1
|
Du G, Dou C, Sun P, Wang S, Liu J, Ma L. Regulatory T cells and immune escape in HCC: understanding the tumor microenvironment and advancing CAR-T cell therapy. Front Immunol 2024; 15:1431211. [PMID: 39136031 PMCID: PMC11317284 DOI: 10.3389/fimmu.2024.1431211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Liver cancer, which most commonly manifests as hepatocellular carcinoma (HCC), is the sixth most common cancer in the world. In HCC, the immune system plays a crucial role in the growth and proliferation of tumor cells. HCC achieve immune escape through the tumor microenvironment, which significantly promotes the development of this cancer. Here, this article introduces and summarizes the functions and effects of regulatory T cells (Tregs) in the tumor microenvironment, highlighting how Tregs inhibit and regulate the functions of immune and tumor cells, cytokines, ligands and receptors, etc, thereby promoting tumor immune escape. In addition, it discusses the mechanism of CAR-T therapy for HCC and elaborate on the relationship between CAR-T and Tregs.
Collapse
Affiliation(s)
- Guangtan Du
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Cunmiao Dou
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
2
|
Preet Kaur A, Alice A, Crittenden MR, Gough MJ. The role of dendritic cells in radiation-induced immune responses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:61-104. [PMID: 37438021 DOI: 10.1016/bs.ircmb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Dendritic cells perform critical functions in bridging innate and adaptive immunity. Their ability to sense adjuvant signals in their environment, migrate on maturation, and cross-present cell-associated antigens enables these cells to carry antigen from tissue sites to lymph nodes, and thereby prime naïve T cells that cannot enter tissues. Despite being an infrequent cell type in tumors, we discuss how dendritic cells impact the immune environment of tumors and their response to cancer therapies. We review how radiation therapy of tumors can impact dendritic cells, through transfer of cell associated antigens to dendritic cells and the release of endogenous adjuvants, resulting in increased antigen presentation in the tumor-draining lymph nodes. We explore how tumor specific factors can result in negative regulation of dendritic cell function in the tumor, and the impact of direct radiation exposure to dendritic cells in the treatment field. These data suggest an important role for dendritic cell subpopulations in activating new T cell responses and boosting existing T cell responses to tumor associated antigens in tumor draining lymph nodes following radiation therapy. It further justifies a focus on the needs of the lymph node T cells to improve systemic anti-immunity following radiation therapy.
Collapse
Affiliation(s)
- Aanchal Preet Kaur
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States; The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States.
| |
Collapse
|
3
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
4
|
Zeng J, Wang D, Luo J, Li L, Lin L, Li J, Zheng W, Zuo D, Yang B. Mannan-binding lectin exacerbates the severity of psoriasis by promoting plasmacytoid dendritic cell differentiation via the signal transducer and activator of transcription 3-interferon regulatory factor 8 axis. J Dermatol 2022; 49:496-507. [PMID: 35347767 DOI: 10.1111/1346-8138.16323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 11/26/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease mediated by host immune responses. Plasmacytoid dendritic cells (pDC) and interferon (IFN)-α secreted by pDC are involved in the initiation of psoriasis. Mannan-binding lectin (MBL), a vital component of the complement pathway, plays a critical role in innate immune defense and the inflammatory response. Our previous study found that MBL could exacerbate skin inflammation in psoriatic mice, but the effect of MBL on pDC remains unstudied. Herein, we revealed that the circulating level of MBL was elevated in patients with psoriasis compared with the healthy controls. Moreover, the MBL level was positively correlated with disease severity, relative inflammatory cytokine levels, and peripheral blood (PB) pDC frequency in psoriasis. An in vitro study determined that the MBL protein could promote the differentiation of human pDC and upregulate the production of relative inflammatory cytokines and chemokines. Additionally, MBL-deficient (MBL-/- ) mice exhibited decreased accumulation of pDC in lymph nodes, spleens, and skin lesions with reduced secretion of pDC-related cytokines compared with wild-type (WT) mice in the preliminary stage of psoriasis induced by imiquimod. Notably, the differentiation of pDC from bone marrow (BM) cells derived from MBL-/- mice was weakened compared with that from WT mice upon Fms-like tyrosine kinase 3 ligand (Flt3L) incubation. Mechanistic research indicated that the signal transducer and activator of transcription 3 (STAT3)-interferon regulatory factor 8 (IRF8) axis was responsible for MBL-modulated pDC differentiation. In summary, these results suggest that MBL exacerbates the severity of psoriasis by enhancing pDC differentiation and pDC-related cytokine secretion via the STAT3-IRF8 axis, thus providing a new target for psoriasis treatment.
Collapse
Affiliation(s)
- Jiaqi Zeng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Luyang Lin
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangzhou Institute of Dermatology, Guangzhou, China
| | - Jingyi Li
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wen Zheng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Zimmermannova O, Caiado I, Ferreira AG, Pereira CF. Cell Fate Reprogramming in the Era of Cancer Immunotherapy. Front Immunol 2021; 12:714822. [PMID: 34367185 PMCID: PMC8336566 DOI: 10.3389/fimmu.2021.714822] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Advances in understanding how cancer cells interact with the immune system allowed the development of immunotherapeutic strategies, harnessing patients' immune system to fight cancer. Dendritic cell-based vaccines are being explored to reactivate anti-tumor adaptive immunity. Immune checkpoint inhibitors and chimeric antigen receptor T-cells (CAR T) were however the main approaches that catapulted the therapeutic success of immunotherapy. Despite their success across a broad range of human cancers, many challenges remain for basic understanding and clinical progress as only a minority of patients benefit from immunotherapy. In addition, cellular immunotherapies face important limitations imposed by the availability and quality of immune cells isolated from donors. Cell fate reprogramming is offering interesting alternatives to meet these challenges. Induced pluripotent stem cell (iPSC) technology not only enables studying immune cell specification but also serves as a platform for the differentiation of a myriad of clinically useful immune cells including T-cells, NK cells, or monocytes at scale. Moreover, the utilization of iPSCs allows introduction of genetic modifications and generation of T/NK cells with enhanced anti-tumor properties. Immune cells, such as macrophages and dendritic cells, can also be generated by direct cellular reprogramming employing lineage-specific master regulators bypassing the pluripotent stage. Thus, the cellular reprogramming toolbox is now providing the means to address the potential of patient-tailored immune cell types for cancer immunotherapy. In parallel, development of viral vectors for gene delivery has opened the door for in vivo reprogramming in regenerative medicine, an elegant strategy circumventing the current limitations of in vitro cell manipulation. An analogous paradigm has been recently developed in cancer immunotherapy by the generation of CAR T-cells in vivo. These new ideas on endogenous reprogramming, cross-fertilized from the fields of regenerative medicine and gene therapy, are opening exciting avenues for direct modulation of immune or tumor cells in situ, widening our strategies to remove cancer immunotherapy roadblocks. Here, we review current strategies for cancer immunotherapy, summarize technologies for generation of immune cells by cell fate reprogramming as well as highlight the future potential of inducing these unique cell identities in vivo, providing new and exciting tools for the fast-paced field of cancer immunotherapy.
Collapse
Affiliation(s)
- Olga Zimmermannova
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Inês Caiado
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Coimbra, Portugal
| | - Alexandra G. Ferreira
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Coimbra, Portugal
| | - Carlos-Filipe Pereira
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Recent Progress in Dendritic Cell-Based Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13102495. [PMID: 34065346 PMCID: PMC8161242 DOI: 10.3390/cancers13102495] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer immunotherapy has now attracted much attention because of the recent success of immune checkpoint inhibitors. However, they are only beneficial in a limited fraction of patients most probably due to lack of sufficient CD8+ cytotoxic T-lymphocytes against tumor antigens in the host. In this regard, dendritic cells are useful tools to induce host immune responses against exogenous antigens. In particular, recently characterized cross-presenting dendritic cells are capable of inducing CD8+ cytotoxic T-lymphocytes against exogenous antigens such as tumor antigens and uniquely express the chemokine receptor XCR1. Here we focus on the recent progress in DC-based cancer vaccines and especially the use of the XCR1 and its ligand XCL1 axis for the targeted delivery of cancer vaccines to cross-presenting dendritic cells. Abstract Cancer immunotherapy aims to treat cancer by enhancing cancer-specific host immune responses. Recently, cancer immunotherapy has been attracting much attention because of the successful clinical application of immune checkpoint inhibitors targeting the CTLA-4 and PD-1/PD-L1 pathways. However, although highly effective in some patients, immune checkpoint inhibitors are beneficial only in a limited fraction of patients, possibly because of the lack of enough cancer-specific immune cells, especially CD8+ cytotoxic T-lymphocytes (CTLs), in the host. On the other hand, studies on cancer vaccines, especially DC-based ones, have made significant progress in recent years. In particular, the identification and characterization of cross-presenting DCs have greatly advanced the strategy for the development of effective DC-based vaccines. In this review, we first summarize the surface markers and functional properties of the five major DC subsets. We then describe new approaches to induce antigen-specific CTLs by targeted delivery of antigens to cross-presenting DCs. In this context, the chemokine receptor XCR1 and its ligand XCL1, being selectively expressed by cross-presenting DCs and mainly produced by activated CD8+ T cells, respectively, provide highly promising molecular tools for this purpose. In the near future, CTL-inducing DC-based cancer vaccines may provide a new breakthrough in cancer immunotherapy alone or in combination with immune checkpoint inhibitors.
