1
|
Chong AS, Habal M. Cutting to the chase: Pruning alloreactive T cells. Immunity 2025; 58:270-272. [PMID: 39938479 DOI: 10.1016/j.immuni.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 02/14/2025]
Abstract
Indirect CD4+ T cell allorecognition of donor peptides presented by host MHC class II antigens contributes to transplant rejection in part by eliciting donor-specific antibodies (DSAs). In this issue of Immunity, Zhanzak et al. revisit the role of indirectly alloreactive CD4+ T cells in transplantation and demonstrate that immunodominant epitopes stimulate a narrow repertoire of T cells that can be pruned to prevent DSA formation.
Collapse
Affiliation(s)
- Anita S Chong
- Department of Surgery, Section of Transplant, University of Chicago, Chicago, IL, USA.
| | - Marlena Habal
- Department of Medicine, Division of Cardiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Benichou G, Lancia HH. Intercellular transfer of MHC molecules in T cell alloimmunity and allotransplantation. Biomed J 2024; 47:100749. [PMID: 38797478 PMCID: PMC11414654 DOI: 10.1016/j.bj.2024.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
After transplantation of allogeneic tissues and organs, recognition by recipient T cells of donor MHC molecules initiates the pro-inflammatory adaptive immune response leading to allograft rejection. T cell allorecognition has long been known to be mediated via two distinct pathways: the direct pathway in which T cells recognize intact allogeneic MHC molecules displayed on donor cells and the indirect pathway whereby T cells recognize donor MHC peptides processed and presented by recipient antigen-presenting cells (APCs). It is believed that direct allorecognition is the driving force behind early acute allograft rejection while indirect allorecognition is involved in chronic allograft rejection, a progressive condition characterized by graft vasculopathy and tissue fibrosis. Recently, we and others have reported that after transplantation of allogeneic skin and organs, donor MHC molecules are transferred from donor cells to the host's APCs via trogocytosis or extracellular vesicles. Recipient APCs having captured donor MHC molecules can either present them to T cells in their intact form on their surface (semi-direct pathway) or the form of peptides bound to self-MHC molecules (indirect pathway). The present article provides an overview of recent studies evaluating the role of intercellular exchange of MHC molecules in T cell alloimmunity and its contribution to allograft rejection and tolerance.
Collapse
Affiliation(s)
- Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA.
| | - Hyshem H Lancia
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA
| |
Collapse
|
3
|
Basu S, Dudreuilh C, Shah S, Sanchez-Fueyo A, Lombardi G, Dorling A. Activation and Regulation of Indirect Alloresponses in Transplanted Patients With Donor Specific Antibodies and Chronic Rejection. Transpl Int 2024; 37:13196. [PMID: 39228658 PMCID: PMC11368725 DOI: 10.3389/ti.2024.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Following transplantation, human CD4+T cells can respond to alloantigen using three distinct pathways. Direct and semi-direct responses are considered potent, but brief, so contribute mostly to acute rejection. Indirect responses are persistent and prolonged, involve B cells as critical antigen presenting cells, and are an absolute requirement for development of donor specific antibody, so more often mediate chronic rejection. Novel in vitro techniques have furthered our understanding by mimicking in vivo germinal centre processes, including B cell antigen presentation to CD4+ T cells and effector cytokine responses following challenge with donor specific peptides. In this review we outline recent data detailing the contribution of CD4+ T follicular helper cells and antigen presenting B cells to donor specific antibody formation and antibody mediated rejection. Furthermore, multi-parametric flow cytometry analyses have revealed specific endogenous regulatory T and B subsets each capable of suppressing distinct aspects of the indirect response, including CD4+ T cell cytokine production, B cell maturation into plasmablasts and antibody production, and germinal centre maturation. These data underpin novel opportunities to control these aberrant processes either by targeting molecules critical to indirect alloresponses or potentiating suppression via exogenous regulatory cell therapy.
Collapse
Affiliation(s)
- Sumoyee Basu
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Caroline Dudreuilh
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Transplantation, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Sapna Shah
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Renal Unit, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- Department of Inflammation Biology, King’s College London, London, United Kingdom
- Liver Sciences, King’s College London, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Anthony Dorling
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| |
Collapse
|
4
|
Oya Y, Tanaka Y, Nakazawa T, Matsumura R, Glass DD, Nakajima H, Shevach EM. Polyclonally Derived Alloantigen-Specific T Regulatory Cells Exhibit Target-Specific Suppression and Capture MHC Class II from Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1891-1903. [PMID: 38683146 DOI: 10.4049/jimmunol.2300780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024]
Abstract
Foxp3+ T regulatory (Treg) cells prevent allograft rejection and graft-versus-host disease. Although polyclonal Tregs have been used both in animal models and in humans, the fine specificity of their suppressive function is poorly defined. We have generated mouse recipient-derived alloantigen-specific Tregs in vitro and explored the fine specificity of their suppressive function and their mechanism of action in vitro and in vivo. In vitro, when alloantigen and peptide Ag were both presented on the same dendritic cell, both responses were suppressed by iTregs specific either for the alloantigen or for the peptide Ag. In vivo, iTreg suppression was limited to the cognate Ag, and no bystander suppression was observed when both allo-antigen and peptide Ag were present on the same dendritic cell. In vitro, alloantigen-specific Tregs captured cognate MHC but failed to capture noncognate MHC. Our results demonstrate that a polyclonal population of iTregs generated from naive T cells can mediate highly specific function in vivo and support the view that Treg therapy, even with unselected polyclonal populations, is likely to be target antigen-specific and that bystander responses to self-antigens or to infectious agents are unlikely.
Collapse
Affiliation(s)
- Yoshihiro Oya
- Laboratory of Autoimmune Diseases, Department of Clinical Research, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Yasuyo Tanaka
- Laboratory of Autoimmune Diseases, Department of Clinical Research, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Takuya Nakazawa
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Ryutaro Matsumura
- Department of Rheumatology, Allergy and Clinical Immunology, National Hospital Organization Chibahigashi National Hospital, Chiba City, Chiba, Japan
| | - Deborah D Glass
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University Hospital, Chiba City, Chiba, Japan
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Beare JE, Fleissig Y, Kelm NQ, Reed RM, LeBlanc AJ, Hoying JB, Kaufman CL. Mimicking Clinical Rejection Patterns in a Rat Osteomyocutaneous Flap Model of Vascularized Composite Allotransplantation. J Surg Res 2024; 295:28-40. [PMID: 37979234 PMCID: PMC10922720 DOI: 10.1016/j.jss.2023.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 11/20/2023]
Abstract
INTRODUCTION Graft loss in vascularized composite allotransplantation (VCA) is more often associated with vasculopathy and chronic rejection (CR) than acute cellular rejection (ACR). We present a rat osteomyocutaneous flap model using titrated tacrolimus administration that mimics the graft rejection patterns in our clinical hand transplant program. Comparison of outcomes in these models support a role for ischemia reperfusion injury (IRI) and microvascular changes in CR of skin and large-vessel vasculopathy. The potential of the surgical models for investigating mechanisms of rejection and vasculopathy in VCA and treatment interventions is presented. MATERIALS AND METHODS Four rodent groups were evaluated: syngeneic controls (Group 1), allogeneic transient immunosuppression (Group 2), allogeneic suboptimal immunosuppression (Group 3), and allogeneic standard immunosuppression (Group 4). Animals were monitored for ACR, vasculopathy, and CR of the skin. RESULTS Transient immunosuppression resulted in severe ACR within 2 wk of tacrolimus discontinuation. Standard immunosuppression resulted in minimal rejection but subclinical microvascular changes, including capillary thrombosis and luminal narrowing in arterioles in the donor skin. Further reduction in tacrolimus dose led to femoral vasculopathy and CR of the skin. Surprisingly, femoral vasculopathy was also observed in the syngeneic control group. CONCLUSIONS Titration of tacrolimus in the allogeneic VCA model resulted in presentations of rejection and vasculopathy similar to those in patients and suggests vasculopathy starts at the microvascular level. This adjustable experimental model will allow the study of variables and interventions, such as external trauma or complement blockade, that may initiate or mitigate vasculopathy and CR in VCA.
Collapse
Affiliation(s)
- Jason E Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | | | - Natia Q Kelm
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky; Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Robert M Reed
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Amanda J LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky; Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
| | - James B Hoying
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky; Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Christina L Kaufman
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky; Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky; Trager Transplant Center, UofL Health/Jewish Hospital, Louisville, Kentucky.
| |
Collapse
|
6
|
Szumilas K, Wilk A, Wiśniewski P, Gimpel A, Dziedziejko V, Kipp M, Pawlik A. Current Status Regarding Immunosuppressive Treatment in Patients after Renal Transplantation. Int J Mol Sci 2023; 24:10301. [PMID: 37373448 DOI: 10.3390/ijms241210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Renal transplantation is now the best treatment for end-stage renal failure. To avoid rejection and prolong graft function, organ recipients need immunosuppressive therapy. The immunosuppressive drugs used depends on many factors, including time since transplantation (induction or maintenance), aetiology of the disease, and/or condition of the graft. Immunosuppressive treatment needs to be personalised, and hospitals and clinics have differing protocols and preparations depending on experience. Renal transplant recipient maintenance treatment is mostly based on triple-drug therapy containing calcineurin inhibitors, corticosteroids, and antiproliferative drugs. In addition to the desired effect, the use of immunosuppressive drugs carries risks of certain side effects. Therefore, new immunosuppressive drugs and immunosuppressive protocols are being sought that exert fewer side effects, which could maximise efficacy and reduce toxicity and, in this way, reduce both morbidity and mortality, as well as increase opportunities to modify individual immunosuppression for renal recipients of all ages. The aim of the current review is to describe the classes of immunosuppressive drugs and their mode of action, which are divided by induction and maintenance treatment. An additional aspect of the current review is a description of immune system activity modulation by the drugs used in renal transplant recipients. Complications associated with the use of immunosuppressive drugs and other immunosuppressive treatment options used in kidney transplant recipients have also been described.
Collapse
Affiliation(s)
- Kamila Szumilas
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Aleksandra Wilk
- Department of Histology and Embryology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Piotr Wiśniewski
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Gimpel
- Department of Histology and Embryology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
7
|
Carnel N, Lancia HH, Guinier C, Benichou G. Pathways of Antigen Recognition by T Cells in Allograft Rejection. Transplantation 2023; 107:827-837. [PMID: 36398330 PMCID: PMC10600686 DOI: 10.1097/tp.0000000000004420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adaptive immune response leading to the rejection of allogeneic transplants is initiated and orchestrated by recipient T cells recognizing donor antigens. T-cell allorecognition is mediated via 3 distinct mechanisms: the direct pathway in which T cells recognize allogeneic major histocompatibility complex (MHC) molecules on donor cells, the indirect pathway through which T cells interact with donor peptides bound with self-MHC molecules on recipient antigen-presenting cells, and the recently described semidirect pathway whereby T cells recognize donor MHC proteins on recipient antigen-presenting cells. In this article, we present a description of each of these allorecognition pathways and discuss their role in acute and chronic rejection of allogeneic transplants.
