A and the specific α7 nicotinic acetylcholine receptor (α7 nAChR) agonist PHA-543613 remarkably reduced overexpression of proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells and primary peritoneal macrophages, and endotoxemic mice. Both cynandione A and PHA-543613 also stimulated IL-10 expression in naïve and LPS-treated macrophages and endotoxemic mice. Cynandione A- and PHA-543613-inhibited proinflammatory cytokine expression was completely blocked by the α7 nAChR antagonist methyllycaconitine and the IL-10 antibody. The stimulatory effect of cynandione A and PHA-543613 on IL-10 expression were suppressed by methyllycaconitine and knockdown of α7 nAChRs using siRNA/α7 nAChR. Cynandione A significantly stimulated STAT3 phosphorylation, which was attenuated by methyllycaconitine and the IL-10 neutralizing antibody. The STAT3 activation inhibitor NSC74859 also blocked cynandione A-inhibited proinflammatory cytokine expression. Taken together, our results, for the first time, demonstrate that cynandione A and PHA-543613 inhibit inflammation through macrophageal α7 nAChR activation and subsequent IL-10 expression.
Collapse
Affiliation(s)
- Qiao-Qiao Han
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Meng-Yan Deng
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Usman Ali
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China.
| |
Collapse
|
15
|
Islas-Weinstein L, Marquina-Castillo B, Mata-Espinosa D, Paredes-González IS, Chávez J, Balboa L, Marín Franco JL, Guerrero-Romero D, Barrios-Payan JA, Hernandez-Pando R. The Cholinergic System Contributes to the Immunopathological Progression of Experimental Pulmonary Tuberculosis. Front Immunol 2021; 11:581911. [PMID: 33679685 PMCID: PMC7930380 DOI: 10.3389/fimmu.2020.581911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
The cholinergic system is present in both bacteria and mammals and regulates inflammation during bacterial respiratory infections through neuronal and non-neuronal production of acetylcholine (ACh) and its receptors. However, the presence of this system during the immunopathogenesis of pulmonary tuberculosis (TB) in vivo and in its causative agent Mycobacterium tuberculosis (Mtb) has not been studied. Therefore, we used an experimental model of progressive pulmonary TB in BALB/c mice to quantify pulmonary ACh using high-performance liquid chromatography during the course of the disease. In addition, we performed immunohistochemistry in lung tissue to determine the cellular expression of cholinergic system components, and then administered nicotinic receptor (nAChR) antagonists to validate their effect on lung bacterial burden, inflammation, and pro-inflammatory cytokines. Finally, we subjected Mtb cultures to colorimetric analysis to reveal the production of ACh and the effect of ACh and nAChR antagonists on Mtb growth. Our results show high concentrations of ACh and expression of its synthesizing enzyme choline acetyltransferase (ChAT) during early infection in lung epithelial cells and macrophages. During late progressive TB, lung ACh upregulation was even higher and coincided with ChAT and α7 nAChR subunit expression in immune cells. Moreover, the administration of nAChR antagonists increased pro-inflammatory cytokines, reduced bacillary loads and synergized with antibiotic therapy in multidrug resistant TB. Finally, in vitro studies revealed that the bacteria is capable of producing nanomolar concentrations of ACh in liquid culture. In addition, the administration of ACh and nicotinic antagonists to Mtb cultures induced or inhibited bacterial proliferation, respectively. These results suggest that Mtb possesses a cholinergic system and upregulates the lung non-neuronal cholinergic system, particularly during late progressive TB. The upregulation of the cholinergic system during infection could aid both bacterial growth and immunomodulation within the lung to favor disease progression. Furthermore, the therapeutic efficacy of modulating this system suggests that it could be a target for treating the disease.
Collapse
Affiliation(s)
- Leon Islas-Weinstein
- Division of Experimental Pathology, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City, Mexico
| | - Brenda Marquina-Castillo
- Division of Experimental Pathology, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City, Mexico
| | - Dulce Mata-Espinosa
- Division of Experimental Pathology, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City, Mexico
| | - Iris S. Paredes-González
- Division of Experimental Pathology, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City, Mexico
| | - Jaime Chávez
- Department of Bronchial Hyperreactivity, National Institute of Respiratory Diseases (Mexico), Mexico City, Mexico
| | - Luciana Balboa
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental del National Scientific and Technical Research Council (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - José Luis Marín Franco
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental del National Scientific and Technical Research Council (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Daniel Guerrero-Romero
- Departamento de Matemáticas, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Alberto Barrios-Payan
- Division of Experimental Pathology, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City, Mexico
| | - Rogelio Hernandez-Pando
- Division of Experimental Pathology, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City, Mexico
| |
Collapse
|
16
|
Chan ED, Bai X. Further evidence that cigarette smoke and nicotine compromise host immunity against tuberculosis (invited editorial). Tuberculosis (Edinb) 2020; 127:102035. [PMID: 33317928 DOI: 10.1016/j.tube.2020.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Edward D Chan
- Pulmonary Section, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA; Department of Academic Affairs, National Jewish Health, Denver, CO, USA; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Xiyuan Bai
- Pulmonary Section, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA; Department of Academic Affairs, National Jewish Health, Denver, CO, USA; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
17
|
Fudim M, Qadri YJ, Ghadimi K, MacLeod DB, Molinger J, Piccini JP, Whittle J, Wischmeyer PE, Patel MR, Ulloa L. Implications for Neuromodulation Therapy to Control Inflammation and Related Organ Dysfunction in COVID-19. J Cardiovasc Transl Res 2020; 13:894-899. [PMID: 32458400 PMCID: PMC7250255 DOI: 10.1007/s12265-020-10031-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
COVID-19 is a syndrome that includes more than just isolated respiratory disease, as severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) also interacts with the cardiovascular, nervous, renal, and immune system at multiple levels, increasing morbidity in patients with underlying cardiometabolic conditions and inducing myocardial injury or dysfunction. Emerging evidence suggests that patients with the highest rate of morbidity and mortality following SARS-CoV2 infection have also developed a hyperinflammatory syndrome (also termed cytokine release syndrome). We lay out the potential contribution of a dysfunction in autonomic tone to the cytokine release syndrome and related multiorgan damage in COVID-19. We hypothesize that a cholinergic anti-inflammatory pathway could be targeted as a therapeutic avenue. Graphical Abstract .
Collapse
Affiliation(s)
- Marat Fudim
- Department of Medicine, Division of Cardiology, Duke University, 2301 Erwin Road, Durham, NC, 27710, USA.
