1
|
Dale GA, Wilkins DJ, Bohannon CD, Dilernia D, Hunter E, Bedford T, Antia R, Sanz I, Jacob J. Clustered Mutations at the Murine and Human IgH Locus Exhibit Significant Linkage Consistent with Templated Mutagenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1252-1264. [PMID: 31375545 PMCID: PMC6702052 DOI: 10.4049/jimmunol.1801615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/18/2019] [Indexed: 01/21/2023]
Abstract
Somatic hypermutation generates a myriad of Ab mutants in Ag-specific B cells, from which high-affinity mutants are selected. Chickens, sheep, and rabbits use nontemplated point mutations and templated mutations via gene conversion to diversify their expressed Ig loci, whereas mice and humans rely solely on untemplated somatic point mutations. In this study, we demonstrate that, in addition to untemplated point mutations, templated mutagenesis readily occurs at the murine and human Ig loci. We provide two distinct lines of evidence that are not explained by the Neuberger model of somatic hypermutation: 1) across multiple data sets there is significant linkage disequilibrium between individual mutations, especially among close mutations, and 2) among those mutations, those <8 bp apart are significantly more likely to match microhomologous regions in the IgHV repertoire than predicted by the mutation profiles of somatic hypermutation. Together, this supports the role of templated mutagenesis during somatic diversification of Ag-activated B cells.
Collapse
Affiliation(s)
- Gordon A Dale
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA 30329
| | - Daniel J Wilkins
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA 30329
| | - Caitlin D Bohannon
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA 30329
| | - Dario Dilernia
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA 30329
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA 30329
| | - Trevor Bedford
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA 30322; and
| | - Ignacio Sanz
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA 30322
| | - Joshy Jacob
- Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA 30329;
| |
Collapse
|
2
|
|
3
|
Lanning DK, Knight KL. Diversification of the Primary Antibody Repertoire by AID-Mediated Gene Conversion. Results Probl Cell Differ 2016; 57:279-93. [PMID: 26537386 DOI: 10.1007/978-3-319-20819-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gene conversion, mediated by activation-induced cytidine deaminase (AID), has been found to contribute to generation of the primary antibody repertoire in several vertebrate species. Generation of the primary antibody repertoire by gene conversion of immunoglobulin (Ig) genes occurs primarily in gut-associated lymphoid tissues (GALT) and is best described in chicken and rabbit. Here, we discuss current knowledge of the mechanism of gene conversion as well as the contribution of the microbiota in promoting gene conversion of Ig genes. Finally, we propose that the antibody diversification strategy used in GALT species, such as chicken and rabbit, is conserved in a subset of human and mouse B cells.
Collapse
Affiliation(s)
- Dennis K Lanning
- Department of Microbiology and Immunology, Loyola University Chicago, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Katherine L Knight
- Department of Microbiology and Immunology, Loyola University Chicago, 2160 S. First Avenue, Maywood, IL, 60153, USA.
| |
Collapse
|
4
|
Zhai SK, Volgina VV, Sethupathi P, Knight KL, Lanning DK. Chemokine-mediated B cell trafficking during early rabbit GALT development. THE JOURNAL OF IMMUNOLOGY 2014; 193:5951-9. [PMID: 25385821 DOI: 10.4049/jimmunol.1302575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microbial and host cell interactions stimulate rabbit B cells to diversify the primary Ab repertoire in GALT. B cells at the base of appendix follicles begin proliferating and diversifying their V-(D)-J genes around 1 wk of age, ∼5 d after B cells first begin entering appendix follicles. To gain insight into the microbial and host cell interactions that stimulate B cells to diversify the primary Ab repertoire, we analyzed B cell trafficking within follicles during the first week of life. We visualized B cells, as well as chemokines that mediate B cell homing in lymphoid tissues, by in situ hybridization, and we examined B cell chemokine receptor expression by flow cytometry. We found that B cells were activated and began downregulating their BCRs well before a detectable B cell proliferative region appeared at the follicle base. The proliferative region was similar to germinal center dark zones, in that it exhibited elevated CXCL12 mRNA expression, and B cells that upregulated CXCR4 mRNA in response to signals acquired from selected intestinal commensals localized in this region. Our results suggest that after entering appendix follicles, B cells home sequentially to the follicle-associated epithelium, the follicular dendritic cell network, the B cell/T cell boundary, and, ultimately, the base of the follicle, where they enter a proliferative program and diversify the primary Ab repertoire.
