1
|
Li Q, Wang J, Lv J, Liu D, Xiao S, Mo J, Lu Z, Qiu R, Li C, Tang L, He S, Tang Z, Cheng Q, Zhan T. Total flavonoids of litchi Seed alleviates schistosomiasis liver fibrosis in mice by suppressing hepatic stellate cells activation and modulating the gut microbiomes. Biomed Pharmacother 2024; 178:117240. [PMID: 39094546 DOI: 10.1016/j.biopha.2024.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Infection with Schistosoma japonicum (S. japonicum) is an important zoonotic parasitic disease that causes liver fibrosis in both human and domestic animals. The activation of hepatic stellate cells (HSCs) is a crucial phase in the development of liver fibrosis, and inhibiting their activation can alleviate this progression. Total flavonoids of litchi seed (TFL) is a naturally extracted drug, and modern pharmacological studies have shown its anti-fibrotic and liver-protective effects. However, the role of TFL in schistosomiasis liver fibrosis is still unclear. This study investigated the therapeutic effects of TFL on liver fibrosis in S. japonicum infected mice and explored its potential mechanisms. Animal study results showed that TFL significantly reduced the levels of Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), Interleukin-4 (IL-4), and Interleukin-6 (IL-6) in the serum of S. japonicum infected mice. TFL reduced the spleen index of mice and markedly improved the pathological changes in liver tissues induced by S. japonicum infection, decreasing the expression of alpha-smooth muscle actin (α-SMA), Collagen I and Collagen III protein in liver tissues. In vitro studies indicated that TFL also inhibited the activation of HCSs induced by Transforming Growth Factor-β1 (TGF-β1) and reduced the levels of α-SMA. Gut microbes metagenomics study revealed that the composition, abundance, and functions of the mice gut microbiomes changed significantly after S. japonicum infection, and TLF treatment reversed these changes. Therefore, our study indicated that TFL alleviated granulomatous lesions and improved S. japonicum induced liver fibrosis in mice by inhibiting the activation of HSCs and by improving the gut microbiomes.
Collapse
Affiliation(s)
- Qing Li
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jilong Wang
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiahui Lv
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dengyu Liu
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Suyu Xiao
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingquan Mo
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Zuochao Lu
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Ran Qiu
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Caiqi Li
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Lili Tang
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Shanshan He
- Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China
| | - Zeli Tang
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| | - Qiuchen Cheng
- Department of Gastroenterology, the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China.
| | - Tingzheng Zhan
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China; Department of Parasitology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Graeff-Teixeira C, Marcolongo-Pereira C, Kersanach BB, Geiger SM, Negrão-Correa D. Descriptive study on risk of increased morbidity of schistosomiasis and graft loss after liver transplantation. Rev Soc Bras Med Trop 2024; 57:e00201. [PMID: 39082515 PMCID: PMC11290851 DOI: 10.1590/0037-8682-0097-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
Solid-organ transplantation procedures have witnessed a surge in frequency. Consequently, increased attention to associated infections and their impact on graft success is warranted. The liver is the principal target for infection by the flatworm Schistosoma mansoni. Hence, rigorous screening protocols for this parasite should be implemented for liver transplantation donors and recipients. This study investigated the risks posed by schistosomiasis-infected liver tissues for successful liver transplantation (LT), considering donors and recipients, by analyzing reported cases. Among the 43 patients undergoing LT (donors = 19; recipients = 24), 32 were infected with S. mansoni, five were infected with other Schistosoma species, and no identification was made in four patients. Reported follow-up periods ranged from 1 to 132 months, and all patients achieved successful recovery. As these helminths do not replicate in their vertebrate hosts, immunosuppressive treatment is not expected to promote increased morbidity or reactivation. Moreover, suspected or confirmed schistosomiasis infections often have a benign course, and generally, should not prevent LT. The available literature was reviewed and a provisional screening protocol has been proposed.
Collapse
Affiliation(s)
- Carlos Graeff-Teixeira
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Departamento de Patologia e Núcleo de Doenças Infecciosas, Vitória, ES, Brasil
| | - Clairton Marcolongo-Pereira
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Departamento de Patologia e Núcleo de Doenças Infecciosas, Vitória, ES, Brasil
- Centro Universitário do Espírito Santo, Faculdade de Medicina, Colatina, ES, Brasil
| | - Betina Bolina Kersanach
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Departamento de Patologia e Núcleo de Doenças Infecciosas, Vitória, ES, Brasil
| | - Stefan Michael Geiger
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, MG, Brasil
| | - Deborah Negrão-Correa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Laboratório de Esquistossomose e Imuno-helmintologia - Departamento de Parasitologia, Belo Horizonte, MG, Brasil
| |
Collapse
|
3
|
Houlder EL, Stam KA, Koopman JPR, König MH, Langenberg MCC, Hoogerwerf MA, Niewold P, Sonnet F, Janse JJ, Partal MC, Sijtsma JC, de Bes-Roeleveld LHM, Kruize YCM, Yazdanbakhsh M, Roestenberg M. Early symptom-associated inflammatory responses shift to type 2 responses in controlled human schistosome infection. Sci Immunol 2024; 9:eadl1965. [PMID: 38968336 DOI: 10.1126/sciimmunol.adl1965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/07/2024] [Indexed: 07/07/2024]
Abstract
Schistosomiasis is an infection caused by contact with Schistosoma-contaminated water and affects more than 230 million people worldwide with varying morbidity. The roles of T helper 2 (TH2) cells and regulatory immune responses in chronic infection are well documented, but less is known about human immune responses during acute infection. Here, we comprehensively map immune responses during controlled human Schistosoma mansoni infection using male or female cercariae. Immune responses to male or female parasite single-sex infection were comparable. An early TH1-biased inflammatory response was observed at week 4 after infection, which was particularly apparent in individuals experiencing symptoms of acute schistosomiasis. By week 8 after infection, inflammatory responses were followed by an expansion of TH2 and regulatory cell subsets. This study demonstrates the shift from TH1 to both TH2 and regulatory responses, typical of chronic schistosomiasis, in the absence of egg production and provides immunological insight into the clinical manifestations of acute schistosomiasis.
Collapse
Affiliation(s)
- Emma L Houlder
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Koen A Stam
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Jan Pieter R Koopman
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Marion H König
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Marijke C C Langenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Marie-Astrid Hoogerwerf
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Paula Niewold
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Friederike Sonnet
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Jacqueline J Janse
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Miriam Casacuberta Partal
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Jeroen C Sijtsma
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Laura H M de Bes-Roeleveld
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Yvonne C M Kruize
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, Netherlands
| |
Collapse
|
4
|
Gomides TAR, de Souza MLM, de Figueiredo AB, Lima MR, Silveira AMS, de Assis GFM, Fraga LAO, Silveira-Nunes G, Martucci L, Garcia JD, Afonso LCC, Teixeira-Carvalho A, Leite PM. Expression of SmATPDases 1 and 2 in Schistosoma mansoni eggs favours IL-10 production in infected individuals. Parasite Immunol 2024; 46:e13017. [PMID: 37922505 DOI: 10.1111/pim.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2023]
Abstract
A role of IL-10 is down-regulating T-cell responses to schistosome antigens. Since SmATPDases can be correlated to modulation of the immune response, we evaluated the expression of enzymes in S. mansoni eggs. Faecal samples were collected from 40 infected individuals to detect coding regions of the SmATPDases. The cytokines were measured in supernatants of PBMC. The analysis was performed by the global median determination and set up high producers (HP) of cytokines. Six individuals expressed SmATPDase1, six expressed SmATPDase2 and six expressed both enzymes. The group who expressed only SmATPDase1 showed a high frequency of IFN-γ, TNF IL-4 HP; individuals who expressed only SmATPDase2 showed a high frequency of IFN-γ, IL-6 and IL-4 HP; and individuals who expressed both enzymes showed a high frequency of IL-10 HP. The comparison of the IFN-γ/IL-10 ratio presented higher indices in the group who had SmATPDase 2 expression than those who had the expression of both enzymes. The positive correlation between infection intensity and IL-10 levels remained only in the positive SmATPDase group. The IL-10 is the only cytokine induced by the expression of both enzymes. Our data suggest that the expression of both enzymes seems to be a factor that modulates the host immune response by inducing high IL-10 production.
Collapse
Affiliation(s)
- Thalisson Artur Ribeiro Gomides
- Laboratório de Imunoparasitologia, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Laboratório de Imunologia da Universidade Vale do Rio Doce, Govenador Valadares, Brazil
| | | | - Amanda Braga de Figueiredo
- Laboratório de Imunoparasitologia, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Alda Maria Soares Silveira
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | | | - Lúcia Alves Oliveira Fraga
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Gabriela Silveira-Nunes
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Letícia Martucci
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Jennifer Delgado Garcia
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| | - Luís Carlos Crocco Afonso
- Laboratório de Imunoparasitologia, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ, Belo Horizonte, Brazil
| | - Pauline Martins Leite
- Universidade Federal de Juiz de Fora - Campus Avançado de Governador Valadares, Governador Valadares, Brazil
| |
Collapse
|
5
|
Mitalo NS, Waiganjo NN, Mokua Mose J, Bosire DO, Oula JO, Orina Isaac A, Nyabuga Nyariki J. Coinfection with Schistosoma mansoni Enhances Disease Severity in Human African Trypanosomiasis. J Trop Med 2023; 2023:1063169. [PMID: 37954132 PMCID: PMC10637842 DOI: 10.1155/2023/1063169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Human African trypanosomiasis (HAT) and schistosomiasis are neglected parasitic diseases found in the African continent. This study was conducted to determine how primary infection with Schistosoma mansoni affects HAT disease progression with a secondary infection with Trypanosoma brucei rhodesiense (T.b.r) in a mouse model. Methods Female BALB-c mice (6-8 weeks old) were randomly divided into four groups of 12 mice each. The different groups were infected with Schistosoma mansoni (100 cercariae) and Trypanosoma brucei rhodesiense (5.0 × 104) separately or together. Twenty-one days after infection with T.b.r, mice were sacrificed and samples were collected for analysis. Results The primary infection with S. mansoni significantly enhanced successive infection by the T.b.r; consequently, promoting HAT disease severity and curtailing host survival time. T.b.r-induced impairment of the neurological integrity and breach of the blood-brain barrier were markedly pronounced on coinfection with S. mansoni. Coinfection with S. mansoni and T.b.r resulted in microcytic hypochromic anemia characterized by the suppression of RBCs, hematocrit, hemoglobin, and red cell indices. Moreover, coinfection of the mice with the two parasites resulted in leukocytosis which was accompanied by the elevation of basophils, neutrophils, lymphocytes, monocytes, and eosinophils. More importantly, coinfection resulted in a significant elevation of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin, creatinine, urea, and uric acid, which are the markers of liver and kidney damage. Meanwhile, S. mansoni-driven dyslipidemia was significantly enhanced by the coinfection of mice with T.b.r. Moreover, coinfection with S. mansoni and T.b.r led to a strong immune response characterized by a significant increase in serum TNF-α and IFN-γ. T.b.r infection enhanced S. mansoni-induced depletion of cellular-reduced glutathione (GSH) in the brain and liver tissues, indicative of lethal oxidative damage. Similarly, coinfection resulted in a significant rise in nitric oxide (NO) and malondialdehyde (MDA) levels. Conclusion Primary infection with S. mansoni exacerbates disease severity of secondary infection with T.b.r in a mouse model that is associated with harmful inflammatory response, oxidative stress, and organ injury.