Collapse
|
7
|
In Sickness and in Health: The Immunological Roles of the Lymphatic System. Int J Mol Sci 2021; 22:ijms22094458. [PMID: 33923289 PMCID: PMC8123157 DOI: 10.3390/ijms22094458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are distinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific functions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mechanisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and chronic inflammation, and subsequent resolution.
Collapse
|
8
|
Loef EJ, Sheppard HM, Birch NP, Dunbar PR. Live-Cell Microscopy Reveals That Human T Cells Primarily Respond Chemokinetically Within a CCL19 Gradient That Induces Chemotaxis in Dendritic Cells. Front Immunol 2021; 12:628090. [PMID: 33841411 PMCID: PMC8033042 DOI: 10.3389/fimmu.2021.628090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
The ability to study migratory behavior of immune cells is crucial to understanding the dynamic control of the immune system. Migration induced by chemokines is often assumed to be directional (chemotaxis), yet commonly used end-point migration assays are confounded by detecting increased cell migration that lacks directionality (chemokinesis). To distinguish between chemotaxis and chemokinesis we used the classic “under-agarose assay” in combination with video-microscopy to monitor migration of CCR7+ human monocyte-derived dendritic cells and T cells in response to a concentration gradient of CCL19. Formation of the gradients was visualized with a fluorescent marker and lasted several hours. Monocyte-derived dendritic cells migrated chemotactically towards the CCL19 gradient. In contrast, T cells exhibited a biased random walk that was largely driven by increased exploratory chemokinesis towards CCL19. This dominance of chemokinesis over chemotaxis in T cells is consistent with CCR7 ligation optimizing T cell scanning of antigen-presenting cells in lymphoid tissues.
Collapse
Affiliation(s)
- Evert J Loef
- School of Biological Science, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Hilary M Sheppard
- School of Biological Science, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Science, University of Auckland, Auckland, New Zealand.,Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- School of Biological Science, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, Lauland AS, Trøstrup H, Tolker-Nielsen T. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front Immunol 2021; 12:625597. [PMID: 33692800 PMCID: PMC7937708 DOI: 10.3389/fimmu.2021.625597] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a key pathogen of chronic infections in the lungs of cystic fibrosis patients and in patients suffering from chronic wounds of diverse etiology. In these infections the bacteria congregate in biofilms and cannot be eradicated by standard antibiotic treatment or host immune responses. The persistent biofilms induce a hyper inflammatory state that results in collateral damage of the adjacent host tissue. The host fails to eradicate the biofilm infection, resulting in hindered remodeling and healing. In the present review we describe our current understanding of innate and adaptive immune responses elicited by P. aeruginosa biofilms in cystic fibrosis lung infections and chronic wounds. This includes the mechanisms that are involved in the activation of the immune responses, as well as the effector functions, the antimicrobial components and the associated tissue destruction. The mechanisms by which the biofilms evade immune responses, and potential treatment targets of the immune response are also discussed.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Sofie Lauland
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Trøstrup
- Department of Plastic Surgery and Breast Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
van Beek JJP, Flórez-Grau G, Gorris MAJ, Mathan TSM, Schreibelt G, Bol KF, Textor J, de Vries IJM. Human pDCs Are Superior to cDC2s in Attracting Cytolytic Lymphocytes in Melanoma Patients Receiving DC Vaccination. Cell Rep 2020; 30:1027-1038.e4. [PMID: 31995747 DOI: 10.1016/j.celrep.2019.12.096] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/26/2019] [Accepted: 12/27/2019] [Indexed: 12/21/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) and type 2 conventional dendritic cells (cDC2s) are currently under evaluation for use in cancer vaccines. Although both DC subsets can activate adaptive and innate lymphocytes, their capacity to recruit such cells is rarely considered. Here, we show that pDCs and cDC2s display a striking difference in chemokine secretion, which correlates with the recruitment of distinct types of immune effector cells. Activated pDCs express high levels of CXCR3 ligands and attract more CD8+ T cells, CD56+ T cells, and γδ T cells in vitro, compared to cDC2s. Skin from melanoma patients shows an influx of immune effector cells following intradermal vaccination with pDCs or cDC2s, with pDCs inducing the strongest influx of lymphocytes known to possess cytolytic activity. These findings suggest that combining both DC subsets could unite the preferred chemoattractive properties of pDCs with the superior T cell priming properties of cDC2s to ultimately enhance vaccine efficacy.
Collapse
Affiliation(s)
- Jasper J P van Beek
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Mark A J Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Till S M Mathan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Kalijn F Bol
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Medical Oncology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Johannes Textor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Medical Oncology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Jamali A, Kenyon B, Ortiz G, Abou-Slaybi A, Sendra VG, Harris DL, Hamrah P. Plasmacytoid dendritic cells in the eye. Prog Retin Eye Res 2020; 80:100877. [PMID: 32717378 DOI: 10.1016/j.preteyeres.2020.100877] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subpopulation of immune cells, distinct from classical dendritic cells. pDCs are generated in the bone marrow and following development, they typically home to secondary lymphoid tissues. While peripheral tissues are generally devoid of pDCs during steady state, few tissues, including the lung, kidney, vagina, and in particular ocular tissues harbor resident pDCs. pDCs were originally appreciated for their potential to produce large quantities of type I interferons in viral immunity. Subsequent studies have now unraveled their pivotal role in mediating immune responses, in particular in the induction of tolerance. In this review, we summarize our current knowledge on pDCs in ocular tissues in both mice and humans, in particular in the cornea, limbus, conjunctiva, choroid, retina, and lacrimal gland. Further, we will review our current understanding on the significance of pDCs in ameliorating inflammatory responses during herpes simplex virus keratitis, sterile inflammation, and corneal transplantation. Moreover, we describe their novel and pivotal neuroprotective role, their key function in preserving corneal angiogenic privilege, as well as their potential application as a cell-based therapy for ocular diseases.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Brendan Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Gustavo Ortiz
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Abdo Abou-Slaybi
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Victor G Sendra
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
12
|
Sagnella SM, Yang L, Stubbs GE, Boslem E, Martino-Echarri E, Smolarczyk K, Pattison SL, Vanegas N, St Clair E, Clarke S, Boockvar J, MacDiarmid JA, Brahmbhatt H. Cyto-Immuno-Therapy for Cancer: A Pathway Elicited by Tumor-Targeted, Cytotoxic Drug-Packaged Bacterially Derived Nanocells. Cancer Cell 2020; 37:354-370.e7. [PMID: 32183951 DOI: 10.1016/j.ccell.2020.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 08/08/2019] [Accepted: 02/04/2020] [Indexed: 12/31/2022]
Abstract
Immunotherapy has emerged as a powerful new chapter in the fight against cancer. However, it has yet to reach its full potential due in part to the complexity of the cancer immune response. We demonstrate that tumor-targeting EDV nanocells function as an immunotherapeutic by delivering a cytotoxin in conjunction with activation of the immune system. These nanocells polarize M1 macrophages and activate NK cells concurrently producing a Th1 cytokine response resulting in potent antitumor function. Dendritic cell maturation and antigen presentation follows, which generates tumor-specific CD8+ T cells, conferring prolonged tumor remission. The combination of cytotoxin delivery and activation of innate and adaptive antitumor immune responses results in a potent cyto-immunotherapeutic with potential in clinical oncology.
Collapse
Affiliation(s)
- Sharon M Sagnella
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Lu Yang
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Gemma E Stubbs
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Ebru Boslem
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | | | - Katarzyna Smolarczyk
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Stacey L Pattison
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Natasha Vanegas
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Eva St Clair
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Stephen Clarke
- ANZAC Research Institute - Royal North Shore Hospital 38 Pacific Highway, Sydney, NSW 2065, Australia
| | - John Boockvar
- Northwell School of Medicine, 3(rd) Floor, 130 East 77(th) Street, New York, NY 10075, USA
| | - Jennifer A MacDiarmid
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia
| | - Himanshu Brahmbhatt
- EnGeneIC Ltd, Building 2, 25 Sirius Road, Lane Cove West, Sydney, NSW 2066, Australia.
| |
Collapse
|
13
|
Vyas NS, Charifa A, Desman GT, McNiff JM. Distinguishing pustular psoriasis and acute generalized exanthematous pustulosis on the basis of plasmacytoid dendritic cells and MxA protein. J Cutan Pathol 2019; 46:317-326. [PMID: 30667074 DOI: 10.1111/cup.13430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 12/19/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Distinguishing acute generalized exanthematous pustulosis (AGEP) and pustular psoriasis (PS) can be challenging. Staining for plasmacytoid dendritic cells, or PDCs (producer of IFN-α/β), and MxA (an IFN-α/β inducible protein) may help discriminate these entities. METHODS Forty-three cases of AGEP and PS were compiled from two academic institutions. All cases were examined for CD123+ PDCs, eosinophils, acanthosis, papillomatosis, suprapapillary plate thinning, tortuous dilated capillaries, single necrotic keratinocytes, papillary dermal edema, vasculitis, eosinophil exocytosis, intraepidermal pustules, and subcorneal pustules. A subset of cases (n = 26) was stained for MxA. RESULTS Perivascular and intraepidermal PDCs, dilated tortuous vessels, and MxA expression in the dermal inflammatory infiltrate were significantly (P < 0.05) in favor of a diagnosis of PS. The absence of PDCs and presence of eosinophils favored a diagnosis of AGEP (P < 0.05). CONCLUSIONS We found compelling evidence for the use of CD123 to highlight PDCs in these cases. The presence of PDCs and expression of MxA in dermal inflammatory infiltrate, as well as absence of eosinophils and presence of tortuous dilated capillaries favored a diagnosis of PS. Expression of MxA in the dermal infiltrate corresponds with a Th1 pathway in PS and may indicate a Th1 component in the early initial phase of AGEP.