Collapse
Affiliation(s)
- Shi-Kang Zhai
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Veronica V Volgina
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Periannan Sethupathi
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Katherine L Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Dennis K Lanning
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
5
|
Sequencing of Sylvilagus VDJ genes reveals a new VHa allelic lineage and shows that ancient VH lineages were retained differently in leporids. Immunogenetics 2014; 66:719-26. [PMID: 25267061 DOI: 10.1007/s00251-014-0807-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
Antigen recognition by immunoglobulins depends upon initial rearrangements of heavy chain V, D, and J genes. In leporids, a unique system exists for the VH genes usage that exhibit highly divergent lineages: the VHa allotypes, the Lepus sL lineage and the VHn genes. For the European rabbit (Oryctolagus cuniculus), four VHa lineages have been described, the a1, a2, a3 and a4. For hares (Lepus sp.), one VHa lineage was described, the a2L, as well as a more ancient sL lineage. Both genera use the VHn genes in a low frequency of their VDJ rearrangements. To address the hypothesis that the VH specificities could be associated with different environments, we sequenced VDJ genes from a third leporid genus, Sylvilagus. We found a fifth and equally divergent VHa lineage, the a5, and an ancient lineage, the sS, related to the hares' sL, but failed to obtain VHn genes. These results show that the studied leporids employ different VH lineages in the generation of the antibody repertoire, suggesting that the leporid VH genes are subject to strong selective pressure likely imposed by specific pathogens.
Collapse
|
6
|
Butler JE, Sinkora M. The enigma of the lower gut-associated lymphoid tissue (GALT). J Leukoc Biol 2013; 94:259-70. [PMID: 23695307 DOI: 10.1189/jlb.0313120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Artiodactyls possess GALT that appears in fetal life and is located at the extreme end of the ileum. These IPP contain mostly B cells and involute early in postnatal life. Rabbits have a similarly located lymphoid organ, called the sacculus rotundus. Studies in sheep and rabbits have led to the concept that the lower hindgut GALT represents primary lymphoid tissue for B cells and is necessary for normal B cell development, analogous to the bursa of Fabricius. This review traces the history of the observations and theories that have led to the existing concept concerning the role of lower GALT. We then review recent data from piglets with resected IPP that challenges the concept that the IPP is primary B cell lymphoid tissue and that artiodactyls and rabbits are members of the GALT group in the same context as gallinaceous birds. Eliminating the IPP as the primary lymphoid tissue for B cells leads to the hypothesis that the IPP acts as first-responder mucosal lymphoid tissue.
Collapse
Affiliation(s)
- John E Butler
- Institute of Microbiology AS CR, v.v.i., Doly 183, 54922 Novy Hradek, Czech Republic.
| | | |
Collapse
|
7
|
Diversification of the primary antibody repertoire begins during early follicle development in the rabbit appendix. Mol Immunol 2012; 54:140-7. [PMID: 23270685 DOI: 10.1016/j.molimm.2012.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/12/2012] [Accepted: 11/12/2012] [Indexed: 11/20/2022]
Abstract
Rabbits generate a diversified primary antibody repertoire by somatically mutating, in gut-associated lymphoid tissue (GALT), an initial repertoire that is limited by preferential rearrangement of the 3'-most IGVH gene segment. To determine when repertoire diversification begins in GALT, we performed in situ hybridization on neonatal rabbit appendix sections with an activation-induced cytidine deaminase (AID) riboprobe, because AID is required for the mutational processes that diversify the primary antibody repertoire. We first detected AID mRNA expression around 1 week of age, in the basal region of developing follicles. By PCR-amplifying V-D-J genes from AID mRNA(+) B cells isolated by laser capture microdissection, we found evidence of somatic hypermutation, and one likely instance of somatic gene conversion. Our results suggest that V-(D)-J gene diversification begins during early postnatal appendix development, in B cells stimulated to enter a proliferative program by signals derived from select intestinal commensals.