Collapse
Affiliation(s)
- Nancy S. Mitalo
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - Naomi N. Waiganjo
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - John Mokua Mose
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - David O. Bosire
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - James O. Oula
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| |
Collapse
|
6
|
Camelo GMA, Silva JKADO, Geiger SM, Melo MN, Negrão-Corrêa DA. Schistosoma and Leishmania: An Untold Story of Coinfection. Trop Med Infect Dis 2023; 8:383. [PMID: 37624321 PMCID: PMC10458104 DOI: 10.3390/tropicalmed8080383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
A remarkable characteristic of infectious diseases classified as Neglected Tropical Diseases (NTDs) is the fact that they are mostly transmitted in tropical and subtropical regions with poor conditions of sanitation and low access to healthcare, which makes transmission areas more likely to overlap. Two of the most important NTDs, schistosomiasis and leishmaniasis, despite being caused by very different etiological agents, have their pathogenesis heavily associated with immune-mediated mechanisms, and Schistosoma spp. and Leishmania spp. have been shown to simultaneously infect humans. Still, the consequences of Schistosoma-Leishmania coinfections remain underexplored. As the inflammatory processes elicited by each one of these parasites can influence the other, several changes have been observed due to this coinfection in naturally infected humans, experimental models, and in vitro cell assays, including modifications in susceptibility to infection, pathogenesis, prognostic, and response to treatment. Herein, we review the current knowledge in Schistosoma-Leishmania coinfections in both human populations and experimental models, with special regard to how schistosomiasis affects tegumentary leishmaniasis, discuss future perspectives, and suggest a few steps to further improve our understanding in this model of parasite-host-parasite interaction.
Collapse
Affiliation(s)
| | | | | | | | - Deborah Aparecida Negrão-Corrêa
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.M.A.C.)
| |
Collapse
|
7
|
Kizilbash N, Suhail N, Alzahrani AK, Basha WJ, Soliman M. Natural regulatory T cells increase significantly in pediatric patients with parasitic infections: Flow cytometry study. INDIAN J PATHOL MICR 2023; 66:556-559. [PMID: 37530338 DOI: 10.4103/ijpm.ijpm_1262_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background The most accepted definition of regulatory T cells (Tregs) relies on the expression of several biomarkers, including CD4, CD25, and transcription factor, Foxp3. The Tregs maintain tolerance to self-antigens and prevent autoimmune diseases. Aim The purpose of this study was to determine the difference in natural Treg levels in Entamoeba histolytica, Schistosoma mansoni, Giardia lamblia, Enterobius vermicularis, and Hymenolepis nana infected patients. Setting and Design Fifty-one pediatric subjects (29 males and 22 females) were recruited from a tertiary care hospital, and were divided into infected and non-infected (control) groups. The mean age of the subjects was 8.7 years. Materials and Methods Blood samples were collected from infected and non-infected groups, and change in the level of Tregs in these subjects was investigated by flow cytometry. Statistical Analysis Used The statistical analysis of data was performed by SPSS software. Quantitative data used in this study included mean and standard deviation. Data from the two groups were compared by the Student's t-test. The age of the patient and infection status were used for multivariate logistic regression analysis. Odds ratios (ORs) were estimated within a 95% confidence interval, and a P value of <0.05 was considered significant. Results and Conclusions The levels of natural regulatory T cells, indicated by the biomarkers, CD4+, CD25+, and Foxp3+, increase significantly in patients infected by Entamoeba histolytica, Schistosoma mansoni, Giardia lamblia, Enterobius vermicularis, and Hymenolepis nana as compared to controls. They also increase in cases of mixed infection as compared to infection by a single parasite.
Collapse
Affiliation(s)
- Nadeem Kizilbash
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - Nida Suhail
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - W Jamith Basha
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - Mohamed Soliman
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
8
|
Maggi L, Camelo GMA, Rocha IC, Pereira Alves W, Moreira JMP, Almeida Pereira T, Tafuri WL, Rabelo ÉML, Correa A, Ecco R, Negrão-Corrêa DA. Role of the IL-33/ST2 Activation Pathway in the Development of the Hepatic Fibrosis Induced by Schistosoma mansoni Granulomas in Mice. Int J Mol Sci 2023; 24:10237. [PMID: 37373379 PMCID: PMC10299179 DOI: 10.3390/ijms241210237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Schistosoma mansoni eggs retained in host tissues induce innate cytokine release, contributing to the induction of Type-2 immune responses and granuloma formation, important to restrain cytotoxic antigens, but leading to fibrosis. Interleukin(IL)-33 participates in experimental models of inflammation and chemically induced fibrosis, but its role in S. mansoni-induced fibrosis is still unknown. To explore the role of the IL-33/suppressor of the tumorigenicity 2 (ST2) pathway, serum and liver cytokine levels, liver histopathology, and collagen deposition were comparatively evaluated in S. mansoni-infected wild-type (WT) and IL-33-receptor knockout (ST2-/-) BALB/c mice. Our data show similar egg counts and hydroxyproline in the livers of infected WT and ST2-/- mice; however, the extracellular matrix in ST2-/- granulomas was loose and disorganised. Pro-fibrotic cytokines, such as IL-13 and IL-17, and the tissue-repairing IL-22 were significantly lower in ST2-/- mice, especially in chronic schistosomiasis. ST2-/- mice also showed decreased α-smooth muscle actin (α-SMA) expression in granuloma cells, in addition to reduced Col III and Col VI mRNA levels and reticular fibres. Therefore, IL-33/ST2 signalling is essential for tissue repairing and myofibroblast activation during S. mansoni infection. Its disruption results in inappropriate granuloma organisation, partly due to the reduced type III and VI collagen and reticular fibre formation.
Collapse
Affiliation(s)
- Laura Maggi
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
| | - Genil Mororó Araújo Camelo
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
| | - Izabella Chrystina Rocha
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
- Curso de Enfermagem, Instituto de Ciências Biológicas e Saúde, Universidade Federal de Mato Grosso, Barra do Garça 78698-000, MG, Brazil
| | - William Pereira Alves
- Laboratório de Parasitologia Molecular, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (W.P.A.); (É.M.L.R.)
| | - João Marcelo Peixoto Moreira
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
| | - Thiago Almeida Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Wagner Luiz Tafuri
- Laboratório de Patologia das Leishmanioses, Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Élida Mara Leite Rabelo
- Laboratório de Parasitologia Molecular, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (W.P.A.); (É.M.L.R.)
| | - Ary Correa
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Roselene Ecco
- Setor de Patologia, Escola Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Deborah Aparecida Negrão-Corrêa
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.M.); (G.M.A.C.); (I.C.R.); (J.M.P.M.)
| |
Collapse
|
9
|
Licá ICL, Frazão GCCG, Nogueira RA, Lira MGS, dos Santos VAF, Rodrigues JGM, Miranda GS, Carvalho RC, Silva LA, Guerra RNM, Nascimento FRF. Immunological mechanisms involved in macrophage activation and polarization in schistosomiasis. Parasitology 2023; 150:401-415. [PMID: 36601859 PMCID: PMC10089811 DOI: 10.1017/s0031182023000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Human schistosomiasis is caused by helminths of the genus Schistosoma. Macrophages play a crucial role in the immune regulation of this disease. These cells acquire different phenotypes depending on the type of stimulus they receive. M1 macrophages can be ‘classically activated’ and can display a proinflammatory phenotype. M2 or ‘alternatively activated’ macrophages are considered anti-inflammatory cells. Despite the relevance of macrophages in controlling infections, the role of the functional types of these cells in schistosomiasis is unclear. This review highlights different molecules and/or macrophage activation and polarization pathways during Schistosoma mansoni and Schistosoma japonicum infection. This review is based on original and review articles obtained through searches in major databases, including Scopus, Google Scholar, ACS, PubMed, Wiley, Scielo, Web of Science, LILACS and ScienceDirect. Our findings emphasize the importance of S. mansoni and S. japonicum antigens in macrophage polarization, as they exert immunomodulatory effects in different stages of the disease and are therefore important as therapeutic targets for schistosomiasis and in vaccine development. A combination of different antigens can provide greater protection, as it possibly stimulates an adequate immune response for an M1 or M2 profile and leads to host resistance; however, this warrants in vitro and in vivo studies.
Collapse
Affiliation(s)
- Irlla Correia Lima Licá
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Gleycka Cristine Carvalho Gomes Frazão
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Ranielly Araujo Nogueira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria Gabriela Sampaio Lira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Vitor Augusto Ferreira dos Santos
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Silva Miranda
- Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Lucilene Amorim Silva
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Rosane Nassar Meireles Guerra
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Flávia Raquel Fernandes Nascimento
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
10
|
Malta KK, Palazzi C, Neves VH, Aguiar Y, Silva TP, Melo RCN. Schistosomiasis Mansoni-Recruited Eosinophils: An Overview in the Granuloma Context. Microorganisms 2022; 10:microorganisms10102022. [PMID: 36296298 PMCID: PMC9607553 DOI: 10.3390/microorganisms10102022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Eosinophils are remarkably recruited during schistosomiasis mansoni, one of the most common parasitic diseases worldwide. These cells actively migrate and accumulate at sites of granulomatous inflammation termed granulomas, the main pathological feature of this disease. Eosinophils colonize granulomas as a robust cell population and establish complex interactions with other immune cells and with the granuloma microenvironment. Eosinophils are the most abundant cells in granulomas induced by Schistosoma mansoni infection, but their functions during this disease remain unclear and even controversial. Here, we explore the current information on eosinophils as components of Schistosoma mansoni granulomas in both humans and natural and experimental models and their potential significance as central cells triggered by this infection.
Collapse
|
11
|
Giri BR, Li S, Fang C, Qiu L, Yan S, Pakharukova MY, Cheng G. Dynamic miRNA profile of host T cells during early hepatic stages of Schistosoma japonicum infection. Front Immunol 2022; 13:911139. [PMID: 36119054 PMCID: PMC9478579 DOI: 10.3389/fimmu.2022.911139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Schistosomes undergo complicated migration in final hosts during infection, associated with differential immune responses. It has been shown that CD4+ T cells play critical roles in response to Schistosoma infections and accumulated documents have indicated that miRNAs tightly regulate T cell activity. However, miRNA profiles in host T cells associated with Schistosoma infection remain poorly characterized. Therefore, we undertook the study and systematically characterized T cell miRNA profiles from the livers and blood of S. japonicum infected C57BL/6J mice at 14- and 21-days post-infection. We observed 508 and 504 miRNAs, in which 264 miRNAs were co-detected in T cells isolated from blood and livers, respectively. The comparative analysis of T cell miRNAs from uninfected and infected C57BL/6J mice blood showed that miR-486b-5p/3p expression was significantly downregulated and linked to various T cell immune responses and miR-375-5p was highly upregulated, associated with Wnt signaling and pluripotency, Delta notch signaling pathways, etc. Whereas hepatic T cells showed miR-466b-3p, miR-486b-3p, miR-1969, and miR-375 were differentially expressed compared to the uninfected control. The different expressions of some miRNAs were further corroborated in isolated T cells from mice and in vitro cultured EL-4 cells treated with S. japonicum worm antigens by RT-qPCR and similar results were found. In addition, bioinformatics analysis combined with RT-qPCR validation of selected targets associated with the immune system and parasite-caused infectious disease showed a significant increase in the expression of Ctla4, Atg5, Hgf, Vcl and Arpc4 and a decreased expression of Fermt3, Pik3r1, Myd88, Nfkbie, Ppp1r12a, Ppp3r1, Nfyb, Atg12, Ube2n, Tyrobp, Cxcr4 and Tollip. Overall, these results unveil the comprehensive repertoire of T cell miRNAs during S. japonicum infection, suggesting that the circulatory (blood) and liver systems have distinct miRNAs landscapes that may be important for regulating T cell immune response. Altogether, our findings indicated a dynamic expression pattern of T cell miRNAs during the hepatic stages of S. japonicum infection.
