1
|
Patlin BH, Mok H, Arra M, Haspel JA. Circadian rhythms in solid organ transplantation. J Heart Lung Transplant 2024; 43:849-857. [PMID: 38310995 PMCID: PMC11070314 DOI: 10.1016/j.healun.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Circadian rhythms are daily cycles in physiology that can affect medical interventions. This review considers how these rhythms may relate to solid organ transplantation. It begins by summarizing the mechanism for circadian rhythm generation known as the molecular clock, and basic research connecting the clock to biological activities germane to organ acceptance. Next follows a review of clinical evidence relating time of day to adverse transplantation outcomes. The concluding section discusses knowledge gaps and practical areas where applying circadian biology might improve transplantation success.
Collapse
Affiliation(s)
- Brielle H Patlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Huram Mok
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Monaj Arra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jeffrey A Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
2
|
Mok H, Ostendorf E, Ganninger A, Adler AJ, Hazan G, Haspel JA. Circadian immunity from bench to bedside: a practical guide. J Clin Invest 2024; 134:e175706. [PMID: 38299593 PMCID: PMC10836804 DOI: 10.1172/jci175706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
The immune system is built to counteract unpredictable threats, yet it relies on predictable cycles of activity to function properly. Daily rhythms in immune function are an expanding area of study, and many originate from a genetically based timekeeping mechanism known as the circadian clock. The challenge is how to harness these biological rhythms to improve medical interventions. Here, we review recent literature documenting how circadian clocks organize fundamental innate and adaptive immune activities, the immunologic consequences of circadian rhythm and sleep disruption, and persisting knowledge gaps in the field. We then consider the evidence linking circadian rhythms to vaccination, an important clinical realization of immune function. Finally, we discuss practical steps to translate circadian immunity to the patient's bedside.
Collapse
Affiliation(s)
- Huram Mok
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elaine Ostendorf
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex Ganninger
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Avi J. Adler
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guy Hazan
- Department of Pediatrics, Soroka University Medical Center, Beer-Sheva, Israel
- Research and Innovation Center, Saban Children’s Hospital, Beer-Sheva, Israel
| | - Jeffrey A. Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Wang L, Li P, Zhang X, Gu Z, Pan X, Wu Y, Li H. The role of basic leucine zipper transcription factor E4BP4 in cancer: a review and update. Mol Biol Rep 2024; 51:91. [PMID: 38193973 DOI: 10.1007/s11033-023-09079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/25/2023] [Indexed: 01/10/2024]
Abstract
Mutations in the genes of tumor cells and the disorder of immune microenvironment are the main factors of tumor development. The sensitivity of tumor cells to chemotherapy drugs affect the treatment of tumor. Nuclear transcription factor E4BP4 is dysregulated in a variety of malignant tumors. It can suppress the transcription of NFKBIA, RASSF8, SOSTDC1, FOXO-induced genes (TRAIL, FAS, GADD45a and GADD45b) and Hepcidin, up-regulate RCAN1-1 and PRNP, activate mTOR and p38 in cancer cells. Also, E4BP4 can regulate tumor immune microenvironment. TGFb1/Smad3/E4BP4/ IFNγ axis in NK cells plays an important role in antitumor immunotherapy. Over expression of E4BP4 inhibited the development of Th17 cells by directly binding to the RORγt promoter. Moreover, recent studies have shown that E4BP4 inhibited the expression of multidrug resistance genes. In this review, we summarize the molecular mechanism of E4BP4 in cancer cellular process, the effects of E4BP4 in cancer immunotherapy and antitumor drug resistance, to provide theoretical basis for tumor treatment strategies targeting E4BP4.
Collapse
Affiliation(s)
- Liang Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Peifen Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xueying Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhenwu Gu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinyu Pan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yihao Wu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Huanan Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
4
|
Zeng GG, Zhou J, Jiang WL, Yu J, Nie GY, Li J, Zhang SQ, Tang CK. A Potential Role of NFIL3 in Atherosclerosis. Curr Probl Cardiol 2024; 49:102096. [PMID: 37741601 DOI: 10.1016/j.cpcardiol.2023.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Nuclear factor interleukin-3 (NFIL3), a proline- and acidic-residue-rich (PAR) bZIP transcription factor, is called the E4 binding protein 4 (E4BP4) as well, which is relevant to regulate the circadian rhythms and the viability of cells. More and more evidence has shown that NFIL3 is associated with different cardiovascular diseases. In recent years, it has been found that NFIL3 has significant functions in the progression of atherosclerosis (AS) via the regulation of inflammatory response, macrophage polarization, some immune cells and lipid metabolism. In this overview, we sum up the function of NFIL3 during the development of AS and offer meaningful views how to treat cardiovascular disease related to AS.