Collapse
|
8
|
Molecular bases of genetic diversity and evolution of the immunoglobulin heavy chain variable region (IGHV) gene locus in leporids. Immunogenetics 2011; 63:397-408. [PMID: 21594770 DOI: 10.1007/s00251-011-0533-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
The rabbit has long been a model for studies of the immune system. Work using rabbits contributed both to the battle against infectious diseases such as rabies and syphilis, and to our knowledge, of antibodies' structure, function, and regulated expression. With the description of rabbit Ig allotypes, the discovery of different gene segments encoding immunoglobulins became possible. This challenged the "one gene-one protein" dogma. The observation that rabbit allotypic specificities of the variable regions were present on IgM and IgG molecules also led to the hypothesis of Ig class switching. Rabbit allotypes contributed to the documentation of phenomena such as allelic exclusion and imbalance in production of allelic gene products. During the last 30 years, the rabbit Ig allotypes revealed a number of unique features, setting them apart from mice, humans, and other mammals. Here, we review the most relevant findings concerning the rabbit IGHV. Among these are the preferential usage of one VH gene in VDJ rearrangements, the existence of trans-species polymorphism in the IGHV locus revealed by serology and confirmed by sequencing IGHV genes in Lepus, the unusually large genetic distances between allelic lineages and the fact that the antibody repertoire is diversified in this species only after birth. The whole genome sequence of a rabbit, plus re-sequencing of additional strains and related genera, will allow further evolutionary investigations of antibody variation. Continued research will help define the roles that genetic, allelic, and population diversity at antibody loci may play in host-parasite interactions.
Collapse
|
9
|
Severson KM, Mallozzi M, Driks A, Knight KL. B cell development in GALT: role of bacterial superantigen-like molecules. THE JOURNAL OF IMMUNOLOGY 2010; 184:6782-9. [PMID: 20483765 DOI: 10.4049/jimmunol.1000155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intestinal bacteria drive the formation of lymphoid tissues, and in rabbit, bacteria also promote development of the preimmune Ab repertoire and positive selection of B cells in GALT. Previous studies indicated that Bacillus subtilis promotes B cell follicle formation in GALT, and we investigated the mechanism by which B. subtilis stimulates B cells. We found that spores of B. subtilis and other Bacillus species, including Bacillus anthracis, bound rabbit IgM through an unconventional, superantigen-like binding site, and in vivo, surface molecules of B. anthracis spores promoted GALT development. Our study provides direct evidence that B cell development in GALT may be driven by superantigen-like molecules, and furthermore, that bacterial spores modulate host immunity.
Collapse
Affiliation(s)
- Kari M Severson
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
10
|
Shahaf G, Barak M, Zuckerman NS, Swerdlin N, Gorfine M, Mehr R. Antigen-driven selection in germinal centers as reflected by the shape characteristics of immunoglobulin gene lineage trees: a large-scale simulation study. J Theor Biol 2008; 255:210-22. [PMID: 18786548 DOI: 10.1016/j.jtbi.2008.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 08/03/2008] [Accepted: 08/04/2008] [Indexed: 01/12/2023]
Abstract
During the immune response, the generation of memory B lymphocytes in germinal centers involves affinity maturation of the cells' antigen receptors, based on somatic hypermutation of receptor genes and antigen-driven selection of the resulting mutants. Affinity maturation is vital for immune protection, and is the basis of humoral immune learning and memory. Lineage trees of somatically hypermutated immunoglobulin genes often serve to qualitatively illustrate claims concerning the dynamics of affinity maturation in germinal centers. Here, we derive the quantitative relationships between parameters characterizing affinity maturation dynamics (proliferation, differentiation and mutation rates, initial affinity of the Ig to the antigen, and selection thresholds) and the mathematical properties of lineage trees, using a computer simulation which combines mathematical models for all mature B cell populations, stochastic models of hypermutation and selection, lineage tree generation and measurement of graphical tree characteristics. We identified seven key lineage tree properties, and found correlations of these with initial clone affinity and with the selection threshold. These two parameters were found to be the main factors affecting lineage tree shapes in both primary and secondary response trees. The results also confirm that recycling from centrocytes back to centroblasts is highly likely.