| | - Yawar J Qadri
- Department of Anesthesiology & Critical Care, Duke University, Durham, NC, USA
| | - Kamrouz Ghadimi
- Department of Anesthesiology & Critical Care, Duke University, Durham, NC, USA
| | - David B MacLeod
- Department of Anesthesiology & Critical Care, Duke University, Durham, NC, USA
| | - Jeroen Molinger
- Department of Anesthesiology & Critical Care, Duke University, Durham, NC, USA
| | - Jonathan P Piccini
- Department of Medicine, Division of Cardiology, Duke University, 2301 Erwin Road, Durham, NC, 27710, USA
- Duke Center for Atrial Fibrillation, Duke University Medical Center, Duke University, Durham, NC, USA
| | - John Whittle
- Department of Anesthesiology & Critical Care, Duke University, Durham, NC, USA
| | - Paul E Wischmeyer
- Department of Anesthesiology & Critical Care, Duke University, Durham, NC, USA
| | - Manesh R Patel
- Department of Medicine, Division of Cardiology, Duke University, 2301 Erwin Road, Durham, NC, 27710, USA
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, USA
| |
Collapse
|
18
|
Hade EM, Smith RM, Culver DA, Crouser ED. Design, rationale, and baseline characteristics of a pilot randomized clinical trial of nicotine treatment for pulmonary sarcoidosis. Contemp Clin Trials Commun 2020; 20:100669. [PMID: 33089005 PMCID: PMC7567036 DOI: 10.1016/j.conctc.2020.100669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/22/2020] [Accepted: 10/03/2020] [Indexed: 11/27/2022] Open
Abstract
Introduction Sarcoidosis is a systemic granulomatous disease of unknown cause afflicting young to middle-aged adults. The majority of patients with active pulmonary sarcoidosis complain of overwhelming fatigue, which often persists despite administration of immune-modulating drugs typically used to treat sarcoidosis. Nicotine offers an alternative to conventional treatments, which are associated with a spectrum of serious untoward effects, including diabetes mellitus, osteoporosis, bone marrow suppression, severe infections, cirrhosis. The described pilot randomized trial aims to provide preliminary data required to design subsequent Phase II/III trials to formally evaluate nicotine as a novel low-cost and highly-effective, safe treatment option for patients with active pulmonary sarcoidosis. Methods and Design: This is a randomized double-blind controlled trial of adults with confirmed pulmonary sarcoidosis, allocated in equal proportion to sustained release transdermal nicotine or placebo patch. The primary objective outcome is the improvement in forced vital capacity at study week 26 from baseline measurement. Secondary measures include lung texture score, and self-reported outcomes including the Fatigue Assessment Scale, the St George's Respiratory Questionnaire, and the Sarcoidosis Assessment Tool. Discussion Current therapies for active pulmonary sarcoidosis, remain either expensive and often with numerous side-effects, as with novel industry developed therapies, or with reduced quality of life, as with corticosteroids. Nicotine therapy provides promise as a safe, available, and cost-effective intervention strategy, which we expect to be acceptable to patients. ClinicalTrials.gov NCT02265874.
Collapse
Affiliation(s)
- Erinn M Hade
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.,Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, 43210, USA
| | - Rachel M Smith
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel A Culver
- Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Elliott D Crouser
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
19
|
Abstract
Sepsis is a major cause of acute kidney injury (AKI) among patients in the intensive care unit. However, the numbers of basic science papers for septic AKI account for only 1% of all publications on AKI. This may be partially attributable to the specific pathophysiology of septic AKI as compared to that of the other types of AKI because it shows only modest histological changes despite functional decline and often requires real-time functional analysis. To increase the scope of research in this field, this article reviews the basic research information that has been reported thus far on the subject of septic AKI, mainly from the viewpoint of functional dysregulation, including some knowledge acquired with multiphoton intravital imaging. Moreover, the efficacy and limitation of the potential novel therapies are discussed. Finally, the author proposes several points that should be considered when designing the study, such as monitoring the long-term effects of the intervention and reflecting the clinical settings for identifying the molecular mechanisms and for challenging the intervention effects.
Collapse
Affiliation(s)
- Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan.
| |
Collapse
|
20
|
Kizildag S, Hosgorler F, Güvendi G, Koc TB, Kandis S, Argon A, Ates M, Uysal N. Nicotine lowers TNF-α, IL-1b secretion and leukocyte accumulation via nAChR in rat stomach. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1790604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Servet Kizildag
- Vocational School of Health Services, Dokuz Eylül University, Izmir, Turkey
| | - Ferda Hosgorler
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| | - Güven Güvendi
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| | - Talha Basar Koc
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| | - Sevim Kandis
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| | - Asuman Argon
- Department of Pathology, University of Health Sciences Izmir Bozyaka Education and Research Hospital, Izmir, Turkey
| | - Mehmet Ates
- Vocational School of Health Services, Dokuz Eylül University, Izmir, Turkey
| | - Nazan Uysal
- Department of Physiology, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
21
|
AlQasrawi D, Abdelli LS, Naser SA. Mystery Solved: Why Smoke Extract Worsens Disease in Smokers with Crohn's Disease and Not Ulcerative Colitis? Gut MAP! Microorganisms 2020; 8:microorganisms8050666. [PMID: 32370298 PMCID: PMC7284734 DOI: 10.3390/microorganisms8050666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoke (CS) exacerbates symptoms in Crohn’s disease (CD) patients while protecting those with ulcerative colitis (UC). CD has been associated with immuno-dysregulation, mucosal dysfunction, and infection. Among the CD-debated pathogens are Mycobacterium avium subsp. paratuberculosis (MAP), adherent invasive Escherichia coli (AIEC), and Klebsiella pneumoniae. The mechanism of how CS modulates nicotinic acetylcholine receptor-α7 (α7nAChR) and elicits inflammatory response in CD-like macrophages is unknown. Here, we investigated the effect of CS/nicotine on macrophages infected with CD-associated pathogens. We measured apoptosis, bacterial viability, macrophage polarization, and gene expression/cytokine levels involved in macrophage response to nicotine/CS extracts from Havana-Leave extract (HLE-nicotine rich) and germplasm line of Maryland tobacco (LAMD-nicotine less). Nicotine (4 µg/mL) and HLE extracts (0.18%) significantly favored anti-inflammatory response in macrophages (increased CD-206 (M2) and IL-10, and decreased M1/M2 ratio; p < 0.05). While macrophages infected with MAP or treated with LPS promoted pro-inflammatory response. Further treatment of these macrophages with nicotine or HLE extracts caused higher inflammatory response (increased iNOS (M1), TNF-α, IL-6, and M1/M2 ratio, p < 0.05), increased MAP burden, and decreased apoptosis. Pre-conditioning macrophages with nicotine ahead of infection resulted in lower pro-inflammatory response. Blocking α7nAChR with an antagonist voided the effect of nicotine on macrophages. Overall, the study provides an insight toward understanding the contradictory effect of nicotine on Inflammatory Bowel Disease patients and about the mechanistic role of α7nAChR in modulation of macrophages in tobacco smokers.
Collapse
Affiliation(s)
| | | | - Saleh A. Naser
- Correspondence: ; Tel.: +1-407-823-0955; Fax: +1-407-823-0956
| |
Collapse
|
22
|
Liu Q, Li M, Whiteaker P, Shi FD, Morley BJ, Lukas RJ. Attenuation in Nicotinic Acetylcholine Receptor α9 and α10 Subunit Double Knock-Out Mice of Experimental Autoimmune Encephalomyelitis. Biomolecules 2019; 9:E827. [PMID: 31817275 PMCID: PMC6995583 DOI: 10.3390/biom9120827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is attenuated in nicotinic acetylcholine receptor (nAChR) α9 subunit knock-out (α9 KO) mice. However, protection is incomplete, raising questions about roles for related, nAChR α10 subunits in ionotropic or recently-revealed metabotropic contributions to effects. Here, we demonstrate reduced EAE severity and delayed onset of disease signs in nAChR α9/α10 subunit double knock-out (DKO) animals relative to effects in wild-type (WT) control mice. These effects are indistinguishable from contemporaneously-observed effects in nicotine-treated WT or in α9 KO mice. Immune cell infiltration into the spinal cord and brain, reactive oxygen species levels in vivo, and demyelination, mostly in the spinal cord, are reduced in DKO mice. Disease severity is not altered relative to WT controls in mice harboring a gain-of-function mutation in α9 subunits. These findings minimize the likelihood that additional deletion of nAChR α10 subunits impacts disease differently than α9 KO alone, whether through ionotropic, metabotropic, or alternative mechanisms. Moreover, our results provide further evidence of disease-exacerbating roles for nAChR containing α9 subunits (α9*-nAChR) in EAE inflammatory and autoimmune responses. This supports our hypothesis that α9*-nAChR or their downstream mediators are attractive targets for attenuation of inflammation and autoimmunity.