Collapse
Affiliation(s)
- Guang-Gui Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jing Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; School of Pharmaceutical Science, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jiang Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Gui-Ying Nie
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2019 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jing Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Shi-Qian Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
5
|
Wang S, Yang M, Li P, Sit J, Wong A, Rodrigues K, Lank D, Zhang D, Zhang K, Yin L, Tong X. High-Fat Diet-Induced DeSUMOylation of E4BP4 Promotes Lipid Droplet Biogenesis and Liver Steatosis in Mice. Diabetes 2023; 72:348-361. [PMID: 36508222 PMCID: PMC9935497 DOI: 10.2337/db22-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Dysregulated lipid droplet accumulation has been identified as one of the main contributors to liver steatosis during nonalcoholic fatty liver disease (NAFLD). However, the underlying molecular mechanisms for excessive lipid droplet formation in the liver remain largely unknown. In the current study, hepatic E4 promoter-binding protein 4 (E4BP4) plays a critical role in promoting lipid droplet formation and liver steatosis in a high-fat diet (HFD)-induced NAFLD mouse model. Hepatic E4bp4 deficiency (E4bp4-LKO) protects mice from HFD-induced liver steatosis independently of obesity and insulin resistance. Our microarray study showed a markedly reduced expression of lipid droplet binding genes, such as Fsp27, in the liver of E4bp4-LKO mice. E4BP4 is both necessary and sufficient to activate Fsp27 expression and lipid droplet formation in primary mouse hepatocytes. Overexpression of Fsp27 increased lipid droplets and triglycerides in E4bp4-LKO primary mouse hepatocytes and restored hepatic steatosis in HFD-fed E4bp4-LKO mice. Mechanistically, E4BP4 enhances the transactivation of Fsp27 by CREBH in hepatocytes. Furthermore, E4BP4 is modified by SUMOylation, and HFD feeding induces deSUMOylation of hepatic E4BP4. SUMOylation of five lysine residues of E4BP4 is critical for the downregulation of Fsp27 and lipid droplets by cAMP signaling in hepatocytes. Taken together, this study revealed that E4BP4 drives liver steatosis in HFD-fed mice through its regulation of lipid droplet binding proteins. Our study also highlights the critical role of deSUMOylation of hepatic E4BP4 in promoting NAFLD.
Collapse
Affiliation(s)
- Sujuan Wang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Meichan Yang
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, People’s Republic of China
| | - Pei Li
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ
| | - Julian Sit
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Audrey Wong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Kyle Rodrigues
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Daniel Lank
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
- Department of Pharmacology, University of Virginia, Charlottesville, VA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
6
|
Nagel S. The Role of IRX Homeobox Genes in Hematopoietic Progenitors and Leukemia. Genes (Basel) 2023; 14:genes14020297. [PMID: 36833225 PMCID: PMC9957183 DOI: 10.3390/genes14020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
IRX genes are members of the TALE homeobox gene class and encode six related transcription factors (IRX1-IRX6) controlling development and cell differentiation of several tissues in humans. Classification of TALE homeobox gene expression patterns for the hematopoietic compartment, termed TALE-code, has revealed exclusive IRX1 activity in pro-B-cells and megakaryocyte erythroid progenitors (MEPs), highlighting its specific contribution to developmental processes at these early stages of hematopoietic lineage differentiation. Moreover, aberrant expression of IRX homeobox genes IRX1, IRX2, IRX3 and IRX5 has been detected in hematopoietic malignancies, including B-cell precursor acute lymphoblastic leukemia (BCP-ALL), T-cell ALL, and some subtypes of acute myeloid leukemia (AML). Expression analyses of patient samples and experimental studies using cell lines and mouse models have revealed oncogenic functions in cell differentiation arrest and upstream and downstream genes, thus, revealing normal and aberrant regulatory networks. These studies have shown how IRX genes play key roles in the development of both normal blood and immune cells, and hematopoietic malignancies. Understanding their biology serves to illuminate developmental gene regulation in the hematopoietic compartment, and may improve diagnostic classification of leukemias in the clinic and reveal new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Cultures, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| |
Collapse
|
7
|
Zhuo H, Liu J. Nuclear factor interleukin 3 (NFIL3) participates in regulation of the NF-κB-mediated inflammation and antioxidant system in Litopenaeus vannamei under ammonia-N stress. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1192-1205. [PMID: 36403704 DOI: 10.1016/j.fsi.2022.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Nuclear factor interleukin 3 (NFIL3) is a critical upstream regulator of the NF-κB pathway. Nevertheless, the detailed molecular mechanism of NFIL3 and its function in shrimp have not been well characterized. In the present study, NFIL3 was identified and characterized from Litopenaeus vannamei. Molecular feature analysis revealed that the open reading frame (ORF) of LvNFIL3 was 2963 bp, which codes for a polypeptide of 516 amino acids with a conserved basic region leucine zipper (bZIP) domain. Sequence alignments and phylogenetic tree analysis showed that the amino acid sequence of LvNFIL3 shared 18.82%-98.07% identity with that of NFIL3 in other species, and was closely related to Penaeus monodon NFIL3. A core promoter in the 5' flanking region of LvNFIL3 was essential for regulation of transcription. LvNFIL3 mRNA was highly expressed in gills and hepatopancreas. Subcellular localization of the protein was observed almost exclusively in the nucleus. Amplification of mRNA by RT-qPCR showed that LvNFIL3 was induced in shrimp gills, hepatopancreas, and muscle after ammonia-N stress. Moreover, silencing of LvNFIL3 increased the mortality of shrimp exposed to ammonia-N. Furthermore, dual-luciferase reporter assay data suggested that LvNFIL3 was capable of activating the NF-κB pathway. Conversely, knockdown of LvNFIL3 decreased NF-κB homolog (Dorsal and Relish) and IkB homolog (Cactus) expression, as well as expression of anti-inflammatory cytokine (IL-16) and five antioxidant-related genes (HO-1, Mn-SOD, CAT, GPx, and GST), whereas NF-κB repressing factor (NKRF) and inflammation-related genes (TNFα and Spz) were upregulated. More importantly, LvNFIL3 knockdown exacerbated the pathology in hepatopancreas exposed to ammonia-N, and the total antioxidant capacity (T-AOC) and superoxide dismutase (T-SOD) were significantly decreased, resulting in a significant increased lipid peroxidation and protein carbonization. Taken together, these data suggest that LvNFIL3 was involved in ammonia-N tolerance in L. vannamei by regulating the inflammation and antioxidant system through the NF-κB pathway.