Collapse
Affiliation(s)
- Gitit Shahaf
- Mina & Everard Goodman Faculty of Life Sciences, Building 212, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Hanson NB, Lanning DK. Microbial induction of B and T cell areas in rabbit appendix. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:980-91. [PMID: 18329710 PMCID: PMC2408667 DOI: 10.1016/j.dci.2008.01.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 01/20/2008] [Accepted: 01/21/2008] [Indexed: 05/05/2023]
Abstract
Gut-associated lymphoid tissue (GALT) development requires interaction with the intestinal microbiota. Because murine secondary lymphoid tissue development is driven by positive feedback interactions between B cells and stromal cells, we used in situ hybridization to determine whether intestinal commensals influence such interactions during rabbit appendix development. The features of positive feedback interactions we examined (CXCL13 mRNA expression, B cell accumulation and FDC differentiation) increased during early follicle development, but stalled in the absence of intestinal commensals. These features were reinitiated by commensals that stimulated follicle development and intrafollicular B cell proliferation. Our results suggest that rabbit appendix follicles develop in two phases: an initial phase of B cell recruitment to nascent follicles, possibly through positive feedback interactions, and a subsequent phase of intrafollicular B cell proliferation stimulated by intestinal commensals. In addition, we found that intestinal commensals stimulate appendix CCL21 mRNA expression and T cell area formation.
Collapse
Affiliation(s)
| | - Dennis K. Lanning
- *Corresponding Author: Dr. Dennis K. Lanning, Loyola University Chicago, Department of Microbiology & Immunology, Building 105, Room 3845, 2160 South 1st Ave, Maywood, IL USA 60153, Phone: (708) 216-3389; Fax: (708) 216-9574,
| |
Collapse
|
12
|
Saada R, Weinberger M, Shahaf G, Mehr R. Models for antigen receptor gene rearrangement: CDR3 length. Immunol Cell Biol 2007; 85:323-32. [PMID: 17404591 DOI: 10.1038/sj.icb.7100055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the various processing steps involved in V(D)J recombination, which could potentially introduce many biases in the length distribution of complementarity determining region 3 (CDR3) segments, the observed CDR3 length distributions for complete repertoires are very close to a normal-like distribution. This raises the question of whether this distribution is simply a result of the random steps included in the process of gene rearrangement, or has been optimized during evolution. We have addressed this issue by constructing a simulation of gene rearrangement, which takes into account the DNA modification steps included in the process, namely hairpin opening, nucleotide additions, and nucleotide deletions. We found that the near-Gaussian- shape of CDR3 length distribution can only be obtained under a relatively narrow set of parameter values, and thus our model suggests that specific biases govern the rearrangement process. In both B-cell receptor (BCR) heavy chain and T-cell receptor beta chain, we obtained a Gaussian distribution using identical parameters, despite the difference in the number and the lengths of the D segments. Hence our results suggest that these parameters most likely reflect the optimal conditions under which the rearrangement process occurs. We have subsequently used the insights gained in this study to estimate the probability of occurrence of two exactly identical BCRs over the course of a human lifetime. Whereas identical rearrangements of the heavy chain are highly unlikely to occur within one human lifetime, for the light chain we found that this probability is not negligible, and hence the light chain CDR3 alone cannot serve as an indicator of B-cell clonality.
Collapse
MESH Headings
- B-Lymphocytes
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Computer Simulation
- Gene Rearrangement, B-Lymphocyte, Heavy Chain/genetics
- Gene Rearrangement, B-Lymphocyte, Heavy Chain/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/immunology
- Humans
- Models, Genetic
- Normal Distribution
- Probability Theory
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- T-Lymphocytes
Collapse
Affiliation(s)
- Ravit Saada
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
13
|
Zhao Y, Jackson SM, Aitken R. The bovine antibody repertoire. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:175-86. [PMID: 16054212 DOI: 10.1016/j.dci.2005.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cattle are able to produce a full range of Ig classes including the long-elusive IgD through rearrangement of their germline genes. Several IgL groupings have been reported but as in several other livestock species (e.g. sheep, rabbits, chickens), rearrangement per se fails to generate significant IgH diversity. This is largely because of the modest number of bovine VH segments that participate in rearrangement and their conserved sequences. Perhaps in compensation, bovine Ig heavy chains carry CDR3 sequences of exceptional length. Processes that operate post-rearrangement to generate diversity remain ill defined as are the location, timing and triggers to these events. Reagents are needed to understand better the maturation of B lymphocytes, their responses to antigens and cytokines, and to provide standards for the quantitation of Ig responses in cattle; recombinant methods may help meet this need as Ab engineering technologies become more widely used.