Collapse
Affiliation(s)
- Bikash R. Giri
- Shanghai Tenth People’s Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Shun Li
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chuantao Fang
- Shanghai Tenth People’s Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Lin Qiu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | - Maria Y. Pakharukova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Guofeng Cheng
- Shanghai Tenth People’s Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Guofeng Cheng, ;
| |
Collapse
|
12
|
Miranda GS, Rodrigues JGM, de Rezende MC, Resende SD, Camelo GMA, de Oliveira Silva JKA, Maggi L, Rodrigues VF, de Oliveira VG, Negrão-Corrêa DA. Experimental infection with Schistosoma mansoni isolated from the wild rodent Holochilus sciureus shows a low parasite burden but induces high schistosomiasis severity in BALB/c mice. Parasitology 2022; 149:1381-1396. [PMID: 35641335 PMCID: PMC11010505 DOI: 10.1017/s0031182022000774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
Wild mammals, especially rodents, can participate in the life cycle of Schistosoma mansoni; however, the impact of these parasite strains on the severity of schistosomiasis remains unclear. The aim of this study was to comparatively evaluate the parasitological and immunopathological alterations induced by an S. mansoni strain isolated from the wild rodent Holochilus sciureus (HS strain) and a parasite strain isolated from a human (LE strain) in experimentally infected mice. Male BALB/c mice were subcutaneously infected with 50 cercariae/mouse of either the HS or the LE strain and were evaluated for 12 weeks. In the experimental groups, the parasite burden was estimated by worm and egg (feces and tissues) count, and immunopathological alterations were evaluated in the liver and intestines. Compared to experimental infection with the LE parasite strain, HS-infected mice showed reduced number of parasite worms but higher fecundity rate, significant reduction in IL-5, IL-10 and IL-13 concentrations, lower EPO-activity in liver homogenate and higher concentrations of TNF-α, IFN-γ, IL-12 and IL-17 in the small intestine homogenate. Moreover, HS infection resulted in higher concentrations of NO end-products in both the liver and intestine, suggesting a predominance of the Th1/Th17 immune response. HS-infected mice also showed higher plasma transaminase levels, formed larger granulomas, and had a higher mortality rate in comparison with LE-infected mice. Data indicate that BALB/c mice infected with the HS strain of S. mansoni showed reduced susceptibility to the parasite but stronger tissue inflammation and high disease severity.
Collapse
Affiliation(s)
- Guilherme Silva Miranda
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
- Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Michelle Carvalho de Rezende
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Samira Diniz Resende
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Genil Mororó Araújo Camelo
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | | | - Laura Maggi
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Vanessa Fernandes Rodrigues
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Vinícius Gustavo de Oliveira
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | | |
Collapse
|
13
|
Kadji Fassi JB, Boukeng Jatsa H, Membe Femoe U, Greigert V, Brunet J, Cannet C, Kenfack CM, Gipwe Feussom N, Tienga Nkondo E, Abou-Bacar A, Pfaff AW, Kamgang R, Kamtchouing P, Tchuem Tchuenté LA. Protein undernutrition reduces the efficacy of praziquantel in a murine model of Schistosoma mansoni infection. PLoS Negl Trop Dis 2022; 16:e0010249. [PMID: 35839247 PMCID: PMC9328564 DOI: 10.1371/journal.pntd.0010249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/27/2022] [Accepted: 06/28/2022] [Indexed: 01/03/2023] Open
Abstract
Background Undernutrition and schistosomiasis are public health problems and often occur in low and middle-income countries. Protein undernutrition can alter the host-parasite environment system and aggravate the course of schistosomiasis. This study aimed to assess the impact of a low-protein diet on the efficacy of praziquantel. Methodology/Principal findings Thirty-day-old mice were fed with a low-protein diet, and 40 days later, they were individually infected with fifty Schistosoma mansoni cercariae. A 28-day-treatment with praziquantel at 100 mg/kg for five consecutive days followed by distilled water begins on the 36th day post-infection. Mice were sacrificed on the 64th day post-infection. We determined the parasitological burden, liver and intestine histomorphometry, liver injury, and immunomodulation parameters. Praziquantel treatment of infected mice fed with a standard diet (IN-PZQ) resulted in a significant reduction of worm and egg burdens and a normalization of iron and calcium levels. The therapy also improved schistosomiasis-induced hepatopathy and oxidative stress. The anti-inflammatory and immunomodulatory activities of praziquantel were also significant in these mice. When infected mice receiving the low-protein diet were treated with praziquantel (ILP-PZQ), the body weight loss and hepatomegaly were not alleviated, and the worm and liver egg burdens were significantly higher than those of IN-PZQ mice (P < 0.001). The treatment did not reduce the increased activities of ALT and γ-GGT, the high malondialdehyde concentration, and the liver granuloma volume. The iron and calcium levels were not ameliorated and differed from those of IN-PZQ mice (P < 0.001 and P < 0.05). Moreover, in these mice, praziquantel treatment did not reverse the high level of IL-5 and the low mRNA expression of CCL3/MIP-1α and CXCL-10/IP-10 induced by S. mansoni infection. Conclusion/Significance These results demonstrated that a low-protein diet reduced the schistosomicidal, antioxidant, anti-inflammatory, and immunomodulatory activities of praziquantel. Almost 90% of people requiring schistosomiasis preventive chemotherapy in 2018 lived in sub-Saharan Africa. Besides, 205.3 million children under five years suffer and die of undernutrition in low- and middle-income countries. The physiopathology of schistosomiasis mansoni involves liver damage, oxidative stress, and perturbation of the immune response. These disturbances are intensified by undernutrition. Praziquantel is used to treat schistosomiasis, but its efficacy on the comorbidity of S. mansoni infection and undernutrition has not been investigated. We conducted this study to assess the effectiveness of praziquantel on S. mansoni infection in mice fed with a low-protein diet. We recorded growth retardation, hepatomegaly, and high worm and egg burdens in mice fed with a low-protein diet and treated with PZQ. Moreover, the treatment did not reverse the liver function injury, oxidative stress, high iron level, and low calcium level. The proinflammatory cytokine IL-5 was still high, and the gene expression of some macrophage-associated chemokines was reduced. Therefore, this study demonstrated that in a murine model of a low-protein diet, the efficacy of praziquantel on S. mansoni infection was reduced. It also underlines the importance of targeting protein deficiency and malnutrition in populations living in schistosomiasis endemic areas for efficient disease control.
Collapse
Affiliation(s)
- Joseph Bertin Kadji Fassi
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
| | - Hermine Boukeng Jatsa
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
- * E-mail:
| | - Ulrich Membe Femoe
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
- Institute of Parasitology and Tropical Diseases, Dynamic Host-Pathogen Interactions, University of Strasbourg, Strasbourg, France
| | - Valentin Greigert
- Institute of Parasitology and Tropical Diseases, Dynamic Host-Pathogen Interactions, University of Strasbourg, Strasbourg, France
| | - Julie Brunet
- Institute of Parasitology and Tropical Diseases, Dynamic Host-Pathogen Interactions, University of Strasbourg, Strasbourg, France
| | - Catherine Cannet
- Laboratory of Histomorphometry, Institute of Legal Medicine, University of Strasbourg, Strasbourg, France
| | - Christian Mérimé Kenfack
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
| | - Nestor Gipwe Feussom
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
| | - Emilienne Tienga Nkondo
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
| | - Ahmed Abou-Bacar
- Institute of Parasitology and Tropical Diseases, Dynamic Host-Pathogen Interactions, University of Strasbourg, Strasbourg, France
| | - Alexander Wilhelm Pfaff
- Institute of Parasitology and Tropical Diseases, Dynamic Host-Pathogen Interactions, University of Strasbourg, Strasbourg, France
| | - René Kamgang
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Pierre Kamtchouing
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Louis-Albert Tchuem Tchuenté
- Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
- Laboratory of Parasitology and Ecology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
14
|
Costain AH, Phythian-Adams AT, Colombo SAP, Marley AK, Owusu C, Cook PC, Brown SL, Webb LM, Lundie RJ, Borger JG, Smits HH, Berriman M, MacDonald AS. Dynamics of Host Immune Response Development During Schistosoma mansoni Infection. Front Immunol 2022; 13:906338. [PMID: 35958580 PMCID: PMC9362740 DOI: 10.3389/fimmu.2022.906338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Schistosomiasis is a disease of global significance, with severity and pathology directly related to how the host responds to infection. The immunological narrative of schistosomiasis has been constructed through decades of study, with researchers often focussing on isolated time points, cell types and tissue sites of interest. However, the field currently lacks a comprehensive and up-to-date understanding of the immune trajectory of schistosomiasis over infection and across multiple tissue sites. We have defined schistosome-elicited immune responses at several distinct stages of the parasite lifecycle, in three tissue sites affected by infection: the liver, spleen, and mesenteric lymph nodes. Additionally, by performing RNA-seq on the livers of schistosome infected mice, we have generated novel transcriptomic insight into the development of schistosome-associated liver pathology and fibrosis across the breadth of infection. Through depletion of CD11c+ cells during peak stages of schistosome-driven inflammation, we have revealed a critical role for CD11c+ cells in the co-ordination and regulation of Th2 inflammation during infection. Our data provide an updated and high-resolution account of how host immune responses evolve over the course of murine schistosomiasis, underscoring the significance of CD11c+ cells in dictating host immunopathology against this important helminth infection.
Collapse
Affiliation(s)
- Alice H. Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Stefano A. P. Colombo
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Angela K. Marley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christian Owusu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Peter C. Cook
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sheila L. Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Lauren M. Webb
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Immunology, University of Washington, Seattle, WA, United States
| | | | | | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Rodrigues JGM, Lira MGS, Nogueira RA, Gomes GCC, Licá ICL, Silva JKADO, Miranda GS, Silva-Souza N. Alterations in blood glucose concentration in wild rodents, Holochilus sciureus, naturally infected with Schistosoma mansoni. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2022; 31:e021921. [PMID: 35352759 PMCID: PMC9901889 DOI: 10.1590/s1984-29612022019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
The present study aimed to evaluate the changes in peripheral blood glucose concentrations induced by Schistosoma mansoni infection in Holochilus sciureus rodents, a wild reservoir of the parasite. Glucose concentration was measured in the plasma of blood samples using a colorimetric enzymatic test. Biological parameters and S. mansoni burden in each rodent were also verified and correlated with glucose concentrations. A total of 76 H. sciureus were captured, out of which 20 (26%) were infected with S. mansoni (n=13 males and n=7 females). Although the parasite burden was comparable between the sexes, blood glucose concentration was lower in infected males and almost unchanged in females. Furthermore, histopathological data revealed that male rodents had a greater hepatic granulomatous inflammatory reaction than females. In addition, we also confirmed that the weight and total length of the analyzed animals had no effect on glucose levels. Therefore, natural infection with S. mansoni in H. sciureus may have a lower impact on glycemic homeostasis in females, which will help us understand the role of these rodents as reservoirs of S. mansoni.
Collapse
Affiliation(s)
- João Gustavo Mendes Rodrigues
- Programa de Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais – UFMG, Belo Horizonte, MG, Brasil
- Departamento de Química e Biologia, Universidade Estadual do Maranhão – UEMA, São Luís, MA, Brasil
| | - Maria Gabriela Sampaio Lira
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Maranhão – UFMA, São Luís, MA, Brasil
| | - Ranielly Araújo Nogueira
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Maranhão – UFMA, São Luís, MA, Brasil
| | | | - Irlla Correia Lima Licá
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Maranhão – UFMA, São Luís, MA, Brasil
| | | | - Guilherme Silva Miranda
- Programa de Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais – UFMG, Belo Horizonte, MG, Brasil
- Departamento de Biologia, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, São Raimundo das Mangabeiras, MA, Brasil
| | - Nêuton Silva-Souza
- Departamento de Química e Biologia, Universidade Estadual do Maranhão – UEMA, São Luís, MA, Brasil
| |
Collapse
|
16
|
Chauhan R, Awasthi V, Thakur RS, Pande V, Chattopadhyay D, Das J. CD4 +ICOS +Foxp3 +: a sub-population of regulatory T cells contribute to malaria pathogenesis. Malar J 2022; 21:32. [PMID: 35109868 PMCID: PMC8812217 DOI: 10.1186/s12936-022-04055-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Regulatory T cells are known to play a key role to counter balance the protective immune response and immune mediated pathology. However, the role of naturally occurring regulatory cells CD4+CD25+Foxp3+ in malaria infection during the disease pathogenesis is controversial. Beside this, ICOS molecule has been shown to be involved in the development and function of regulatory T cell enhance IL-10 production. Therefore, possible involvement of the ICOS dependent regulatory CD4+ICOS+Foxp3+ T cells in resistance/susceptibility during malaria parasite is explored in this study. METHODS 5 × 105 red blood cells infected with non-lethal and lethal parasites were inoculated in female Balb/c mice by intra-peritoneal injection. Infected or uninfected mice were sacrificed at early (3rd day post infection) and later stage (10th day post infection) of infection. Harvested cells were analysed by using flow cytometer and serum cytokine by Bioplex assay. RESULTS Thin blood films show that percentages of parasitaemia increases with disease progression in infections with the lethal malaria parasite and mice eventually die by day 14th post-infection. Whereas in case of non-lethal malaria parasite, parasitaemia goes down by 7th day post infection and gets cleared within 13th day. The number of CD4+ ICOS+ T cells increases in lethal infection with disease progression. Surprisingly, in non-lethal parasite, ICOS expression decreases after day 7th post infection as parasitaemia goes down. The frequency of CD4+ICOS+FoxP3+ Tregs was significantly higher in lethal parasitic infection as compared to the non-lethal parasite. The level of IL-12 cytokine was remarkably higher in non-lethal infection compared to the lethal infection. In contrast, the level of IL-10 cytokines was higher in lethal parasite infection compared to the non-lethal parasite. CONCLUSION Taken together, these data suggest that lethal parasite induce immunosuppressive environment, protecting from host immune responses and help the parasite to survive whereas non-lethal parasite leads to low frequencies of Treg cells seldom impede immune response that allow the parasite to get self-resolved.