Collapse
Affiliation(s)
- Hongbiao Zhuo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jianyong Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
8
|
Du J, Zheng L, Chen S, Wang N, Pu X, Yu D, Yan H, Chen J, Wang D, Shen B, Li J, Pan S. NFIL3 and its immunoregulatory role in rheumatoid arthritis patients. Front Immunol 2022; 13:950144. [PMID: 36439145 PMCID: PMC9692021 DOI: 10.3389/fimmu.2022.950144] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Nuclear-factor, interleukin 3 regulated (NFIL3) is an immune regulator that plays an essential role in autoimmune diseases. However, the relationship between rheumatoid arthritis (RA) and NFIL3 remains largely unknown. In this study, we examined NFIL3 expression in RA patients and its potential molecular mechanisms in RA. Increased NFIL3 expression levels were identified in peripheral blood mononuclear cells (PBMCs) from 62 initially diagnosed RA patients and 75 healthy controls (HCs) by quantitative real-time PCR (qRT-PCR). No correlation between NFIL3 and disease activity was observed. In addition, NFIL3 expression was significantly upregulated in RA synovial tissues analyzed in the Gene Expression Omnibus (GEO) dataset (GSE89408). Then, we classified synovial tissues into NFIL3-high (≥75%) and NFIL3-low (≤25%) groups according to NFIL3 expression levels. Four hundred five differentially expressed genes (DEGs) between the NFIL3-high and NFIL3-low groups were screened out using the “limma” R package. Enrichment analysis showed that most of the enriched genes were primarily involved in the TNF signaling pathway via NFκB, IL-17 signaling pathway, and rheumatoid arthritis pathways. Then, 10 genes (IL6, IL1β, CXCL8, CCL2, PTGS2, MMP3, MMP1, FOS, SPP1, and ADIPOQ) were identified as hub genes, and most of them play a key role in RA. Positive correlations between the hub genes and NFIL3 were revealed by qRT-PCR in RA PBMCs. An NFIL3-related protein–protein interaction (PPI) network was constructed using the STRING database, and four clusters (mainly participating in the inflammatory response, lipid metabolism process, extracellular matrix organization, and circadian rhythm) were constructed with MCODE in Cytoscape. Furthermore, 29 DEGs overlapped with RA-related genes from the RADB database and were mainly enriched in IL-17 signaling pathways. Thus, our study revealed the elevated expression of NFIL3 in both RA peripheral blood and synovial tissues, and the high expression of NFIL3 correlated with the abnormal inflammatory cytokines and inflammatory responses, which potentially contributed to RA progression.
Collapse
Affiliation(s)
- Juping Du
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Liyuan Zheng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Shuaishuai Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Na Wang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Xia Pu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Die Yu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Haixi Yan
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Jiaxi Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Donglian Wang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Jun Li
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Shaobiao Pan, ; Jun Li,
| | - Shaobiao Pan
- Department of Rheumatology and Immunology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- *Correspondence: Shaobiao Pan, ; Jun Li,
| |
Collapse
|
9
|
Schnoegl D, Hochgerner M, Gotthardt D, Marsh LM. Fra-2 Is a Dominant Negative Regulator of Natural Killer Cell Development. Front Immunol 2022; 13:909270. [PMID: 35812461 PMCID: PMC9257261 DOI: 10.3389/fimmu.2022.909270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) cells play an important role in recognizing and killing pathogen-infected or malignant cells. Changes in their numbers or activation can contribute to several diseases and pathologies including systemic sclerosis (SSc), an autoimmune disease characterized by inflammation and tissue remodeling. In these patients, increased expression of the AP-1 transcription factor, Fra-2 was reported. In mice ectopic overexpression of Fra-2 (TG) leads to SSc with strong pulmonary fibrosis, pulmonary hypertension, and inflammation. Analysis of the underlying immune cell profile in the lungs of young TG mice, which do not yet show any signs of lung disease, revealed increased numbers of eosinophils and T cells but strongly reduced NK numbers. Therefore, we aimed to identify the cause of the absence of NK cells in the lungs of these mice and to determine the potential role of Fra-2 in NK development. Examination of inflammatory cell distribution in TG mice revealed similar NK deficiencies in the spleen, blood, and bone marrow. Deeper analysis of the WT and TG bone marrow revealed a potential NK cell developmental defect beginning at the preNKP stage. To determine whether this defect was cell-intrinsic or extrinsic, mixed bone marrow chimera and in vitro differentiation experiments were performed. Both experiments showed that the defect caused by Fra-2 was primarily cell-intrinsic and minimally dependent on the environment. Closer examination of surface markers and transcription factors required for NK development, revealed the expected receptor distribution but changes in transcription factor expression. We found a significant reduction in Nfil3, which is essential for the transition of common lymphoid cells to NK committed precursor cells and an AP-1 binding site in the promotor of this gene. In Summary, our data demonstrates that regulation of Fra-2 is essential for NK development and maturation, and suggests that the early NK dysfunction plays an important role in the pathogenesis of systemic sclerosis.