Collapse
Affiliation(s)
- Nikki S Vyas
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ahmad Charifa
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Garrett T Desman
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jennifer M McNiff
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Brown FF, Campbell JP, Wadley AJ, Fisher JP, Aldred S, Turner JE. Acute aerobic exercise induces a preferential mobilisation of plasmacytoid dendritic cells into the peripheral blood in man. Physiol Behav 2018; 194:191-198. [PMID: 29763678 DOI: 10.1016/j.physbeh.2018.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/26/2018] [Accepted: 05/11/2018] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) are important sentinel cells of the immune system responsible for presenting antigen to T cells. Exercise is known to cause an acute and transient increase in the frequency of DCs in the bloodstream in humans, yet there are contradictory findings in the literature regarding the phenotypic composition of DCs mobilised during exercise, which may have implications for immune regulation and health. Accordingly, we sought to investigate the composition of DC sub-populations mobilised in response to acute aerobic exercise. Nine healthy males (age, 21.9 ± 3.6 years; height, 177.8 ± 5.4 cm; body mass, 78.9 ± 10.8 kg; body mass index, 24.9 ± 3.3 kg·m2; V̇O2 MAX, 41.5 ± 5.1 mL·kg·min-1) cycled for 20 min at 80% V̇O2 MAX. Blood was sampled at baseline, during the final minute of exercise and 30 min later. Using flow cytometry, total DCs were defined as Lineage- (CD3, CD19, CD20, CD14, CD56) HLA-DR+ and subsequently identified as plasmacytoid DCs (CD303+) and myeloid DCs (CD303-). Myeloid DCs were analysed for expression of CD1c and CD141 to yield four sub-populations; CD1c-CD141+; CD1c+CD141+; CD1c+CD141- and CD1c-CD141-. Expression of CD205 was also analysed on all DC sub-populations to identify DCs capable of recognising apoptotic and necrotic cells. Total DCs increased by 150% during exercise (F(1,10) = 60; p < 0.05, η2 = 0.9). Plasmacytoid DCs mobilised to a greater magnitude than myeloid DCs (195 ± 131% vs. 131 ± 100%; p < 0.05). Among myeloid DCs, CD1c-CD141- cells showed the largest exercise-induced mobilisation (167 ± 122%), with a stepwise pattern observed among the remaining sub-populations: CD1c+CD141- (79 ± 50%), followed by CD1c+CD141+ (44 ± 41%), with the smallest response shown by CD1c-CD141+ cells (23 ± 54%) (p < 0.05). Among myeloid DCs, CD205- cells were the most exercise responsive. All DC subsets returned to resting levels within 30 min of exercise cessation. These results show that there is a preferential mobilisation of plasmacytoid DCs during exercise. Given the functional repertoire of plasmacytoid DCs, which includes the production of interferons against viral and bacterial pathogens, these findings indicate that exercise may augment immune-surveillance by preferentially mobilising effector cells; these findings have general implications for the promotion of exercise for health, and specifically for the optimisation of DC harvest for cancer immunotherapy.
Collapse
Affiliation(s)
| | - John P Campbell
- Department for Health, University of Bath, Bath, UK; Clinical Immunology, University of Birmingham, Birmingham, UK
| | - Alex J Wadley
- School Sport, Exercise & Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - James P Fisher
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
15
|
Recent Advances in Drug-Induced Hypersensitivity Syndrome/Drug Reaction with Eosinophilia and Systemic Symptoms. J Immunol Res 2018; 2018:5163129. [PMID: 29744372 PMCID: PMC5878892 DOI: 10.1155/2018/5163129] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/02/2017] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
Drug-induced hypersensitivity syndrome (DIHS), also termed as drug reaction with eosinophilia and systemic symptoms (DRESS), is a multiorgan systemic reaction characterized by a close relationship with the reactivation of herpes virus. Published data has demonstrated that among patients with DIHS/DRESS, 75–95% have leukocytosis, 18.2–90% show atypical lymphocytes, 52–95% have eosinophilia, and 75–100% have hepatic abnormalities. Histologically, eosinophils were observed less frequently than we expected (20%). The mainstay of DIHS/DRESS treatment is a moderate dose of systemic corticosteroids, followed by gradual dose reduction. In this review, we will emphasize that elevations in the levels of several cytokines/chemokines, including tumor necrosis factor- (TNF-) α and the thymus and activation-regulated chemokine (TARC/CCL17), during the early stage of disease, are good markers allowing the early recognition of HHV-6 reactivation. TNF-α and TARC levels also reflect therapeutic responses and may be useful markers of the DIHS disease process. Recently, the pathogenic mechanism of T-cell activation triggered by human leukocyte antigen- (HLA-) restricted presentation of a drug or metabolites was elucidated. Additionally, we recently reported that dapsone would fit within the unique subpocket of the antigen-recognition site of HLA-B∗13:01. Further studies will render it possible to choose better strategies for DIHS prevention and therapy.
Collapse
|
16
|
Iizuka-Koga M, Asashima H, Ando M, Lai CY, Mochizuki S, Nakanishi M, Nishimura T, Tsuboi H, Hirota T, Takahashi H, Matsumoto I, Otsu M, Sumida T. Functional Analysis of Dendritic Cells Generated from T-iPSCs from CD4+ T Cell Clones of Sjögren's Syndrome. Stem Cell Reports 2018; 8:1155-1163. [PMID: 28494936 PMCID: PMC5425788 DOI: 10.1016/j.stemcr.2017.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022] Open
Abstract
Although it is important to clarify the pathogenic functions of T cells in human samples, their examination is often limited due to difficulty in obtaining sufficient numbers of dendritic cells (DCs), used as antigen-presenting cells, especially in autoimmune diseases. We describe the generation of DCs from induced pluripotent stem cells derived from T cells (T-iPSCs). We reprogrammed CD4+ T cell clones from a patient with Sjögren's syndrome (SS) into iPSCs, which were differentiated into DCs (T-iPS-DCs). T-iPS-DCs had dendritic cell-like morphology, and expressed CD11c, HLA-DR, CD80, CD86, and also BDCA-3. Compared with monocyte-derived DCs, the capacity for antigen processing was similar, and T-iPS-DCs induced the proliferative response of autoreactive CD4+ T cells. Moreover, we could evaluate T cell functions of the patient with SS. In conclusion, we obtained adequate numbers of DCs from T-iPSCs, which could be used to characterize pathogenic T cells in autoimmune diseases such as SS. Dendritic cells were generated from iPSCs derived from CD4+ T cells (T-iPS-DCs) Adequate numbers of functional DCs were generated from a small blood sample The comparison between T-iPS-DCs and monocyte-derived DCs was evaluated The functional assays of T cells in Sjögren's syndrome were analyzed by T-iPS-DCs
Collapse
Affiliation(s)
- Mana Iizuka-Koga
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiromitsu Asashima
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Miki Ando
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Tokyo 108-8639, Japan; Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Chen-Yi Lai
- Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Tokyo 108-8639, Japan
| | - Shinji Mochizuki
- Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Tokyo 108-8639, Japan
| | - Mahito Nakanishi
- Research Laboratory for Stem Cell Engineering, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Toshinobu Nishimura
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Tomoya Hirota
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroyuki Takahashi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Makoto Otsu
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Tokyo 108-8639, Japan; Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Tokyo 108-8639, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| |
Collapse
|
17
|
Moser C, Pedersen HT, Lerche CJ, Kolpen M, Line L, Thomsen K, Høiby N, Jensen PØ. Biofilms and host response - helpful or harmful. APMIS 2017; 125:320-338. [PMID: 28407429 DOI: 10.1111/apm.12674] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 01/09/2023]
Abstract
Biofilm infections are one of the modern medical world's greatest challenges. Probably, all non-obligate intracellular bacteria and fungi can establish biofilms. In addition, there are numerous biofilm-related infections, both foreign body-related and non-foreign body-related. Although biofilm infections can present in numerous ways, one common feature is involvement of the host response with significant impact on the course. A special characteristic is the synergy of the innate and the acquired immune responses for the induced pathology. Here, we review the impact of the host response for the course of biofilm infections, with special focus on cystic fibrosis, chronic wounds and infective endocarditis.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hannah Trøstrup Pedersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Laura Line
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Li R, Fang F, Jiang M, Wang C, Ma J, Kang W, Zhang Q, Miao Y, Wang D, Guo Y, Zhang L, Guo Y, Zhao H, Yang D, Tian Z, Xiao W. STAT3 and NF-κB are Simultaneously Suppressed in Dendritic Cells in Lung Cancer. Sci Rep 2017; 7:45395. [PMID: 28350008 PMCID: PMC5368983 DOI: 10.1038/srep45395] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/22/2017] [Indexed: 01/26/2023] Open
Abstract
Tumour-induced dendritic cell (DC) dysfunction plays an important role in cancer immune escape. However, the underlying mechanisms are not yet fully understood, reflecting the lack of appropriate experimental models both in vivo and in vitro. In the present study, an in vitro study model for tumour-induced DC dysfunction was established by culturing DCs with pooled sera from multiple non-small cell lung cancer (NSCLC) patients. The results demonstrated that tumour-induced human monocyte-derived DCs exhibited systematic functional deficiencies. Transcriptomics analysis revealed that the expression of major functional cluster genes, including the MHC class II family, cytokines, chemokines, and co-stimulatory molecules, was significantly altered in tumour-induced DCs compared to that in control cells. Further examination confirmed that both NF-κB and STAT3 signalling pathways were simultaneously repressed by cancer sera, suggesting that the attenuated NF-κB and STAT3 signalling could be the leading cause of DC dysfunction in cancer. Furthermore, reversing the deactivated NF-κB and STAT3 signalling could be a strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Rui Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Fang Fang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Ming Jiang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Chenguang Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Jiajia Ma