Collapse
Affiliation(s)
- Rubika Chauhan
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Vikky Awasthi
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Reva Sharan Thakur
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Veena Pande
- Biotechnology Department, Kumaun University, Nainital, India
| | - Debprasad Chattopadhyay
- ICMR Virus Unit, ID and BG Hospital, Kolkata, 700010, India.,ICMR-National Institute of Traditional Medicine (NITM), Belagavi, 590010, India
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India.
| |
Collapse
|
17
|
Eosinophils participate in modulation of liver immune response and tissue damage induced by Schistosoma mansoni infection in mice. Cytokine 2021; 149:155701. [PMID: 34741881 DOI: 10.1016/j.cyto.2021.155701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023]
Abstract
The severity of chronic schistosomiasis has been mainly associated with the intensity and extension of the inflammatory response induced by egg-secreted antigens in the host tissue, especially in the liver and intestine. During acute schistosomiasis, eosinophils account for approximately 50% of the cells that compose the liver granulomas; however, the role of this cell-type in the pathology of schistosomiasis remains controversial. In the current study, we compared the parasite burden and liver immunopathological changes during experimental schistosomiasis in wild-type (WT) BALB/c mice and BALB/c mice selectively deficient for the differentiation of eosinophils (ΔdblGATA). Our data demonstrated that the absence of eosinophil differentiation did not alter the S. mansoni load or the liver retention of parasite eggs; however, there were significant changes in the liver immune response profile and tissue damage. S. mansoni infection in ΔdblGATA mice resulted in significantly lower liver concentrations of IL-5, IL-13, IL-33, IL-17, IL-10, and TGF-β and higher concentrations of IFN-γ and TNF-α, as compared to WT mice. The changes in liver immune response observed in infected ΔdblGATA mice were accompanied by lower collagen deposition, but higher liver damage and larger granulomas. Moreover, the absence of eosinophils resulted in a higher mortality rate in mice infected with a high parasite load. Therefore, the data indicated that eosinophils participate in the establishment and/or amplification of liver Th-2 and regulatory response induced by S. mansoni, which is necessary for the balance between liver damage and fibrosis, which in turn is essential for modulating disease severity.
Collapse
|
18
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Marume A, Vengesai A, Mann J, Mduluza T. Interleukin-10 and tumour necrosis factor alpha promoter region polymorphisms and susceptibility to urogenital schistosomiasis in young Zimbabwean children living in Schistosoma haematobium endemic regions. S Afr J Infect Dis 2021; 35:11. [PMID: 34485462 PMCID: PMC8378000 DOI: 10.4102/sajid.v35i1.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/23/2020] [Indexed: 11/11/2022] Open
Abstract
Background Host genetic factors can influence susceptibility, morbidity and mortality from schistosomiasis. The study explored the association between single nucleotide polymorphisms (SNPs) in interleukin-10 (IL-10) and tumour necrosis factor alpha (TNF-α) promoter regions and susceptibility to Schistosoma haematobium infection. Methods Urine specimens were collected from 361 primary school children aged 5–15 years from schistosomiasis endemic areas of Manicaland and Mashonaland central provinces. Schistosoma haematobium was diagnosed using the urine filtration method. Only 272 participants provided adequate blood for genotyping. Genotyping was performed using the amplification refractory mutation system-polymerase chain reaction. The association between IL-10 and TNF-α SNPs and S. haematobium infection was analysed using the chi-square test. Results Schistosoma haematobium infection was confirmed in 26.8% of the participants. No significant difference in S. haematobium prevalence between men (51.6% of those infected) and women (48.4%) (χ2 = 0.008, df = 1, p = 0.928) was observed. The total IL-10 -1082 G, IL-10 -819 C and TNF-α -308G allele distribution between S. haematobium infected and uninfected participants was 50.7% and 51.5% (χ2 = 0.025, df = 1, p = 0.87), 54.3% and 60.6% (χ2 = 1.187, df = 1, p = 0.187) and 82.1% and 80.9% (χ2 = 0.099, df = 1, p = 0.753), respectively, and the differences were not significant. Conclusion Interleukin-10 -1082 G/A, IL-10 -819 C/T and TNF-α -308 G/A SNPs were not significantly associated with susceptibility to S. haematobium infection. The prevalence of schistosomiasis is still in the moderate range and is similar in boys and girls.
Collapse
Affiliation(s)
- Amos Marume
- Department of Infection Prevention and Control, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Paraclinical Department, Faculty of Veterinary Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Arthur Vengesai
- Department of Infection Prevention and Control, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - Jaclyn Mann
- Department of Infection Prevention and Control, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Takafira Mduluza
- Department of Infection Prevention and Control, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
20
|
Webb LM, Phythian-Adams AT, Costain AH, Brown SL, Lundie RJ, Forde-Thomas J, Cook PC, Jackson-Jones LH, Marley AK, Smits HH, Hoffmann KF, Tait Wojno ED, MacDonald AS. Plasmacytoid Dendritic Cells Facilitate Th Cell Cytokine Responses throughout Schistosoma mansoni Infection. Immunohorizons 2021; 5:721-732. [PMID: 34462311 PMCID: PMC8881908 DOI: 10.4049/immunohorizons.2100071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are potent producers of type I IFN (IFN-I) during viral infection and respond to IFN-I in a positive feedback loop that promotes their function. IFN-I shapes dendritic cell responses during helminth infection, impacting their ability to support Th2 responses. However, the role of pDCs in type 2 inflammation is unclear. Previous studies have shown that pDCs are dispensable for hepatic or splenic Th2 responses during the early stages of murine infection with the trematode Schistosoma mansoni at the onset of parasite egg laying. However, during S. mansoni infection, an ongoing Th2 response against mature parasite eggs is required to protect the liver and intestine from acute damage and how pDCs participate in immune responses to eggs and adult worms in various tissues beyond acute infection remains unclear. We now show that pDCs are required for optimal Th2 cytokine production in response to S. mansoni eggs in the intestinal-draining mesenteric lymph nodes throughout infection and for egg-specific IFN-γ at later time points of infection. Further, pDC depletion at chronic stages of infection led to increased hepatic and splenic pathology as well as abrogated Th2 cell cytokine production and activation in the liver. In vitro, mesenteric lymph node pDCs supported Th2 cell responses from infection-experienced CD4+ T cells, a process dependent on pDC IFN-I responsiveness, yet independent of Ag. Together, these data highlight a previously unappreciated role for pDCs and IFN-I in maintaining and reinforcing type 2 immunity in the lymph nodes and inflamed tissue during helminth infection.
Collapse
Affiliation(s)
- Lauren M Webb
- Department of Immunology, University of Washington, Seattle, WA;
| | | | - Alice H Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sheila L Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | | | - Josephine Forde-Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter C Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Lucy H Jackson-Jones
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom; and
| | - Angela K Marley
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
21
|
Hao C, Wang W, Zhan B, Wang Z, Huang J, Sun X, Zhu X. Trichinella spiralis Paramyosin Induces Colonic Regulatory T Cells to Mitigate Inflammatory Bowel Disease. Front Cell Dev Biol 2021; 9:695015. [PMID: 34336843 PMCID: PMC8320175 DOI: 10.3389/fcell.2021.695015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Helminth infection modulates host regulatory immune responses to maintain immune homeostasis. Our previous study identified Trichinella spiralis paramyosin (TsPmy) as a major immunomodulatory protein with the ability to induce regulatory T cells (Tregs). However, whether TsPmy regulates gut Tregs and contributes to intestinal immune homeostasis remains unclear. Here we investigated the therapeutic effect of recombinant TsPmy protein (rTsPmy) on experimental colitis in mice, and elucidated the roles and mechanisms of colonic Tregs induced by rTsPmy in ameliorating colitis. Acute colitis was induced by dextran sodium sulfate (DSS) in C57BL/6J mice, and chronic colitis was induced by naïve T cells in Rag1 KO mice. Mice with colitis were pre-treated with rTsPmy intraperitoneally, and clinical manifestations and colonic inflammation were evaluated. Colonic lamina propria (cLP) Tregs phenotypes and functions in DSS-induced colitis were analyzed by flow cytometry. Adoptive transfer of cLP Tregs treated by rTsPmy into Rag1 KO chronic colitis was utilized to verify Tregs suppressive function. rTsPmy ameliorated the disease progress of DSS-induced colitis, reduced pro-inflammatory responses but enhanced regulatory cytokines production in DSS-induced colitis. Moreover, rTsPmy specifically stimulated the expansion of thymic-derived Tregs (tTregs) rather than the peripherally derived Tregs (pTregs) in the inflamed colon, enhanced the differentiation of effector Tregs (eTregs) with higher suppressive function and stability in colitis. This study describes the mechanisms of colonic Tregs induced by the Trichinella-derived protein rTsPmy in maintaining gut immune homeostasis during inflammation. These findings provide further insight into the immunological mechanisms involved in the therapeutic effect of helminth-derived proteins in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Chunyue Hao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Zixia Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Masamba P, Kappo AP. Immunological and Biochemical Interplay between Cytokines, Oxidative Stress and Schistosomiasis. Int J Mol Sci 2021; 22:ijms22137216. [PMID: 34281269 PMCID: PMC8268096 DOI: 10.3390/ijms22137216] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/17/2022] Open
Abstract
The host–parasite schistosome relationship relies heavily on the interplay between the strategies imposed by the schistosome worm and the defense mechanisms the host uses to counter the line of attack of the parasite. The ultimate goal of the schistosome parasite entails five important steps: evade elimination tactics, survive within the human host, develop into adult forms, propagate in large numbers, and transmit from one host to the next. The aim of the parasitized host on the other hand is either to cure or limit infection. Therefore, it is a battle between two conflicting aspirations. From the host’s standpoint, infection accompanies a plethora of immunological consequences; some are set in place to defend the host, while most end up promoting chronic disease, which ultimately crosses paths with oxidative stress and cancer. Understanding these networks provides attractive opportunities for anti-schistosome therapeutic development. Hence, this review discusses the mechanisms by which schistosomes modulate the human immune response with ultimate links to oxidative stress and genetic instability.
Collapse
|
23
|
Mawa PA, Kincaid-Smith J, Tukahebwa EM, Webster JP, Wilson S. Schistosomiasis Morbidity Hotspots: Roles of the Human Host, the Parasite and Their Interface in the Development of Severe Morbidity. Front Immunol 2021; 12:635869. [PMID: 33790908 PMCID: PMC8005546 DOI: 10.3389/fimmu.2021.635869] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Schistosomiasis is the second most important human parasitic disease in terms of socioeconomic impact, causing great morbidity and mortality, predominantly across the African continent. For intestinal schistosomiasis, severe morbidity manifests as periportal fibrosis (PPF) in which large tracts of macro-fibrosis of the liver, visible by ultrasound, can occlude the main portal vein leading to portal hypertension (PHT), sequelae such as ascites and collateral vasculature, and ultimately fatalities. For urogenital schistosomiasis, severe morbidity manifests as pathology throughout the urinary system and genitals, and is a definitive cause of squamous cell bladder carcinoma. Preventative chemotherapy (PC) programmes, delivered through mass drug administration (MDA) of praziquantel (PZQ), have been at the forefront of schistosomiasis control programmes in sub-Saharan Africa since their commencement in Uganda in 2003. However, despite many successes, 'biological hotspots' (as distinct from 'operational hotspots') of both persistent high transmission and morbidity remain. In some areas, this failure to gain control of schistosomiasis has devastating consequences, with not only persistently high infection intensities, but both "subtle" and severe morbidity remaining prevalent. These hotspots highlight the requirement to revisit research into severe morbidity and its mechanisms, a topic that has been out of favor during times of PC implementation. Indeed, the focality and spatially-structured epidemiology of schistosomiasis, its transmission persistence and the morbidity induced, has long suggested that gene-environmental-interactions playing out at the host-parasite interface are crucial. Here we review evidence of potential unique parasite factors, host factors, and their gene-environmental interactions in terms of explaining differential morbidity profiles in the human host. We then take the situation of schistosomiasis mansoni within the Albertine region of Uganda as a case study in terms of elucidating the factors behind the severe morbidity observed and the avenues and directions for future research currently underway within a new research and clinical trial programme (FibroScHot).