Collapse
Affiliation(s)
- Natacha Carnel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hyshem H. Lancia
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Claire Guinier
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gilles Benichou
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Wong P, Cina DP, Sherwood KR, Fenninger F, Sapir-Pichhadze R, Polychronakos C, Lan J, Keown PA. Clinical application of immune repertoire sequencing in solid organ transplant. Front Immunol 2023; 14:1100479. [PMID: 36865546 PMCID: PMC9971933 DOI: 10.3389/fimmu.2023.1100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Background Measurement of T cell receptor (TCR) or B cell receptor (BCR) gene utilization may be valuable in monitoring the dynamic changes in donor-reactive clonal populations following transplantation and enabling adjustment in therapy to avoid the consequences of excess immune suppression or to prevent rejection with contingent graft damage and to indicate the development of tolerance. Objective We performed a review of current literature to examine research in immune repertoire sequencing in organ transplantation and to assess the feasibility of this technology for clinical application in immune monitoring. Methods We searched MEDLINE and PubMed Central for English-language studies published between 2010 and 2021 that examined T cell/B cell repertoire dynamics upon immune activation. Manual filtering of the search results was performed based on relevancy and predefined inclusion criteria. Data were extracted based on study and methodology characteristics. Results Our initial search yielded 1933 articles of which 37 met the inclusion criteria; 16 of these were kidney transplant studies (43%) and 21 were other or general transplantation studies (57%). The predominant method for repertoire characterization was sequencing the CDR3 region of the TCR β chain. Repertoires of transplant recipients were found to have decreased diversity in both rejectors and non-rejectors when compared to healthy controls. Rejectors and those with opportunistic infections were more likely to have clonal expansion in T or B cell populations. Mixed lymphocyte culture followed by TCR sequencing was used in 6 studies to define an alloreactive repertoire and in specialized transplant settings to track tolerance. Conclusion Methodological approaches to immune repertoire sequencing are becoming established and offer considerable potential as a novel clinical tool for pre- and post-transplant immune monitoring.
Collapse
Affiliation(s)
- Paaksum Wong
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Davide P Cina
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Karen R Sherwood
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Franz Fenninger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ruth Sapir-Pichhadze
- Department of Medicine, Division of Nephrology, McGill University, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Constantin Polychronakos
- Department of Pediatrics, The Research Institute of the McGill University Health Centre and the Montreal Children's Hospital, Montreal, QC, Canada
| | - James Lan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul A Keown
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Iwahara N, Hotta K, Iwami D, Tanabe T, Tanaka Y, Ito YM, Otsuka T, Murai S, Takada Y, Higuchi H, Sasaki H, Hirose T, Harada H, Shinohara N. Analysis of T-cell alloantigen response via a direct pathway in kidney transplant recipients with donor-specific antibodies. Front Immunol 2023; 14:1164794. [PMID: 37207202 PMCID: PMC10189043 DOI: 10.3389/fimmu.2023.1164794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Donor-specific antibodies (DSAs) are the main cause of graft loss over time. The direct pathway of alloantigen recognition is important in the pathogenesis of acute rejection. Recent studies have suggested that the direct pathway also contributes to the pathogenesis of chronic injury. Nevertheless, there are no reports on T-cell alloantigen response via the direct pathway in kidney recipients with DSAs. We analyzed the T-cell alloantigen response via the direct pathway in kidney recipients with DSAs (DSA+) or without DSAs (DSA-). A mixed lymphocyte reaction assay was implemented to assess the direct pathway response. DSA+ patients showed significantly higher CD8+ and CD4+ T cell responses to donor cells than DSA- patients. Furthermore, proliferating CD4+ T cells showed a marked increase in Th1 and Th17 responses in DSA+ patients than in DSA- patients. In a comparison between anti-donor and third-party responses, the anti-donor CD8+ and CD4+ T cell response was significantly lower than the anti-third-party response. In contrast, the donor-specific hyporesponsiveness was absent in DSA+ patients. Our study demonstrated that DSA+ recipients have a greater potential for developing immune responses against the donor tissues via the direct alloantigen recognition pathway. These data contribute to an understanding of DSAs pathogenicity during kidney transplantation.
Collapse
Affiliation(s)
- Naoya Iwahara
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Kiyohiko Hotta
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
- *Correspondence: Kiyohiko Hotta,
| | - Daiki Iwami
- Division of Renal Surgery and Transplantation, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tatsu Tanabe
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuka Tanaka
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Yoichi M. Ito
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takuya Otsuka
- Department of surgical pathology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Sachiyo Murai
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Yusuke Takada
- Departments of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Hokkaido, Japan
| | - Haruka Higuchi
- Departments of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Hokkaido, Japan
| | - Hajime Sasaki
- Departments of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Hokkaido, Japan
| | - Takayuki Hirose
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroshi Harada
- Departments of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Hokkaido, Japan
| | - Nobuo Shinohara
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
10
|
Duneton C, Winterberg PD, Ford ML. Activation and regulation of alloreactive T cell immunity in solid organ transplantation. Nat Rev Nephrol 2022; 18:663-676. [PMID: 35902775 PMCID: PMC9968399 DOI: 10.1038/s41581-022-00600-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 01/18/2023]
Abstract
Transplantation is the only curative treatment for patients with kidney failure but it poses unique immunological challenges that must be overcome to prevent allograft rejection and ensure long-term graft survival. Alloreactive T cells are important contributors to graft rejection, and a clearer understanding of the mechanisms by which these cells recognize donor antigens - through direct, indirect or semi-direct pathways - will facilitate their therapeutic targeting. Post-T cell priming rejection responses can also be modified by targeting pathways that regulate T cell trafficking, survival cytokines or innate immune activation. Moreover, the quantity and quality of donor-reactive memory T cells crucially shape alloimmune responses. Of note, many fundamental concepts in transplant immunology have been derived from models of infection. However, the programmed differentiation of allograft-specific T cell responses is probably distinct from that of pathogen-elicited responses, owing to the dearth of pathogen-derived innate immune activation in the transplantation setting. Understanding the fundamental (and potentially unique) immunological pathways that lead to allograft rejection is therefore a prerequisite for the rational development of therapeutics that promote transplantation tolerance.
Collapse
Affiliation(s)
- Charlotte Duneton
- Paediatric Nephrology, Robert Debré Hospital, Paris, France
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Pamela D Winterberg
- Paediatric Nephrology, Emory University Department of Paediatrics and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Mandy L Ford
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
11
|
Role of the Immune System in Renal Transplantation, Types of Response, Technical Approaches and Current Challenges. IMMUNO 2022. [DOI: 10.3390/immuno2040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Advances over the last decades have made renal transplantation an important therapy for patients with end-stage renal disease, as the incidences of acute rejection and short-term transplant loss have been significantly reduced. However, long-term transplant survival remains a challenge in the renal transplantation community. The main causes of long-term graft loss are acute and chronic rejection, as well as the complications related to immunosuppression therapy. In spite of the breakthroughs achieved in recent years, histology is the gold standard technique to confirm the activation of the immune system against the graft with all the ensuing problems that taking biopsies brings to immunosuppressed patients. For this reason, several assays have been developed to try to monitor the immune function, but they show serious constraints owing to the fact that they require substantial laboratory work, they are not clinically available and they provide controversial results, so the combination of multiple assays is often needed to obtain a reliable diagnosis. Thus, the aim of this review is to perform a retrospective study of the immune system in renal transplantation, with special emphasis on the cutting-edge technological developments for monitoring, classification and early detection of rejection episodes in order to contribute to a better adjustment of immunosuppressive therapies and, hence, to a more personalized medicine that improves the quality of life of patients.
Collapse
|
12
|
Santos J, Calabrese DR, Greenland JR. Lymphocytic Airway Inflammation in Lung Allografts. Front Immunol 2022; 13:908693. [PMID: 35911676 PMCID: PMC9335886 DOI: 10.3389/fimmu.2022.908693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Lung transplant remains a key therapeutic option for patients with end stage lung disease but short- and long-term survival lag other solid organ transplants. Early ischemia-reperfusion injury in the form of primary graft dysfunction (PGD) and acute cellular rejection are risk factors for chronic lung allograft dysfunction (CLAD), a syndrome of airway and parenchymal fibrosis that is the major barrier to long term survival. An increasing body of research suggests lymphocytic airway inflammation plays a significant role in these important clinical syndromes. Cytotoxic T cells are observed in airway rejection, and transcriptional analysis of airways reveal common cytotoxic gene patterns across solid organ transplant rejection. Natural killer (NK) cells have also been implicated in the early allograft damage response to PGD, acute rejection, cytomegalovirus, and CLAD. This review will examine the roles of lymphocytic airway inflammation across the lifespan of the allograft, including: 1) The contribution of innate lymphocytes to PGD and the impact of PGD on the adaptive immune response. 2) Acute cellular rejection pathologies and the limitations in identifying airway inflammation by transbronchial biopsy. 3) Potentiators of airway inflammation and heterologous immunity, such as respiratory infections, aspiration, and the airway microbiome. 4) Airway contributions to CLAD pathogenesis, including epithelial to mesenchymal transition (EMT), club cell loss, and the evolution from constrictive bronchiolitis to parenchymal fibrosis. 5) Protective mechanisms of fibrosis involving regulatory T cells. In summary, this review will examine our current understanding of the complex interplay between the transplanted airway epithelium, lymphocytic airway infiltration, and rejection pathologies.
Collapse
Affiliation(s)
- Jesse Santos
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| | - John R. Greenland
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|
13
|
Kuscu C, Kiran M, Mohammed A, Kuscu C, Satpathy S, Wolen A, Bardhi E, Bajwa A, Eason JD, Maluf D, Mas V, Akalin E. Integrative Analyses of Circulating Small RNAs and Kidney Graft Transcriptome in Transplant Glomerulopathy. Int J Mol Sci 2021; 22:ijms22126218. [PMID: 34207555 PMCID: PMC8226568 DOI: 10.3390/ijms22126218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
Transplant glomerulopathy develops through multiple mechanisms, including donor-specific antibodies, T cells and innate immunity. This study investigates circulating small RNA profiles in serum samples of kidney transplant recipients with biopsy-proven transplant glomerulopathy. Among total small RNA population, miRNAs were the most abundant species in the serum of kidney transplant patients. In addition, fragments arising from mature tRNA and rRNA were detected. Most of the tRNA fragments were generated from 5′ ends of mature tRNA and mainly from two parental tRNAs: tRNA-Gly and tRNA-Glu. Moreover, transplant patients with transplant glomerulopathy displayed a novel tRNA fragments signature. Gene expression analysis from allograft tissues demonstrated changes in canonical pathways related to immune activation such as iCos-iCosL signaling pathway in T helper cells, Th1 and Th2 activation pathway, and dendritic cell maturation. mRNA targets of down-regulated miRNAs such as miR-1224-5p, miR-4508, miR-320, miR-378a from serum were globally upregulated in tissue. Integration of serum miRNA profiles with tissue gene expression showed that changes in serum miRNAs support the role of T-cell mediated mechanisms in ongoing allograft injury.