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Wenyao Kang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Qiuyan Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yuhui Miao
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Dong Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yugang Guo
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Linnan Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yang Guo
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Hui Zhao
- Department of Respiration, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, USA
| | - Zhigang Tian
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Weihua Xiao
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| |
Collapse
|
19
|
Plasmacytoid dendritic cell proliferations and neoplasms involving the bone marrow. Ann Hematol 2017; 96:765-777. [DOI: 10.1007/s00277-017-2947-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/03/2017] [Indexed: 12/13/2022]
|
20
|
Dhamanage A, Thakar M, Paranjape R. Human Immunodeficiency Virus-1 Impairs IFN-Alpha Production Induced by TLR-7 Agonist in Plasmacytoid Dendritic Cells. Viral Immunol 2016; 30:28-34. [PMID: 27809682 DOI: 10.1089/vim.2016.0084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) play an important role in innate immune response against viruses, mainly through interferon-α (IFN-α) secretion. Impaired IFN-α secretion has been observed in patients with acute human immunodeficiency virus type 1 (HIV-1) infection and the reasons for this impairment are still obscure. To know the grounds behind this situation, HIV-1 viral copy numbers similar to those found in primary HIV-1 infection were used to stimulate peripheral blood mononuclear cells (PBMCs) and pDCs in this study. Intracellular IFN-α production was seen as early as 2 h in pDCs with TLR-7 agonist (imiquimod) stimulation, but HIV-1 required 48 h to induce secretion of IFN-α in supernatants and it was 10 times less compared to imiquimod. Thus, it shows that HIV-1 delays and impairs IFN-α production from pDCs. Furthermore, the IFN-α inhibitory activity of HIV-1 was checked by stimulating PBMCs and pDCs with imiquimod either simultaneously with HIV-1 or after 2 h pre-exposure to HIV-1. Pre-exposure to HIV-1 resulted in significant reduction in IFN-α secretion by pDCs and PBMCs when compared to imiquimod alone. In addition, simultaneous stimulation of these populations with HIV-1 and imiquimod resulted in significant impairment in IFN-α production in pDCs but not in PBMCs. HIV-1 not only fails to induce IFN-α in adequate quantities but also inhibits IFN-α secretary capacity of pDCs. HIV-1 particles were found to bind CD303 receptor on pDC surface probably blocking initiation of cascade leading to IFN-α impairment. The understanding of the pathways that lead to this suppression may help in devising the HIV control strategies.
Collapse
Affiliation(s)
- Ashwini Dhamanage
- Department of Immunology, National AIDS Research Institute , Pune, India
| | - Madhuri Thakar
- Department of Immunology, National AIDS Research Institute , Pune, India
| | - Ramesh Paranjape
- Department of Immunology, National AIDS Research Institute , Pune, India
| |
Collapse
|
21
|
García-León ML, Bonifaz LC, Espinosa-Torres B, Hernández-Pérez B, Cardiel-Marmolejo L, Santos-Preciado JI, Wong-Chew RM. A correlation of measles specific antibodies and the number of plasmacytoid dendritic cells is observed after measles vaccination in 9 month old infants. Hum Vaccin Immunother 2016; 11:1762-9. [PMID: 26075901 DOI: 10.1080/21645515.2015.1032488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response.
Collapse
Key Words
- (-) ssRNA, nonsegmented negative single-stranded RNA
- DCs, dendritic cells
- EZ, Edmonston Zagreb
- GMT, Geometric mean titers
- IFN, interferon
- MMR, measles, mumps, rubella vaccine
- MeV, Measles virus
- PBMCs, peripheral blood mononuclear cells
- PRN, plaque reduction neutralization
- cellular and humoral immunity
- mDCs, myeloid dendritic cells
- measles vaccine
- pDCs, plasmacytoid dendritic cells
- plasmacytoid dendritic cells
Collapse
Affiliation(s)
- Miguel L García-León
- a Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México ; México City , México
| | | | | | | | | | | | | |
Collapse
|
22
|
Legitimo A, Consolini R, Failli A, Orsini G, Spisni R. Dendritic cell defects in the colorectal cancer. Hum Vaccin Immunother 2015; 10:3224-35. [PMID: 25483675 PMCID: PMC4514061 DOI: 10.4161/hv.29857] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) results from the accumulation of both genetic and epigenetic alterations of the genome. However, also the formation of an inflammatory milieu plays a pivotal role in tumor development and progression. Dendritic cells (DCs) play a relevant role in tumor by exerting differential pro-tumorigenic and anti-tumorigenic functions, depending on the local milieu. Quantitative and functional impairments of DCs have been widely observed in several types of cancer, including CRC, representing a tumor-escape mechanism employed by cancer cells to elude host immunosurveillance. Understanding the interactions between DCs and tumors is important for comprehending the mechanisms of tumor immune surveillance and escape, and provides novel approaches to therapy of cancer. This review summarizes updated information on the role of the DCs in colon cancer development and/or progression.
Collapse
Key Words
- APC, antigen presenting cells
- CRC, Colorectal cancer
- CTLA-4, anticytotoxic T-lymphocyte antigen 4
- DCregs, regulatory DCs
- DCs, dendritic cells
- GM-CSF, granulocyte macrophage colony stimulating factor
- HMGB, high mobility group box
- HNSCC, head and neck squamous cell carcinoma
- IFN, interferon
- IL, interleukin
- MDSCs, myeloid-derived suppressor cells
- MHC, major histocompatibility complex
- NK,natural killer
- PAMP, pathogen-associated molecular pattern
- PD-1, programmed death 1
- PRRs, pattern recognition receptors
- TDLNs, draining lymph nodes
- TGF, transforming growth factor
- TIDCs, tumor-infiltrating DCs
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- Th, T helper
- VEGF, vascular endothelial growth factor
- colorectal cancer
- dendritic cells
- immune response
- immunoescape
- mDCs, myeloid dendritic cells
- pDCs, plasmacytoid dendritic cells
- tumor microenvironment
Collapse
Affiliation(s)
- Annalisa Legitimo
- a Department of Clinical and Experimental Medicine ; University of Pisa ; Pisa , Italy
| | | | | | | | | |
Collapse
|
23
|
Barragan M, Good M, Kolls JK. Regulation of Dendritic Cell Function by Vitamin D. Nutrients 2015; 7:8127-51. [PMID: 26402698 PMCID: PMC4586578 DOI: 10.3390/nu7095383] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/04/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022] Open
Abstract
Studies over the last two decades have revealed profound immunomodulatory aspects of vitamin D on various aspects of the immune system. This review will provide an overview of Vitamin D metabolism, a description of dendritic cell subsets, and highlight recent advances on the effects of vitamin D on dendritic cell function, maturation, cytokine production and antigen presentation. The active form of vitamin D, 1,25(OH)2D3, has important immunoregulatory and anti-inflammatory effects. Specifically, the 1,25(OH)2D3-Vitamin D3 complex can affect the maturation and migration of many dendritic cell subsets, conferring a special immunoregulatory role as well as tolerogenic properties affecting cytokine and chemokine production. Furthermore, there have been many recent studies demonstrating the effects of Vitamin D on allergic disease and autoimmunity. A clear understanding of the effects of the various forms of Vitamin D will provide new opportunities to improve human health.
Collapse
Affiliation(s)
- Myriam Barragan
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA.
- Department of Pediatrics, School of Medicine, University of Pittsburgh Pittsburgh, PA 15224, USA.
| | - Misty Good
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA.
- Department of Pediatrics, School of Medicine, University of Pittsburgh Pittsburgh, PA 15224, USA.
- Division of Newborn Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA.
- Department of Pediatrics, School of Medicine, University of Pittsburgh Pittsburgh, PA 15224, USA.
| |
Collapse
|
24
|
Chen YC, Chiang HH, Cho YT, Chang CY, Chen KL, Yang CW, Lee YH, Chu CY. Human herpes virus reactivations and dynamic cytokine profiles in patients with cutaneous adverse drug reactions --a prospective comparative study. Allergy 2015; 70:568-75. [PMID: 25727950 DOI: 10.1111/all.12602] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Sequential human herpes virus (HHV) reactivation is well known in drug reaction with eosinophilia and systemic symptom (DRESS), but such a phenomenon has seldom studied in other types of cutaneous adverse drug reactions (cADRs). Moreover, the association between viral reactivations and cytokine or chemokine changes is largely unknown. We aimed to evaluate the viral reactivation rates of HHV-6, HHV-7, Epstein-Barr virus (EBV), and cytomegalovirus (CMV) in different cADRs and their impacts on clinical prognosis. Cytokine and chemokine changes with viral reactivations were also examined. METHODS A prospective study was conducted to monitor the viral statuses of patients with different cADRs by polymerase chain reaction and serum-specific antibody titers. Changes in plasma cytokine and chemokine levels were also evaluated by sequential blood samples. RESULTS Among the various cADRs, HHV-6 reactivation was only observed in DRESS, but EBV and CMV could be detected in other cADRs. Many proinflammatory cytokines and chemokines, including interleukin (IL)-1β, IL-2, IL-6, interferon-γ, tumor necrosis factor-α, were significantly lower in DRESS patients with HHV-6 reactivation when compared to those without HHV-6 reactivation. In addition, these mediators were significantly lower before and during HHV-6 reactivation, compared to cytokine levels after HHV-6 reactivation in the same patient. CONCLUSION HHV-6 reactivation was only observed in DRESS patients, not in any other cADR. In DRESS patients, some proinflammatory cytokines were significantly lower before or during HHV-6 reactivation.