Collapse
Affiliation(s)
- Patrice A. Mawa
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julien Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | | | - Joanne P. Webster
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | - Shona Wilson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Miranda GS, Resende SD, Cardoso DT, Camelo GMA, Silva JKAO, de Castro VN, Geiger SM, Carneiro M, Negrão-Corrêa D. Previous History of American Tegumentary Leishmaniasis Alters Susceptibility and Immune Response Against Schistosoma mansoni Infection in Humans. Front Immunol 2021; 12:630934. [PMID: 33777015 PMCID: PMC7990892 DOI: 10.3389/fimmu.2021.630934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/18/2021] [Indexed: 01/21/2023] Open
Abstract
Schistosomiasis and Leishmaniasis are chronic parasitic diseases with high prevalence in some tropical regions and, due to their wide distribution, a risk of co-infections is present in some areas. Nevertheless, the impact of this interaction on human populations is still poorly understood. Thus, the current study evaluated the effect of previous American Tegumentary Leishmaniasis (ATL) on the susceptibility and immune response to Schistosoma mansoni infection in residents from a rural community in Northern of Minas Gerais state, Brazil, an area endemic for both parasitic infections. The participants answered a socioeconomic questionnaire and provided stool and blood samples for parasitological and immunological evaluations. Stool samples were examined by a combination of parasitological techniques to identify helminth infections, especially S. mansoni eggs. Blood samples were used for hemograms and to measure the serum levels of cytokines and chemokines. Reports on previous ATL were obtained through interviews, clinical evaluation forms, and medical records. S. mansoni infection was the most prevalent parasitic infection in the study population (46%), and the majority of the infected individuals had a very low parasite burden. In the same population, 93 individuals (36.2%) reported previous ATL, and the prevalence of S. mansoni infection among these individuals was significantly higher than among individuals with no ATL history. A multiple logistic regression model revealed that S. mansoni infection was positively associated with higher levels of CCL3 and CCL17, and a higher frequency of IL-17 responders. Moreover, this model demonstrated that individuals with an ATL history had a 2-fold higher probability to be infected with S. mansoni (OR = 2.0; 95% CI 1.04–3.68). Among S. mansoni-infected individuals, the logistic regression demonstrated that a previous ATL history was negatively associated with the frequency of IL-17 responders and CXCL10 higher responders, but positively associated with higher IL-27 responders. Altogether, our data suggest that previous ATL may alter the susceptibility and the immune response in S. mansoni-infected individuals, which may likely affect the outcome of schistosomiasis and the severity of the disease in humans.
Collapse
Affiliation(s)
- Guilherme Silva Miranda
- Laboratory of Immunohelminthology and Schistosomiasis, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Biology, Department of Biology, Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - Samira Diniz Resende
- Laboratory of Immunohelminthology and Schistosomiasis, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Diogo Tavares Cardoso
- Laboratory of Intestinal Helminthiasis, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Genil Mororó Araújo Camelo
- Laboratory of Immunohelminthology and Schistosomiasis, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jeferson Kelvin Alves Oliveira Silva
- Laboratory of Immunohelminthology and Schistosomiasis, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Normandio de Castro
- Laboratory of Intestinal Helminthiasis, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stefan Michael Geiger
- Laboratory of Intestinal Helminthiasis, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariângela Carneiro
- Laboratory of Epidemiology of Infectious and Parasitic Diseases, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Deborah Negrão-Corrêa
- Laboratory of Immunohelminthology and Schistosomiasis, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Llanwarne F, Helmby H. Granuloma formation and tissue pathology in Schistosoma japonicum versus Schistosoma mansoni infections. Parasite Immunol 2021; 43:e12778. [PMID: 32692855 PMCID: PMC11478942 DOI: 10.1111/pim.12778] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Schistosomiasis is the most important helminth disease in the world from a public health perspective. S mansoni and S japonicum account for the majority of global intestinal schistosomiasis cases, and the pathogenesis is widely assumed to be fundamentally similar. However, the majority of research on schistosomiasis has been carried out on S mansoni and comparisons between the two species are rarely made. Here, we will discuss aspects of both older and recent literature where such comparisons have been made, with a particular focus on the pathological agent, the host granulomatous response to the egg. Major differences between the two species are apparent in features such as egg production patterns and cellular infiltration; however, it is also clear that even subtle differences in the cascade of various cytokines and chemokines contribute to the different levels of pathology observed between these two main species of intestinal schistosomiasis. A better understanding of such differences at species level will be vital when it comes to the development of new treatment strategies and vaccines.
Collapse
Affiliation(s)
- Felix Llanwarne
- Department of Infection BiologyFaculty of Infectious and Tropical DiseaseLondon School of Hygiene and Tropical MedicineLondonUK
| | - Helena Helmby
- Department of Infection BiologyFaculty of Infectious and Tropical DiseaseLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
26
|
Maggi L, Rocha IC, Camelo GMA, Fernandes VR, Negrão-Corrêa D. The IL-33/ST2 pathway is not essential to Th2 stimulation but is key for modulation and survival during chronic infection with Schistosoma mansoni in mice. Cytokine 2020; 138:155390. [PMID: 33341001 DOI: 10.1016/j.cyto.2020.155390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Morbidity during chronic schistosomiasis has been associated with the induction and modulation of type-2 granulomatous inflammatory response induced by antigens secreted by the eggs, which become trapped in capillary venules of the host tissues, especially in the liver and intestines. IL-33, an alarmin released after cell damage, binds to its ST2 (suppressor of tumorigenicity 2) receptor, expressed in an variety of immune cells, including ILC2 and macrophages, and stimulates the early production of IL-5 and IL-13, which leads to eosinophil infiltration and activation of a Th2 response. However, the role of IL-33/ST2 activation on Schistosoma-induced granuloma formation and modulation is mostly unknown. In the current work, we comparatively evaluated the immune response and granuloma formation in wild-type BALB/c (WT) and BALB/c mice genetically deficient in the IL-33 receptor (ST2-/-) experimentally infected with Schistosoma mansoni. Mice were infected with 25 or 50 S. mansoni cercariae and followed for up to 14 weeks to assess mortality. Mice from each experimental group were comparatively evaluated for parasite burden, liver immune response, and granuloma appearance during acute and chronic schistosomiasis. Our data showed that the number of circulating worms and eggs retained in the liver and eliminated in the feces was similar in WT and ST2-/- infected mice, but infected ST2-/- mice presented an enhanced rate of mortality. Interestingly, the production of type-2 cytokines by soluble egg antigens (SEA)-stimulated spleen cells, the serum concentrations of IL-5 and Immunoglobulin (Ig)-E, and the level of parasite-reactive IgG1 were similar in infected mice of both experimental groups. The concentrations of IL-4, IL-5, IL-13, and IFN-γ in liver homogenate of infected mice also did not differ between the strains at acute schistosomiasis, but there was a significant increase in IL-17 levels in ST2-/- infected mice at this phase. On the other hand, IL-4, IL-13, IL-10, IL-17, and IFN-γ concentrations were reduced and the ratios of IL-4/IFN-γ and IL-17/IFN-γ were higher in liver homogenate of chronically infected ST2-/- mice, suggesting unbalanced Th2 and Th17 responses. Moreover, liver granulomas of ST2-/- mice were larger and disorganized, showing an intense cellular infiltrate, rich in eosinophils and neutrophils. Our results suggest that the absence of the IL-33/ST2 pathway is not essential for the Schistosoma-induced Th2 response, but is necessary to prevent host mortality by modulating granuloma-mediated pathology.
Collapse
Affiliation(s)
- Laura Maggi
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabella Chrystina Rocha
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Curso de Enfermagem, Instituto de Ciências Biológicas e Saúde, Universidade Federal de Mato Grosso, Barra do Garça, Brazil
| | - Genil Mororó Araújo Camelo
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Rodrigues Fernandes
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Deborah Negrão-Corrêa
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
27
|
Chang H, He KY, Li C, Ni YY, Li MN, Chen L, Hou M, Zhou Z, Xu ZP, Ji MJ. P21 activated kinase-1 (PAK1) in macrophages is required for promotion of Th17 cell response during helminth infection. J Cell Mol Med 2020; 24:14325-14338. [PMID: 33124146 PMCID: PMC7753984 DOI: 10.1111/jcmm.16050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
CD4+T cells differentiate into distinct functional effector and inhibitory subsets are facilitated by distinct cytokine cues present at the time of antigen recognition. Maintaining a balance between T helper 17 (Th17) and regulatory T (Treg) cells are critical for the control of the immunopathogenesis of liver diseases. Here, by using the mouse model of helminth Schistosoma japonicum (Sjaponicum) infection, we show that the hepatic mRNA levels of P21‐activated kinase 1 (PAK1), a key regulator of the actin cytoskeleton, adhesion and cell motility, are significantly increased and associated with the development of liver pathology during Sjaponicum infection. In addition, PAK1‐deficient mice are prone to suppression of Th17 cell responses but increased Treg cells. Furthermore, PAK1 enhances macrophage activation through promoting IRF1 nuclear translocation in an NF‐κB‐dependent pathway, resulting in promoting Th17 cell differentiation through inducing IL‐6 production. These findings highlight the importance of PAK1 in macrophages fate determination and suggest that PAK1/IRF1 axis‐dependent immunomodulation can ameliorate certain T cell–based immune pathologies.
Collapse
Affiliation(s)
- Hao Chang
- Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Kai-Yue He
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yang-Yue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Mai-Ning Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Zikai Zhou
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Peng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Min-Jun Ji
- Center for Global Health, Nanjing Medical University, Nanjing, China.,Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Bai X, Li M, Wang X, Chang H, Ni Y, Li C, He K, Wang H, Yang Y, Tian T, Hou M, Ji M, Xu Z. Therapeutic potential of fucoidan in the reduction of hepatic pathology in murine schistosomiasis japonica. Parasit Vectors 2020; 13:451. [PMID: 32894174 PMCID: PMC7487607 DOI: 10.1186/s13071-020-04332-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hepatic granuloma formation and fibrosis as the consequence of tissue entrapped eggs produced by female schistosomes characterize the pathology of Schistosoma japonicum infection. It has been proposed that fucoidan, a sulfated polysaccharide existing naturally in brown seaweed Fucus vesiculosus, plays a diversified role to perform immunomodulatory activities. However, whether fucoidan functions in the host hepatic pathology is unknown and identifying the potential mechanism that is responsible for hepatic improvement is still necessary. METHODS We evaluated the hepatic pathology from S. japonicum-infected mice after treatment with fucoidan. qRT-PCR and immunofluorescence were used to detect the pro- or anti-inflammatory factors and the phosphorylated p65 in the livers. In addition, flow cytometry was also performed to investigate the T cell subsets in the S. japonicum-infected mice after treatment with fucoidan, and functional molecules relatively specific to Treg cells were detected in vitro. Furthermore, macrophages were treated with fucoidan in vitro and to detect the inflammatory cytokines. RESULTS Treatment with fucoidan significantly reduced the hepatic granuloma size and fibrosis response during S. japonicum infection. The attenuated phospho-p65 protein levels and the mRNA levels of pro-inflammatory cytokines (IL-6, IL-12 and TNF-α) were observed in the livers from fucoidan-treated S. japonicum-infected mice; however, the mRNA levels of anti-inflammatory cytokines (IL-4 and IL-13) were increased. In addition, the infiltration of Treg cells was significantly enhanced both in the livers and spleens from fucoidan-treated S. japonicum-infected mice. Consistent with this, the mRNA levels of IL-10 and TGF-β were dramatically increased in the livers from S. japonicum-infected mice after fucoidan treatment. Furthermore, in vitro stimulated splenocytes with fucoidan resulted in increasing Treg cells in splenocytes as well as the functional expression of CC chemokine receptor type 4 (CCR4) and CXC chemokine receptor type 5 (CXCR5) in Treg cells. Additionally, fucoidan promoted the mRNA levels of IL-4 and IL-13 in macrophages. CONCLUSIONS These findings suggest an important role of natural fucoidan in reducing hepatic pathology in the progress of S. japonicum infection with a stronger Treg response, which may reveal a new potential therapeutic strategy for hepatic disease caused by parasitic chronic infection.