Collapse
Affiliation(s)
- Canan Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.K.); (A.W.); (A.B.); (J.D.E.)
- Correspondence: ; Tel.: +1-901-448-3162
| | - Manjari Kiran
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (M.K.); (S.S.)
| | - Akram Mohammed
- Center for Biomedical Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Cem Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.K.); (A.W.); (A.B.); (J.D.E.)
| | - Sarthak Satpathy
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (M.K.); (S.S.)
| | - Aaron Wolen
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.K.); (A.W.); (A.B.); (J.D.E.)
| | - Elissa Bardhi
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (E.B.); (D.M.); (V.M.)
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.K.); (A.W.); (A.B.); (J.D.E.)
| | - James D. Eason
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.K.); (A.W.); (A.B.); (J.D.E.)
| | - Daniel Maluf
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (E.B.); (D.M.); (V.M.)
| | - Valeria Mas
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (E.B.); (D.M.); (V.M.)
| | - Enver Akalin
- Montefiore Medical Center, Abdominal Transplant Program, Albert Einstein College of Medicine, Bronx, NY 10467, USA;
| |
Collapse
|
14
|
Meneghini M, Crespo E, Niemann M, Torija A, Lloberas N, Pernin V, Fontova P, Melilli E, Favà A, Montero N, Manonelles A, Cruzado JM, Palou E, Martorell J, Grinyó JM, Bestard O. Donor/Recipient HLA Molecular Mismatch Scores Predict Primary Humoral and Cellular Alloimmunity in Kidney Transplantation. Front Immunol 2021; 11:623276. [PMID: 33776988 PMCID: PMC7988214 DOI: 10.3389/fimmu.2020.623276] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
Donor/recipient molecular human leukocyte antigen (HLA) mismatch predicts primary B-cell alloimmune activation, yet the impact on de novo donor-specific T-cell alloimmunity (dnDST) remains undetermined. The hypothesis of our study is that donor/recipient HLA mismatches assessed at the molecular level may also influence a higher susceptibility to the development of posttransplant primary T-cell alloimmunity. In this prospective observational study, 169 consecutive kidney transplant recipients without preformed donor-specific antibodies (DSA) and with high resolution donor/recipient HLA typing were evaluated for HLA molecular mismatch scores using different informatic algorithms [amino acid mismatch, eplet MM, and Predicted Indirectly Recognizable HLA Epitopes (PIRCHE-II)]. Primary donor-specific alloimmune activation over the first 2 years posttransplantation was assessed by means of both dnDSA and dnDST using single antigen bead (SAB) and IFN-γ ELISPOT assays, respectively. Also, the predominant alloantigen presenting pathway priming DST alloimmunity and the contribution of main alloreactive T-cell subsets were further characterized in vitro. Pretransplantation, 78/169 (46%) were DST+ whereas 91/169 (54%) DST−. At 2 years, 54/169 (32%) patients showed detectable DST responses: 23/54 (42%) dnDST and 31/54 (57%) persistently positive (persistDST+). 24/169 (14%) patients developed dnDSA. A strong correlation was observed between the three distinct molecular mismatch scores and they all accurately predicted dnDSA formation, in particular at the DQ locus. Likewise, HLA molecular incompatibility predicted the advent of dnDST, especially when assessed by PIRCHE-II score (OR 1.014 95% CI 1.001–1.03, p=0.04). While pretransplant DST predicted the development of posttransplant BPAR (OR 5.18, 95% CI=1.64–16.34, p=0.005) and particularly T cell mediated rejection (OR 5.33, 95% CI=1.45–19.66, p=0.012), patients developing dnDST were at significantly higher risk of subsequent dnDSA formation (HR 2.64, 95% CI=1.08–6.45, p=0.03). In vitro experiments showed that unlike preformed DST that is predominantly primed by CD8+ direct pathway T cells, posttransplant DST may also be activated by the indirect pathway of alloantigen presentation, and predominantly driven by CD4+ alloreactive T cells in an important proportion of patients. De novo donor-specific cellular alloreactivity seems to precede subsequent humoral alloimmune activation and is influenced by a poor donor/recipient HLA molecular matching.
Collapse
Affiliation(s)
- Maria Meneghini
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Elena Crespo
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | | | - Alba Torija
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Nuria Lloberas
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Vincent Pernin
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.,Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.,Institute for Regenerative Medicine & Biotherapy (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Pere Fontova
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Edoardo Melilli
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Alexandre Favà
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Nuria Montero
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Anna Manonelles
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Josep Maria Cruzado
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Eduard Palou
- Laboratory of Immunology and Histocompatibility, Hospital Clinic, Barcelona, Spain
| | - Jaume Martorell
- Laboratory of Immunology and Histocompatibility, Hospital Clinic, Barcelona, Spain
| | - Josep Maria Grinyó
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Oriol Bestard
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
15
|
Hennessy C, Lewik G, Cross A, Hester J, Issa F. Recent advances in our understanding of the allograft response. Fac Rev 2021; 10:21. [PMID: 33718938 PMCID: PMC7946390 DOI: 10.12703/r/10-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Organ transplantation is a life-saving treatment for end-stage organ failure. However, despite advances in immunosuppression, donor matching, tissue typing, and organ preservation, many organs are still lost each year to rejection. Ultimately, tolerance in the absence of immunosuppression is the goal, and although this seldom occurs spontaneously, a deeper understanding of alloimmunity may provide avenues for future therapies which aid in its establishment. Here, we highlight the recent key advances in our understanding of the allograft response. On the innate side, recent work has highlighted the previously unrecognised role of innate lymphoid cells as well as natural killer cells in promoting the alloresponse. The two major routes of allorecognition have recently been joined by a third newly identified pathway, semi-direct allorecognition, which is proving to be a key active pathway in transplantation. Through this review, we detail these newly defined areas in the allograft response and highlight areas for potential future therapeutic intervention.
Collapse
Affiliation(s)
- Conor Hennessy
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Guido Lewik
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Amy Cross
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Fadi Issa
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
16
|
Hughes AD, Zhao D, Dai H, Abou-Daya KI, Tieu R, Rammal R, Williams AL, Landsittel DP, Shlomchik WD, Morelli AE, Oberbarnscheidt MH, Lakkis FG. Cross-dressed dendritic cells sustain effector T cell responses in islet and kidney allografts. J Clin Invest 2020; 130:287-294. [PMID: 31763998 DOI: 10.1172/jci125773] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/25/2019] [Indexed: 01/01/2023] Open
Abstract
Activation of host T cells that mediate allograft rejection is a 2-step process. The first occurs in secondary lymphoid organs where T cells encounter alloantigens presented by host DCs and differentiate to effectors. Antigen presentation at these sites occurs principally via transfer of intact, donor MHC-peptide complexes from graft cells to host DCs (cross-dressing) or by uptake and processing of donor antigens into allopeptides bound to self-MHC molecules (indirect presentation). The second step takes place in the graft, where effector T cells reengage with host DCs before causing rejection. How host DCs present alloantigens to T cells in the graft is not known. Using mouse islet and kidney transplantation models, imaging cytometry, and 2-photon intravital microscopy, we demonstrate extensive cross-dressing of intragraft host DCs with donor MHC-peptide complexes that occurred early after transplantation, whereas host DCs presenting donor antigen via the indirect pathway were rare. Cross-dressed DCs stably engaged TCR-transgenic effector CD8+ T cells that recognized donor antigen and were sufficient for sustaining acute rejection. In the chronic kidney rejection model, cross-dressing declined over time but was still conspicuous 8 weeks after transplantation. We conclude that cross-dressing of host DCs with donor MHC molecules is a major antigen presentation pathway driving effector T cell responses within allografts.
Collapse
Affiliation(s)
- Andrew D Hughes
- Thomas E. Starzl Transplantation Institute.,Physician Scientist Training Program, and
| | - Daqiang Zhao
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Organ Transplantation, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hehua Dai
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Khodor I Abou-Daya
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Roger Tieu
- Thomas E. Starzl Transplantation Institute.,Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rayan Rammal
- Division of Anatomic Pathology, Department of Pathology, American University of Beirut, Beirut, Lebanon
| | - Amanda L Williams
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Douglas P Landsittel
- Thomas E. Starzl Transplantation Institute.,Department of Biomedical Informatics
| | - Warren D Shlomchik
- Thomas E. Starzl Transplantation Institute.,Department of Medicine, and.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adrian E Morelli
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Karahan GE, Claas FHJ, Heidt S. Pre-existing Alloreactive T and B Cells and Their Possible Relevance for Pre-transplant Risk Estimation in Kidney Transplant Recipients. Front Med (Lausanne) 2020; 7:340. [PMID: 32793610 PMCID: PMC7385137 DOI: 10.3389/fmed.2020.00340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
In allogeneic transplantation, genetic disparities between patient and donor may lead to cellular and humoral immune responses mediated by both naïve and memory alloreactive cells of the adaptive immune system. This review will focus on alloreactive T and B cells with emphasis on the memory compartment, their role in relation to kidney rejection, and in vitro assays to detect these alloreactive cells. Finally, the potential additional value of utilizing donor-specific memory T and B cell assays supplementary to current routine pre-transplant risk assessment of kidney transplant recipients will be discussed.
Collapse
Affiliation(s)
- Gonca E Karahan
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
18
|
Lo MW, Woodruff TM. Complement: Bridging the innate and adaptive immune systems in sterile inflammation. J Leukoc Biol 2020; 108:339-351. [PMID: 32182389 DOI: 10.1002/jlb.3mir0220-270r] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The complement system is a collection of soluble and membrane-bound proteins that together act as a powerful amplifier of the innate and adaptive immune systems. Although its role in infection is well established, complement is becoming increasingly recognized as a key contributor to sterile inflammation, a chronic inflammatory process often associated with noncommunicable diseases. In this context, damaged tissues release danger signals and trigger complement, which acts on a range of leukocytes to augment and bridge the innate and adaptive immune systems. Given the detrimental effect of chronic inflammation, the complement system is therefore well placed as an anti-inflammatory drug target. In this review, we provide a general outline of the sterile activators, effectors, and targets of the complement system and a series of examples (i.e., hypertension, cancer, allograft transplant rejection, and neuroinflammation) that highlight complement's ability to bridge the 2 arms of the immune system.