Collapse
Affiliation(s)
- Qiang Liu
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (Q.L.); (M.L.); (P.W.); (F.-D.S.)
| | - Minshu Li
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (Q.L.); (M.L.); (P.W.); (F.-D.S.)
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (Q.L.); (M.L.); (P.W.); (F.-D.S.)
| | - Fu-Dong Shi
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (Q.L.); (M.L.); (P.W.); (F.-D.S.)
| | | | - Ronald J. Lukas
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (Q.L.); (M.L.); (P.W.); (F.-D.S.)
| |
Collapse
|
23
|
Sallam MY, El-Gowilly SM, Fouda MA, Abd-Alhaseeb MM, El-Mas MM. Brainstem cholinergic pathways diminish cardiovascular and neuroinflammatory actions of endotoxemia in rats: Role of NFκB/α7/α4β2AChRs signaling. Neuropharmacology 2019; 157:107683. [DOI: 10.1016/j.neuropharm.2019.107683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/16/2019] [Accepted: 06/23/2019] [Indexed: 12/20/2022]
|
24
|
Guo J, Jin H, Shi Z, Yin J, Pasricha T, Chen JDZ. Sacral nerve stimulation improves colonic inflammation mediated by autonomic-inflammatory cytokine mechanism in rats. Neurogastroenterol Motil 2019; 31:e13676. [PMID: 31327175 DOI: 10.1111/nmo.13676] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/09/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Vagal nerve stimulation (VNS) was reported to have a therapeutic potential for inflammatory bowel disease (IBD). This study was designed to determine effects and mechanisms of SNS on colonic inflammation of in rodent models of IBD and compare the difference among SNS, VNS, and SNS plus VNS. METHODS Intestinal inflammation in rats was induced by intrarectal administration of TNBS (2,4,6-Trinitrobenzenesulfonic acid) on the first day. Five days after intrarectal TNBS, the rats were treated with sham-VNS, VNS, Sham-SNS, SNS, and SNS + VNS for 10 days. In another experiment, after 10 days of 4% DSS (dextran sodium sulfate) in drinking water, rats were treated with 10-day sham-SNS and SNS. Various inflammatory responses were assessed; mechanisms involving autonomic functions and inflammatory cytokines were investigated. KEY RESULTS (a) VNS, SNS, and VNS + SNS significantly and equally decreased the disease activity index and macroscopic scores, and normalized colon length; (b) IL-10 was decreased by TNBS but increased with SNS, VNS, and SNS + VNS; pro-inflammatory cytokines, IL-6, IL-17A, MCP-1 and TNF-α, were increased by TNBS but decreased with SNS, VNS, and SNS + VNS (P < .05); MPO activity was decreased by SNS, VNS, and SNS + VNS; (c) SNS, VNS, and SNS + VNS remarkably increased vagal activity that was suppressed by TNBS (P < .05); (d) smilar SNS effects were noted in rats with DSS-induced colitis. CONCLUSIONS & INFERENCES SNS presents similar anti-inflammatory effects as VNS by inhibiting pro-inflammatory cytokines and increasing anti-inflammatory cytokines via the autonomic pathway. Similar to VNS, SNS may also have a therapeutic potential for colonic inflammation.
Collapse
Affiliation(s)
- Jie Guo
- Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, MD, USA
| | - Haifeng Jin
- Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, MD, USA
| | - Zhaohong Shi
- Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, MD, USA
| | - Jieyun Yin
- Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, MD, USA
| | - Trisha Pasricha
- Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, MD, USA
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, MD, USA
| |
Collapse
|
25
|
Liu W, Su K. A Review on the Receptor-ligand Molecular Interactions in the Nicotinic Receptor Signaling Systems. Pak J Biol Sci 2019; 21:51-66. [PMID: 30221881 DOI: 10.3923/pjbs.2018.51.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nicotine is regarded as the main active addictive ingredient in tobacco products driving continued tobacco abuse behavior (smoking) to the addiction behavior, whereas nicotinic acetylcholine receptors (nAChR) is the crucial effective apparatus or molecular effector of nicotine and acetylcholine and other similar ligands. Many nAChR subunits have been revealed to bind to either neurotransmitters or exogenous ligands, such as nicotine and acetylcholine, being involved in the nicotinic receptor signal transduction. Therefore, the nicotinic receptor signalling molecules and the receptor-ligand molecular interactions between nAChRs and their ligands are universally regarded as crucial mediators of cellular functions and drug targets in medical treatment and clinical diagnosis. Given numerous endeavours have been made in defining the roles of nAChRs in response to nicotine and other addictive drugs, this review focuses on studies and reports in recent years on the receptor-ligand interactions between nAChR receptors and ligands, including lipid-nAChR and protein-nAChR molecular interactions, relevant signal transduction pathways and their molecular mechanisms in the nicotinic receptor signalling systems. All the references were carefully retrieved from the PubMed database by searching key words "nicotine", "acetylcholine", "nicotinic acetylcholine receptor(s)", "nAChR*", "protein and nAChR", "lipid and nAChR", "smok*" and "tobacco". All the relevant referred papers and reports retrieved were fully reviewed for manual inspection. This effort intend to get a quick insight and understanding of the nicotinic receptor signalling and their molecular interactions mechanisms. Understanding the cellular receptor-ligand interactions and molecular mechanisms between nAChRs and ligands will lead to a better translational and therapeutic operations and outcomes for the prevention and treatment of nicotine addiction and other chronic drug addictions in the brain's reward circuitry.
Collapse
|
26
|
New therapeutic targets for the prevention of infectious acute exacerbations of COPD: role of epithelial adhesion molecules and inflammatory pathways. Clin Sci (Lond) 2019; 133:1663-1703. [PMID: 31346069 DOI: 10.1042/cs20181009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are among the leading causes of mortality worldwide, with the major contributor, chronic obstructive pulmonary disease (COPD) accounting for approximately 3 million deaths annually. Frequent acute exacerbations (AEs) of COPD (AECOPD) drive clinical and functional decline in COPD and are associated with accelerated loss of lung function, increased mortality, decreased health-related quality of life and significant economic costs. Infections with a small subgroup of pathogens precipitate the majority of AEs and consequently constitute a significant comorbidity in COPD. However, current pharmacological interventions are ineffective in preventing infectious exacerbations and their treatment is compromised by the rapid development of antibiotic resistance. Thus, alternative preventative therapies need to be considered. Pathogen adherence to the pulmonary epithelium through host receptors is the prerequisite step for invasion and subsequent infection of surrounding structures. Thus, disruption of bacterial-host cell interactions with receptor antagonists or modulation of the ensuing inflammatory profile present attractive avenues for therapeutic development. This review explores key mediators of pathogen-host interactions that may offer new therapeutic targets with the potential to prevent viral/bacterial-mediated AECOPD. There are several conceptual and methodological hurdles hampering the development of new therapies that require further research and resolution.