Collapse
Affiliation(s)
- Diana Schnoegl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | | | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
- *Correspondence: Leigh M. Marsh,
| |
Collapse
|
10
|
Chen Z, Fan R, Liang J, Xiao Z, Dang J, Zhao J, Weng R, Zhu C, Zheng SG, Jiang Y. NFIL3 deficiency alleviates EAE through regulating different immune cell subsets. J Adv Res 2021; 39:225-235. [PMID: 35777910 PMCID: PMC9263648 DOI: 10.1016/j.jare.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Zhigang Chen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China; Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong 519000, PR China; Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Rong Fan
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China; Department of General Intensive Care Unit of Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Jie Liang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Zexiu Xiao
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Junlong Dang
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Jun Zhao
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Ruihui Weng
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China; Department of Neurology, The Third People's Hospital of Shenzhen, No. 29, Bulan Road, Longgang district, Shenzhen, Guangdong 518112, PR China
| | - Cansheng Zhu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Song Guo Zheng
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China.
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
11
|
K. ST, Joshi G, Arya P, Mahajan V, Chaturvedi A, Mishra RK. SUMO and SUMOylation Pathway at the Forefront of Host Immune Response. Front Cell Dev Biol 2021; 9:681057. [PMID: 34336833 PMCID: PMC8316833 DOI: 10.3389/fcell.2021.681057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/11/2021] [Indexed: 01/14/2023] Open
Abstract
Pathogens pose a continuous challenge for the survival of the host species. In response to the pathogens, the host immune system mounts orchestrated defense responses initiating various mechanisms both at the cellular and molecular levels, including multiple post-translational modifications (PTMs) leading to the initiation of signaling pathways. The network of such pathways results in the recruitment of various innate immune components and cells at the site of infection and activation of the adaptive immune cells, which work in synergy to combat the pathogens. Ubiquitination is one of the most commonly used PTMs. Host cells utilize ubiquitination for both temporal and spatial regulation of immune response pathways. Over the last decade, ubiquitin family proteins, particularly small ubiquitin-related modifiers (SUMO), have been widely implicated in host immune response. SUMOs are ubiquitin-like (Ubl) proteins transiently conjugated to a wide variety of proteins through SUMOylation. SUMOs primarily exert their effect on target proteins by covalently modifying them. However, SUMO also engages in a non-covalent interaction with the SUMO-interacting motif (SIM) in target proteins. Unlike ubiquitination, SUMOylation alters localization, interactions, functions, or stability of target proteins. This review provides an overview of the interplay of SUMOylation and immune signaling and development pathways in general. Additionally, we discuss in detail the regulation exerted by covalent SUMO modifications of target proteins, and SIM mediated non-covalent interactions with several effector proteins. In addition, we provide a comprehensive review of the literature on the importance of the SUMO pathway in the development and maintenance of a robust immune system network of the host. We also summarize how pathogens modulate the host SUMO cycle to sustain infectability. Studies dealing mainly with SUMO pathway proteins in the immune system are still in infancy. We anticipate that the field will see a thorough and more directed analysis of the SUMO pathway in regulating different cells and pathways of the immune system. Our current understanding of the importance of the SUMO pathway in the immune system necessitates an urgent need to synthesize specific inhibitors, bioactive regulatory molecules, as novel therapeutic targets.
Collapse
Affiliation(s)
- Sajeev T. K.
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| | - Garima Joshi
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| | - Pooja Arya
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Vibhuti Mahajan
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Akanksha Chaturvedi
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| |
Collapse
|
12
|
NKL-Code in Normal and Aberrant Hematopoiesis. Cancers (Basel) 2021; 13:cancers13081961. [PMID: 33921702 PMCID: PMC8073162 DOI: 10.3390/cancers13081961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Gene codes represent expression patterns of closely related genes in particular tissues, organs or body parts. The NKL-code describes the activity of NKL homeobox genes in the hematopoietic system. NKL homeobox genes encode transcription factors controlling basic developmental processes. Therefore, aberrations of this code may contribute to deregulated hematopoiesis including leukemia and lymphoma. Normal and abnormal activities of NKL homeobox genes are described and mechanisms of (de)regulation, function, and diseases exemplified. Abstract We have recently described physiological expression patterns of NKL homeobox genes in early hematopoiesis and in subsequent lymphopoiesis and myelopoiesis, including terminally differentiated blood cells. We thereby systematized differential expression patterns of eleven such genes which form the so-called NKL-code. Due to the developmental impact of NKL homeobox genes, these data suggest a key role for their activity in normal hematopoietic differentiation processes. On the other hand, the aberrant overexpression of NKL-code-members or the ectopical activation of non-code members have been frequently reported in lymphoid and myeloid leukemia/lymphoma, revealing the oncogenic potential of these genes in the hematopoietic compartment. Here, I provide an overview of the NKL-code in normal hematopoiesis and instance mechanisms of deregulation and oncogenic functions of selected NKL genes in hematologic cancers. As well as published clinical studies, our conclusions are based on experimental work using hematopoietic cell lines which represent useful models to characterize the role of NKL homeobox genes in specific tumor types.