Collapse
Affiliation(s)
- Martin W Lo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Shiu KY, Stringer D, McLaughlin L, Shaw O, Brookes P, Burton H, Wilkinson H, Douthwaite H, Tsui TL, Mclean A, Hilton R, Griffin S, Geddes C, Ball S, Baker R, Roufosse C, Horsfield C, Dorling A. Effect of Optimized Immunosuppression (Including Rituximab) on Anti-Donor Alloresponses in Patients With Chronically Rejecting Renal Allografts. Front Immunol 2020; 11:79. [PMID: 32117242 PMCID: PMC7012933 DOI: 10.3389/fimmu.2020.00079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
RituxiCAN-C4 combined an open-labeled randomized controlled trial (RCT) in 7 UK centers to assess whether rituximab could stabilize kidney function in patients with chronic rejection, with an exploratory analysis of how B cell-depletion influenced T cell anti-donor responses relative to outcome. Between January 2007 and March 2015, 59 recruits were enrolled after screening, 23 of whom consented to the embedded RCT. Recruitment was halted when in a pre-specified per protocol interim analysis, the RCT was discovered to be significantly underpowered. This report therefore focuses on the exploratory analysis, in which we confirmed that when B cells promoted CD4+ anti-donor IFNγ production assessed by ELISPOT, this associated with inferior clinical outcome; these patterns were inhibited by optimized immunosuppression but not rituximab. B cell suppression of IFNγ production, which associated with number of transitional B cells and correlated with slower declines in kidney function was abolished by rituximab, which depleted transitional B cells for prolonged periods. We conclude that in this patient population, optimized immunosuppression but not rituximab promotes anti-donor alloresponses associated with favorable outcomes. Clinical Trial Registration: Registered with EudraCT (2006-002330-38) and www.ClinicalTrials.gov, identifier: NCT00476164.
Collapse
Affiliation(s)
- Kin Yee Shiu
- Department of Inflammation Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Dominic Stringer
- Biostatistics and Health Informatics, The Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Laura McLaughlin
- Department of Inflammation Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Olivia Shaw
- Viapath Analytics LLP, London, United Kingdom
| | - Paul Brookes
- Histocompatibility and Immunogenetics, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Hannah Burton
- Department of Inflammation Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Hannah Wilkinson
- Department of Inflammation Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Harriet Douthwaite
- Department of Inflammation Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Tjir-Li Tsui
- Department of Inflammation Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Adam Mclean
- Imperial College Renal and Transplant Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Rachel Hilton
- Department of Nephrology and Transplantation, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Sian Griffin
- Department of Nephrology, University Hospital of Wales, Cardiff, United Kingdom
| | - Colin Geddes
- Renal Unit, Western Infirmary, NHS Greater Glasgow and Clyde Trust, Glasgow, United Kingdom
| | - Simon Ball
- Department of Nephrology, University Hospital Birmingham, Birmingham, United Kingdom
| | - Richard Baker
- Renal Unit, St. James's University Hospital, Leeds, United Kingdom
| | - Candice Roufosse
- Histocompatibility and Immunogenetics, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Catherine Horsfield
- Department of Histopathology, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Anthony Dorling
- Department of Inflammation Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| |
Collapse
|
20
|
Geneugelijk K, Spierings E. PIRCHE-II: an algorithm to predict indirectly recognizable HLA epitopes in solid organ transplantation. Immunogenetics 2019; 72:119-129. [PMID: 31741009 PMCID: PMC6971131 DOI: 10.1007/s00251-019-01140-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen (HLA) mismatches between donors and recipients may lead to alloreactivity after solid organ transplantation. Over the last few decades, our knowledge of the complexity of the HLA system has dramatically increased, as numerous new HLA alleles have been identified. As a result, the likelihood of alloreactive responses towards HLA mismatches after solid organ transplantation cannot easily be assessed. Algorithms are promising solutions to estimate the risk for alloreactivity after solid organ transplantation. In this review, we show that the recently developed PIRCHE-II (Predicted Indirectly ReCognizable HLA Epitopes) algorithm can be used to minimize alloreactivity towards HLA mismatches. Together with the use of other algorithms and simulation approaches, the PIRCHE-II algorithm aims for a better estimated alloreactive risk for individual patients and eventually an improved graft survival after solid organ transplantation.
Collapse
Affiliation(s)
- Kirsten Geneugelijk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.
| | - Eric Spierings
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This article reviews recent literature on the nature of extracellular vesicles released by allogeneic transplants and examine their role in T-cell alloimmunity involved in rejection and tolerance of these grafts. RECENT FINDINGS Donor cells release extracellular vesicles, including exosomes, after transplantation of allogeneic organs and tissues. Consequently, recipient APCs take up these exosomes and present donor MHC antigens on their surface (allo-MHC cross-dressing) thus, activating some alloreactive T cells via a mechanism called semi-direct pathway of allorecognition. In addition, one study shows that exosomes carrying noninherited maternal antigens are associated with maternal microchimerism and tolerance in offspring. Finally, a few studies describe potential utilization of exosomes as modulators of alloimmunity and biomarkers of rejection in allotransplantation. SUMMARY Extracellular vesicles, including exosomes, released by allografts contribute to recognition of donor antigens by T cells after allotransplantation. This occurs through cross-dressing of recipient APCs with donor MHC antigens and subsequent activation of T cells, a process called semi-direct alloreactivity. The relevance of this phenomenon in rejection and tolerance of allografts and the potential utilization of exosomes as biomarkers in transplantation are discussed.
Collapse
|
22
|
Lubetzky M, Hayde N, Ó Broin P, Ajaimy M, Bao Y, Mohammed O, Schwartz D, Pullman J, Akalin E. Molecular signatures and clinical outcomes of transplant glomerulopathy stratified by microvascular inflammation and donor-specific antibody. Clin Transplant 2019; 33:e13469. [PMID: 30578675 DOI: 10.1111/ctr.13469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND We investigated clinical outcomes and molecular signatures of transplant glomerulopathy (TG) stratified by microvascular inflammation (MVI) and donor-specific antibody (DSA) status. METHODS We performed a retrospective review of 749 kidney transplant patients who received a for-cause kidney biopsy from 2009 to 2014. We classified TG as MVI positive (MVI+) or MVI negative (MVI-), and with or without DSA. We obtained gene expression profiles for 44 biopsies by Affymetrix HuGene 1.0 ST expression arrays. RESULTS A total of 100 patients had TG; 49 were MVI+, and 51 were MVI-. After a median post-biopsy follow-up of 2.08 years (range 0.43-4.59), Kaplan-Meier survival analysis demonstrated worse allograft survival in MVI+ TG patients compared with MVI- TG patients (P = 0.01), and time to graft failure was significantly shorter in MVI+ patients (1.08 ± 1.01 years vs 2.3 ± 1.8 years; P = 0.002). DSA status did not affect graft survival within MVI+ or MVI- groups. Analysis of pathogenesis-based transcripts (PBT) showed that MVI+ TG biopsies had increased expression of gamma interferon and rejection (GRIT) and DSA-associated transcripts (DSAST), as observed in antibody-mediated rejection. MVI- TG biopsies had increased expression of cytotoxic and regulatory T cell- and B cell-associated transcripts but not GRIT or DSAST. DSA status had no effect on expression of any PBTs studied in MVI- TG biopsies. CONCLUSIONS Graft survival in TG is significantly worse in the presence of MVI. Gene expression profiles of MVI+ TG resemble antibody-mediated rejection while gene expression profiles of MVI- TG resemble cell-mediated rejection regardless of DSA status.
Collapse
Affiliation(s)
- Michelle Lubetzky
- Weill Cornell-NY Presbyterian, Division of Nephrology, New York City, New York
| | - Nicole Hayde
- Montefiore Medical Center Transplant Center, Albert Einstein College of Medicine, New York City, New York
| | - Pilib Ó Broin
- School of Mathematics, Statistics & Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Maria Ajaimy
- Montefiore Medical Center Transplant Center, Albert Einstein College of Medicine, New York City, New York
| | - Yi Bao
- Montefiore Medical Center Transplant Center, Albert Einstein College of Medicine, New York City, New York
| | - Omar Mohammed
- Montefiore Medical Center Transplant Center, Albert Einstein College of Medicine, New York City, New York
| | - Daniel Schwartz
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, New York
| | - James Pullman
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, New York
| | - Enver Akalin
- Montefiore Medical Center Transplant Center, Albert Einstein College of Medicine, New York City, New York
| |
Collapse
|
23
|
Siu JHY, Surendrakumar V, Richards JA, Pettigrew GJ. T cell Allorecognition Pathways in Solid Organ Transplantation. Front Immunol 2018; 9:2548. [PMID: 30455697 PMCID: PMC6230624 DOI: 10.3389/fimmu.2018.02548] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/17/2018] [Indexed: 02/02/2023] Open
Abstract
Transplantation is unusual in that T cells can recognize alloantigen by at least two distinct pathways: as intact MHC alloantigen on the surface of donor cells via the direct pathway; and as self-restricted processed alloantigen via the indirect pathway. Direct pathway responses are viewed as strong but short-lived and hence responsible for acute rejection, whereas indirect pathway responses are typically thought to be much longer lasting and mediate the progression of chronic rejection. However, this is based on surprisingly scant experimental evidence, and the recent demonstration that MHC alloantigen can be re-presented intact on recipient dendritic cells-the semi-direct pathway-suggests that the conventional view may be an oversimplification. We review recent advances in our understanding of how the different T cell allorecognition pathways are triggered, consider how this generates effector alloantibody and cytotoxic CD8 T cell alloresponses and assess how these responses contribute to early and late allograft rejection. We further discuss how this knowledge may inform development of cellular and pharmacological therapies that aim to improve transplant outcomes, with focus on the use of induced regulatory T cells with indirect allospecificity and on the development of immunometabolic strategies. KEY POINTS Acute allograft rejection is likely mediated by indirect and direct pathway CD4 T cell alloresponses.Chronic allograft rejection is largely mediated by indirect pathway CD4 T cell responses. Direct pathway recognition of cross-dressed endothelial derived MHC class II alloantigen may also contribute to chronic rejection, but the extent of this contribution is unknown.Late indirect pathway CD4 T cell responses will be composed of heterogeneous populations of allopeptide specific T helper cell subsets that recognize different alloantigens and are at various stages of effector and memory differentiation.Knowledge of the precise indirect pathway CD4 T cell responses active at late time points in a particular individual will likely inform the development of alloantigen-specific cellular therapies and will guide immunometabolic modulation.