Collapse
Affiliation(s)
- Xueqi Bai
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Maining Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Xinyue Wang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Hao Chang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Yangyue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Chen Li
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Kaiyue He
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Huiquan Wang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Yuxuan Yang
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Tian Tian
- Department of Dermatology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100 China
| | - Min Hou
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Minjun Ji
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| |
Collapse
|
29
|
Souza COS, Gardinassi LG, Rodrigues V, Faccioli LH. Monocyte and Macrophage-Mediated Pathology and Protective Immunity During Schistosomiasis. Front Microbiol 2020; 11:1973. [PMID: 32922381 PMCID: PMC7456899 DOI: 10.3389/fmicb.2020.01973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Infection by Schistosoma parasites culminates in a chronic granulomatous disease characterized by intense tissue fibrosis. Along the course of schistosomiasis, diverse leukocytes are recruited for inflammatory foci. Innate immune cell accumulation in Th2-driven granulomas around Schistosoma eggs is associated with increased collagen deposition, while monocytes and macrophages exert critical roles during this process. Monocytes are recruited to damaged tissues from blood, produce TGF-β and differentiate into monocyte-derived macrophages (MDMs), which become alternatively activated by IL-4/IL-13 signaling via IL-4Rα (AAMs). AAMs are key players of tissue repair and wound healing in response to Schistosoma infection. Alternative activation of macrophages is characterized by the activation of STAT6 that coordinates the transcription of Arg1, Chi3l3, Relma, and Mrc1. In addition to these markers, monocyte-derived AAMs also express Raldh2 and Pdl2. AAMs produce high levels of IL-10 and TGF-β that minimizes tissue damage caused by Schistosoma egg accumulation in tissues. In this review, we provide support to previous findings about the host response to Schistosoma infection reusing public transcriptome data. Importantly, we discuss the role of monocytes and macrophages with emphasis on the mechanisms of alternative macrophage activation during schistosomiasis.
Collapse
Affiliation(s)
- Camila Oliveira Silva Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Gustavo Gardinassi
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Vanderlei Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lúcia Helena Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Angeles JMM, Mercado VJP, Rivera PT. Behind Enemy Lines: Immunomodulatory Armamentarium of the Schistosome Parasite. Front Immunol 2020; 11:1018. [PMID: 32582161 PMCID: PMC7295904 DOI: 10.3389/fimmu.2020.01018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
The deeply rooted, intricate relationship between the Schistosoma parasite and the human host has enabled the parasite to successfully survive within the host and surreptitiously evade the host's immune attacks. The parasite has developed a variety of strategies in its immunomodulatory armamentarium to promote infection without getting harmed or killed in the battlefield of immune responses. These include the production of immunomodulatory molecules, alteration of membranes, and the promotion of granuloma formation. Schistosomiasis thus serves as a paradigm for understanding the Th2 immune responses seen in various helminthiases. This review therefore aims to summarize the immunomodulatory mechanisms of the schistosome parasites to survive inside the host. Understanding these immunomodulatory strategies not only provides information on parasite-host interactions, but also forms the basis in the development of novel drugs and vaccines against the schistosome infection, as well as various types of autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Jose Ma M Angeles
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Van Jerwin P Mercado
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Pilarita T Rivera
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
31
|
Hematological and Biochemical Profile of Patients Infected with Schistosoma mansoni in Comparison with Apparently Healthy Individuals at Sanja Town, Northwest Ethiopia: A Cross-Sectional Study. J Trop Med 2020; 2020:4083252. [PMID: 32454838 PMCID: PMC7225855 DOI: 10.1155/2020/4083252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/14/2020] [Accepted: 04/25/2020] [Indexed: 12/30/2022] Open
Abstract
Background Schistosomiasis is a parasitic disease that resides in the vascular system of vertebrates, causing a chronic, debilitating disease that affects more than 200 million people and 800,000 deaths per year in over 70 countries. This parasite causes liver dysfunction and disorders normal hematological and biochemical profiles in addition to portal vein hypertension syndrome, ascites, and liver fibrosis. The general objective of the current study is to assess hematological and biochemical profiles of patients infected with Schistosoma mansoni in comparison with apparently healthy individuals (control group) in Sanja town, northwest Ethiopia. Method A comparative cross-sectional study was conducted from February to April 2019 among microscopically confirmed S. mansoni-infected patients attending Sanja hospital and apparently healthy (control group) from Sanja town community. A total of 220 participants, 110 from the S. mansoni-infected and 110 from the control group, were enrolled using convenient sampling technique. Three grams of stool and six milliliters of blood samples were collected from each study participant. Stool samples were processed using the Kato–Katz technique to determine infection and count parasite density. The blood sample was processed for the analysis of hematological and biochemical profiles using Cell Dyn 1800 (Abbot Hematology, IL, USA) and iChem535 chemistry analyzer, respectively. All data were analyzed using SPSS version 20, and P value less than 0.05 was taken as statistically significant. Results This study showed that the mean values of serum alanine aminotransferase, aspartate aminotransferase, total protein, total cholesterol, hemoglobin, mean corpuscular hemoglobin concentration, and total white blood cell count were different in the Schistosoma mansoni-positive group as compared with the control group with statistically significant value (P ≤ 0.05). However, the mean values of blood glucose, red blood cell, packed cell volume, and granulocyte count difference were not statistically significant (P ≥ 0.05). The mean value of hemoglobin, red blood cells, blood glucose, mean corpuscular hemoglobin concentration, total protein, total cholesterol, and total white blood cell was significantly dropped in the moderate and heavy S. mansoni parasitic load patients as compared with the control group and light S. mansoni parasite density patients. However, the mean of AST and ALT progressively elevated as the burden of S. mansoni increased. Conclusion. Most hematological and biochemical profiles were significantly lower in the Schistosoma mansoni-positive group as compared with the control group. Most hematological and biochemical profiles decline significantly as the parasite density increased. Hence, with Schistosoma treatment, supportive treatment against hematological and biochemical disorders is recommended.
Collapse
|
32
|
White MPJ, McManus CM, Maizels RM. Regulatory T-cells in helminth infection: induction, function and therapeutic potential. Immunology 2020; 160:248-260. [PMID: 32153025 PMCID: PMC7341546 DOI: 10.1111/imm.13190] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Helminth parasites infect an alarmingly large proportion of the world's population, primarily within tropical regions, and their ability to down‐modulate host immunity is key to their persistence. Helminths have developed multiple mechanisms that induce a state of hyporesponsiveness or immune suppression within the host; of particular interest are mechanisms that drive the induction of regulatory T‐cells (Tregs). Helminths actively induce Tregs either directly by secreting factors, such as the TGF‐β mimic Hp‐TGM, or indirectly by interacting with bystander cell types such as dendritic cells and macrophages that then induce Tregs. Expansion of Tregs not only enhances parasite survival but, in cases such as filarial infection, Tregs also play a role in preventing parasite‐associated pathologies. Furthermore, Tregs generated during helminth infection have been associated with suppression of bystander immunopathologies in a range of inflammatory conditions such as allergy and autoimmune disease. In this review, we discuss evidence from natural and experimental infections that point to the pathways and molecules involved in helminth Treg induction, and postulate how parasite‐derived molecules and/or Tregs might be applied as anti‐inflammatory therapies in the future.
Collapse
Affiliation(s)
- Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Caitlin M McManus
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
33
|
Silva JCS, Bernardes MVADS, Melo FL, Sá MPBO, Carvalho BM. Praziquantel versus praziquantel associated with immunomodulators in mice infected with schistosoma mansoni: A systematic review and meta-analysis. Acta Trop 2020; 204:105359. [PMID: 31987779 DOI: 10.1016/j.actatropica.2020.105359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Juliana Carla Serafim Silva
- Faculty of Medical Sciences - University of Pernambuco (FCM/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife, Pernambuco, Brazil, CEP: 50.100-130
| | | | - Fábio Lopes Melo
- Aggeu Magalhães Institute (IAM), Campus da UFPE - Av. Prof. Moraes Rego, s/n - Cidade Universitária, Recife, Pernambuco, Brazil, CEP 50.670-420
| | - Michel Pompeu Barros Oliveira Sá
- Faculty of Medical Sciences - University of Pernambuco (FCM/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife, Pernambuco, Brazil, CEP: 50.100-130
| | - Bruno Melo Carvalho
- Faculty of Medical Sciences - University of Pernambuco (FCM/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife, Pernambuco, Brazil, CEP: 50.100-130; Institute of Biological Sciences - University of Pernambuco (ICB/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife, Pernambuco, Brazil. CEP: 50.100-130.
| |
Collapse
|
34
|
Zheng B, Zhang J, Chen H, Nie H, Miller H, Gong Q, Liu C. T Lymphocyte-Mediated Liver Immunopathology of Schistosomiasis. Front Immunol 2020; 11:61. [PMID: 32132991 PMCID: PMC7040032 DOI: 10.3389/fimmu.2020.00061] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
The parasitic worms, Schistosoma mansoni and Schistosoma japonicum, reside in the mesenteric veins, where they release eggs that induce a dramatic granulomatous response in the liver and intestines. Subsequently, infection may further develop into significant fibrosis and portal hypertension. Over the past several years, uncovering the mechanism of immunopathology in schistosomiasis has become a major research objective. It is known that T lymphocytes, especially CD4+ T cells, are essential for immune responses against Schistosoma species. However, obtaining a clear understanding of how T lymphocytes regulate the pathological process is proving to be a daunting challenge. To date, CD4+ T cell subsets have been classified into several distinct T helper (Th) phenotypes including Th1, Th2, Th17, T follicular helper cells (Tfh), Th9, and regulatory T cells (Tregs). In the case of schistosomiasis, the granulomatous inflammation and the chronic liver pathology are critically regulated by the Th1/Th2 responses. Animal studies suggest that there is a moderate Th1 response to parasite antigens during the acute stage, but then, egg-derived antigens induce a sustained and dominant Th2 response that mediates granuloma formation and liver fibrosis. In addition, the newly discovered Th17 cells also play a critical role in the hepatic immunopathology of schistosomiasis. Within the liver, Tregs are recruited to hepatic granulomas and exert an immunosuppressive role to limit the granulomatous inflammation and fibrosis. Moreover, recent studies have shown that Tfh and Th9 cells might also promote liver granulomas and fibrogenesis in the murine schistosomiasis. Thus, during infection, T-cell subsets undergo complicated cross-talk with antigen presenting cells that then defines their various roles in the local microenvironment for regulating the pathological progression of schistosomiasis. This current review summarizes a vast body of literature to elucidate the contribution of T lymphocytes and their associated cytokines in the immunopathology of schistosomiasis.