Collapse
|
13
|
Nain Z, Rana HK, Liò P, Islam SMS, Summers MA, Moni MA. Pathogenetic profiling of COVID-19 and SARS-like viruses. Brief Bioinform 2021; 22:1175-1196. [PMID: 32778874 PMCID: PMC7454314 DOI: 10.1093/bib/bbaa173] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
The novel coronavirus (2019-nCoV) has recently emerged, causing COVID-19 outbreaks and significant societal/global disruption. Importantly, COVID-19 infection resembles SARS-like complications. However, the lack of knowledge about the underlying genetic mechanisms of COVID-19 warrants the development of prospective control measures. In this study, we employed whole-genome alignment and digital DNA-DNA hybridization analyses to assess genomic linkage between 2019-nCoV and other coronaviruses. To understand the pathogenetic behavior of 2019-nCoV, we compared gene expression datasets of viral infections closest to 2019-nCoV with four COVID-19 clinical presentations followed by functional enrichment of shared dysregulated genes. Potential chemical antagonists were also identified using protein-chemical interaction analysis. Based on phylogram analysis, the 2019-nCoV was found genetically closest to SARS-CoVs. In addition, we identified 562 upregulated and 738 downregulated genes (adj. P ≤ 0.05) with SARS-CoV infection. Among the dysregulated genes, SARS-CoV shared ≤19 upregulated and ≤22 downregulated genes with each of different COVID-19 complications. Notably, upregulation of BCL6 and PFKFB3 genes was common to SARS-CoV, pneumonia and severe acute respiratory syndrome, while they shared CRIP2, NSG1 and TNFRSF21 genes in downregulation. Besides, 14 genes were common to different SARS-CoV comorbidities that might influence COVID-19 disease. We also observed similarities in pathways that can lead to COVID-19 and SARS-CoV diseases. Finally, protein-chemical interactions suggest cyclosporine, resveratrol and quercetin as promising drug candidates against COVID-19 as well as other SARS-like viral infections. The pathogenetic analyses, along with identified biomarkers, signaling pathways and chemical antagonists, could prove useful for novel drug development in the fight against the current global 2019-nCoV pandemic.
Collapse
Affiliation(s)
- Zulkar Nain
- Department of Genetic Engineering and Biotechnology, East West University, Bangladesh
| | - Humayan Kabir Rana
- Department of Computer Science and Engineering, Green University of Bangladesh
| | - Pietro Liò
- Artificial Intelligence Group at the University of Cambridge
| | | | | | | |
Collapse
|
14
|
Wang Z, Zhao M, Yin J, Liu L, Hu L, Huang Y, Liu A, Ouyang J, Min X, Rao S, Zhou W, Wu H, Yoshimura A, Lu Q. E4BP4-mediated inhibition of T follicular helper cell differentiation is compromised in autoimmune diseases. J Clin Invest 2021; 130:3717-3733. [PMID: 32191636 DOI: 10.1172/jci129018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
T follicular helper (Tfh) cells are indispensable for the formation of germinal center (GC) reactions, whereas T follicular regulatory (Tfr) cells inhibit Tfh-mediated GC responses. Aberrant activation of Tfh cells contributes substantially to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE). Nonetheless, the molecular mechanisms mitigating excessive Tfh cell differentiation are not fully understood. Herein we demonstrate that the adenovirus E4 promoter-binding protein (E4BP4) mediates a feedback loop and acts as a transcriptional brake to inhibit Tfh cell differentiation. Furthermore, we show that such an immunological mechanism is compromised in patients with SLE. Establishing mice with either conditional knockout (cKO) or knockin (cKI) of the E4bp4 gene in T cells reveals that E4BP4 strongly inhibits Tfh cell differentiation. Mechanistically, E4BP4 regulates Bcl6 transcription by recruiting the repressive epigenetic modifiers HDAC1 and EZH2. E4BP4 phosphorylation site mutants have limited capability with regard to inhibiting Tfh cell differentiation. In SLE, we detected impaired phosphorylation of E4BP4, finding that this compromised transcription factor is positively correlated with disease activity. These findings unveiled molecular mechanisms by which E4BP4 restrains Tfh cell differentiation, whose compromised function is associated with uncontrolled autoimmune reactions in SLE.