Collapse
Affiliation(s)
- Yaofeng Zhao
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital at Huddinge, SE-14186 Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Pospisil R, Alexander CB, Obiakor H, Sinha RK, Mage RG. CD5+ B cells are preferentially expanded in rabbit appendix: the role of CD5 in B cell development and selection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:711-22. [PMID: 16375969 DOI: 10.1016/j.dci.2005.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 10/04/2005] [Indexed: 05/05/2023]
Abstract
Although only a small proportion of mouse and human B cells are CD5(+), most adult rabbit B cells express CD5. However, CD5 was not detectable on the majority of B cells in neonatal appendix 1 and 3days after birth. Cell trafficking studies demonstrated that CD5(+) and CD5(-) CD62L(+) B cells from bone marrow migrated into appendix. There, CD5(+) B cells were preferentially expanded and predominated by approximately 2weeks of age. In mutant ali/ali rabbits, VHa2(+) B cells develop through gene conversion-like alteration of rearranged VH genes upstream of deleted VH1a2. Correlated appearance of individual CD5(+) germinal centers and VHa2(+) B-cells in mutant appendix suggests that CD5 binding positively selects cells with a2(+) framework regions that bind CD5. Following negative and positive selection, cells with diversified rearranged heavy- and light-chain sequences exit appendix, migrate to peripheral tissues and constitute the preimmune repertoire of CD5(+) B cells that encounter foreign antigens.
Collapse
Affiliation(s)
- Richard Pospisil
- Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | | | | | | | |
Collapse
|
15
|
Mage RG, Lanning D, Knight KL. B cell and antibody repertoire development in rabbits: the requirement of gut-associated lymphoid tissues. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:137-53. [PMID: 16098588 DOI: 10.1016/j.dci.2005.06.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The antibody repertoire of rabbits has interested immunologists for decades, in part because of the ease with which large quantities of high affinity antibodies can be obtained in serum, and in part because of the presence of genetic variants, allotypes, within V(H), C(H) and C(L) regions. Studies of these allotypes led to the initial descriptions of allelic exclusion, and neonatal suppression of serum Ig production (allotype suppression), and were instrumental in demonstrating that V and C regions are encoded by separate genes and are usually expressed in cis. The immune system of rabbit continues to be of interest primarily because of the use of both gene conversion and somatic hypermutation to diversify rearranged heavy and light chain genes and the role that gut-associated lymphoid tissues (GALT) and intestinal flora play in developing the primary (preimmune) antibody repertoire.
Collapse
Affiliation(s)
- Rose G Mage
- Laboratory of Immunology, NIAID, NIH, Bethesda, MD, USA.
| | | | | |
Collapse
|
16
|
Yang G, Obiakor H, Sinha RK, Newman BA, Hood BL, Conrads TP, Veenstra TD, Mage RG. Activation-induced deaminase cloning, localization, and protein extraction from young VH-mutant rabbit appendix. Proc Natl Acad Sci U S A 2005; 102:17083-8. [PMID: 16280388 PMCID: PMC1282565 DOI: 10.1073/pnas.0501338102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 10/03/2005] [Indexed: 01/16/2023] Open
Abstract
Studies in mouse, human, and chicken suggest that activation-induced deaminase (AID) is involved in three known processes leading to antibody diversification: somatic hypermutation, gene conversion, and class-switch recombination. Developing rabbit appendix provides a particularly good site for studying all three of these B cell maturation events. We report here successful cloning of rabbit AID and isolation of AID protein from rabbit appendix-cell nuclear and cytoplasmic extracts. We succeeded in identifying and locating AID protein in cells by immunohistochemical and immunofluorescent staining techniques and examined colocalization of AID and other molecules important for Ab diversification. This report extends our knowledge about AID to a mammalian species that uses gene conversion to diversify rearranged Ig genes. Although much work remains to understand fully the mechanism of action of AID and its association with other cellular components, the rabbit system now offers a particularly useful model for future studies of these dynamics.