Collapse
Affiliation(s)
- Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Jianqiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hui Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Hao Nie
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
35
|
Elkoshi Z. The Binary Classification Of Chronic Diseases. J Inflamm Res 2019; 12:319-333. [PMID: 31908517 PMCID: PMC6927256 DOI: 10.2147/jir.s227279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Acute diseases start with an insult and end when insult disappears. If the trauma induces an immune reaction (which happens in most cases), this reaction must be terminated with some type of resolution mechanism, when the cause of the trauma ceases. Chronicity develops if insult is permanent or if the resolution mechanism is defective. Another way to reach disease chronicity is a positive feedback loop, whereby the immune reaction activates an internal, insult-like reaction. A distinction between chronic states characterized by a persistent, low suppressive effect and those characterized by a persistent, high suppressive effect of regulatory T cells (Treg), is proposed. This two-class division represents two ways to reach chronicity: (a) by maintaining inflammatory reaction long after insult disappears ("low Treg"), or (b) by suppressing inflammatory reaction prior to the disappearance of insult ("high Treg"). This two-class division may explain the strong association between certain pathogens and cancer, on one hand, and between several other pathogens and autoimmunity, on the other hand. The weak association between autoimmune diseases and HIV infection and the relatively weak association between autoimmune diseases and cancer may be elucidated as well. In addition, the model rationalizes why immune-modulating drugs, which are effective in cancer, are also effective in "high Treg" viral infections, while corticosteroids, which are generally effective in autoimmune diseases, are also effective in other "low Treg" diseases (such as asthma, atopic dermatitis, and "low Treg" infections) but are not effective in solid malignancies and "high Treg" infections. Moreover, the model expounds why certain bacteria inhibit tumor growth and why these very bacteria induce autoimmune diseases.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Taro Pharmaceutical Industries, Haifa Bay, Israel
| |
Collapse
|
36
|
Andrade MMC, Ariga SSK, Barbeiro DF, Barbeiro HV, Pimentel RN, Petroni RC, Soriano FG. Endotoxin tolerance modulates TREG and TH17 lymphocytes protecting septic mice. Oncotarget 2019; 10:3451-3461. [PMID: 31191818 PMCID: PMC6544402 DOI: 10.18632/oncotarget.26919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 03/23/2019] [Indexed: 01/26/2023] Open
Abstract
Background: Tolerance induces a regulated immune response to infection. We hypothesized that tolerance induction modulated profile of T regulatory cell (Treg) and T lymphocyte 17 (Th17) cells and is related cytokine released in septic animals. Methods: Male black C57/6 mice received subcutaneous (s.c.) injections of lipopolysaccharide (LPS) (1 mg/kg) for 5 days, on day 8th was made cecal ligation and puncture (CLP). Blood and spleen tissue were collected for cell analysis and cytokines measurements. Results: Cytokines (interleukin 2 (IL-2), interleukin (IL-6), transforming growth factor β (TGF-β) and interferon γ (INF-γ)) related to Treg and Th17 stimulation were elevated in the spleen of tolerant animals compared to sham. Treg and Th17 lymphocytes showed an increased amount in blood (Treg: 920 ± 84 cells vs. 1946 ± 65 cells, sham vs. tolerant; Th17:38321± 1954 cells vs. 43526 ± 7623 cells, sham vs. tolerant) and spleen (Treg: 5947 ± 273 cells vs. 16521 ± 486 cells, sham vs. tolerant; Th17: 26543 ± 2944 cells vs. 64567 ± 5523 cells, sham vs. tolerant). Treg (135±23 cells) and Th17 (1590 ± 256 cells) cells were reduced in blood of septic animals compared to sham, while CLP tolerant animals presented an increasing number of these cells. Lymphocyte Th17IL6+ were elevated in tolerant and CLP tolerant animals in the blood compared to sham. Conclusion: LPS tolerance was associated with increasing population of Treg and Th17. LPS tolerance reduces the hyper inflammatory response with immunoregulation exerted by Treg and Th17 cells protecting from septic damage.
Collapse
Affiliation(s)
- Mariana M C Andrade
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Suely S K Ariga
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Denise F Barbeiro
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Hermes V Barbeiro
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Rosangela N Pimentel
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ricardo C Petroni
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Francisco G Soriano
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| |
Collapse
|
37
|
de Melo TT, Mendes MM, Alves CC, Carvalho GB, Fernandes VC, Pimenta DLF, de Moraes Mourão M, Gai F, Kalli M, Coelho A, de Azambuja Ribeiro RIM, Falcone FH, Pereira RADS, Fonseca CT. The Schistosoma mansoni cyclophilin A epitope 107-121 induces a protective immune response against schistosomiasis. Mol Immunol 2019; 111:172-181. [PMID: 31063938 DOI: 10.1016/j.molimm.2019.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Great efforts have been made to identify promising antigens and vaccine formulations against schistosomiasis. Among the previously described Schistosoma vaccine candidates, cyclophilins comprise an interesting antigen that could be used for vaccine formulations. Cyclophilin A is the target for the cyclosporine A, a drug with schistosomicide activity, and its orthologue from Schistosoma japonicum induces a protective immune response in mice. Although Schistosoma mansoni cyclophilin A also represents a promising target for anti-schistosome vaccines, its potential to induce protection has not been evaluated. In this study, we characterized the cyclophilin A (SmCyp), initially described as Smp17.7, analyzed its allergenic potential using in vitro functional assays, and evaluated its ability to induce protection in mice when administered as an antigen using different vaccine formulations and strategies. Results indicated that SmCyp could be successfully expressed by mammalian cells and bacteria. The recombinant protein did not promote IgE-reporter system activation in vitro, demonstrating its probable safety for use in vaccine formulations. T and B-cell epitopes were predicted in the SmCyp sequence, with two of them located within the active isomerase site. The most immunogenic antigen, SmCyp (107-121), was then used for immunization protocols. Immunization with the SmCyp gene or protein failed to reduce parasite burden but induced an immune response that modulated the granuloma area. In contrast, immunization with the synthetic peptide SmCyp (107-121) significantly reduced worm burden (48-50%) in comparison to control group, but did not regulate liver pathology. Moreover, the protection observed in mice immunized with the synthetic peptide was associated with the significant production of antibodies against the SmCyp (107-121) epitope. Therefore, in this study, we identified an epitope within the SmCyp sequence that induces a protective immune response against the parasite, thus representing a promising antigen that could be used for vaccine formulation against schistosomiasis.
Collapse
Affiliation(s)
- Tatiane Teixeira de Melo
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fiocruz-MG, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Moreira Mendes
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fiocruz-MG, Belo Horizonte, Minas Gerais, Brazil
| | - Clarice Carvalho Alves
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fiocruz-MG, Belo Horizonte, Minas Gerais, Brazil
| | - Gardênia Braz Carvalho
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fiocruz-MG, Belo Horizonte, Minas Gerais, Brazil
| | - Viviane Cristina Fernandes
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fiocruz-MG, Belo Horizonte, Minas Gerais, Brazil
| | - Deborah Laranjeira Ferreira Pimenta
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fiocruz-MG, Belo Horizonte, Minas Gerais, Brazil
| | - Marina de Moraes Mourão
- Laboratório de Helmintologia e Malacologia Médica, Instituto René Rachou, Fiocruz-MG, Belo Horizonte, Minas Gerais, Brazil
| | - Fatou Gai
- The School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Marina Kalli
- The School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Aline Coelho
- Laboratório de Patologia Experimental, Universidade Federal De São João Del Rei- Campus Divinópolis, Minas Gerais, Brazil
| | | | - Franco H Falcone
- The School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Rosiane Aparecida da Silva Pereira
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fiocruz-MG, Belo Horizonte, Minas Gerais, Brazil
| | - Cristina Toscano Fonseca
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fiocruz-MG, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
38
|
Hays A, Duan X, Zhu J, Zhou W, Upadhyayula S, Shivde J, Song L, Wang H, Su L, Zhou X, Liang S. Down-regulated Treg cells in exacerbated periodontal disease during pregnancy. Int Immunopharmacol 2019; 69:299-306. [PMID: 30753969 PMCID: PMC6411422 DOI: 10.1016/j.intimp.2019.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Pregnancy is a special period marked with complicated changes in various immune responses. Although pregnant women are prone to developing gingival inflammation, its immunological mechanism remains to be clarified. In a modified ligature-induced periodontal disease murine model, pregnant mice developed more severe alveolar bone loss. Using this model, we investigated the Treg responses during exacerbated periodontal disease in pregnant mice. We tested Treg-associated molecules in gingival tissues by quantitative real-time PCR and found decreased gingival expression of Foxp3, TGFβ, CTLA-4, and CD28 in pregnant mice after periodontal disease induction. We further confirmed that lower number of Treg cells were present in the cervical lymph nodes of pregnant periodontitis mice. Treg cells from the cervical lymph nodes of ligated pregnant mice and non-pregnant mice were tested for their suppressive function in vitro. We manifested that Treg suppressive function was also down-regulated in the pregnant mice. Additionally, we demonstrated that more inflammatory Th17 cells were present in the cervical lymph nodes of ligated pregnant mice. Therefore, impaired Treg development and function, together with upregulated Th17 response, may contribute to the exacerbated periodontal disease during pregnancy.
Collapse
Affiliation(s)
- Aislinn Hays
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Xingyu Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Jianxin Zhu
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Wei Zhou
- Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Satya Upadhyayula
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Juili Shivde
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Li Song
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuyu Zhou
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA.
| |
Collapse
|
39
|
Butrous G. Schistosome infection and its effect on pulmonary circulation. Glob Cardiol Sci Pract 2019; 2019:5. [PMID: 31024947 PMCID: PMC6472693 DOI: 10.21542/gcsp.2019.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis is the most common parasitic disease associated with pulmonary hypertension. It induces remodelling via complex inflammatory processes, which eventually produce the clinical manifestation of pulmonary hypertension. The pulmonary hypertension shows clinical signs and symptoms that are not distinguishable from other forms of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Ghazwan Butrous
- Professor of Cardiopulmonary Sciences, Medway School of Pharmacy, University of Kent, UK and University of Greenwich, Central Ave, Gillingham, Chatham ME4 4BF, Kent, UK
| |
Collapse
|
40
|
Castro VN, Rodrigues JL, Cardoso DT, Resende SD, Magalhães FC, Souza DC, Requeijo MH, Negrão-Corrêa D, Geiger SM. Systemic Cytokine and Chemokine Profiles in Individuals With Schistosoma mansoni Infection and Low Parasite Burden. Front Immunol 2018; 9:2975. [PMID: 30619332 PMCID: PMC6305627 DOI: 10.3389/fimmu.2018.02975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
Intestinal schistosomiasis, caused by the parasitic trematode Schistosoma mansoni, is a chronic disease and the prolonged and continuous exposure to S. mansoni antigens results in a deviation of the host's immune response. For diagnosis, the Kato-Katz (KK) method is recommended, however, this method showed low accuracy in areas of low endemicity. This study aimed to characterize the cytokine and chemokine profile of individuals with an extremely low parasite load (<4 eggs per gram of feces), e.g., individuals who were detected by alternative parasitological methods, such as the saline gradient and/or Helmintex®. In order to search for immunological markers for infection, the immunological profile in serum samples of these individuals was then compared with patients detected with the KK method and with a higher parasite load and with individuals repetitively negative by extensive stool exams. The study was conducted in Northern Minas Gerais in a rural area of the Municipality of Januária. Serum samples of a total of 139 parasitologically well-characterized individuals were assessed for the following immunological markers by commercially available immunoassays: TNF-α, IL-1β, IL-6, IL-17A, IL-5, IL-10, IL-13, IL-33, IL-27, CCL3, CCL5, CXCL10, CCL11, and CCL17. As a result, there were no significant differences in concentrations or frequencies for immunological markers between egg-negative individuals or individuals with ultra-low (<4 epg) or low (4-99 epg) parasite loads. However, we found significant correlations between egg counts and eosinophil counts and between egg counts and IL-1β or TNF-α concentrations. The most striking alterations were found in individuals with the highest parasite load (≥100 epg). They had significantly higher TNF-α concentrations in serum when compared with individuals with a low parasite load (4-99 epg) and CCL17 concentrations were significantly elevated when compared with egg-negative individuals. Radar diagrams of frequencies for cytokine and chemokine responders in each infection group confirmed a distinct profile only in the infection group with highest parasite loads (≥100 epg).