Collapse
|
27
|
Garg BK, Loring RH. GTS-21 has cell-specific anti-inflammatory effects independent of α7 nicotinic acetylcholine receptors. PLoS One 2019; 14:e0214942. [PMID: 30947238 PMCID: PMC6448884 DOI: 10.1371/journal.pone.0214942] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
α7 Nicotinic acetylcholine receptors (nAChRs) reportedly reduce inflammation by blocking effects of the important pro-inflammatory transcription factor, nuclear factor kappa-light chain-enhancer of B cells (NFκB). The α7 nAChR partial agonist GTS-21 reduces secretion of pro-inflammatory cytokines including interleukin-6 (IL6) and tumor-necrosis factor (TNF) in models of endotoxemia and sepsis, and its anti-inflammatory effects are widely ascribed to α7 nAChR activation. However, mechanistic details of α7 nAChR involvement in GTS-21 effects on inflammatory pathways remain unclear. Here, we investigate how GTS-21 acts in two cell systems including the non-immune rat pituitary cell line GH4C1 expressing an NFκB-driven reporter gene and cytokine secretion by ex vivo cultures of primary mouse macrophages activated by lipopolysaccharide (LPS). GTS-21 does not change TNF-stimulated NFκB signaling in GH4C1 cells expressing rat α7 nAChRs, suggesting that GTS-21 requires additional unidentified factors besides α7 nAChR expression to allow anti-inflammatory effects in these cells. In contrast, GTS-21 dose-dependently suppresses LPS-induced IL6 and TNF secretion in primary mouse macrophages endogenously expressing α7 nAChRs. GTS-21 also blocks TNF-induced phosphorylation of NFκB inhibitor alpha (IκBα), an important intermediary in NFκB signaling. However, α7 antagonists methyllycaconitine and α-bungarotoxin only partially reverse GTS-21 blockade of IL6 and TNF secretion. Further, GTS-21 significantly inhibited LPS-induced IL6 and TNF secretion in macrophages isolated from knockout mice lacking α7 nAChRs. These data indicate that even though a discrete component of the anti-inflammatory effects of GTS-21 requires expression of α7 nAChRs in macrophages, GTS-21 also has anti-inflammatory effects independent of these receptors depending on the cellular context.
Collapse
Affiliation(s)
- Brijesh K. Garg
- Department of Pharmaceutical Science, Northeastern University, Boston, Massachusetts, United States of America
| | - Ralph H. Loring
- Department of Pharmaceutical Science, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Acetylcholine-treated murine dendritic cells promote inflammatory lung injury. PLoS One 2019; 14:e0212911. [PMID: 30822345 PMCID: PMC6396899 DOI: 10.1371/journal.pone.0212911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023] Open
Abstract
In recent years a non-neuronal cholinergic system has been described in immune cells, which is often usually activated during the course of inflammatory processes. To date, it is known that Acetylcholine (ACh), a neurotransmitter extensively expressed in the airways, not only induces bronchoconstriction, but also promotes a set of changes usually associated with the induction of allergic/Th2 responses. We have previously demonstrated that ACh polarizes human dendritic cells (DC) toward a Th2-promoting profile through the activation of muscarinic acetylcholine receptors (mAChR). Here, we showed that ACh promotes the acquisition of an inflammatory profile by murine DC, with the increased MHC II IAd expression and production of two cytokines strongly associated with inflammatory infiltrate and tissue damage, namely TNF-α and MCP-1, which was prevented by blocking mAChR. Moreover, we showed that ACh induces the up-regulation of M3 mAChR expression and the blocking of this receptor with tiotropium bromide prevents the increase of MHC II IAd expression and TNF-α production induced by ACh on DC, suggesting that M3 is the main receptor involved in ACh-induced activation of DC. Then, using a short-term experimental murine model of ovalbumin-induced lung inflammation, we revealed that the intranasal administration of ACh-treated DC, at early stages of the inflammatory response, might be able to exacerbate the recruitment of inflammatory mononuclear cells, promoting profound structural changes in the lung parenchyma characteristic of chronic inflammation and evidenced by elevated systemic levels of inflammatory marker, TNF-α. These results suggest a potential role for ACh in the modulation of immune mechanisms underlying pulmonary inflammatory processes.
Collapse
|
29
|
Eduardo CRC, Alejandra TIG, Guadalupe DRKJ, Herminia VRG, Lenin P, Enrique BV, Evandro BM, Oscar B, Iván GPM. Modulation of the extraneuronal cholinergic system on main innate response leukocytes. J Neuroimmunol 2019; 327:22-35. [PMID: 30683425 DOI: 10.1016/j.jneuroim.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
The expression of elements of the cholinergic system has been demonstrated in non-neuronal cells, such as immune cells, where acetylcholine modulates innate and adaptive responses. However, the study of the non-neuronal cholinergic system has focused on lymphocyte cholinergic mechanisms, with less attention to its role of innate cells. Considering this background, the aims of this review are 1) to review information regarding the cholinergic components of innate immune system cells; 2) to discuss the effect of cholinergic stimuli on cell functions; 3) and to describe the importance of cholinergic stimuli on host immunocompetence, in order to set the base for the design of intervention strategies in the biomedical field.
Collapse
Affiliation(s)
- Covantes-Rosales Carlos Eduardo
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Toledo-Ibarra Gladys Alejandra
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Díaz-Resendiz Karina Janice Guadalupe
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Ventura-Ramón Guadalupe Herminia
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Pavón Lenin
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Becerril-Villanueva Enrique
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Bauer Moisés Evandro
- Pontifícia Universidade Católica do Rio Grande do Sul, Instituto de Pesquisas Biomédicas, Laboratório de Imunologia do Envelhecimento, 90610-000 Porto Alegre, RS, Brazil
| | - Bottaso Oscar
- Universidad Nacional de Rosario-Consejo Nacional de Investigaciones Científicas y Técnicas (UNR-CONICET), Instituto de Inmunología Clínica y Experimental de Rosario, Rosario, Argentina
| | - Girón-Pérez Manuel Iván
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico.
| |
Collapse
|
30
|
Machaalani R, Ghazavi E, Hinton T, Makris A, Hennessy A. Immunohistochemical expression of the nicotinic acetylcholine receptor (nAChR) subunits in the human placenta, and effects of cigarette smoking and preeclampsia. Placenta 2018; 71:16-23. [DOI: 10.1016/j.placenta.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/23/2018] [Accepted: 09/29/2018] [Indexed: 01/03/2023]
|
31
|
Reardon C, Murray K, Lomax AE. Neuroimmune Communication in Health and Disease. Physiol Rev 2018; 98:2287-2316. [PMID: 30109819 PMCID: PMC6170975 DOI: 10.1152/physrev.00035.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
The immune and nervous systems are tightly integrated, with each system capable of influencing the other to respond to infectious or inflammatory perturbations of homeostasis. Recent studies demonstrating the ability of neural stimulation to significantly reduce the severity of immunopathology and consequently reduce mortality have led to a resurgence in the field of neuroimmunology. Highlighting the tight integration of the nervous and immune systems, afferent neurons can be activated by a diverse range of substances from bacterial-derived products to cytokines released by host cells. While activation of vagal afferents by these substances dominates the literature, additional sensory neurons are responsive as well. It is becoming increasingly clear that although the cholinergic anti-inflammatory pathway has become the predominant model, a multitude of functional circuits exist through which neuronal messengers can influence immunological outcomes. These include pathways whereby efferent signaling occurs independent of the vagus nerve through sympathetic neurons. To receive input from the nervous system, immune cells including B and T cells, macrophages, and professional antigen presenting cells express specific neurotransmitter receptors that affect immune cell function. Specialized immune cell populations not only express neurotransmitter receptors, but express the enzymatic machinery required to produce neurotransmitters, such as acetylcholine, allowing them to act as signaling intermediaries. Although elegant experiments have begun to decipher some of these interactions, integration of these molecules, cells, and anatomy into defined neuroimmune circuits in health and disease is in its infancy. This review describes these circuits and highlights continued challenges and opportunities for the field.