Collapse
Affiliation(s)
- Y.-C. Chen
- Department of Dermatology; Cathay General Hospital; Taipei Taiwan
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - H.-H. Chiang
- Department of Internal Medicine; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Y.-T. Cho
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - C.-Y. Chang
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - K.-L. Chen
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - C.-W. Yang
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Y.-H. Lee
- Department of Pathology; National Taiwan University Hospital Hsin-Chu Branch; Hisn-Chu Taiwan
| | - C.-Y. Chu
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| |
Collapse
|
25
|
Chow Z, Banerjee A, Hickey MJ. Controlling the fire — tissue‐specific mechanisms of effector regulatory T‐cell homing. Immunol Cell Biol 2015; 93:355-63. [DOI: 10.1038/icb.2014.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Zachary Chow
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre Clayton Victoria Australia
| | - Ashish Banerjee
- Centre for Cancer Research, MIMR‐PHI Institute of Medical Research Clayton Victoria Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre Clayton Victoria Australia
| |
Collapse
|
26
|
Marie I. [CXCL4: a new biomarker of diagnosis and severity in systemic sclerosis?]. Rev Med Interne 2014; 36:69-72. [PMID: 25458865 DOI: 10.1016/j.revmed.2014.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/10/2014] [Indexed: 11/17/2022]
Affiliation(s)
- I Marie
- Département de médecine interne, CHU de Rouen, 1, rue de Germont, 76031 Rouen cedex, France.
| |
Collapse
|
27
|
Tung CY, Lewis DE, Han L, Jaja M, Yao S, Li F, Robertson MJ, Zhou B, Sun J, Chang HC. Activation of dendritic cell function by soypeptide lunasin as a novel vaccine adjuvant. Vaccine 2014; 32:5411-9. [DOI: 10.1016/j.vaccine.2014.07.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/15/2014] [Accepted: 07/30/2014] [Indexed: 12/30/2022]
|
28
|
Lother J, Breitschopf T, Krappmann S, Morton CO, Bouzani M, Kurzai O, Gunzer M, Hasenberg M, Einsele H, Loeffler J. Human dendritic cell subsets display distinct interactions with the pathogenic mould Aspergillus fumigatus. Int J Med Microbiol 2014; 304:1160-8. [PMID: 25200858 DOI: 10.1016/j.ijmm.2014.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 11/29/2022] Open
Abstract
The mould Aspergillus fumigatus is primarily an opportunistic pathogen of immunocompromised patients. Once fungal spores have been inhaled they encounter cells of the innate immune system, which include dendritic cells (DCs). DCs are the key antigen-presenting cells of the immune system and distinct subtypes, which differ in terms of origin, morphology and function. This study has systematically compared the interactions between A. fumigatus and myeloid DCs (mDCs), plasmacytoid DCs (pDCs) and monocyte-derived DCs (moDCs). Analyses were performed by time-lapse video microscopy, scanning electron microscopy, plating assays, flow cytometry, 25-plex ELISA and transwell assays. The three subsets of DCs displayed distinct responses to the fungus with mDCs and moDCs showing the greatest similarities. mDCs and moDCs both produced rough convolutions and occasionally phagocytic cups upon exposure to A. fumigatus whereas pDCs maintained a smooth appearance. Both mDCs and moDCs phagocytosed conidia and germ tubes, while pDCs did not phagocytose any fungi. Analysis of cytokine release and maturation markers revealed specific differences in pro- and anti-inflammatory patterns between the different DC subsets. These distinct characteristics between the DC subsets highlight their differences and suggest specific roles of moDCs, mDCs and pDCs during their interaction with A. fumigatus in vivo.
Collapse
Affiliation(s)
- Jasmin Lother
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany
| | - Tanja Breitschopf
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany
| | - Sven Krappmann
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - C Oliver Morton
- University of Western Sydney, School of Science and Health, Sydney, NSW, Australia
| | - Maria Bouzani
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich-Schiller-University and Leibniz-Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen, Essen, Germany
| | - Mike Hasenberg
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen, Essen, Germany
| | - Hermann Einsele
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany
| | - Juergen Loeffler
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany.
| |
Collapse
|
29
|
Ait Yahia S, Azzaoui I, Everaere L, Vorng H, Chenivesse C, Marquillies P, Duez C, Delacre M, Grandjean T, Balsamelli J, Fanton d'Andon M, Fan Y, Ple C, Werts C, Boneca IG, Wallaert B, Chamaillard M, Tsicopoulos A. CCL17 production by dendritic cells is required for NOD1-mediated exacerbation of allergic asthma. Am J Respir Crit Care Med 2014; 189:899-908. [PMID: 24661094 DOI: 10.1164/rccm.201310-1827oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Pattern recognition receptors are attractive targets for vaccine adjuvants, and polymorphisms of the innate receptor NOD1 have been associated with allergic asthma. OBJECTIVES To elucidate whether NOD1 agonist may favor allergic asthma in humans through activation of dendritic cells, and to evaluate the mechanisms involved using an in vivo model. METHODS NOD1-primed dendritic cells from allergic and nonallergic donors were characterized in vitro on their phenotype, cytokine secretion, and Th2 polarizing ability. The in vivo relevance was examined in experimental allergic asthma, and the mechanisms were assessed using transfer of NOD1-conditioned dendritic cells from wild-type or CCL17-deficient mice. MEASUREMENTS AND MAIN RESULTS NOD1 priming of human dendritic cells promoted a Th2 polarization profile that involved the production of CCL17 and CCL22 in nonallergic subjects but only CCL17 in allergic patients, without requiring allergen costimulation. Moreover, NOD1-primed dendritic cells from allergic donors exhibited enhanced maturation that led to abnormal CCL22 and IL-10 secretion compared with nonallergic donors. In mice, systemic NOD1 ligation exacerbated allergen-induced experimental asthma by amplifying CCL17-mediated Th2 responses in the lung. NOD1-mediated sensitization of purified murine dendritic cells enhanced production of CCL17 and CCL22, but not of thymic stromal lymphopoietin and IL-33, in vitro. Consistently, adoptive transfer of NOD1-conditioned dendritic cells exacerbated the Th2 pulmonary response in a CCL17-dependent manner in vivo. CONCLUSIONS Data from this study unveil a deleterious role of NOD1 in allergic asthma through direct induction of CCL17 by dendritic cells, arguing for a need to address vaccine formulation safety issues related to allergy.
Collapse
Affiliation(s)
- Saliha Ait Yahia
- 1 Pulmonary Immunity, Institut National de la Santé et de la Recherche Médicale, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Srivatsan S, Swiecki M, Otero K, Cella M, Shaw AS. CD2-associated protein regulates plasmacytoid dendritic cell migration, but is dispensable for their development and cytokine production. THE JOURNAL OF IMMUNOLOGY 2013; 191:5933-40. [PMID: 24218450 DOI: 10.4049/jimmunol.1300454] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are a dendritic cell subset that secrete type I IFNs in response to microbial stimuli. The scaffold protein, CD2-associated protein (CD2AP), is a marker of human pDCs as it is highly expressed in this cell type. Recently, in human pDCs, decreased CD2AP expression appeared to enhance the production of type I IFNs via an inhibitory receptor-induced signaling cascade. In this study, we sought to determine the role of CD2AP in murine pDCs using CD2AP knockout (KO) mice. CD2AP was dispensable for the development of pDCs and for the upregulation of activation markers following stimulation. Loss of CD2AP expression did not affect the production of type I IFNs stimulated by TLR ligation, and only slightly impaired type I IFN production when inhibitory pathways were engaged in vitro. This was also confirmed by showing that CD2AP deficiency did not influence type I IFN production by pDCs in vivo. Because CD2AP plays a role in regulating actin dynamics, we examined the actin cytoskeleton in pDCs and found that activated CD2AP KO pDCs had significantly higher levels of actin polymerization than wild-type pDCs. Using two different inflammation models, we found that CD2AP KO pDCs have a defect in lymph node migration, correlating with the defects in actin dynamics. Our work excludes a role for CD2AP in the regulation of type I IFNs in pDCs, and suggests that the major function of CD2AP is on the actin cytoskeleton, affecting migration to local lymph nodes under conditions of inflammation.