Collapse
Affiliation(s)
- Guibin Yang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, and SAIC Frederick, National Cancer Institute, Frederick, MD 21701, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Esteves PJ, Lanning D, Ferrand N, Knight KL, Zhai SK, van der Loo W. The evolution of the immunoglobulin heavy chain variable region (IgV H ) in Leporids: an unusual case of transspecies polymorphism. Immunogenetics 2005; 57:874-82. [PMID: 16247606 DOI: 10.1007/s00251-005-0022-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
In domestic rabbit (Oryctolagus cuniculus), three serological types have been distinguished at the variable domain of the antibody H chain, the so-called V(H) a allotypes a1, a2, and a3. They correspond to highly divergent allelic lineages of the V(H) 1 gene, which is the gene rabbit utilizes in more than 80% of VDJ rearrangements. The sharing of serological V(H) a markers between rabbit and snowshoe hare (Lepus americanus) has suggested that the large genetic distances between rabbit V(H) 1 alleles (9-14% nucleotide differences) can be explained by unusually long lineage persistence times (transspecies polymorphism). Because this interpretation of the serological data is uncertain, we have determined the nucleotide sequences of V(H) genes expressed in specimens of Lepus species. Two sequence groups were distinguished, one of which occurred only in hare specimen displaying serological motifs of the rabbit V(H) a-a2 allotype. Sequences of this group are part of a monophyletic cluster containing the V(H) 1 sequences of the rabbit a2 allotype. The fact that this "transspecies a2 cluster" did not include genes of other rabbit V(H) a allotypes (a1, a3, and a4) is incompatible with the existence of a common V(H) a ancestor gene within the species, and suggests that the divergence of the V(H) a lineages preceded the Lepus vs Oryctolagus split. The sequence data are furthermore compatible with the hypothesis that the V(H)a polymorphism can be two times older than the divergence time between the Lepus and Oryctolagus lineages, which was estimated at 16-24 million years.
Collapse
Affiliation(s)
- P J Esteves
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), ICETA-UP, Campus Agrário de Vairão Rua Padre Armando Quintas, Portugal
| | | | | | | | | | | |
Collapse
|
18
|
Sinha RK, Alexander C, Mage RG. Regulated expression of peripheral node addressin-positive high endothelial venules controls seeding of B lymphocytes into developing neonatal rabbit appendix. Vet Immunol Immunopathol 2005; 110:97-108. [PMID: 16249036 DOI: 10.1016/j.vetimm.2005.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 09/10/2005] [Indexed: 01/06/2023]
Abstract
Young rabbit appendix is a homologue of chicken bursa of Fabricius; both are crucial sites for preimmune B-cell repertoire diversification. Here, we report that appendix regulates precursor lymphocyte recruitment for further development by modulating the sites of extravasation. The total area of peripheral node addressin-positive (PNAd(+)) high endothelial venules (HEVs) increased from 1 day to 1 week after birth, remained constant up to 2 weeks and declined to a low and persistent amount by 3 weeks. In normal 1-week and manipulated 5-week appendix where growth of follicles was retarded, PNAd(+) HEVs were present in the basolateral sides of B-cell follicles whereas, in normal 5-wk-appendix these were restricted to T-cell areas. The PNAd was expressed on the lumenal surface of HEVs. The proportions of CD62L(+) B cells in appendix declined from approximately 40% at 3 days to 2-3% at 4 weeks. In lymphocyte transfer experiments, CD62L(+) B cells were preferentially recruited compared with CD62L(-) B cells, anti-PNAd antibody blocked migration of B cells by approximately 50%, and 100 times more B cells were recruited in 1-week compared to 6-week appendix. Thus, a unique spatiotemporal expression pattern of PNAd(+) HEVs is associated with development of B-cell follicles. This regulates migration of blood-borne B-lymphocytes into developing appendix by interacting with CD62L.
Collapse
Affiliation(s)
- Rajesh K Sinha
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11N311, 10 Center Drive-MSC 1892, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
19
|
Stoel M, Jiang HQ, van Diemen CC, Bun JCAM, Dammers PM, Thurnheer MC, Kroese FGM, Cebra JJ, Bos NA. Restricted IgA repertoire in both B-1 and B-2 cell-derived gut plasmablasts. THE JOURNAL OF IMMUNOLOGY 2005; 174:1046-54. [PMID: 15634929 DOI: 10.4049/jimmunol.174.2.1046] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mucosal IgA is the most abundantly produced Ig upon colonization of the intestinal tract with commensal organisms in the majority of mammals. The repertoire of these IgA molecules is still largely unknown; a large amount of the mucosal IgA cannot be shown to react with the inducing microorganisms. Analysis of the repertoire of used H chain Ig (V(H)) genes by H-CDR3 spectrotyping, cloning, and sequencing of V(H) genes from murine intestinal IgA-producing plasma cells reveals a very restricted usage of V(H) genes and multiple clonally related sequences. The restricted usage of V(H) genes is a very consistent observation, and is observed for IgA plasma cells derived from B-1 or conventional B-2 cells from different mouse strains. Clonal patterns from all analyzed V(H) gene sequences show mainly independently acquired somatic mutations in contrast to the clonal evolution patterns often observed as a consequence of affinity maturation in germinal center reactions in peripheral lymphoid organs and Peyer's patches. Our data suggest a model of clonal expansion in which many mucosal IgA-producing B cells develop in the absence of affinity maturation. The affinity of most produced IgA might not be the most critical factor for its possible function to control the commensal organisms, but simply the abundance of large amounts of IgA that can bind with relatively unselected affinity to redundant epitopes on such organisms.