Collapse
|
24
|
Geneugelijk K, Spierings E. Matching donor and recipient based on predicted indirectly recognizable human leucocyte antigen epitopes. Int J Immunogenet 2018; 45:41-53. [PMID: 29464898 DOI: 10.1111/iji.12359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/21/2017] [Accepted: 02/01/2018] [Indexed: 12/27/2022]
Abstract
The predicted indirectly recognizable human leucocyte antigen (HLA) epitopes (PIRCHE) algorithm is a novel in silico algorithm to determine donor-recipient compatibility. The PIRCHE algorithm determines donor-recipient compatibility by counting the number of mismatched HLA-derived epitopes that are involved in indirect T-cell alloimmune responses; these epitopes are designated as PIRCHE. Over the last few years, the PIRCHE algorithm has been investigated in both hematopoietic stem cell transplantation and solid organ transplantation. This review describes the theory of the algorithm, its application in transplantation, and highlights the future perspectives on the clinical application of the PIRCHE algorithm.
Collapse
Affiliation(s)
- K Geneugelijk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E Spierings
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
25
|
Obregon C, Kumar R, Pascual MA, Vassalli G, Golshayan D. Update on Dendritic Cell-Induced Immunological and Clinical Tolerance. Front Immunol 2017; 8:1514. [PMID: 29250057 PMCID: PMC5715373 DOI: 10.3389/fimmu.2017.01514] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) as highly efficient antigen-presenting cells are at the interface of innate and adaptive immunity. As such, they are key mediators of immunity and antigen-specific immune tolerance. Due to their functional specialization, research efforts have focused on the characterization of DCs subsets involved in the initiation of immunogenic responses and in the maintenance of tissue homeostasis. Tolerogenic DCs (tolDCs)-based therapies have been designed as promising strategies to prevent and control autoimmune diseases as well as allograft rejection after solid organ transplantation (SOT). Despite successful experimental studies and ongoing phase I/II clinical trials using autologous tolDCs in patients with type 1 diabetes, rheumatoid arthritis, multiple sclerosis, and in SOT recipients, additional basic research will be required to determine the optimal DC subset(s) and conditioning regimens for tolDCs-based treatments in vivo. In this review, we discuss the characteristics of human DCs and recent advances in their classification, as well as the role of DCs in immune regulation and their susceptibility to in vitro or in vivo manipulation for the development of tolerogenic therapies, with a focus on the potential of tolDCs for the treatment of autoimmune diseases and the prevention of allograft rejection after SOT.
Collapse
Affiliation(s)
- Carolina Obregon
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Rajesh Kumar
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Manuel Antonio Pascual
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Département coeur-vaisseaux, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Fondazione Cardiocentro Ticino, Swiss Institute of Regenerative Medicine (SIRM), Lugano, Switzerland
| | - Déla Golshayan
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Perkey E, Maillard I. New Insights into Graft-Versus-Host Disease and Graft Rejection. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 13:219-245. [PMID: 29099650 DOI: 10.1146/annurev-pathol-020117-043720] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allogeneic transplantation of foreign organs or tissues has lifesaving potential, but can lead to serious complications. After solid organ transplantation, immune-mediated rejection mandates the use of prolonged global immunosuppression and limits the life span of transplanted allografts. After bone marrow transplantation, donor-derived immune cells can trigger life-threatening graft-versus-host disease. T cells are central mediators of alloimmune complications and the target of most existing therapeutic interventions. We review recent progress in identifying multiple cell types in addition to T cells and new molecular pathways that regulate pathogenic alloreactivity. Key discoveries include the cellular subsets that function as potential sources of alloantigens, the cross talk of innate lymphoid cells with damaged epithelia and with the recipient microbiome, the impact of the alarmin interleukin-33 on alloreactivity, and the role of Notch ligands expressed by fibroblastic stromal cells in alloimmunity. While refining our understanding of transplantation immunobiology, these findings identify new therapeutic targets and new areas of investigation.
Collapse
Affiliation(s)
- Eric Perkey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Department of Internal Medicine, Division of Hematology-Oncology, and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Medicine, Division of Hematology-Oncology, and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
27
|
Martínez-Bravo MJ, Sánchez B, Sousa JM, Acevedo MJ, Gómez-Bravo MA, Núñez-Roldán A, Aguilera I. T-cell allorecognition of donor glutathione S-transferase T1 in plasma cell-rich rejection. World J Hepatol 2017; 9:1115-1124. [PMID: 29026463 PMCID: PMC5620421 DOI: 10.4254/wjh.v9.i27.1115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/06/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of glutathione S-transferase T1 donor-specific T lymphocytes in plasma cell-rich rejection of liver allografts.
METHODS The study group included 22 liver transplant patients. Among them, 18 patients were mismatched for the glutathione S-transferase T1 (GSTT1) alleles (don+/rec-), and 4 were matched (don+/rec+). Seven of the mismatched patients produced anti-GSTT1 antibodies and developed plasma cell-rich rejection (former de novo immune hepatitis). For the detection of specific T lymphocytes, peripheral blood mononuclear cells were collected and stored in liquid nitrogen. The memory T cell response was studied by adding to the cell cultures to a mix of 39 custom-made, 15-mer overlapping peptides, which covered the entire GSTT1 amino acid sequence. The specific cellular response to peptides was analyzed by flow cytometry using the markers CD8, CD4, IL-4 and IFNγ.
RESULTS Activation of CD8+ T cells with different peptides was observed exclusively in the group of patients with plasma-cell rich rejection (3 out of 7), with production of IL-4 and/or IFNγ at a rate of 1%-4.92% depending on the peptides. The CD4+ response was most common and not exclusive for patients with the disease, where 5 out of 7 showed percentages of activated cells from 1.24% to 31.34%. Additionally, two patients without the disease but with the mismatch had cells that became stimulated with some peptides (1.45%-5.18%). Highly unexpected was the finding of a double positive CD4+CD8low T cell population that showed the highest degree of activation with some of the peptides in 7 patients with the mismatch, in 4 patients with plasma cell-rich rejection and in 3 patients without the disease. Unfortunately, CD4+CD8low cells represent 1% of the total number of lymphocytes, and stimulation could not be analyzed in 9 patients due to the low number of gated cells. Cells from the 4 patients included as controls did not show activation with any of the peptides.
CONCLUSION Patients with GSTT1 mismatch can develop a specific T-cell response, but the potential role of this response in the pathogenesis of plasma cell-rich rejection is unknown.
Collapse
Affiliation(s)
- María José Martínez-Bravo
- Immunology Service, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Berta Sánchez
- Immunology Service, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - José Manuel Sousa
- Digestive Diseases Service, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - María José Acevedo
- Immunology Service, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | | | - Antonio Núñez-Roldán
- Immunology Service, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Isabel Aguilera
- Immunology Service, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
28
|
Crespo E, Cravedi P, Martorell J, Luque S, Melilli E, Cruzado JM, Jarque M, Meneghini M, Manonelles A, Donadei C, Lloberas N, Gomà M, Grinyó JM, Heeger P, Bestard O. Posttransplant peripheral blood donor-specific interferon-γ enzyme-linked immune spot assay differentiates risk of subclinical rejection and de novo donor-specific alloantibodies in kidney transplant recipients. Kidney Int 2017; 92:201-213. [PMID: 28274484 DOI: 10.1016/j.kint.2016.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 01/06/2023]
Abstract
Noninvasive diagnosis of kidney allograft inflammation in transplant recipients with stable graft function (subclinical rejection) could permit more effective therapy and prevent later development of de novo anti-donor HLA antibodies and/or graft dysfunction. Here we tested whether quantifying posttransplant donor-specific alloreactive T-cells by IFN-γ ELISPOT assay noninvasively detects subclinical T-cell mediated rejection and/or predicts development of anti-donor HLA antibodies. Using an initial cross-sectional cohort of 60 kidney transplant patients with six-month surveillance biopsies, we found that negative donor-specific IFN-γ ELISPOT assays accurately ruled out the presence of subclinical T-cell mediated rejection. These results were validated using a distinct prospective cohort of 101 patients where donor-specific IFN-γ ELISPOT results at both three- and six-months posttransplant significantly differentiated patients with subclinical T-cell mediated rejection at six months, independent of other clinical variables (odds ratio 0.072, 95% confidence interval 0.008-0.653). The posttransplant donor-specific IFN-γ ELISPOT results independently associated with subsequent development of significant anti-donor HLA antibodies (0.085, 0.008-0.862) and with significantly worse two-year function (estimated glomerular filtration rate) compared to patients with a negative test. Thus, posttransplant immune monitoring by donor-specific IFN-γ ELISPOT can assess risk for developing subclinical T-cell mediated rejection and anti-donor HLA antibodies, potentially limiting the need for surveillance biopsies. Our study provides a guide for individualizing immunosuppression to improve posttransplant outcomes.
Collapse
Affiliation(s)
- Elena Crespo
- Experimental Nephrology Laboratory, IDIBELL, Barcelona University, Barcelona, Spain
| | - Paolo Cravedi
- Renal Division, Department of Medicine and the Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jaume Martorell
- HLA histocompatibility Laboratory, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Sergi Luque
- Experimental Nephrology Laboratory, IDIBELL, Barcelona University, Barcelona, Spain
| | - Edoardo Melilli
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Josep M Cruzado
- Experimental Nephrology Laboratory, IDIBELL, Barcelona University, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Marta Jarque
- Experimental Nephrology Laboratory, IDIBELL, Barcelona University, Barcelona, Spain
| | - Maria Meneghini
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Anna Manonelles
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Chiara Donadei
- Renal Division, Department of Medicine and the Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Núria Lloberas
- Experimental Nephrology Laboratory, IDIBELL, Barcelona University, Barcelona, Spain
| | - Montse Gomà
- Pathology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Josep M Grinyó
- Experimental Nephrology Laboratory, IDIBELL, Barcelona University, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Peter Heeger
- Renal Division, Department of Medicine and the Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Oriol Bestard
- Experimental Nephrology Laboratory, IDIBELL, Barcelona University, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.
| |
Collapse
|
29
|
Menon MC, Murphy B, Heeger PS. Moving Biomarkers toward Clinical Implementation in Kidney Transplantation. J Am Soc Nephrol 2017; 28:735-747. [PMID: 28062570 DOI: 10.1681/asn.2016080858] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long-term kidney transplant outcomes remain suboptimal, delineating an unmet medical need. Although current immunosuppressive therapy in kidney transplant recipients is effective, dosing is conventionally adjusted empirically on the basis of time after transplant or altered in response to detection of kidney dysfunction, histologic evidence of allograft damage, or infection. Such strategies tend to detect allograft rejection after significant injury has already occurred, fail to detect chronic subclinical inflammation that can negatively affect graft survival, and ignore specific risks and immune mechanisms that differentially contribute to allograft damage among transplant recipients. Assays and biomarkers that reliably quantify and/or predict the risk of allograft injury have the potential to overcome these deficits and thereby, aid clinicians in optimizing immunosuppressive regimens. Herein, we review the data on candidate biomarkers that we contend have the highest potential to become clinically useful surrogates in kidney transplant recipients, including functional T cell assays, urinary gene and protein assays, peripheral blood cell gene expression profiles, and allograft gene expression profiles. We identify barriers to clinical biomarker adoption in the transplant field and suggest strategies for moving biomarker-based individualization of transplant care from a research hypothesis to clinical implementation.