Collapse
Affiliation(s)
- Colin Reardon
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Alan E Lomax
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
32
|
Liu W, Li MD. Insights Into Nicotinic Receptor Signaling in Nicotine Addiction: Implications for Prevention and Treatment. Curr Neuropharmacol 2018; 16:350-370. [PMID: 28762314 PMCID: PMC6018190 DOI: 10.2174/1570159x15666170801103009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/18/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop ligandgated ion-channel (LGIC) superfamily, which also includes the GABA, glycine, and serotonin receptors. Many nAChR subunits have been identified and shown to be involved in signal transduction on binding to them of either the neurotransmitter acetylcholine or exogenous ligands such as nicotine. The nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and they are expressed at neuromuscular junctions throughout the nervous system. METHODS AND RESULTS Because different nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes, and different nAChRs are implicated in various physiological functions and pathophysiological conditions, nAChRs represent potential molecular targets for drug addiction and medical therapeutic research. This review intends to provide insights into recent advances in nAChR signaling, considering the subtypes and subunits of nAChRs and their roles in nicotinic cholinergic systems, including structure, diversity, functional allosteric modulation, targeted knockout mutations, and rare variations of specific subunits, and the potency and functional effects of mutations by focusing on their effects on nicotine addiction (NA) and smoking cessation (SC). Furthermore, we review the possible mechanisms of action of nAChRs in NA and SC based on our current knowledge. CONCLUSION Understanding these cellular and molecular mechanisms will lead to better translational and therapeutic operations and outcomes for the prevention and treatment of NA and other drug addictions, as well as chronic diseases, such as Alzheimer's and Parkinson's. Finally, we put forward some suggestions and recommendations for therapy and treatment of NA and other chronic diseases.
Collapse
Affiliation(s)
- Wuyi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,School of Biological Sciences and Food Engineering, Fuyang Normal University, Fuyang, Anuhi 236041, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
33
|
Sallam MY, El-Gowilly SM, El-Gowelli HM, El-Lakany MA, El-Mas MM. Additive counteraction by α7 and α4β2-nAChRs of the hypotension and cardiac sympathovagal imbalance evoked by endotoxemia in male rats. Eur J Pharmacol 2018; 834:36-44. [DOI: 10.1016/j.ejphar.2018.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 01/01/2023]
|
34
|
Nouri-Shirazi M, Tamjidi S, Nourishirazi E, Guinet E. Combination of TLR8 and TLR4 agonists reduces the degrading effects of nicotine on DC-NK mediated effector T cell generation. Int Immunopharmacol 2018; 61:54-63. [PMID: 29803914 DOI: 10.1016/j.intimp.2018.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
The magnitude of immune responses to vaccination is a critical factor in determining protection from disease. It is known that cigarette smoke dampens the immune system and increases the risk of vaccine-preventable diseases. We reported that nicotine, the immunosuppressive component of cigarette smoke, disrupts the differentiation and functional properties of DC, which are pivotal in the initiation of immune response to vaccines. We also reported that TLR agonists act in synergy and boost DC maturation, DC-NK crosstalk and ultimately naïve T cell polarization into effector Th1 and Tc1 cells. Here, we investigated whether the combination of TLR agonists could diminish the degrading effects of nicotine on DC-NK mediated effector T cell generation. We found that none of TLR agonists, single or combined, were able to diminish completely the adverse effects of nicotine on DC. However, TLR3, TLR4, and TLR8 agonists acted as the most effective adjuvants to increase the expression levels of antigen-presenting, costimulatory molecules and production of cytokines by nicotine-exposed DC (nicDC). When combined, TLR3 + 8 and TLR4 + 8 synergistically optimized nicDC maturation and IFN-γ secretion from nicotine-exposed NK (nicNK) during co-cultures. Interestingly, in contrast to DC-NK-T, co-cultures of nicDC-nicNK-T treated with TLR3 + 8 or TLR4 + 8 agonists produced a similar frequency of effector memory Th1 and Tc1 cells. However, the effector cells from TLR4 + 8 followed by TLR3 + 8 treated nicDC-nicNK-T co-cultures produced significantly more IFN-γ when compared with aluminum salt treated co-culture. Our data suggest that addition of appropriate TLR agonists to vaccine formulation could potentially augment the immune response to vaccination in smokers.
Collapse
Affiliation(s)
- Mahyar Nouri-Shirazi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA.
| | - Saba Tamjidi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA
| | - Erika Nourishirazi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA
| | - Elisabeth Guinet
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA
| |
Collapse
|
35
|
Strzelak A, Ratajczak A, Adamiec A, Feleszko W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1033. [PMID: 29883409 PMCID: PMC5982072 DOI: 10.3390/ijerph15051033] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
Many studies have been undertaken to reveal how tobacco smoke skews immune responses contributing to the development of chronic obstructive pulmonary disease (COPD) and other lung diseases. Recently, environmental tobacco smoke (ETS) has been linked with asthma and allergic diseases in children. This review presents the most actual knowledge on exact molecular mechanisms responsible for the skewed inflammatory profile that aggravates inflammation, promotes infections, induces tissue damage, and may promote the development of allergy in individuals exposed to ETS. We demonstrate how the imbalance between oxidants and antioxidants resulting from exposure to tobacco smoke leads to oxidative stress, increased mucosal inflammation, and increased expression of inflammatory cytokines (such as interleukin (IL)-8, IL-6 and tumor necrosis factor α ([TNF]-α). Direct cellular effects of ETS on epithelial cells results in increased permeability, mucus overproduction, impaired mucociliary clearance, increased release of proinflammatory cytokines and chemokines, enhanced recruitment of macrophages and neutrophils and disturbed lymphocyte balance towards Th2. The plethora of presented phenomena fully justifies a restrictive policy aiming at limiting the domestic and public exposure to ETS.
Collapse
Affiliation(s)
- Agnieszka Strzelak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksandra Ratajczak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksander Adamiec
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| |
Collapse
|
36
|
Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Critical Review Part I Uptake into Host Cells. WATER 2018. [DOI: 10.3390/w10020132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Bosmans G, Shimizu Bassi G, Florens M, Gonzalez-Dominguez E, Matteoli G, Boeckxstaens GE. Cholinergic Modulation of Type 2 Immune Responses. Front Immunol 2017; 8:1873. [PMID: 29312347 PMCID: PMC5742746 DOI: 10.3389/fimmu.2017.01873] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022] Open
Abstract
In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.
Collapse
Affiliation(s)
- Goele Bosmans
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Gabriel Shimizu Bassi
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Morgane Florens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Erika Gonzalez-Dominguez
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Ghattas Ayoub C, Aminoshariae A, Bakkar M, Ghosh S, Bonfield T, Demko C, Montagnese TA, Mickel AK. Comparison of IL-1β, TNF-α, hBD-2, and hBD-3 Expression in the Dental Pulp of Smokers Versus Nonsmokers. J Endod 2017; 43:2009-2013. [DOI: 10.1016/j.joen.2017.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/01/2017] [Accepted: 08/12/2017] [Indexed: 12/16/2022]
|
39
|
Grandi A, Zini I, Flammini L, Cantoni AM, Vivo V, Ballabeni V, Barocelli E, Bertoni S. α 7 Nicotinic Agonist AR-R17779 Protects Mice against 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in a Spleen-Dependent Way. Front Pharmacol 2017; 8:809. [PMID: 29167641 PMCID: PMC5682330 DOI: 10.3389/fphar.2017.00809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/26/2017] [Indexed: 12/26/2022] Open
Abstract
The existence of a cholinergic anti-inflammatory pathway negatively modulating the inflammatory and immune responses in various clinical conditions and experimental models has long been postulated. In particular, the protective involvement of the vagus nerve and of nicotinic Ach receptors (nAChRs) has been proposed in intestinal inflammation and repeatedly investigated in DSS- and TNBS-induced colitis. However, the role of α7 nAChRs stimulation is still controversial and the potential contribution of α4β2 nAChRs has never been explored in this experimental condition. Our aims were therefore to pharmacologically investigate the role played by both α7 and α4β2 nAChRs in the modulation of the local and systemic inflammatory responses activated in TNBS-induced colitis in mice and to assess the involvement of the spleen in nicotinic responses. To this end, TNBS-exposed mice were sub-acutely treated with various subcutaneous doses of highly selective agonists (AR-R17779 and TC-2403) and antagonists (methyllycaconitine and dihydro-β-erythroidine) of α7 and α4β2 nAChRs, respectively, or with sulfasalazine 50 mg/kg per os and clinical and inflammatory responses were evaluated by means of biochemical, histological and flow cytometry assays. α4β2 ligands evoked weak and contradictory effects, while α7 nAChR agonist AR-R17779 emerged as the most beneficial treatment, able to attenuate several local markers of colitis severity and to revert the rise in splenic T-cells and in colonic inflammatory cytokines levels induced by haptenization. After splenectomy, AR-R17779 lost its protective effects, demonstrating for the first time that, in TNBS-model of experimental colitis, the anti-inflammatory effect of exogenous α7 nAChR stimulation is strictly spleen-dependent. Our findings showed that the selective α7 nAChRs agonist AR-R17779 exerted beneficial effects in a model of intestinal inflammation characterized by activation of the adaptive immune system and that the spleen is essential to mediate this cholinergic protection.