Collapse
Affiliation(s)
- Zijun Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Jinghua Yin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Limin Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Longyuan Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Yi Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Aiyun Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Jiajun Ouyang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Xiaoli Min
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Shijia Rao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Wenhui Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| |
Collapse
|
15
|
Hariri H, Pellicelli M, St-Arnaud R. Nfil3, a target of the NACA transcriptional coregulator, affects osteoblast and osteocyte gene expression differentially. Bone 2020; 141:115624. [PMID: 32877713 DOI: 10.1016/j.bone.2020.115624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 10/25/2022]
Abstract
Intermittent administration of PTH(1-34) has a profound osteoanabolic effect on the skeleton. At the cellular level, osteoblasts and osteocytes are two crucial cell types that respond to PTH stimulation in bone. The transcriptional cofactor Nascent polypeptide Associated Complex and coregulator alpha (NACA) is a downstream target of the PTH-Gαs-PKA axis in osteoblasts. NACA functions as a transcriptional cofactor affecting bZIP factor-mediated transcription of target promoters in osteoblasts, such as Osteocalcin (Bglap2). Here, we used RNA-Seq and ChIP-Seq against NACA in PTH-treated MC3T3-E1 osteoblastic cells to identify novel targets of the PTH-activated NACA. Our approach identified Nuclear factor interleukin-3-regulated (Nfil3) as a target promoter of this pathway. Knockdown of Naca reduced the response of Nfil3 to PTH(1-34) stimulation. In silico analysis of the Nfil3 promoter revealed potential binding sites for NACA (located within the ChIP fragment) and CREB. We show that following PTH stimulation, phosphorylated-CREB binds the proximal promoter of Nfil3 in osteoblasts. The activity of the Nfil3 promoter (-818/+182 bp) is regulated by CREB and this activation relies on the presence of NACA. In addition, we show that knockdown of Nfil3 enhances the expression of osteoblastic differentiation markers in MC3T3-E1 cells while it represses osteocytic marker gene expression in IDG-SW3 cells. These results show that the PTH-induced NACA axis regulates Nfil3 expression and suggest that NFIL3 acts as a transcriptional repressor in osteoblasts while it exhibits differential activity as an activator in osteocytes.
Collapse
Affiliation(s)
- Hadla Hariri
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec H4A 0A9, Canada; Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Martin Pellicelli
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec H4A 0A9, Canada
| | - René St-Arnaud
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec H4A 0A9, Canada; Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada; Department of Surgery, McGill University, Montreal, Quebec H3G 1A4, Canada; Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
16
|
Narasaki-Funo Y, Tomiyama Y, Nose M, Bando T, Tomioka K. Functional analysis of Pdp1 and vrille in the circadian system of a cricket. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104156. [PMID: 33058831 DOI: 10.1016/j.jinsphys.2020.104156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/04/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Circadian rhythms are generated by a circadian clock for which oscillations are based on the rhythmic expression of the so-called clock genes. The present study investigated the role of Gryllus bimaculatus vrille (Gb'vri) and Par domain protein 1 (Gb'Pdp1) in the circadian clock of the cricket Gryllus bimaculatus. Structural analysis of Gb'vri and Gb'Pdp1 cDNAs revealed that they are a member of the bZIP transcription factors. Under light/dark cycles (LD) both genes were rhythmically expressed in the clock tissue, the optic lobes, whereas the rhythm diminished under constant darkness (DD). Gb'vri and Gb'Pdp1 mRNA levels were significantly reduced by RNA interference (RNAi) of Gb'Clk and Gb'cyc, suggesting they are controlled by Gb'CLK/Gb'CYC. RNAi of Gb'vri and Gb'Pdp1 had little effect on locomotor rhythms, although their effects became visible when treated together with Gb'cycRNAi. The average free-running period of Gb'vriRNAi/Gb'cycRNAi crickets was significantly shorter than that of Gb'cycRNAi crickets. A similar period shortening was observed also when treated with Gb'Pdp1RNAi/Gb'cycRNAi. Some Gb'Pdp1RNAi/Gb'cycRNAi crickets showed rhythm splitting into two free-running components with different periods. Gb'vriRNAi and Gb'Pdp1RNAi treatments significantly altered the expression of Gb'Clk, Gb'cyc, and Gb'tim in LD. These results suggest that Gb'vri and Gb'Pdp1 play important roles in cricket circadian clocks.
Collapse
Affiliation(s)
- Yumina Narasaki-Funo
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yasuaki Tomiyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Motoki Nose
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tetsuya Bando
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama 700-8558, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
17
|
Goh W, Scheer S, Jackson JT, Hediyeh-Zadeh S, Delconte RB, Schuster IS, Andoniou CE, Rautela J, Degli-Esposti MA, Davis MJ, McCormack MP, Nutt SL, Huntington ND. Hhex Directly Represses BIM-Dependent Apoptosis to Promote NK Cell Development and Maintenance. Cell Rep 2020; 33:108285. [PMID: 33086067 DOI: 10.1016/j.celrep.2020.108285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Hhex encodes a homeobox transcriptional regulator important for embryonic development and hematopoiesis. Hhex is highly expressed in NK cells, and its germline deletion results in significant defects in lymphoid development, including NK cells. To determine if Hhex is intrinsically required throughout NK cell development or for NK cell function, we generate mice that specifically lack Hhex in NK cells. NK cell frequency is dramatically reduced, while NK cell differentiation, IL-15 responsiveness, and function at the cellular level remain largely normal in the absence of Hhex. Increased IL-15 availability fails to fully reverse NK lymphopenia following conditional Hhex deletion, suggesting that Hhex regulates developmental pathways extrinsic to those dependent on IL-15. Gene expression and functional genetic approaches reveal that Hhex regulates NK cell survival by directly binding Bcl2l11 (Bim) and repressing expression of this key apoptotic mediator. These data implicate Hhex as a transcriptional regulator of NK cell homeostasis and immunity.