Collapse
Affiliation(s)
- Madhav C Menon
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara Murphy
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter S Heeger
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
30
|
Graft dysfunction in chronic antibody-mediated rejection correlates with B-cell-dependent indirect antidonor alloresponses and autocrine regulation of interferon-γ production by Th1 cells. Kidney Int 2016; 91:477-492. [PMID: 27988211 PMCID: PMC5258815 DOI: 10.1016/j.kint.2016.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/19/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022]
Abstract
Chronic antibody-mediated rejection, a common cause of renal transplant failure, has a variable clinical phenotype. Understanding why some with chronic antibody-mediated rejection progress slowly may help develop more effective therapies. B lymphocytes act as antigen-presenting cells for in vitro indirect antidonor interferon-γ production in chronic antibody-mediated rejection, but many patients retain the ability to regulate these responses. Here we test whether particular patterns of T and B cell antidonor response associate with the variability of graft dysfunction in chronic antibody-mediated rejection. Our results confirm that dynamic changes in indirect antidonor CD4+ T-cell responses correlate with changes in estimated glomerular filtration rates, independent of other factors. Graft dysfunction progressed rapidly in patients who developed unregulated B-cell–driven interferon-γ production. However, conversion to a regulated or nonreactive pattern, which could be achieved by optimization of immunosuppression, associated with stabilization of graft function. Functional regulation by B cells appeared to activate an interleukin-10 autocrine pathway in CD4+ T cells that, in turn, impacted on antigen-specific responses. Thus, our data significantly enhance the understanding of graft dysfunction associated with chronic antibody-mediated rejection and provide the foundation for strategies to prolong renal allograft survival, based on regulation of interferon-γ production.
Collapse
|
31
|
Marino J, Paster J, Benichou G. Allorecognition by T Lymphocytes and Allograft Rejection. Front Immunol 2016; 7:582. [PMID: 28018349 PMCID: PMC5155009 DOI: 10.3389/fimmu.2016.00582] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/24/2016] [Indexed: 11/13/2022] Open
Abstract
Recognition of donor antigens by recipient T cells in secondary lymphoid organs initiates the adaptive inflammatory immune response leading to the rejection of allogeneic transplants. Allospecific T cells become activated through interaction of their T cell receptors with intact allogeneic major histocompatibility complex (MHC) molecules on donor cells (direct pathway) and/or donor peptides presented by self-MHC molecules on recipient antigen-presenting cells (APCs) (indirect pathway). In addition, recent studies show that alloreactive T cells can also be stimulated through recognition of allogeneic MHC molecules displayed on recipient APCs (MHC cross-dressing) after their transfer via cell-cell contact or through extracellular vesicles (semi-direct pathway). The specific allorecognition pathway used by T cells is dictated by intrinsic and extrinsic factors to the allograft and can influence the nature and magnitude of the alloresponse and rejection process. Consequently, various organs and tissues such as skin, cornea, and solid organ transplants are recognized differently by pro-inflammatory T cells through these distinct pathways, which may explain why these grafts are rejected in a different fashion. On the other hand, the mechanisms by which anti-inflammatory regulatory T cells (Tregs) recognize alloantigen and promote transplantation tolerance are still unclear. It is likely that thymic Tregs are activated through indirect allorecognition, while peripheral Tregs recognize alloantigens in a direct fashion. As we gain insights into the mechanisms underlying allorecognition by pro-inflammatory and Treg cells, novel strategies are being designed to prevent allograft rejection in the absence of ongoing immunosuppressive drug treatment in patients.
Collapse
Affiliation(s)
- Jose Marino
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua Paster
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Alegre ML, Lakkis FG, Morelli AE. Antigen Presentation in Transplantation. Trends Immunol 2016; 37:831-843. [PMID: 27743777 DOI: 10.1016/j.it.2016.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
Transplantation of solid organs between genetically distinct individuals leads, in the absence of immunosuppression, to T cell-dependent transplant rejection. Activation of graft-reactive T cells relies on the presentation of transplant-derived antigens (intact donor MHC molecules or processed peptides on host MHC molecules) by mature dendritic cells (DCs). This review focuses on novel insights regarding the steps for maturation and differentiation of DCs that are necessary for productive presentation of transplant antigens to host T cells. These steps include the licensing of DCs by the microbiota, their activation and maturation following recognition of allogeneic non-self, and their capture of donor cell exosomes to amplify the presentation of transplant antigens.
Collapse
Affiliation(s)
- Maria-Luisa Alegre
- Department of Medicine, University of Chicago, 924 East 57th Street, JFK-R312, Chicago, IL 60637, USA.
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute and Departments of Surgery and Immunology, University of Pittsburgh School of Medicine, Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA; Thomas E. Starzl Transplantation Institute and Department of Medicine, University of Pittsburgh School of Medicine, Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Adrian E Morelli
- Thomas E. Starzl Transplantation Institute and Departments of Surgery and Immunology, University of Pittsburgh School of Medicine, Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
33
|
Marino J, Babiker-Mohamed MH, Crosby-Bertorini P, Paster JT, LeGuern C, Germana S, Abdi R, Uehara M, Kim JI, Markmann JF, Tocco G, Benichou G. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci Immunol 2016; 1. [PMID: 27942611 DOI: 10.1126/sciimmunol.aaf8759] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transplantation of allogeneic organs and tissues represents a lifesaving procedure for a variety of patients affected with end-stage diseases. Although current immunosuppressive therapy prevents early acute rejection, it is associated with nephrotoxicity and increased risks for infection and neoplasia. This stresses the need for selective immune-based therapies relying on manipulation of lymphocyte recognition of donor antigens. The passenger leukocyte theory states that allograft rejection is initiated by recipient T cells recognizing donor major histocompatibility complex (MHC) molecules displayed on graft leukocytes migrating to the host's lymphoid organs. We revisited this concept in mice transplanted with allogeneic skin, heart, or islet grafts using imaging flow cytometry. We observed no donor cells in the lymph nodes and spleen of skin-grafted mice, but we found high numbers of recipient cells displaying allogeneic MHC molecules (cross-dressed) acquired from donor microvesicles (exosomes). After heart or islet transplantation, we observed few donor leukocytes (100 per million) but large numbers of recipient cells cross-dressed with donor MHC (>90,000 per million). Last, we showed that purified allogeneic exosomes induced proinflammatory alloimmune responses by T cells in vitro and in vivo. Collectively, these results suggest that recipient antigen-presenting cells cross-dressed with donor MHC rather than passenger leukocytes trigger T cell responses after allotransplantation.
Collapse
Affiliation(s)
- Jose Marino
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mohamed H Babiker-Mohamed
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Patrick Crosby-Bertorini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joshua T Paster
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian LeGuern
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sharon Germana
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mayuko Uehara
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - James I Kim
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georges Tocco
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Wee YM, Jung JH, Kim YH, Choi MY, Kim YH, Choi DS, Cho MH, Han DJ. Involvement of indirectly allostimulated CD4+CD43highCD45RO+ T cell proliferation in the development of chronic allograft nephropathy. Exp Biol Med (Maywood) 2016; 241:1217-28. [PMID: 26350952 PMCID: PMC4950307 DOI: 10.1177/1535370215601522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/20/2015] [Indexed: 11/15/2022] Open
Abstract
The goal of this study was to identify immunological markers for use in antigen-specific assays that predict long-term survival after renal allograft and distinguish stable-functioning (SP) patients from poorly functioning (PP) patients. For this prospective study, 20 patients were enrolled. Eight SP and six PP patients were enrolled in this study. Serum cytokine/chemokine levels were analyzed by the Luminex multiplex assay. To detect indirect alloreactive T cells, we performed indirect mixed lymphocyte reaction using donor-antigen-pulsed autologous dendritic cells as stimulators. Serum induced protein-10 levels were significantly higher in the serum of PP patients, whereas sCD40L levels were higher in SP patients. The PP patients had significantly higher numbers of donor-specific CD4(+)CD43(high)CD45RO(+) T cells after indirect allostimulation, whereas this cell population was unchanged in SP patients. The donor-specific CD4(+)CD43(high)CD45RO(+) T cells had the effector memory T cell phenotype. Prospectively, we studied whether these cells influence graft outcome and found that their strong proliferation in pre-transplant patients is related to a poorly functioning graft. Indirectly allostimulated CD4(+)CD43(high)CD45RO(+) T cells may not only contribute to chronic allograft nephropathy development but may also have a role in the progression of acute rejection. Thus, these cells may have potential use as immune-monitoring markers in a noninvasive in vitro assay that predicts graft outcome.
Collapse
Affiliation(s)
- Yu-Mee Wee
- Department of Surgery, Ulsan University College of Medicine & Asan Medical Center, Songpa-gu, Seoul 138-736, Korea Department of Biological Science, Konkuk University, Kwangjin-gu, Seoul 143-701, Korea
| | - Joo-Hee Jung
- Department of Surgery, Ulsan University College of Medicine & Asan Medical Center, Songpa-gu, Seoul 138-736, Korea
| | - Yang-Hee Kim
- Department of Surgery, Ulsan University College of Medicine & Asan Medical Center, Songpa-gu, Seoul 138-736, Korea
| | - Monica-Y Choi
- Department of Surgery, Ulsan University College of Medicine & Asan Medical Center, Songpa-gu, Seoul 138-736, Korea
| | - Young-Hoon Kim
- Department of Surgery, Ulsan University College of Medicine & Asan Medical Center, Songpa-gu, Seoul 138-736, Korea
| | - Do-Sook Choi
- Department of Surgery, Ulsan University College of Medicine & Asan Medical Center, Songpa-gu, Seoul 138-736, Korea
| | - Myung-Hwan Cho
- Department of Biological Science, Konkuk University, Kwangjin-gu, Seoul 143-701, Korea
| | - Duck-Jong Han
- Department of Surgery, Ulsan University College of Medicine & Asan Medical Center, Songpa-gu, Seoul 138-736, Korea
| |
Collapse
|
35
|
Hickey MJ, Valenzuela NM, Reed EF. Alloantibody Generation and Effector Function Following Sensitization to Human Leukocyte Antigen. Front Immunol 2016; 7:30. [PMID: 26870045 PMCID: PMC4740371 DOI: 10.3389/fimmu.2016.00030] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Allorecognition is the activation of the adaptive immune system to foreign human leukocyte antigen (HLA) resulting in the generation of alloantibodies. Due to a high polymorphism, foreign HLA is recognized by the immune system following transplant, transfusion, or pregnancy resulting in the formation of the germinal center and the generation of long-lived alloantibody-producing memory B cells. Alloantibodies recognize antigenic epitopes displayed by the HLA molecule on the transplanted allograft and contribute to graft damage through multiple mechanisms, including (1) activation of the complement cascade resulting in the formation of the MAC complex and inflammatory anaphylatoxins, (2) transduction of intracellular signals leading to cytoskeletal rearrangement, growth, and proliferation of graft vasculature, and (3) immune cell infiltration into the allograft via FcγR interactions with the FC portion of the antibody. This review focuses on the generation of HLA alloantibody, routes of sensitization, alloantibody specificity, and mechanisms of antibody-mediated graft damage.