Collapse
Affiliation(s)
- Maaike Stoel
- Department of Cell Biology, Section Histology and Immunology, University of Groningen, Faculty Medical Sciences, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rhee KJ, Jasper PJ, Sethupathi P, Shanmugam M, Lanning D, Knight KL. Positive selection of the peripheral B cell repertoire in gut-associated lymphoid tissues. ACTA ACUST UNITED AC 2004; 201:55-62. [PMID: 15623575 PMCID: PMC2212770 DOI: 10.1084/jem.20041849] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gut-associated lymphoid tissues (GALTs) interact with intestinal microflora to drive GALT development and diversify the primary antibody repertoire; however, the molecular mechanisms that link these events remain elusive. Alicia rabbits provide an excellent model to investigate the relationship between GALT, intestinal microflora, and modulation of the antibody repertoire. Most B cells in neonatal Alicia rabbits express VHn allotype immunoglobulin (Ig)M. Within weeks, the number of VHn B cells decreases, whereas VHa allotype B cells increase in number and become predominant. We hypothesized that the repertoire shift from VHn to VHa B cells results from interactions between GALT and intestinal microflora. To test this hypothesis, we surgically removed organized GALT from newborn Alicia pups and ligated the appendix to sequester it from intestinal microflora. Flow cytometry and nucleotide sequence analyses revealed that the VHn to VHa repertoire shift did not occur, demonstrating the requirement for interactions between GALT and intestinal microflora in the selective expansion of VHa B cells. By comparing amino acid sequences of VHn and VHa Ig, we identified a putative VH ligand binding site for a bacterial or endogenous B cell superantigen. We propose that interaction of such a superantigen with VHa B cells results in their selective expansion.
Collapse
Affiliation(s)
- Ki-Jong Rhee
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
21
|
Taylor TB, Nambiar PR, Raja R, Cheung E, Rosenberg DW, Anderegg B. Microgenomics: Identification of new expression profiles via small and single-cell sample analyses. Cytometry A 2004; 59:254-61. [PMID: 15170605 DOI: 10.1002/cyto.a.20051] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Since the sequencing of the human genome has been finished, microgenomics has been booming, employing highly sophisticated, high-throughput platforms. But these mainly chip-based methods can only generate biologically relevant data if the samples investigated consist of homogeneous cell populations, in which no unwanted cells of different specificity and/or developmental stage obscure the results. METHODS Different sampling methods have been routinely applied to overcome the problem presented by heterogeneous samples, e.g., global surveys, cell cultures, and microdissection. Various methods of laser-assisted microdissection, employing either positive or negative selection of tissue areas or even single cells, are available. RESULTS These laser-assisted microdissection methods allow for fast and precise procurement of extremely small samples. Through subsequent application of recently developed methods of linear mRNA amplification in a pool of isolated total RNA, it has now become possible to perform complex high-throughput RNA expression profiling by microdissecting and processing even single-cell samples. CONCLUSIONS Studies using the tools and methods of microgenomics have shed light on how those new approaches will eventually aid in the development of a new generation of diagnostics, e.g., leading to new patient-specific drugs tailored to the requirements assessed by assaying only a few biopsy cells.
Collapse
|
22
|
Abstract
We show in this review that there is a continuum between the chicken B-cell system classified as the first GALT model described and the human B-cell system. We propose that humans have conserved for one B-cell subpopulation, the marginal zone B-cell subset in charge of T-independent responses, the strategies of diversification used by GALT species to generate their pre-immune repertoire.