Collapse
Affiliation(s)
- Subhashini Srivatsan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | | |
Collapse
|
31
|
Isgrò M, Bianchetti L, Marini MA, Mattoli S. Involvement of fibrocytes in allergen-induced T cell responses and rhinovirus infections in asthma. Biochem Biophys Res Commun 2013; 437:446-51. [PMID: 23831627 DOI: 10.1016/j.bbrc.2013.06.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 01/16/2023]
Abstract
Allergen exposure and rhinovirus infections that propagate from the upper to the lower airways are the most frequent causes of asthma exacerbation. In patients at increased risk of disease exacerbations, chronic airway inflammation is associated with the airway recruitment of circulating fibrocytes, bone marrow-derived CD34(+)CD45RO(+)CD11b(+)CD13(+)HLA-DR(+) progenitors that have antigen-presenting function and fibroblast-like properties. This study demonstrates that allergen-pulsed circulating fibrocytes from patients with allergic asthma are potent inducer of the predominant release of the T helper type (Th)2 cytokines IL-4 and IL-5 from autologous naïve and memory CD4(+) T cells. This study also provides evidence that circulating fibrocytes from allergic asthmatics are susceptible to rhinovirus infection. Infected cells release high amounts of pro-inflammatory cytokines with minimal production of IFN-α/β. Moreover, allergen-pulsed fibrocytes support prolonged rhinovirus replication and release larger quantities of pro-inflammatory cytokines upon rhinovirus infection than unpulsed fibrocytes. Thus, fibrocytes may amplify allergen-induced, Th2 cell-driven inflammatory responses and promote further inflammation by functioning as a reservoir for rhinovirus replication in asthmatic airways. Through these mechanisms, fibrocytes may play an important role in the provocation of disease exacerbations.
Collapse
Affiliation(s)
- Mirko Isgrò
- Avail Biomedical Research Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
32
|
Gleisner MA, Reyes P, Alfaro J, Solanes P, Simon V, Crisostomo N, Sauma D, Rosemblatt M, Bono MR. Dendritic and stromal cells from the spleen of lupic mice present phenotypic and functional abnormalities. Mol Immunol 2013; 54:423-34. [DOI: 10.1016/j.molimm.2013.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 01/18/2023]
|
33
|
CCL17/thymus and activation-regulated chemokine induces calcitonin gene-related peptide in human airway epithelial cells through CCR4. J Allergy Clin Immunol 2013; 132:942-50.e1-3. [PMID: 23731651 DOI: 10.1016/j.jaci.2013.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/08/2013] [Accepted: 04/16/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a potent arterial and venous vasodilator. Increased airway epithelial cell expression of CGRP, together with increased CCL17 expression, was previously observed in a model of provoked asthma in atopic human subjects. OBJECTIVE We sought to determine whether CCL17 induces CCR4-dependent CGRP synthesis and secretion by human airway epithelial cells. METHODS Human airway epithelial cell lines (BEAS-2B and A549) and human primary airway cells were cultured with CCL17 or various other cytokines, and CGRP expression was measured by using RT-PCR, quantitative immunofluorescence, and enzyme immunoassay. CCR4 expression was determined in cultured cells by using flow cytometry and in bronchial biopsy specimens by using immunohistochemistry. RESULTS CCL17 induced a several thousand-fold increase in CGRP mRNA expression and released peptide product from BEAS-2B and A549 cells in a time- and concentration-dependent fashion. Concentration-dependent CCL17-induced release of CGRP by primary human airway epithelial cells was also observed. Under comparable conditions, CCL17 induced greater CGRP release from BEAS-2B cells than either IL-13, a cytokine mixture (TNF-α, GM-CSF, and IL-1), or CCL22. CCR4 was expressed by BEAS-2B and A549 cells and internalized after ligation with CCL17. CCL17-induced CGRP release was inhibited by a specific anti-CCR4 blocking antibody. Bronchial biopsy specimens obtained from healthy volunteers and asthmatic patients before and after provoked asthma all exhibited CCR4 staining of equivalent intensity, indicating that the receptor is constitutively expressed. CONCLUSIONS CCL17-induced, CCR4-dependent release of CGRP by human airway epithelial cells represents a novel inflammatory pathway and a possible target in patients with asthma and allergic disease.
Collapse
|
34
|
Rollins-Raval MA, Marafioti T, Swerdlow SH, Roth CG. The number and growth pattern of plasmacytoid dendritic cells vary in different types of reactive lymph nodes: an immunohistochemical study. Hum Pathol 2013; 44:1003-10. [DOI: 10.1016/j.humpath.2012.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
35
|
Auray G, Facci MR, van Kessel J, Buchanan R, Babiuk LA, Gerdts V. Porcine neonatal blood dendritic cells, but not monocytes, are more responsive to TLRs stimulation than their adult counterparts. PLoS One 2013; 8:e59629. [PMID: 23667422 PMCID: PMC3648567 DOI: 10.1371/journal.pone.0059629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/15/2013] [Indexed: 01/20/2023] Open
Abstract
The neonatal immune system is often considered as immature or impaired compared to the adult immune system. This higher susceptibility to infections is partly due to the skewing of the neonatal immune response towards a Th2 response. Activation and maturation of dendritic cells (DCs) play an important role in shaping the immune response, therefore, DCs are a target of choice for the development of efficient and protective vaccine formulations able to redirect the neonatal immune response to a protective Th1 response. As pigs are becoming more important for vaccine development studies due to their similarity to the human immune system, we decided to compare the activation and maturation of a subpopulation of porcine DCs in adult and neonatal pigs following stimulation with different TLR ligands, which are promising candidates for adjuvants in vaccine formulations. Porcine blood derived DCs (BDCs) were directly isolated from blood and consisted of a mix of conventional and plasmacytoid DCs. Following CpG ODN (TLR9 ligand) and imiquimod (TLR7 ligand) stimulation, neonatal BDCs showed higher levels of expression of costimulatory molecules and similar (CpG ODN) or higher (imiquimod) levels of IL-12 compared to adult BDCs. Another interesting feature was that only neonatal BDCs produced IFN-α after TLR7 or TLR9 ligand stimulation. Stimulation with CpG ODN and imiquimod also induced enhanced expression of several chemokines. Moreover, in a mixed leukocyte reaction assay, neonatal BDCs displayed a greater ability to induce lymphoproliferation. These findings suggest that when stimulated via TLR7 or TLR9 porcine DCs display similar if not better response than adult porcine DCs.
Collapse
Affiliation(s)
- Gael Auray
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Marina R. Facci
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Rachelle Buchanan
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | - Volker Gerdts
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
36
|
von Glehn F, Santos LM, Balashov KE. Plasmacytoid dendritic cells and immunotherapy in multiple sclerosis. Immunotherapy 2013; 4:1053-61. [PMID: 23148757 DOI: 10.2217/imt.12.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized APCs implicated in the pathogenesis of many human diseases. Compared with other peripheral blood mononuclear cells, pDCs express a high level of TLR9, which recognizes viral DNA at the initial phase of viral infection. Upon stimulation, these cells produce large amounts of type I interferon and other proinflammatory cytokines and are able to prime T lymphocytes. Thus, pDCs regulate innate and adaptive immune responses. This article reviews select aspects of pDC biology relevant to the disease pathogenesis and immunotherapy in multiple sclerosis. Many unresolved questions remain in this area, promising important future discoveries in pDC research.
Collapse
Affiliation(s)
- Felipe von Glehn
- Neuroimmunology Unit, Department of Genetics, Evolution & Bioagents, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP Brazil, CEP 13083-970, Brazil
| | | | | |
Collapse
|
37
|
Chensue SW. Chemokines in innate and adaptive granuloma formation. Front Immunol 2013; 4:43. [PMID: 23444049 PMCID: PMC3580335 DOI: 10.3389/fimmu.2013.00043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/05/2013] [Indexed: 01/15/2023] Open
Abstract
Granulomas are cellular inflammations that vary widely in histologic appearance depending upon the inciting agent and immunologic status of the responding host. Despite their heterogeneity, granulomas are at their core an ancient innate sequestration response characterized by the accumulation of mononuclear phagocytes. In fact, this innate cellular response was first observed by Metchnikov in simple invertebrates. Among higher vertebrates, environmental pressures have resulted in the evolution of more sophisticated adaptive immune responses which can be superimposed upon and modify the character of granulomatous inflammation. Compared to immune responses that rapidly neutralize and eliminate infectious agents, the granuloma represents a less desirable "fall back" response which still has value to the host but can be co-opted by certain infectious agents and contribute to bystander organ damage. Understanding granulomas requires an analysis of the complex interplay of innate and adaptive molecular signals that govern the focal accumulation and activity of their cellular components. Among these signals, small molecular weight chemoattractant proteins known as chemokines are potentially important contributors as they participate in both directing leukocyte migration and function. This tract will discuss the contribution of chemokines to the development of innate and adaptive granuloma formation, as well as describe their relationship to more recently evolved cytokines generated during adaptive immune responses.