Collapse
Affiliation(s)
- Michelle J Hickey
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, University of California Los Angeles , Los Angeles, CA , USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, University of California Los Angeles , Los Angeles, CA , USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
36
|
Ali JM, Negus MC, Conlon TM, Harper IG, Qureshi MS, Motallebzadeh R, Willis R, Saeb-Parsy K, Bolton EM, Bradley JA, Pettigrew GJ. Diversity of the CD4 T Cell Alloresponse: The Short and the Long of It. Cell Rep 2016; 14:1232-1245. [PMID: 26804905 PMCID: PMC5405053 DOI: 10.1016/j.celrep.2015.12.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 01/03/2023] Open
Abstract
MHC alloantigen is recognized by two pathways: "directly," intact on donor cells, or "indirectly," as self-restricted allopeptide. The duration of each pathway, and its relative contribution to allograft vasculopathy, remain unclear. Using a murine model of chronic allograft rejection, we report that direct-pathway CD4 T cell alloresponses, as well as indirect-pathway responses against MHC class II alloantigen, are curtailed by rapid elimination of donor hematopoietic antigen-presenting cells. In contrast, persistent presentation of epitope resulted in continual division and less-profound contraction of the class I allopeptide-specific CD4 T cell population, with approximately 10,000-fold more cells persisting than following acute allograft rejection. This expanded population nevertheless displayed sub-optimal anamnestic responses and was unable to provide co-stimulation-independent help for generating alloantibody. Indirect-pathway CD4 T cell responses are heterogeneous. Appreciation that responses against particular alloantigens dominate at late time points will likely inform development of strategies aimed at improving transplant outcomes.
Collapse
Affiliation(s)
- Jason M Ali
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Margaret C Negus
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Thomas M Conlon
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Ines G Harper
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - M Saeed Qureshi
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Reza Motallebzadeh
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Richard Willis
- NIH Tetramer Facility, Emory/Yerkes, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Kourosh Saeb-Parsy
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Eleanor M Bolton
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - J Andrew Bradley
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Gavin J Pettigrew
- University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK.
| |
Collapse
|
37
|
Morris H, DeWolf S, Robins H, Sprangers B, LoCascio SA, Shonts BA, Kawai T, Wong W, Yang S, Zuber J, Shen Y, Sykes M. Tracking donor-reactive T cells: Evidence for clonal deletion in tolerant kidney transplant patients. Sci Transl Med 2015; 7:272ra10. [PMID: 25632034 DOI: 10.1126/scitranslmed.3010760] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T cell responses to allogeneic major histocompatibility complex antigens present a formidable barrier to organ transplantation, necessitating long-term immunosuppression to minimize rejection. Chronic rejection and drug-induced morbidities are major limitations that could be overcome by allograft tolerance induction. Tolerance was first intentionally induced in humans via combined kidney and bone marrow transplantation (CKBMT), but the mechanisms of tolerance in these patients are incompletely understood. We now establish an assay to identify donor-reactive T cells and test the role of deletion in tolerance after CKBMT. Using high-throughput sequencing of the T cell receptor B chain CDR3 region, we define a fingerprint of the donor-reactive T cell repertoire before transplantation and track those clones after transplant. We observed posttransplant reductions in donor-reactive T cell clones in three tolerant CKBMT patients; such reductions were not observed in a fourth, nontolerant, CKBMT patient or in two conventional kidney transplant recipients on standard immunosuppressive regimens. T cell repertoire turnover due to lymphocyte-depleting conditioning only partially accounted for the observed reductions in tolerant patients; in fact, conventional transplant recipients showed expansion of circulating donor-reactive clones, despite extensive repertoire turnover. Moreover, loss of donor-reactive T cell clones more closely associated with tolerance induction than in vitro functional assays. Our analysis supports clonal deletion as a mechanism of allograft tolerance in CKBMT patients. The results validate the contribution of donor-reactive T cell clones identified before transplant by our method, supporting further exploration as a potential biomarker of transplant outcomes.
Collapse
Affiliation(s)
- Heather Morris
- Columbia University Medical Center, New York, NY 10032, USA
| | - Susan DeWolf
- Columbia University Medical Center, New York, NY 10032, USA
| | - Harlan Robins
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ben Sprangers
- Columbia University Medical Center, New York, NY 10032, USA
| | | | | | - Tatsuo Kawai
- Massachusetts General Hospital, Boston, MA 02114, USA
| | - Waichi Wong
- Columbia University Medical Center, New York, NY 10032, USA
| | - Suxiao Yang
- Columbia University Medical Center, New York, NY 10032, USA
| | - Julien Zuber
- Columbia University Medical Center, New York, NY 10032, USA
| | - Yufeng Shen
- Columbia University Medical Center, New York, NY 10032, USA.
| | - Megan Sykes
- Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
38
|
Crespo E, Bestard O. Biomarkers to assess donor-reactive T-cell responses in kidney transplant patients. Clin Biochem 2015; 49:329-37. [PMID: 26279496 DOI: 10.1016/j.clinbiochem.2015.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/23/2015] [Accepted: 08/09/2015] [Indexed: 02/07/2023]
Abstract
Different to antibody-mediated rejection (ABMR), T-cell mediated rejection (TCMR) still unpredictably occurs after kidney transplantation in a great part because of a poor immunologic evaluation of the cellular allogeneic immune response. However, in the last years, important efforts have focused on the development of novel and more sensitive assays to monitor T-cell alloimmune responses at different biological levels that may improve the understanding of the functional status of the cellular immune compartment in patients undergoing organ transplantation. In this direction, immune assays evaluating T-cell proliferation, intracellular ATP release, multiparameter flow cytometry, profiling T-cell receptor repertoires and measurements of frequencies of cytokine-producing T-cells using an IFN-γ enzyme-linked immunospot assay (IFN-γ ELISPOT) have been reported showing interesting associations between the cellular alloimmune response and kidney transplant outcomes. In summary, an important progress has been made in the assessment of alloreactive T-cell responses in the context of organ transplantation using novel immune assays at different biological levels. However, there is an urgent need for prospective, randomized clinical studies to validate these encouraging preliminary data to ultimately introduce them in current clinical practice for refining current immune-risk stratification in kidney transplantation.
Collapse
Affiliation(s)
- Elena Crespo
- Laboratory of Experimental Nephrology, IDIBELL, Barcelona, Spain
| | - Oriol Bestard
- Laboratory of Experimental Nephrology, IDIBELL, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona University, Barcelona, Spain.
| |
Collapse
|
39
|
Tonsho M, Lee S, Aoyama A, Boskovic S, Nadazdin O, Capetta K, Smith RN, Colvin RB, Sachs DH, Cosimi AB, Kawai T, Madsen JC, Benichou G, Allan JS. Tolerance of Lung Allografts Achieved in Nonhuman Primates via Mixed Hematopoietic Chimerism. Am J Transplant 2015; 15:2231-9. [PMID: 25904524 PMCID: PMC4569127 DOI: 10.1111/ajt.13274] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/25/2023]
Abstract
While the induction of transient mixed chimerism has tolerized MHC-mismatched renal grafts in nonhuman primates and patients, this approach has not been successful for more immunogenic organs. Here, we describe a modified delayed-tolerance-induction protocol resulting in three out of four monkeys achieving long-term lung allograft survival without ongoing immunosuppression. Two of the tolerant monkeys displayed stable mixed lymphoid chimerism, and the other showed transient chimerism. Serial biopsies and post-mortem specimens from the tolerant monkeys revealed no signs of chronic rejection. The tolerant recipients also exhibited T cell unresponsiveness and a lack of alloantibody. This is the first report of durable mixed chimerism and successful tolerance induction of MHC-mismatched lungs in primates.
Collapse
|
40
|
de Mare-Bredemeijer ELD, Shi XL, Mancham S, van Gent R, van der Heide-Mulder M, de Boer R, Heemskerk MHM, de Jonge J, van der Laan LJW, Metselaar HJ, Kwekkeboom J. Cytomegalovirus-Induced Expression of CD244 after Liver Transplantation Is Associated with CD8+ T Cell Hyporesponsiveness to Alloantigen. THE JOURNAL OF IMMUNOLOGY 2015; 195:1838-48. [DOI: 10.4049/jimmunol.1500440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
|
41
|
Chai JG, Ratnasothy K, Bucy RP, Noelle RJ, Lechler R, Lombardi G. Allospecific CD4(+) T cells retain effector function and are actively regulated by Treg cells in the context of transplantation tolerance. Eur J Immunol 2015; 45:2017-27. [PMID: 25944401 DOI: 10.1002/eji.201545455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/12/2015] [Accepted: 04/30/2015] [Indexed: 01/31/2023]
Abstract
Although donor-specific transfusion (DST) plus CD154 blockade represents a robust protocol for inducing transplantation tolerance, the underlying mechanisms are incompletely understood. In a murine T-cell adoptive transfer model, we have visualized alloantigen-specific, TCR-transgenic for H2-A(b) /H2-K(d) 54-68 epitope (TCR75) CD4(+) T cells with indirect allospecificity during the course of tolerance induction. Three main observations were made. First, although the majority of TCR75 CD4(+) T cells were deleted following DST plus CD154 blockade, the surviving TCR75 CD4(+) T cells were capable of making IL-2, upregulating CD44, and undergoing cell division, suggesting that they were functionally active. Indeed, residual TCR75 CD4(+) T cells reisolated from the primary recipients given DST plus CD154 blockade were fully capable of rejecting allografts upon secondary transfer. Second, in tolerant mice, TCR75 CD4(+) T cells were not induced to express Foxp3 in the graft-draining lymph node. TCR75 CD4(+) T cells were also absent in accepted graft tissues in which endogenous Treg cells were enriched. Finally, DST plus CD154 blockade resulted in an abortive expansion of TCR75 CD4(+) T cells, a process that required the presence of endogenous Treg cells. Collectively, surviving TCR75 CD4(+) T cells are immunocompetent but kept in check by an endogenous immunosuppressive network induced by DST plus CD154 blockade.