Collapse
Affiliation(s)
- Wilford Goh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Sebastian Scheer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Jacob T Jackson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Soroor Hediyeh-Zadeh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Rebecca B Delconte
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Iona S Schuster
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, 6009, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Christopher E Andoniou
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, 6009, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Jai Rautela
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia; oNKo-Innate Pty Ltd., 27 Norwood Cres, Moonee Ponds, Victoria, 3039, Australia
| | - Mariapia A Degli-Esposti
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, 6009, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia; Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Matthew P McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, 3004, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia; oNKo-Innate Pty Ltd., 27 Norwood Cres, Moonee Ponds, Victoria, 3039, Australia.
| |
Collapse
|
18
|
Abstract
Natural killer (NK) cells are innate lymphocytes specialized in immune surveillance against tumors and infections. To reach their optimal functional status, NK cells must undergo a process of maturation from immature to mature NK cells. Genetically modified mice, as well as in vivo and in vitro NK cell differentiation assays, have begun to reveal the landscape of the regulatory network involved in NK cell maturation, in which a balance of cytokine signaling pathways leads to an optimal coordination of transcription factor activity. An increased understanding of NK cell maturation will greatly promote the development and application of NK cell-based clinical therapy. Thus, in this review, we summarize the dynamics of NK cell maturation, describe recently identified factors involved in the regulation of the NK cell maturation process, including cytokines and transcription factors, and discuss the importance of NK cell maturation in health and disease.
Collapse
Affiliation(s)
- Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuefu Wang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Yang M, Zhang D, Zhao Z, Sit J, Saint-Sume M, Shabandri O, Zhang K, Yin L, Tong X. Hepatic E4BP4 induction promotes lipid accumulation by suppressing AMPK signaling in response to chemical or diet-induced ER stress. FASEB J 2020; 34:13533-13547. [PMID: 32780887 DOI: 10.1096/fj.201903292rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Prolonged ER stress has been known to be one of the major drivers of impaired lipid homeostasis during the pathogenesis of non-alcoholic liver disease (NAFLD). However, the downstream mediators of ER stress pathway in promoting lipid accumulation remain poorly understood. Here, we present data showing the b-ZIP transcription factor E4BP4 in both the hepatocytes and the mouse liver is potently induced by the chemical ER stress inducer tunicamycin or by high-fat, low-methionine, and choline-deficient (HFLMCD) diet. We showed that such an induction is partially dependent on CHOP, a known mediator of ER stress and requires the E-box element of the E4bp4 promoter. Tunicamycin promotes the lipid droplet formation and alters lipid metabolic gene expression in primary mouse hepatocytes from E4bp4flox/flox but not E4bp4 liver-specific KO (E4bp4-LKO) mice. Compared with E4bp4flox/flox mice, E4bp4-LKO female mice exhibit reduced liver lipid accumulation and partially improved liver function after 10-week HFLMCD diet feeding. Mechanistically, we observed elevated AMPK activity and the AMPKβ1 abundance in the liver of E4bp4-LKO mice. We have evidence supporting that E4BP4 may suppress the AMPK activity via promoting the AMPKβ1 ubiquitination and degradation. Furthermore, acute depletion of the Ampkβ1 subunit restores lipid droplet formation in E4bp4-LKO primary mouse hepatocytes. Our study highlighted hepatic E4BP4 as a key factor linking ER stress and lipid accumulation in the liver. Targeting E4BP4 in the liver may be a novel therapeutic avenue for treating NAFLD.
Collapse
Affiliation(s)
- Meichan Yang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Deqiang Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zifeng Zhao
- Department of Pharmacology of Chinese Materia, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Julian Sit
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Omar Shabandri
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Xu X, Zhou Y, Fu B, Zhang J, Dong Z, Zhang X, Shen N, Sun R, Tian Z, Wei H. PBX1 promotes development of natural killer cells by binding directly to the Nfil3 promoter. FASEB J 2020; 34:6479-6492. [PMID: 32190943 DOI: 10.1096/fj.202000121r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 01/23/2023]
Abstract
The transcription factor nuclear factor interleukin-3-regulated protein (NFIL3, also called E4BP4) is crucial for commitment of natural killer (NK) cells from common lymphoid progenitors (CLPs). However, the identity of the factor that can regulate NFIL3 directly during the NK-cell development is not known. Here, we reveal that pre-B-cell leukemia transcription factor 1 (PBX1) can upregulate the NFIL3 expression directly. We used conditional knockout mice in which PBX1 in hematopoietic cells was specifically absent. The number of NK-committed progenitor pre-NKP cells and rNKP cells was reduced significantly in the absence of PBX1, which was consistent with NFIL3 deficiency. Also, the NFIL3 expression in NK cells was decreased if PBX1 was absent. We demonstrated that PBX1 was bound directly to the promoter of Nfil3 and facilitated transcription. Upon knockout of the binding site of PBX1 in the Nfil3 promoter, mice showed fewer NK-precursor cells and NK cells, just like that observed in Nfil3 knockout mice. Furthermore, asparagine N286 in the homeodomain of PBX1 controlled the binding of PBX1 to the Nfil3 promoter. Collectively, these findings demonstrate that the transcription factor PBX1 promotes the early development of NK cells by upregulating the Nfil3 expression directly.