Collapse
Affiliation(s)
- Jean-Claude Weill
- INSERM U373, Faculté de Médecine Necker-Enfants Malades, Université Paris V, 156 rue de Vaugirard, 75730 Paris Cedex 15, France.
| | | | | |
Collapse
|
23
|
Dunn-Walters DK, Edelman H, Mehr R. Immune system learning and memory quantified by graphical analysis of B-lymphocyte phylogenetic trees. Biosystems 2004; 76:141-55. [PMID: 15351138 DOI: 10.1016/j.biosystems.2004.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 07/11/2003] [Accepted: 08/01/2003] [Indexed: 11/22/2022]
Abstract
The immune system learns from its encounters with pathogens and memorizes its experiences. One of the mechanisms it uses for this purpose is the intra-individual evolution of antigen receptors on B lymphocytes, achieved via hypermutation and selection of antigen receptor variable region genes during an immune response. We have developed a novel method for analyzing the graphical properties of phylogenetic trees of receptor genes which have been mutated and selected during an immune response. In the study presented here, we address the artifacts introduced by experimental methods of cell collection for DNA analysis, the meaning of each parameter measured on the tree graphs, and the differences between the dynamics of the humoral immune response in different lymphoid tissues.
Collapse
|
24
|
Mehr R, Edelman H, Sehgal D, Mage R. Analysis of mutational lineage trees from sites of primary and secondary Ig gene diversification in rabbits and chickens. THE JOURNAL OF IMMUNOLOGY 2004; 172:4790-6. [PMID: 15067055 DOI: 10.4049/jimmunol.172.8.4790] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lineage trees of mutated rearranged Ig V region sequences in B lymphocyte clones often serve to qualitatively illustrate claims concerning the dynamics of affinity maturation. In this study, we use a novel method for analyzing lineage tree shapes, using terms from graph theory to quantify the differences between primary and secondary diversification in rabbits and chickens. In these species, Ig gene diversification starts with rearrangement of a single (in chicken) or a few (in rabbit) V(H) genes. Somatic hypermutation and gene conversion contribute to primary diversification in appendix of young rabbits or in bursa of Fabricius of embryonic and young chickens and to secondary diversification during immune responses in germinal centers (GCs). We find that, at least in rabbits, primary diversification appears to occur at a constant rate in the appendix, and the type of Ag-specific selection seen in splenic GCs is absent. This supports the view that a primary repertoire is being generated within the expanding clonally related B cells in appendix of young rabbits and emphasizes the important role that gut-associated lymphoid tissues may play in early development of mammalian immune repertoires. Additionally, the data indicate a higher rate of hypermutation in rabbit and chicken GCs, such that the balance between hypermutation and selection tends more toward mutation and less toward selection in rabbit and chicken compared with murine GCs.
Collapse
Affiliation(s)
- Ramit Mehr
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | | | | | | |
Collapse
|
25
|
Rhee KJ, Sethupathi P, Driks A, Lanning DK, Knight KL. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. THE JOURNAL OF IMMUNOLOGY 2004; 172:1118-24. [PMID: 14707086 DOI: 10.4049/jimmunol.172.2.1118] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intestinal bacteria are required for development of gut-associated lymphoid tissues (GALT), which mediate a variety of host immune functions, such as mucosal immunity and oral tolerance. In rabbits, the intestinal microflora are also required for developing the preimmune Ab repertoire by promoting somatic diversification of Ig genes in B cells that have migrated to GALT. We studied the mechanism of bacteria-induced GALT development. Bacteria were introduced into rabbits in which the appendix had been rendered germfree by microsurgery (we refer to these rabbits as germfree-appendix rabbits). We then identified specific members of the intestinal flora that promote GALT development. The combination of Bacteroides fragilis and Bacillus subtilis consistently promoted GALT development and led to development of the preimmune Ab repertoire, as shown by an increase in somatic diversification of VDJ-C micro genes in appendix B cells. Neither species alone consistently induced GALT development, nor did Clostridium subterminale, Escherichia coli, or Staphylococcus epidermidis. B. fragilis, which by itself is immunogenic, did not promote GALT development; hence, GALT development in rabbits does not appear to be the result of an Ag-specific immune response. To identify bacterial pathways required for GALT development, we introduced B. fragilis along with stress-response mutants of B. subtilis into germfree-appendix rabbits. We identified two Spo0A-controlled stress responses, sporulation and secretion of the protein YqxM, which are required for GALT development. We conclude that specific members of the commensal, intestinal flora drive GALT development through a specific subset of stress responses.
Collapse
Affiliation(s)
- Ki-Jong Rhee
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|