Collapse
Affiliation(s)
- Jian-Guo Chai
- MRC Centre for Transplantation, King's College London, London, UK.,Therapeutic Immunology Group, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - R Pat Bucy
- Department of Pathology, University of Alabama, Birmingham, AL, USA
| | - Randolph J Noelle
- MRC Centre for Transplantation, King's College London, London, UK.,Department of Microbiology and Immunology, Dartmouth Medical School, Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Robert Lechler
- MRC Centre for Transplantation, King's College London, London, UK
| | | |
Collapse
|
42
|
Shiu KY, Dorling A. Optimising long-term graft survival: establishing the benefit of targeting B lymphocytes. Clin Med (Lond) 2014; 14 Suppl 6:s84-8. [PMID: 25468927 DOI: 10.7861/clinmedicine.14-6-s84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Kidney transplants do not last for the natural lifespan of most recipients. Of the reasons why transplants fail, damage by the immune system is the commonest cause. Understanding how the immune system recognises transplanted organs has increased significantly in recent years, but there is little insight into how organs are damaged, and no still no way of suppressing immune-mediated damage without exposing patients to the detrimental effects of long-term immunosuppression. In this article, we review the role of antibodies and B cells in immune-mediated damage of kidney transplants, and discuss the potential for manipulation of B cells to improve clinical outcomes.
Collapse
Affiliation(s)
- Kin Yee Shiu
- Royal Free London NHS Foundation Trust, London, UK
| | - Anthony Dorling
- MRC Centre for Transplantation, King's College London, and honorary consultant nephrologist, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
43
|
Mehrotra A, Leventhal J, Purroy C, Cravedi P. Monitoring T cell alloreactivity. Transplant Rev (Orlando) 2014; 29:53-9. [PMID: 25475045 DOI: 10.1016/j.trre.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/03/2014] [Accepted: 11/09/2014] [Indexed: 01/06/2023]
Abstract
Currently, immunosuppressive therapy in kidney transplant recipients is center-specific, protocol-driven, and adjusted according to functional or histological evaluation of the allograft and/or signs of drug toxicity or infection. As a result, a large fraction of patients receive too much or too little immunosuppression, exposing them to higher rates of infection, malignancy and drug toxicity, or increased risk of acute and chronic graft injury from rejection, respectively. The individualization of immunosuppression requires the development of assays able to reliably quantify and/or predict the magnitude of the recipient's immune response toward the allograft. As alloreactive T cells are central mediators of allograft rejection, monitoring T cell alloreactivity has become a priority for the transplant community. Among available assays, flow cytometry based phenotyping, T cell proliferation, T cell cytokine secretion, and ATP release (ImmuKnow), have been the most thoroughly tested. While numerous cross-sectional studies have found associations between the results of these assays and the presence of clinically relevant post-transplantation outcomes, data from prospective studies are still scanty, thereby preventing widespread implementation in the clinic. Future studies are required to test the hypothesis that tailoring immunosuppression on the basis of results offered by these biomarkers leads to better outcomes than current standard clinical practice.
Collapse
Affiliation(s)
- Anita Mehrotra
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Jeremy Leventhal
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Carolina Purroy
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Paolo Cravedi
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA.
| |
Collapse
|
44
|
Whitehouse G, Sanchez-Fueyo A. Postoperative Monitoring: Biomarkers and Alloimmune Responses and Their Relevance to Vascularized Composite Allotransplantation. CURRENT TRANSPLANTATION REPORTS 2014. [DOI: 10.1007/s40472-014-0022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Govender L, Pascual M, Golshayan D. Potential and limitations of regulatory T-cell therapy in solid organ transplantation. Expert Rev Clin Immunol 2014; 10:1197-212. [PMID: 25073810 DOI: 10.1586/1744666x.2014.943191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the past few years, the therapeutic potential of Treg has been highlighted in the field of autoimmune diseases and after allogeneic transplantation. The first hurdle for the therapeutic use of Treg is their insufficient numbers in non-manipulated individuals, in particular when facing strong immune activation and expanding effector cells, such as in response to an allograft. Here we review current approaches being explored for Treg expansion in the perspective of clinical therapeutic protocols. We describe different Treg subsets that could be suitable for clinical application, as well as discuss factors such as the required dose of Treg, their antigen-specificity and in vivo stability, that have to be considered for optimal Treg-based immunotherapy in transplantation. Since Treg may not be sufficient as stand-alone therapy for solid organ transplantation in humans, we draw attention to possible hurdles and combination therapy with immunomodulatory drugs that could possibly improve the in vivo efficacy of Treg.
Collapse
Affiliation(s)
- Lerisa Govender
- Departments of Medicine and Surgery, Transplantation Centre and Transplantation Immunopathology Laboratory, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, 1011 Lausanne, Switzerland
| | | | | |
Collapse
|
46
|
Breman E, van Miert PP, van der Steen DM, Heemskerk MH, Doxiadis II, Roelen D, Claas FH, van Kooten C. HLA monomers as a tool to monitor indirect allorecognition. Transplantation 2014; 97:1119-27. [PMID: 24798312 PMCID: PMC4032218 DOI: 10.1097/tp.0000000000000113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/04/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Recognition of donor antigens can occur through two separate pathways: the direct pathway (non-self HLA on donor cells) and the indirect pathway (self-restricted presentation of donor derived peptides on recipient cells). Indirect allorecognition is important in the development of humoral rejection; therefore, there is an increasing interest in the monitoring of indirect alloreactive T-cells. We have used an in vitro model to determine the optimal requirements for indirect presentation and assessed the risk for semidirect presentation in this system. METHODS HLA-typed monocyte-derived dendritic cells (moDCs) were incubated with cellular fragments or necrotic cells and incubated with either indirect or direct alloreactive T-cell clones. T-cell reactivity was measured through proliferation or cytokine secretion. HLA-typed moDC, monocytes, or PBMCs were incubated with HLA class I monomers, in combination with either direct/indirect T-cell clones. RESULTS Although both were efficiently taken up, alloreactivity was limited to the semi-direct pathway, as measured by allospecific CD4 (indirect) and CD8 T-cell clones (direct) when cells were used. In contrast, HLA-A2 monomers were not only efficiently taken up but also processed and presented by HLA-typed moDC, monocytes, and PBMCs. Activation was shown by a dose-dependent induction of IFN-γ production and proliferation by the CD4 T-cell clone. Antigen presentation was most efficient when the monomers were cultured for longer periods (24-48 hr) in the presence of the T-cells. Using this method, no reactivity was observed by the CD8 T-cell clone, confirming no semidirect alloreactivity. CONCLUSION We have developed a system that could be used to monitor indirect alloreactive T-cells.
Collapse
Affiliation(s)
- Eytan Breman
- 1 Department of Nephrology, Leiden University Medical Center (LUMC), Leiden, the Netherlands. 2 Department of Immunohematology and Blood Transfusion, LUMC, Leiden, the Netherlands. 3 Department of Hematology, LUMC, Leiden, The Netherlands. 4 Address correspondence to: Cees van Kooten, MD, PhD, Albinusdreef 2, C07-35 2333ZA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang X, Liu Y, Zhang G, Shi J, Zhang X, Zheng X, Jiang AT, Zhang ZX, Johnston N, Siu KS, Chen R, Lian D, Koos D, Quan D, Min WP. Synergic silencing of costimulatory molecules prevents cardiac allograft rejection. J Transl Med 2014; 12:142. [PMID: 24886282 PMCID: PMC4040111 DOI: 10.1186/1479-5876-12-142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/28/2014] [Indexed: 12/13/2022] Open
Abstract
Background While substantial progress has been made in blocking acute transplant rejection with the advent of immune suppressive drugs, chronic rejection, mediated primarily by recipient antigen presentation, remains a formidable problem in clinical transplantation. We hypothesized that blocking co-stimulatory pathways in the recipient by induction of RNA interference using small interference RNA (siRNA) expression vectors can prolong allogeneic heart graft survival. Method Vectors expressing siRNA specifically targeting CD40 and CD80 were prepared. Recipients (BALB/c mice) were treated with CD40 and/or CD80 siRNA expression vectors via hydrodynamic injection. Control groups were injected with a scrambled siRNA vector and sham treatment (PBS). After treatment, a fully MHC-mismatched (BALB/c to C57/BL6) heart transplantation was performed. Result Allogeneic heart graft survival (>100 days) was approximately 70% in the mice treated simultaneously with CD40 and CD80 siRNA expression vectors with overall reduction in lymphocyte interstitium infiltration, vascular obstruction, and edema. Hearts transplanted into CD40 or CD80 siRNA vector-treated recipients had an increased graft survival time compared to negative control groups, but did not survive longer than 40 days. In contrast, allogenic hearts transplanted into recipients treated with scrambled siRNA vector and PBS stopped beating within 10–16 days. Real-time PCR (RT-PCR) and flow cytometric analysis showed an upregulation of FoxP3 expression in spleen lymphocytes and a concurrent downregulation of CD40 and CD80 expression in splenic dendritic cells of siRNA-treated mice. Functional suppressive activity of splenic dendritic cells (DCs) isolated from tolerant recipients was demonstrated in a mixed lymphocyte reaction (MLR). Furthermore, DCs isolated from CD40- and CD80-treated recipients promoted CD4 + CD25 + FoxP3+ regulatory T cell differentiation in vitro. Conclusion This study demonstrates that the simultaneous silencing of CD40 and CD80 genes has synergistic effects in preventing allograft rejection, and may therefore have therapeutic potential in clinical transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wei-Ping Min
- Department of Surgery, Pathology, and Ocology, University of Western Ontario, London, Canada.
| |
Collapse
|
48
|
Ballet C, Giral M, Ashton-Chess J, Renaudin K, Brouard S, Soulillou JP. Chronic rejection of human kidney allografts. Expert Rev Clin Immunol 2014; 2:393-402. [DOI: 10.1586/1744666x.2.3.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Bodonyi-Kovacs G, Strom TB, Putheti P. A20—A Biomarker of Allograft Outcome: A Showcase in Kidney Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:103-16. [DOI: 10.1007/978-1-4939-0398-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Abstract
With the advent of cellular therapies, it has become clear that the success of future therapies in prolonging allograft survival will require an intimate understanding of the allorecognition pathways and effector mechanisms that are responsible for chronic rejection and late graft loss.Here, we consider current understanding of T-cell allorecognition pathways and discuss the most likely mechanisms by which these pathways collaborate with other effector mechanisms to cause allograft rejection. We also consider how this knowledge may inform development of future strategies to prevent allograft rejection.Although both direct and indirect pathway CD4 T cells appear active immediately after transplantation, it has emerged that indirect pathway CD4 T cells are likely to be the dominant alloreactive T-cell population late after transplantation. Their ability to provide help for generating long-lived alloantibody is likely one of the main mechanisms responsible for the progression of allograft vasculopathy and chronic rejection.Recent work has suggested that regulatory T cells may be an effective cellular therapy in transplantation. Given the above, adoptive therapy with CD4 regulatory T cells with indirect allospecificity is a rational first choice in attempting to attenuate the development and progression of chronic rejection; those with additional properties that enable inhibition of germinal center alloantibody responses hold particular appeal.
Collapse
|