Collapse
Affiliation(s)
- Andrea Grandi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Irene Zini
- Food and Drug Department, University of Parma, Parma, Italy
| | - Lisa Flammini
- Food and Drug Department, University of Parma, Parma, Italy
| | - Anna M. Cantoni
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Valentina Vivo
- Food and Drug Department, University of Parma, Parma, Italy
| | | | | | - Simona Bertoni
- Food and Drug Department, University of Parma, Parma, Italy
| |
Collapse
|
40
|
Sammi SR, Rawat JK, Raghav N, Kumar A, Roy S, Singh M, Gautam S, Yadav RK, Devi U, Pandey R, Kaithwas G. Galantamine attenuates N,N-dimethyl hydrazine induced neoplastic colon damage by inhibiting acetylcholinesterase and bimodal regulation of nicotinic cholinergic neurotransmission. Eur J Pharmacol 2017; 818:174-183. [PMID: 29074413 DOI: 10.1016/j.ejphar.2017.10.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 02/08/2023]
Abstract
The present study reveals the effect of galantamine (GAL) against 1, 2-dimethylhydrazine (DMH) induced colon cancer. Wistar albino rats were arbitrarily divided into four groups (n = 8). Group 1 served as normal control (normal saline, 3ml/kg/day, p.o.); group 2, 3 and 4 received DMH (20mg/kg/week, s.c.), for 6 weeks; groups 3 and 4 also received GAL (2 and 4mg/kg/day, p.o) for 6 weeks. DMH treated rats showed decreased heart rate variability (HRV) factors, increased incidence of aberrant crypt foci (ACF), increased thiobarbituric acid reactive substances (TBARs) along with the decrease in the enzymatic activity of superoxide dismutase (SOD) and catalase. Increased levels of inflammatory marker cyclooxygenase (COX) and lipoxygenase (LOX) was also evident in DMH treated animals. The colonic surface architecture was studied using scanning electron microscopy revealed aberrant crypts(X500) and neoplastic nodules (X2000). GAL treatment helped to minimize the ACF count, restored oxidative stress and inflammatory markers favorably. To further validate our results, our study was directed to define the effect of GAL on acetylcholine neurotransmission using a simple model organism, Caenorhabditis elegans (C. elegans). Increased synaptic cholinergic transmission by GAL (32µM) was evident in the worms when studied through aldicarb assay. However, GAL (32µM) treatment negatively modulated α7 nicotinic acetylcholine receptor (α7nAch receptor), when evaluated using the levamisole assay. GAL (32µM) treatment down regulated the genomic expression of ace-1, ace-2 along with unc-29, unc-38, and unc-50 (essential components of α7 nAch receptor). GAL by inhibiting AchE and regulating Alpha7nACh activity can improve cholinergic neurotransmission.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, India
| | - Jitendra K Rawat
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Neetu Raghav
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Swetlana Gautam
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Rajnish K Yadav
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Uma Devi
- Department of Pharmaceutical Sciences, Faculty of Health Medical Sciences Indigenous and Alternative Medicine, SHIATS- Deemed to be University, Formerly Allahabad Agricultural Institute Naini, Allahabad, U.P., India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India.
| |
Collapse
|
41
|
AlSharari SD, Bagdas D, Akbarali HI, Lichtman PA, Raborn ES, Cabral GA, Carroll FI, McGee EA, Damaj MI. Sex Differences and Drug Dose Influence the Role of the α7 Nicotinic Acetylcholine Receptor in the Mouse Dextran Sodium Sulfate-Induced Colitis Model. Nicotine Tob Res 2017; 19:460-468. [PMID: 27639096 DOI: 10.1093/ntr/ntw245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023]
Abstract
Introduction α7 nicotinic acetylcholine receptors (nAChRs) play an important role in vagus nerve-based cholinergic anti-inflammatory effects. This study was designed to assess the role of α7 nAChRs in dextran sodium sulfate (DSS)-induced colitis in male and female mouse. We first compared disease activity and pathogenesis of colitis in α7 knockout and wild-type mice. We then evaluated the effect of several α7 direct and indirect agonists on the severity of disease in the DSS-induced colitis. Methods Male and female adult mice were administered 2.5% DSS solution freely in the drinking water for 7 consecutive days and the colitis severity (disease activity index) was evaluated as well as colon length, colon histology, and levels of tumor necrosis factor-alpha colonic levels. Results Male, but not female, α7 knockout mice displayed a significantly increased colitis severity and higher tumor necrosis factor-alpha levels as compared with their littermate wild-type mice. Moreover, pretreatment with selective α7 ligands PHA-543613, choline, and PNU-120596 decreased colitis severity in male but not female mice. The anti-colitis effects of these α7 compounds dissipated when administered at higher doses. Conclusions Our results suggest the presence of a α7-dependent anti-colitis endogenous tone in male mice. Finally, our results show for the first time that female mice are less sensitive to the anti-colitis activity of α7 agonists. Ovarian hormones may play a key role in the sex difference effect of α7 nAChRs modulation of colitis in the mouse. Implications Our collective results suggest that targeting α7 nAChRs could represent a viable therapeutic approach for intestinal inflammation diseases such as ulcerative colitis with the consideration of sex differences.