Collapse
Affiliation(s)
- Stephen W Chensue
- Department of Pathology, University of Michigan Medical School Ann Arbor, MI, USA ; Section of Pathology and Laboratory Medicine, Veterans Affairs Ann Arbor Healthcare System Ann Arbor, MI, USA
| |
Collapse
|
38
|
Vermi W, Vescovi R, Facchetti F. Plasmacytoid Dendritic Cells in Cutaneous Disorders. CURRENT DERMATOLOGY REPORTS 2012. [DOI: 10.1007/s13671-012-0033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Pathogen sensors and chemokine receptors in dendritic cell subsets. Vaccine 2012; 30:7652-7. [PMID: 23142133 DOI: 10.1016/j.vaccine.2012.10.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 02/07/2023]
Abstract
Pathogen sensors such as Toll-like receptors (TLRs) detect microorganism- or host-derived conserved molecular structures, including lipids or nucleic acids and provoke activation of Ag presenting cells such as dendritic cells (DCs). Several synthetic TLR ligands, especially oligonucleotides, are being developed as promising vaccines for infectious diseases, cancers or allergies. DCs are heterogeneous and consist of various subsets, each of which expresses a subset-specific repertoire of TLRs and responds to the TLR signaling in a subset-specific manner. Furthermore, each DC subset expresses a set of chemokine receptors that regulate its function and behavior. Here I review the functions of two DC subsets and how chemokine receptors function in these subsets. One is the plasmacytoid DC (pDC), which expresses nucleic acid sensing receptors TLR7 and TLR9 and secretes large amounts of type I interferons in response to TLR7/9 signaling. The other is splenic CD8α(+) conventional DC (cDC). This DC subset expresses lipid sensors, TLR2 and TLR4, and nucleic acid sensors, TLR3, TLR9 and TLR13 and is specialized for antigen crosspresentation. Several chemokine receptors are differentially expressed on these DC subsets. The homologues of these murine DC subsets are also found in humans. Understanding how these DC subsets function and respond to TLR ligands and chemokines should be important for development of effective vaccines.
Collapse
|
40
|
Haczku A. The dendritic cell niche in chronic obstructive pulmonary disease. Respir Res 2012; 13:80. [PMID: 22992180 PMCID: PMC3507810 DOI: 10.1186/1465-9921-13-80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/12/2012] [Indexed: 11/24/2022] Open
Abstract
The pulmonary innate immune system is heavily implicated in the perpetual airway inflammation and impaired host defense characterizing Chronic Obstructive Pulmonary Disease (COPD). The airways of patients suffering from COPD are infiltrated by various immune and inflammatory cells including macrophages, neutrophils, T lymphocytes, and dendritic cells. While the role of macrophages, neutrophils and T lymphocytes is well characterized, the contribution of dendritic cells to COPD pathogenesis is still the subject of emerging research. A paper by Botelho and colleagues in the current issue of Respiratory Research investigates the importance of dendritic cell recruitment in cigarette-smoke induced acute and chronic inflammation in mice. Dendritic cells of the healthy lung parenchyma and airways perform an important sentinel function and regulate immune homeostasis. During inflammatory responses the function and migration pattern of these cells is dramatically altered but the underlying mechanisms are incompletely understood. Botelho and colleagues demonstrate here the importance of IL-1R1/IL-1α related mechanisms including CCL20 production in cigarette-smoke induced recruitment of dendritic cells and T cell activation in the mouse lung.
Collapse
Affiliation(s)
- Angela Haczku
- Pulmonary, Allergy and Critical Care Division, Translational Research Laboratories, 125 South 31st Street, Philadelphia, PA 19104-3403, USA.
| |
Collapse
|
41
|
Lo CC, Schwartz JA, Johnson DJ, Yu M, Aidarus N, Mujib S, Benko E, Hyrcza M, Kovacs C, Ostrowski MA. HIV delays IFN-α production from human plasmacytoid dendritic cells and is associated with SYK phosphorylation. PLoS One 2012; 7:e37052. [PMID: 22693567 PMCID: PMC3365039 DOI: 10.1371/journal.pone.0037052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 04/16/2012] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are the major producers of type I interferons (IFNs) in humans and rapidly produce IFN-α in response to virus exposure. Although HIV infection is associated with pDC activation, it is unclear why the innate immune response is unable to effectively control viral replication. We systematically compared the effect of HIV, Influenza, Sendai, and HSV-2 at similar target cell multiplicity of infection (M.O.I.) on human pDC function. We found that Influenza, Sendai, HSV-2 and imiquimod are able to rapidly induce IFN-α production within 4 hours to maximal levels, whereas HIV had a delayed induction that was maximal only after 24 hours. In addition, maximal IFN-α induction by HIV was at least 10 fold less than that of the other viruses in the panel. HIV also induced less TNF-α and MIP-1β but similar levels of IP-10 compared to other viruses, which was also mirrored by delayed upregulation of pDC activation markers CD83 and CD86. BDCA-2 has been identified as an inhibitory receptor on pDC, signaling through a pathway that involves SYK phosphorylation. We find that compared to Influenza, HIV induces the activation of the SYK pathway. Thus, HIV delays pDC IFN-α production and pDC activation via SYK phosphorylation, allowing establishment of viral populations.
Collapse
Affiliation(s)
- Calvin C. Lo
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jordan A. Schwartz
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Dylan J. Johnson
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Monica Yu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nasra Aidarus
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shariq Mujib
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erika Benko
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Martin Hyrcza
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Colin Kovacs
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Mario A. Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Pivotal role of plasmacytoid dendritic cells in inflammation and NK-cell responses after TLR9 triggering in mice. Blood 2012; 120:90-9. [PMID: 22611152 DOI: 10.1182/blood-2012-02-410936] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The physiologic role played by plasmacytoid dendritic cells (pDCs) in the induction of innate responses and inflammation in response to pathogen signaling is not well understood. Here, we describe a new mouse model lacking pDCs and establish that pDCs are essential for the in vivo induction of NK-cell activity in response to Toll-like receptor 9 (TLR9) triggering. Furthermore, we provide the first evidence that pDCs are critical for the systemic production of a wide variety of chemokines in response to TLR9 activation. Consequently, we observed a profound alteration in monocyte, macrophage, neutrophil, and NK-cell recruitment at the site of inflammation in the absence of pDCs in response to CpG-Dotap and stimulation by microbial pathogens, such as Leishmania major, Escherichia coli, and Mycobacterium bovis. This study, which is based on the development of a constitutively pDC-deficient mouse model, highlights the pivotal role played by pDCs in the induction of innate immune responses and inflammation after TLR9 triggering.
Collapse
|
43
|
Palma G, De Laurenzi V, De Marco M, Barbieri A, Petrillo A, Turco MC, Arra C. Plasmacytoids dendritic cells are a therapeutic target in anticancer immunity. Biochim Biophys Acta Rev Cancer 2012; 1826:407-14. [PMID: 22579960 DOI: 10.1016/j.bbcan.2012.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/27/2012] [Accepted: 04/28/2012] [Indexed: 01/07/2023]
Abstract
Dendritic cells (DCs) are immunological sentinels of the organism acting as antigen-presenting cells (APC) and are critical for induction of innate and adaptive immunity. Traditionally they are divided in myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs), a rare population of circulating cells that selectively express Toll-like receptors (TLR) 7 and TLR9 and have the capacity to produce large amounts of type I interferons (IFNs) in response to pathogenic agents or danger signals. It has been demonstrated that pDCs can coordinate events during the course of viral infections, allergic and autoimmune diseases and cancer. Through the production of type I IFNs, pDCs initiate protective immunity by activating classical DCs, T cells, natural killer cells and B cells. Upon activation, pDCs also differentiate into mature DCs and may contribute to the contraction of T-cell response. Human pDCs preferentially express immunoglobulin-like transcript 7 (ILT7; LILRA4), which couples with a signaling adapter to activate a prominent immune-receptor tyrosine-based activation motif (ITAM)-mediated signaling pathway. The interaction between ILT7 and bone marrow stromal cell antigen 2 (BST2, CD317) assures an appropriate TLR response by pDCs during viral infections and likely participates in pDCs tumor crosstalk. Moreover these cells seem to play a crucial role in the initiation of the pathological process of autoimmune diseases such as lupus or psoriasis. Despite the fact that their function within a tumor context is still controversial they represent an attractive target for therapeutic manipulation of the immune system to elicit a powerful immune response against tumor antigens in combination with other therapies.
Collapse
Affiliation(s)
- Giuseppe Palma
- Struttura Semplice Dipartimentale Sperimentazione Animale, Istituto Nazionale dei Tumori, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Tumor associated regulatory dendritic cells. Semin Cancer Biol 2012; 22:298-306. [PMID: 22414911 DOI: 10.1016/j.semcancer.2012.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 02/25/2012] [Indexed: 01/05/2023]
Abstract
Immune effector and regulatory cells in the tumor microenvironment are key factors in tumor development and progression as the pathogenesis of cancer vitally depends on the multifaceted interactions between various microenvironmental stimuli provided by tumor-associated immune cells. Immune regulatory cells participate in all stages of cancer development from the induction of genomic instability to the maintenance of intratumoral angiogenesis, proliferation and spreading of malignant cells, and formation of premetastatic niches in distal tissues. Dendritic cells in the tumor microenvironment serve as a double-edged sword and, in addition to initiating potent anti-tumor immune responses, may mediate genomic damage, support neovascularization, block anti-tumor immunity and stimulate cancerous cell growth and spreading. Regulatory dendritic cells in cancer may directly and indirectly maintain antigen-specific and non-specific T cell unresponsiveness by controlling T cell polarization, MDSC and Treg differentiation and activity, and affecting specific microenvironmental conditions in premalignant niches. Understanding the mechanisms involved in regulatory dendritic cell polarization and operation and revealing pharmacological means for harnessing these pathways will provide additional opportunities for modifying the tumor microenvironment and improving the efficacy of different therapeutic approaches to cancer.