Collapse
Affiliation(s)
- Xiuxiu Xu
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China.,First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China
| | - Jinghe Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhongjun Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoren Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This review is focused on the existing evidence for circadian control of innate and adaptive immune responses to provide a framework for evaluating the contributions of diurnal rhythms to control of infections and pathogenesis of disease. RECENT FINDINGS Circadian rhythms driven by cell-autonomous biological clocks are central to innate and adaptive immune responses against microbial pathogens. Research during the past few years has uncovered circadian circuits governing leukocyte migration between tissues, the magnitude of mucosal inflammation, the types of cytokines produced, and the severity of immune diseases. Other studies revealed how disruption of the circadian clock impairs immune function or how microbial products alter clock machinery. Revelations concerning the widespread impact of the circadian clock on immunity and homeostasis highlight how the timing of inflammatory challenges can dictate pathological outcomes and how the timing of therapeutic interventions likely determines clinical efficacy. An improved understanding of circadian circuits controlling immune function will facilitate advances in circadian immunotherapy.
Collapse
Affiliation(s)
- Stephen N Waggoner
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45244, USA.
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 15012, Cincinnati, OH, 45244, USA.
| |
Collapse
|
22
|
Bagadia P, Huang X, Liu TT, Murphy KM. Shared Transcriptional Control of Innate Lymphoid Cell and Dendritic Cell Development. Annu Rev Cell Dev Biol 2019; 35:381-406. [PMID: 31283378 PMCID: PMC6886469 DOI: 10.1146/annurev-cellbio-100818-125403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innate immunity and adaptive immunity consist of highly specialized immune lineages that depend on transcription factors for both function and development. In this review, we dissect the similarities between two innate lineages, innate lymphoid cells (ILCs) and dendritic cells (DCs), and an adaptive immune lineage, T cells. ILCs, DCs, and T cells make up four functional immune modules and interact in concert to produce a specified immune response. These three immune lineages also share transcriptional networks governing the development of each lineage, and we discuss the similarities between ILCs and DCs in this review.
Collapse
Affiliation(s)
- Prachi Bagadia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Xiao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
23
|
Shao L, Pan S, Zhang QP, Jamal M, Chen LH, Yin Q, Wu YJ, Xiong J, Xiao RJ, Kwong YL, Zhou FL, Lie AKW. An Essential Role of Innate Lymphoid Cells in the Pathophysiology of Graft-vs.-Host Disease. Front Immunol 2019; 10:1233. [PMID: 31244831 PMCID: PMC6563595 DOI: 10.3389/fimmu.2019.01233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) is the only curative treatment for multiple hematologic malignancies and non-malignant hematological diseases. However, graft-vs.-host disease (GVHD), one of the main complications after allo-HSCT, remains the major reason for morbidity and non-relapse mortality. Emerging evidence has demonstrated that innate lymphoid cells (ILCs) play a non-redundant role in the pathophysiology of GVHD. In this review, we will summarize previously published data regarding the role of ILCs in the pathogenesis of GVHD.
Collapse
Affiliation(s)
- Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shan Pan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qiu-Ping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lu-Hua Chen
- Department of Medicine, Li Ka Shing Faculty of Medicine, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, China
| | - Qian Yin
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ying-Jie Wu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Rui-Jing Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yok-Lam Kwong
- Division of Hematology & BMT Center, Queen Mary Hospital, Hong Kong, China
| | - Fu-Ling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Albert K W Lie
- Division of Hematology & BMT Center, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
24
|
Brillantes M, Beaulieu AM. Transcriptional control of natural killer cell differentiation. Immunology 2018; 156:111-119. [PMID: 30450565 DOI: 10.1111/imm.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are highly specialized cytotoxic lymphocytes that provide protection against pathogens and malignant cells. They develop from common lymphoid progenitors via a multi-stage lineage commitment and differentiation process that gives rise to mature NK cells with potent cytotoxic functionality. Although generally considered cells of the innate immune system, recent studies have demonstrated that NK cells have the capacity to mount immune responses with features of adaptive immunity, including robust antigen-specific clonal-like expansion and the generation of long-lived memory cells that mediate enhanced recall responses. Here, we discuss specific transcription factors that have been shown to commonly and uniquely regulate NK cell development and effector and memory responses in experimental mouse models.
Collapse
Affiliation(s)
- Marc Brillantes
- Rutgers Graduate School of Biomedical Sciences, Rutgers - The State University of New Jersey, Newark, NJ, USA
| | - Aimee M Beaulieu
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers - The State University of New Jersey, Newark, NJ, USA.,Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers - The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|