Collapse
Affiliation(s)
- Shakir D AlSharari
- Department of Pharmacology and Toxicology, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
| | - Deniz Bagdas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA.,Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Hamid I Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
| | - Patraic A Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
| | - Erinn S Raborn
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - Guy A Cabral
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC
| | - Elizabeth A McGee
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, VT
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
42
|
Liu Q, Whiteaker P, Morley BJ, Shi FD, Lukas RJ. Distinctive Roles for α7*- and α9*-Nicotinic Acetylcholine Receptors in Inflammatory and Autoimmune Responses in the Murine Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. Front Cell Neurosci 2017; 11:287. [PMID: 29018331 PMCID: PMC5615207 DOI: 10.3389/fncel.2017.00287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022] Open
Abstract
Previous studies have demonstrated immunosuppressive and anti-inflammatory effects of nicotine, including in the experimental autoimmune encephalomyelitis (EAE) model in mice of some forms of multiple sclerosis (MS). Other studies using knock-out (KO) mice have implicated nicotinic acetylcholine (ACh) receptors containing α7, α9, or β2 subunits (α7*-, α9*- or β2*-nAChR) in different, disease-exacerbating or disease-ameliorating processes. These outcomes are in harmony with gene expression analyses showing nAChR subunit mRNA in many classes of immune system cell types. Consistent with influences on disease status, predictable effects of nAChR subunit (and subtype) KO, or of nicotine exposure, are seen on immune cell numbers and distribution and on cytokine levels or other markers of immunity, inflammation, demyelination, and axonal degradation. Providing support for our hypotheses about distinctive roles for nAChR subtypes in EAE, here we have used direct and adoptive EAE induction and a nAChR subunit gene double knock-out (DKO) strategy. Immune cell expression of nAChR α9 subunits as protein is demonstrated by immunostaining of isolated CD4+, CD8+, CD11b+ and CD11c+ cells from wild-type (WT) mice, but not in cells from nAChR α9 subunit KO animals. Nicotine exposure is protective against directly-induced EAE in WT or α7/α9 DKO animals relative to effects seen in WT/vehicle-treated mice, but, remarkably, EAE is exacerbated in vehicle-treated α7/α9 DKO mice. Brain lesion volume and intra-cranial inflammatory activity similarly are higher in DKO/vehicle than in WT/vehicle-treated animals, although nicotine’s protective effects are seen in each instance. By contrast, in adoptive transfer studies, disease severity is attenuated and disease onset is delayed in recipients of splenocytes from WT animals treated with nicotine rather than with vehicle. Moreover, protection as seen in nicotine-treated WT animals is the same in recipients of splenocytes from nAChR α7/α9 DKO mice irrespective of their exposure to nicotine or vehicle. When combined with previous observations, these findings are consistent with disease exacerbation (or even induction) being mediated at least in part via α9*-nAChR in peripheral immune cells. They also suggest protective roles of central nervous system (CNS) α7*-nAChR. The results suggest that both α7*- and α9*-nAChR are potential targets of therapeutic ligands to modulate inflammation and autoimmunity.
Collapse
Affiliation(s)
- Qiang Liu
- Division of Neurobiology, Barrow Neurological InstitutePhoenix, AZ, United States
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological InstitutePhoenix, AZ, United States
| | | | - Fu-Dong Shi
- Division of Neurobiology, Barrow Neurological InstitutePhoenix, AZ, United States
| | - Ronald J Lukas
- Division of Neurobiology, Barrow Neurological InstitutePhoenix, AZ, United States
| |
Collapse
|
43
|
Bai X, Stitzel JA, Bai A, Zambrano CA, Phillips M, Marrack P, Chan ED. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis. Am J Respir Cell Mol Biol 2017; 57:324-333. [PMID: 28398760 DOI: 10.1165/rcmb.2016-0270oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, β2, or β4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-β. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.
Collapse
Affiliation(s)
- Xiyuan Bai
- 1 Department of Medicine, Denver Veterans Affairs Medical Center, Denver, Colorado.,Departments of 2 Medicine.,3 Academic Affairs, and.,4 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Jerry A Stitzel
- 5 Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado
| | - An Bai
- 1 Department of Medicine, Denver Veterans Affairs Medical Center, Denver, Colorado.,Departments of 2 Medicine.,3 Academic Affairs, and
| | - Cristian A Zambrano
- 5 Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado
| | | | - Philippa Marrack
- 6 Immunology, and.,7 Howard Hughes Medical Institute, National Jewish Health, Denver, Colorado
| | - Edward D Chan
- 1 Department of Medicine, Denver Veterans Affairs Medical Center, Denver, Colorado.,Departments of 2 Medicine.,3 Academic Affairs, and.,4 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
44
|
Sherwood RK, Roy CR. Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of Legionella Intracellular Infection. Annu Rev Microbiol 2017; 70:413-33. [PMID: 27607556 DOI: 10.1146/annurev-micro-102215-095557] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gram-negative bacterial pathogen Legionella pneumophila creates a novel organelle inside of eukaryotic host cells that supports intracellular replication. The L. pneumophila-containing vacuole evades fusion with lysosomes and interacts intimately with the host endoplasmic reticulum (ER). Although the natural hosts for L. pneumophila are free-living protozoa that reside in freshwater environments, the mechanisms that enable this pathogen to replicate intracellularly also function when mammalian macrophages phagocytose aerosolized bacteria, and infection of humans by L. pneumophila can result in a severe pneumonia called Legionnaires' disease. A bacterial type IVB secretion system called Dot/Icm is essential for intracellular replication of L. pneumophila. The Dot/Icm apparatus delivers over 300 different bacterial proteins into host cells during infection. These bacterial proteins have biochemical activities that target evolutionarily conserved host factors that control membrane transport processes, which results in the formation of the ER-derived vacuole that supports L. pneumophila replication. This review highlights research discoveries that have defined interactions between vacuoles containing L. pneumophila and the host ER. These studies reveal how L. pneumophila creates a vacuole that supports intracellular replication by subverting host proteins that control biogenesis and fusion of early secretory vesicles that exit the ER and host proteins that regulate the shape and dynamics of the ER. In addition to recruiting ER-derived membranes for biogenesis of the vacuole in which L. pneumophila replicates, these studies have revealed that this pathogen has a remarkable ability to interfere with the host's cellular process of autophagy, which is an ancient cell autonomous defense pathway that utilizes ER-derived membranes to target intracellular pathogens for destruction. Thus, this intracellular pathogen has evolved multiple mechanisms to control membrane transport processes that center on the involvement of the host ER.
Collapse
Affiliation(s)
- Racquel Kim Sherwood
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536;
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536;
| |
Collapse
|
45
|
Lee J, Luria A, Rhodes C, Raghu H, Lingampalli N, Sharpe O, Rada B, Sohn DH, Robinson WH, Sokolove J. Nicotine drives neutrophil extracellular traps formation and accelerates collagen-induced arthritis. Rheumatology (Oxford) 2017; 56:644-653. [PMID: 28013195 DOI: 10.1093/rheumatology/kew449] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 12/17/2022] Open
Abstract
Objectives The aim was to investigate the effects of nicotine on neutrophil extracellular traps (NETs) formation in current and non-smokers and on a murine model of RA. Methods We compared spontaneous and phorbol 12-myristate 13-acetate-induced NETosis between current and non-smokers by DNA release binding. Nicotine-induced NETosis from non-smokers was assessed by DNA release binding, NET-specific (myeloperoxidase (MPO)-DNA complex) ELISA and real-time fluorescence microscopy. We also used immunofluorescent staining to detect nicotinic acetylcholine receptors (nAChRs) on neutrophils and performed a functional analysis to assess the role of nAChRs in nicotine-induced NETosis. Finally, we investigated the effects of systemic nicotine exposure on arthritis severity and NETosis in the CIA mouse model. Results Neutrophils derived from current smokers displayed elevated levels of spontaneous and phorbol 12-myristate 13-acetate-induced NETosis. Nicotine induced dose-dependent NETosis in ex vivo neutrophils from healthy non-smokers, and co-incubation with ACPA-immune complexes or TNF-α facilitated a synergistic effect on NETosis. Real-time fluorescence microscopy revealed robust formation of NET-like structures in nicotine-exposed neutrophils. Immunofluorescent staining demonstrated the presence of the α7 subunit of the nAChR on neutrophils. Stimulation of neutrophils with an α7-specific nAChR agonist induced NETosis, whereas pretreatment with an nAChR antagonist attenuated nicotine-induced NETosis. Nicotine administration to mice with CIA exacerbated inflammatory arthritis, with higher plasma levels of NET-associated MPO-DNA complex. Conclusion We demonstrate that nicotine is a potent inducer of NETosis, which may play an important role in accelerating arthritis in the CIA model. This study generates awareness of and the mechanisms by which nicotine-containing products, including e-cigarettes, may have deleterious effects on patients with RA.