Collapse
|
45
|
Jang E, Cho ML, Oh HJ, Youn J. Deficiency of foxp3 regulatory T cells exacerbates autoimmune arthritis by altering the synovial proportions of CD4 T cells and dendritic cells. Immune Netw 2011; 11:299-306. [PMID: 22194713 PMCID: PMC3243004 DOI: 10.4110/in.2011.11.5.299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND CD4(+)Fop3(+) regulatory T cells (Tregs) are needed to maintain peripheral tolerance, but their role in the development of autoimmune arthritis is still debated. The present study was undertaken to investigate the mechanism by which Tregs influence autoimmune arthritis, using a mouse model entitled K/BxN. METHODS We generated Treg-deficient K/BxNsf mice by congenically crossing K/BxN mice with Foxp3 mutant scurfy mice. The arthritic symptoms of the mice were clinically and histopathologically examined. The proportions and activation of CD4(+) T cells and/or dendritic cells were assessed in the spleens, draining lymph nodes and synovial tissue of these mice. RESULTS K/BxNsf mice exhibited earlier onset and more aggressive progression of arthritis than their K/BxN littermates. In particular, bone destruction associated with the influx of numerous RANKL+ cells into synovia was very prominent. They also contained more memory phenotype CD4(+) T cells, more Th1 and Th2 cells, and fewer Th17 cells than their control counterparts. Plasmacytoid dendritic cells expressing high levels of CD86 and CD40 were elevated in the K/BxNsf synovia. CONCLUSION We conclude that Tregs oppose the progression of arthritis by inhibiting the development of RANKL(+) cells, homeostatically proliferating CD4(+) T cells, Th1, Th2 and mature plasmacytoid dendritic cells, and by inhibiting their influx into joints.
Collapse
Affiliation(s)
- Eunkyeong Jang
- Institute of Biomedical Sciences, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | | | | | | |
Collapse
|
46
|
Abstract
The human immune system is under constant challenge from many viruses, some of which the body is successfully able to clear. Other viruses have evolved to escape the host immune responses and thus persist, leading to the development of chronic diseases. Dendritic cells are professional antigen-presenting cells that play a major role in both innate and adaptive immunity against different pathogens. This review focuses on the interaction of different chronic viruses with dendritic cells and the viruses' ability to exploit this critical cell type to their advantage so as to establish persistence within the host.
Collapse
Affiliation(s)
- Saifur Rahman
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | | | | |
Collapse
|
47
|
Vermi W, Soncini M, Melocchi L, Sozzani S, Facchetti F. Plasmacytoid dendritic cells and cancer. J Leukoc Biol 2011; 90:681-90. [PMID: 21730085 DOI: 10.1189/jlb.0411190] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cancer develops in a complex microenvironment comprising cancer cells, stromal cells, and host immune cells with their soluble products. The counteracting host-protective and tumor-promoting roles of different immune cell populations have been elegantly clarified in the last decade by pertinent genetically modified mouse models. Among cells with a potential role in cancer immunity, PDCs might represent important players as a result of their capacity to bring together innate and adaptive immunity. This review summarizes current knowledge about the role of PDCs in cancer immunity. PDCs have been documented in primary and metastatic human neoplasms; however, the clinical significance of this finding is still unknown. Once into the tumor bed, PDCs can be hijacked by the tumor microenvironment and lose their propensity to produce the required amount of endogenous I-IFN. However, when properly reprogrammed (i.e., by TLR agonists), PDCs might mediate tumor rejection in a clinical setting. Tumor rejection, at least partially, is driven by I-IFN and seems to require a cross-talk with other innate immune cells, including IFN DCs. The latter evidence, although still limited to skin cancers, can provide a leading model for developing adjuvant immune therapy for other neoplasms. To this end, the generation of appropriate mouse models to modulate the frequency and activation state of murine PDCs will also be of remarkable importance.
Collapse
Affiliation(s)
- William Vermi
- Department of Pathology, University of Brescia, Brescia, Italy.
| | | | | | | | | |
Collapse
|
48
|
Davidson S, Kaiko G, Loh Z, Lalwani A, Zhang V, Spann K, Foo SY, Hansbro N, Uematsu S, Akira S, Matthaei KI, Rosenberg HF, Foster PS, Phipps S. Plasmacytoid dendritic cells promote host defense against acute pneumovirus infection via the TLR7-MyD88-dependent signaling pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:5938-48. [PMID: 21482736 PMCID: PMC3404606 DOI: 10.4049/jimmunol.1002635] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12, and IL-6. However, RSV-infected pDC are refractory to TLR7-mediated activation. In this study, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7 signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type, but not TLR7- or MyD88-deficient mice, PVM inoculation led to a marked infiltration of pDC and increased expression of type I, II, and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8(+) T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient, but not TLR7-deficient pDC to TLR7 gene-deleted mice recapitulated the antiviral responses observed in wild-type mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet-unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants.
Collapse
Affiliation(s)
- Sophia Davidson
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| | - Gerard Kaiko
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| | - Zhixuan Loh
- School of Biomedical Sciences, The University of Queensland, QLD, Australia
| | - Amit Lalwani
- School of Biomedical Sciences, The University of Queensland, QLD, Australia
| | - Vivian Zhang
- School of Biomedical Sciences, The University of Queensland, QLD, Australia
| | - Kirsten Spann
- Sir Albert Sakzewski Virus Research Centre, The University of Queensland, QLD, Australia
| | - Shen Yun Foo
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| | - Nicole Hansbro
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| | - Satoshi Uematsu
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Klaus I. Matthaei
- Stem Cell and Gene Targeting Laboratory, John Curtin School of Medical Research, The Australian National University, ACT, Australia
- Stem Cell Unit, Department of Anatomy, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia
| | - Helene F. Rosenberg
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul S. Foster
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| | - Simon Phipps
- School of Biomedical Sciences, The University of Queensland, QLD, Australia
| |
Collapse
|
49
|
Ryan LK, Dai J, Yin Z, Megjugorac N, Uhlhorn V, Yim S, Schwartz KD, Abrahams JM, Diamond G, Fitzgerald-Bocarsly P. Modulation of human beta-defensin-1 (hBD-1) in plasmacytoid dendritic cells (PDC), monocytes, and epithelial cells by influenza virus, Herpes simplex virus, and Sendai virus and its possible role in innate immunity. J Leukoc Biol 2011; 90:343-56. [PMID: 21551252 DOI: 10.1189/jlb.0209079] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
hBD comprise a family of antimicrobial peptides that plays a role in bridging the innate and adaptive immune responses to infection. The expression of hBD-2 increases upon stimulation of numerous cell types with LPS and proinflammatory cytokines. In contrast, hBD-1 remains constitutively expressed in most cells in spite of cytokine or LPS stimulation; however, its presence in human PDC suggests it plays a role in viral host defense. To examine this, we characterized the expression of hBD-1 in innate immune cells in response to viral challenge. PDC and monocytes increased production of hBD-1 peptide and mRNA as early as 2 h following infection of purified cells and PBMCs with PR8, HSV-1, and Sendai virus. However, treatment of primary NHBE cells with influenza resulted in a 50% decrease in hBD-1 mRNA levels, as measured by qRT-PCR at 3 h following infection. A similar inhibition occurred with HSV-1 challenge of human gingival epithelial cells. Studies with HSV-1 showed that replication occurred in epithelial cells but not in PDC. Together, these results suggest that hBD-1 may play a role in preventing viral replication in immune cells. To test this, we infected C57BL/6 WT mice and mBD-1((-/-)) mice with mouse-adapted HK18 (300 PFU/mouse). mBD-1((-/-)) mice lost weight earlier and died sooner than WT mice (P=0.0276), suggesting that BD-1 plays a role in early innate immune responses against influenza in vivo. However, lung virus titers were equal between the two mouse strains. Histopathology showed a greater inflammatory influx in the lungs of mBD-1((-/-)) mice at Day 3 postinfection compared with WT C57BL/6 mice. The results suggest that BD-1 protects mice from influenza pathogenesis with a mechanism other than inhibition of viral replication.
Collapse
Affiliation(s)
- Lisa K Ryan
- The Public Health Research Institute and Department of Medicine, Division of Pulmonary and Critical Care Medicine, New Jersey Medical School, Newark, NJ 07103, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tai N, Yasuda H, Xiang Y, Zhang L, Rodriguez-Pinto D, Yokono K, Sherwin R, Wong FS, Nagata M, Wen L. IL-10-conditioned dendritic cells prevent autoimmune diabetes in NOD and humanized HLA-DQ8/RIP-B7.1 mice. Clin Immunol 2011; 139:336-49. [PMID: 21458378 DOI: 10.1016/j.clim.2011.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 01/23/2023]
Abstract
This study was to determine whether BMDCs cultured in the presence of IL-10 (G/10-DCs) could promote T cell tolerance and prevent autoimmune diabetes in two different animal models of T1D. Our results showed that G/10-DCs suppressed both insulitis and spontaneous diabetes in NOD and HLA-DQ8/RIP-B7.1 mice. The suppression was likely to be mediated by T cells, as we found that regulatory CD4(+)CD25(+)Foxp3(+) cells were significantly increased in G/10-DC treated animals. In vivo, the G/10-DCs inhibited diabetogenic T cell proliferation; in vitro, they had reduced expression of costimulatory molecules and produced little IL-12/23 p40 or IL-6 but a large amount of IL-10 when compared with DCs matured in the presence of IL-4 (G/4-DC). We conclude that IL-10-treated DCs are tolerogenic and induce islet-directed immune tolerance, which was likely to be mediated by T regulatory cells. This non-antigen-specific DC-based approach offers potential for a new therapeutic intervention in T1D.
Collapse
Affiliation(s)
- Ningwen Tai
- Yale University School of Medicine, Department of Internal Medicine, Section of Endocrinology, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|