Collapse
Affiliation(s)
- Jaejoon Lee
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ayala Luria
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Christopher Rhodes
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Harini Raghu
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Nithya Lingampalli
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Orr Sharpe
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Balazs Rada
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Pusan, Korea
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Jeremy Sokolove
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
46
|
Breland A, Soule E, Lopez A, Ramôa C, El-Hellani A, Eissenberg T. Electronic cigarettes: what are they and what do they do? Ann N Y Acad Sci 2017; 1394:5-30. [PMID: 26774031 PMCID: PMC4947026 DOI: 10.1111/nyas.12977] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Electronic cigarettes (ECIGs) use electricity to power a heating element that aerosolizes a liquid containing solvents, flavorants, and the dependence-producing drug nicotine for user inhalation. ECIGs have evolved rapidly in the past 8 years, and the changes in product design and liquid constituents affect the resulting toxicant yield in the aerosol and delivery to the user. This rapid evolution has been accompanied by dramatic increases in ECIG use prevalence in many countries among adults and, especially, adolescents in the United States. The increased prevalence of ECIGs that deliver nicotine and other toxicants to users' lungs drives a rapidly growing research effort. This review highlights the most recent information regarding the design of ECIGs and their liquid and aerosol constituents, the epidemiology of ECIG use among adolescents and adults (including correlates of ECIG use), and preclinical and clinical research regarding ECIG effects. The current literature suggests a strong rationale for an empirical regulatory approach toward ECIGs that balances any potential ECIG-mediated decreases in health risks for smokers who use them as substitutes for tobacco cigarettes against any increased risks for nonsmokers who may be attracted to them.
Collapse
Affiliation(s)
| | - Eric Soule
- Virginia Commonwealth University, Richmond, Virgina
| | - Alexa Lopez
- Virginia Commonwealth University, Richmond, Virgina
| | | | | | | |
Collapse
|
47
|
Abnormal CD161 + immune cells and retinoic acid receptor-related orphan receptor γt-mediate enhanced IL-17F expression in the setting of genetic hypertension. J Allergy Clin Immunol 2017; 140:809-821.e3. [PMID: 28093217 DOI: 10.1016/j.jaci.2016.11.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/15/2016] [Accepted: 11/15/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Hypertension is considered an immunologic disorder. However, the role of the IL-17 family in genetic hypertension in the spontaneously hypertensive rat (SHR) has not been investigated. OBJECTIVE We tested the hypothesis that enhanced TH17 programming and IL-17 expression in abundant CD161+ immune cells in SHRs represent an abnormal proinflammatory adaptive immune response. Furthermore, we propose that this response is driven by the master regulator retinoic acid receptor-related orphan receptor γt (RORγt) and a nicotinic proinflammatory innate immune response. METHODS We measured expression of the CD161 surface marker on splenocytes in SHRs and normotensive control Wistar-Kyoto (WKY) rats from birth to adulthood. We compared expression of IL-17A and IL-17F in splenic cells under different conditions. We then determined the functional effect of these cytokines on vascular reactivity. Finally, we tested whether pharmacologic inhibition of RORγt can attenuate hypertension in SHRs. RESULTS SHRs exhibited an abnormally large population of CD161+ cells at birth that increased with age, reaching more than 30% of the splenocyte population at 38 weeks. The SHR splenocytes constitutively expressed more RORγt than those of WKY rats and produced more IL-17F on induction. Exposure of WKY rat aortas to IL-17F impaired endothelium-dependent vascular relaxation, whereas IL-17A did not. Moreover, in vivo inhibition of RORγt by digoxin decreased systolic blood pressure in SHRs. CONCLUSIONS SHRs have a markedly enhanced potential for RORγt-driven expression of proinflammatory and prohypertensive IL-17F in response to innate immune activation. Increased RORγt and IL-17F levels contribute to SHR hypertension and might be therapeutic targets.
Collapse
|
48
|
Therapeutic potential and limitations of cholinergic anti-inflammatory pathway in sepsis. Pharmacol Res 2016; 117:1-8. [PMID: 27979692 DOI: 10.1016/j.phrs.2016.12.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/10/2023]
Abstract
Sepsis is one of the main causes of mortality in hospitalized patients. Despite the recent technical advances and the development of novel generation of antibiotics, severe sepsis remains a major clinical and scientific challenge in modern medicine. Unsuccessful efforts have been dedicated to the search of therapeutic options to treat the deleterious inflammatory components of sepsis. Recent findings on neuronal networks controlling immunity raised expectations for novel therapeutic strategies to promote the regulation of sterile inflammation, such as autoimmune diseases. Interesting studies have dissected the anatomical constituents of the so-called "cholinergic anti-inflammatory pathway", suggesting that electrical vagus nerve stimulation and pharmacological activation of beta-2 adrenergic and alpha-7 nicotinic receptors could be alternative strategies for improving inflammatory conditions. However, the literature on infectious diseases, such as sepsis, is still controversial and, therefore, the real therapeutic potential of this neuroimmune pathway is not well defined. In this review, we will discuss the beneficial and detrimental effects of neural manipulation in sepsis, which depend on the multiple variables of the immune system and the nature of the infection. These observations suggest future critical studies to validate the clinical implications of vagal parasympathetic signaling in sepsis treatment.
Collapse
|
49
|
Teng GG, Pan A, Yuan JM, Koh WP. Cigarette Smoking and the Risk of Incident Gout in a Prospective Cohort Study. Arthritis Care Res (Hoboken) 2016; 68:1135-42. [PMID: 26714165 PMCID: PMC5515666 DOI: 10.1002/acr.22821] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/03/2015] [Accepted: 12/15/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Cigarette smoking is shown to reduce serum urate. However, its impact on risk of gout is unknown. We prospectively examined the relationship between cigarette smoking and gout risk in this Asian cohort. METHODS We analyzed the data from the Singapore Chinese Health Study, a cohort of 63,257 Chinese ages 45-74 years at recruitment in 1993-1998. Information on cigarette smoking and other lifestyle factors was collected through in-person interviews at recruitment. This analysis included 53,213 participants who took part in either the first followup (1999-2004) and/or the second followup interviews (2006-2010). Cox proportional hazards models were used to assess the relationship between cigarette smoking and gout risk. RESULTS A total of 2,244 incident cases of physician-diagnosed gout were identified after a mean followup of 11.1 years. Among men, compared to never smokers, the risk of gout in current smokers was decreased by 27% (hazard ratio [HR] 0.73 [95% confidence interval (95% CI) 0.63-0.84]). This risk reduction was greater in lean male smokers (HR 0.69 [95% CI 0.57-0.83]) than overweight smokers (HR 0.87 [95% CI 0.67-1.13]) (P = 0.09 for interaction). This inverse association with smoking was rapidly attenuated to become null even in former smokers who had recently quit smoking. Conversely, there was no association between smoking and gout risk in women. In a companion cross-sectional study, current smokers had significantly lower levels of serum urate than former and never smokers, and this observation was present in men and not women. CONCLUSION Current smoking is associated with lower risk of gout in men in this Asian cohort.
Collapse
Affiliation(s)
- Gim Gee Teng
- University Medicine Cluster, Division of Rheumatology, National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - An Pan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Min Yuan
- University of Pittsburgh Cancer Institute, Division of Cancer Control and Population Sciences, Pittsburgh, Pennsylvania
- University of Pittsburgh Graduate School of Public Health, Department of Epidemiology, Pittsburgh, Pennsylvania
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Duke-NUS Graduate Medical School Singapore, Singapore
| |
Collapse
|
50
|
Allais L, De Smet R, Verschuere S, Talavera K, Cuvelier CA, Maes T. Transient Receptor Potential Channels in Intestinal Inflammation: What Is the Impact of Cigarette Smoking? Pathobiology 2016; 84:1-15. [DOI: 10.1159/000446568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/02/2016] [Indexed: 11/19/2022] Open
|