Collapse
Affiliation(s)
- Vanessa N. Castro
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jailza L. Rodrigues
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Diogo T. Cardoso
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Samira D. Resende
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fernanda C. Magalhães
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Dayane C. Souza
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Maira H. Requeijo
- Faculdade da Saúde e Ecologia Humana (FASEH) Vespasiano, Belo Horizonte, Brazil
| | - Deborah Negrão-Corrêa
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Stefan M. Geiger
- Department of Parasitology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
41
|
Araujo Furlan CL, Tosello Boari J, Rodriguez C, Canale FP, Fiocca Vernengo F, Boccardo S, Beccaria CG, Adoue V, Joffre O, Gruppi A, Montes CL, Acosta Rodriguez EV. Limited Foxp3 + Regulatory T Cells Response During Acute Trypanosoma cruzi Infection Is Required to Allow the Emergence of Robust Parasite-Specific CD8 + T Cell Immunity. Front Immunol 2018; 9:2555. [PMID: 30455700 PMCID: PMC6230662 DOI: 10.3389/fimmu.2018.02555] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022] Open
Abstract
While it is now acknowledged that CD4+ T cells expressing CD25 and Foxp3 (Treg cells) regulate immune responses and, consequently, influence the pathogenesis of infectious diseases, the regulatory response mediated by Treg cells upon infection by Trypanosoma cruzi was still poorly characterized. In order to understand the role of Treg cells during infection by this protozoan parasite, we determined in time and space the magnitude of the regulatory response and the phenotypic, functional and transcriptional features of the Treg cell population in infected mice. Contrary to the accumulation of Treg cells reported in most chronic infections in mice and humans, experimental T. cruzi infection was characterized by sustained numbers but decreased relative frequency of Treg cells. The reduction in Treg cell frequency resulted from a massive accumulation of effector immune cells, and inversely correlated with the magnitude of the effector immune response as well as with emergence of acute immunopathology. In order to understand the causes underlying the marked reduction in Treg cell frequency, we evaluated the dynamics of the Treg cell population and found a low proliferation rate and limited accrual of peripheral Treg cells during infection. We also observed that Treg cells became activated and acquired a phenotypic and transcriptional profile consistent with suppression of type 1 inflammatory responses. To assess the biological relevance of the relative reduction in Treg cells frequency observed during T. cruzi infection, we transferred in vitro differentiated Treg cells at early moments, when the deregulation of the ratio between regulatory and conventional T cells becomes significant. Intravenous injection of Treg cells dampened parasite-specific CD8+ T cell immunity and affected parasite control in blood and tissues. Altogether, our results show that limited Treg cell response during the acute phase of T. cruzi infection enables the emergence of protective anti-parasite CD8+ T cell immunity and critically influences host resistance.
Collapse
Affiliation(s)
- Cintia L Araujo Furlan
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Jimena Tosello Boari
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Constanza Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Fernando P Canale
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Santiago Boccardo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cristian G Beccaria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Véronique Adoue
- Institut National de la Santé et de la Recherche Médicale, Toulouse, France.,Centre National de la Recherche Scientifique, Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Olivier Joffre
- Institut National de la Santé et de la Recherche Médicale, Toulouse, France.,Centre National de la Recherche Scientifique, Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Carolina L Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Eva V Acosta Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| |
Collapse
|
42
|
Macháček T, Turjanicová L, Bulantová J, Hrdý J, Horák P, Mikeš L. Cercarial dermatitis: a systematic follow-up study of human cases with implications for diagnostics. Parasitol Res 2018; 117:3881-3895. [PMID: 30302587 DOI: 10.1007/s00436-018-6095-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
Cercarial dermatitis (CD) is an allergic skin disease that rises in consequence of infection by invasive stages (cercariae) of trematodes of the family Schistosomatidae. CD has been considered a re-emerging disease, human cases have been reported from all continents, and tourism-threatening outbreaks occur even in frequented recreational areas. Although the symptoms of CD are generally known, the data on immune response in human patients are sporadic and incomprehensive. In the present study, we attempted to correlate the symptoms, personal history, and time course of CD in human patients with differential cell counts, dynamics of selected cytokines, and dynamics and quality of antibody response. By a systematic follow-up, we obtained a uniquely complex dataset from ten persons accidentally and concurrently infected by the same parasite species in the same locality. The onset of CD was significantly faster, and the symptoms were heavier in participants with a history of CD if compared to naive ones, who, however, also developed some of the symptoms. The repeatedly infected persons had elevated proportion of eosinophils 1 week post exposure (p.e.) and a stronger specific IgG but not IgM response, whereas specific IgE response was not observed. Increased serum levels of IL-4 occurred 1 and 3 week(s) p.e. in all participants. There was high variability in individual immunoblot patterns of IgG response, and no antigen with a universal diagnostic potential was confirmed. The presented analyses suggested that a complex approach can improve the accuracy of the diagnosis of CD, but component data should be interpreted carefully.
Collapse
Affiliation(s)
- Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Libuše Turjanicová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 12800, Prague 2, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| |
Collapse
|
43
|
Vicentino ARR, Carneiro VC, Allonso D, Guilherme RDF, Benjamim CF, Dos Santos HAM, Xavier F, Pyrrho ADS, Gomes JDAS, Fonseca MDC, de Oliveira RC, Pereira TA, Ladislau L, Lambertucci JR, Fantappié MR. Emerging Role of HMGB1 in the Pathogenesis of Schistosomiasis Liver Fibrosis. Front Immunol 2018; 9:1979. [PMID: 30258438 PMCID: PMC6143665 DOI: 10.3389/fimmu.2018.01979] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
In chronic schistosomiasis, liver fibrosis is linked to portal hypertension, which is a condition associated with high mortality and morbidity. High mobility group box 1 (HMGB1) was originally described as a nuclear protein that functions as a structural co-factor in transcriptional regulation. However, HMGB1 can also be secreted into the extracellular milieu under appropriate signal stimulation. Extracellular HMGB1 acts as a multifunctional cytokine that contributes to infection, injury, inflammation, and immune responses by binding to specific cell-surface receptors. HMGB1 is involved in fibrotic diseases. From a clinical perspective, HMGB1 inhibition may represent a promising therapeutic approach for treating tissue fibrosis. In this study, we demonstrate elevated levels of HMGB1 in the sera in experimental mice or in patients with schistosomiasis. Using immunohistochemistry, we demonstrated that HMGB1 trafficking in the hepatocytes of mice suffering from acute schistosomiasis was inhibited by Glycyrrhizin, a well-known HMGB1 direct inhibitor, as well as by DIC, a novel and potential anti-HMGB1 compound. HMGB1 inhibition led to significant downregulation of IL-6, IL4, IL-5, IL-13, IL-17A, which are involved in the exacerbation of the immune response and liver fibrogenesis. Importantly, infected mice that were treated with DIC or GZR to inhibit HMGB1 pro-inflammatory activity showed a significant increase in survival and a reduction of over 50% in the area of liver fibrosis. Taken together, our findings indicate that HMGB1 is a key mediator of schistosomotic granuloma formation and liver fibrosis and may represent an outstanding target for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Amanda R R Vicentino
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor C Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael de Freitas Guilherme
- Departamento de Farmacologia Básica e Clínica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia F Benjamim
- Departamento de Farmacologia Básica e Clínica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hílton A M Dos Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabíola Xavier
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Dos Santos Pyrrho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana de Assis Silva Gomes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Thiago A Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Leandro Ladislau
- Departamento de Farmacologia Básica e Clínica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Lambertucci
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo R Fantappié
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Costa PAC, Figueiredo MM, Diniz SQ, Peixoto APMM, Maloy KJ, Teixeira-Carvalho A, Tada MS, Pereira DB, Gazzinelli RT, Antonelli LRV. Plasmodium vivax Infection Impairs Regulatory T-Cell Suppressive Function During Acute Malaria. J Infect Dis 2018; 218:1314-1323. [PMID: 29800313 PMCID: PMC6129110 DOI: 10.1093/infdis/jiy296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
The balance between pro- and antiinflammatory mechanisms is essential to limit immune-mediated pathology, and CD4+ forkhead box P3 (Foxp3+) regulatory T cells (Treg) play an important role in this process. The expression of inhibitory receptors regulates cytokine production by Plasmodium vivax-specific T cells. Our goal was to assess the induction of programmed death-1 (PD-1) and cytotoxic T-lymphocyte antigen (CTLA-4) on Treg during malaria and to evaluate their function. We found that P. vivax infection triggered an increase in circulating Treg and their expression of CTLA-4 and PD-1. Functional analysis demonstrated that Treg from malaria patients had impaired suppressive ability and PD-1+Treg displayed lower levels of Foxp3 and Helios, but had higher frequencies of T-box transcription factor+ and interferon-gamma+ cells than PD-1-Treg. Thus malaria infection alters the function of circulating Treg by triggering increased expression of PD-1 on Treg that is associated with decreased regulatory function and increased proinflammatory characteristics.
Collapse
Affiliation(s)
- Pedro A C Costa
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Belo Horizonte, Minas Gerais, Brazil
| | - Maria M Figueiredo
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Imunopatologia, Belo Horizonte, Minas Gerais, Brazil
| | - Suelen Q Diniz
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana P M M Peixoto
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Belo Horizonte, Minas Gerais, Brazil
| | - Kevin J Maloy
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro S Tada
- Centro de Pesquisas em Medicina Tropical de Rondônia, Porto Velho, Brazil
| | - Dhelio B Pereira
- Centro de Pesquisas em Medicina Tropical de Rondônia, Porto Velho, Brazil
| | - Ricardo T Gazzinelli
- Laboratório de Imunopatologia, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lis R V Antonelli
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
45
|
Immuno-therapeutic potential of Schistosoma mansoni and Trichinella spiralis antigens in a murine model of colon cancer. Invest New Drugs 2018; 37:47-56. [PMID: 29808307 DOI: 10.1007/s10637-018-0609-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
Considerable evidence indicates a negative correlation between the prevalence of some parasitic infections and cancer and their interference with tumor growth. Therefore, parasitic antigens seem to be promising candidates for cancer immunotherapy. In this study, the therapeutic efficacy of autoclaved Schistosoma mansoni and Trichinella spiralis antigens against a colon cancer murine model was investigated. Both antigens showed immunomodulatory potential, as evidenced by a significant decrease in serum IL-17, a significant increase in serum IL-10, and the percentage of splenic CD4+T-cells and intestinal FoxP3+ Treg cells. However, treatment with S. mansoni antigen yielded protection against the deleterious effect of DMH-induced colon carcinogenesis only, with a significant decrease in the average lesion size and number of neoplasias per mouse. For the first time, we report an inhibitory effect of S. mansoni antigen on the progression of chemically induced colon carcinogenesis, but the exact mechanism has yet to be clarified. This anti-tumor strategy could introduce a new era of medicine in which a generation of anticancer vaccines of parasitic origin would boost the therapy for incurable cancers.
Collapse
|
46
|
Rodrigues Oliveira JL, Teixeira MM, Lambertucci JR, Antunes CMF, Carneiro M, Negrão-Corrêa D. Plasma levels of innate immune mediators are associated with liver fibrosis in low parasite burden Schistosoma mansoni-infected individuals. Scand J Immunol 2018; 87. [PMID: 29363152 DOI: 10.1111/sji.12642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/15/2018] [Indexed: 12/01/2022]
Abstract
In the murine model, it was demonstrated that pro-inflammatory cytokines and chemokines are essential to the formation and modulation of Schistosoma-induced granulomatous inflammation. However, the relationship of these immune mediators and disease severity is hard to be established in naturally infected individuals. The current study evaluates the association between plasma concentrations of MIF, sTNF-R1, CCL3, CCL7 and CCL24 and schistosomiasis morbidity in Schistosoma mansoni-infected patients with a low parasite burden. For this propose, 97 S. mansoni-infected individuals were subjected to abdominal ultrasound analysis and clinical examination. Among them, 88 had plasma concentration of immune mediators estimated by ELISA assay. Multivariate linear regression models were used to evaluate the relationship between the plasma concentration of immune mediators and the variables investigated. Although most individuals presented low parasite burden, over 30% of them showed signs of fibrosis defined by ultrasound measurements and 2 patients had a severe form of schistosomiasis. No association between parasite burden and the plasma levels of chemokine/cytokines or disease severity was observed. There was a positive association between plasma concentration of CCL4, sTNF-R1, CCL3 and MIF with gall bladder thickness and/or with portal vein thickness that are liver fibrosis markers. In contrast, no association was found between CCL7 plasma concentrations with any of the schistosomiasis morbidity parameters evaluated. The data showed that CCL24, sTNFR1, MIF and CCL3 can be detected in plasma of S. mansoni-infected individuals and their concentration would be used as prognostic makers of Schistosoma-induced liver fibrosis, even in individuals with low parasite burden.
Collapse
Affiliation(s)
- J L Rodrigues Oliveira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - M M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - J R Lambertucci
- Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - C M F Antunes
- Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - M Carneiro
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - D Negrão-Corrêa
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
47
|
Sharma A, Sharma P, Ganga L, Satoeya N, Mishra S, Vishwakarma AL, Srivastava M. Infective Larvae of Brugia malayi Induce Polarization of Host Macrophages that Helps in Immune Evasion. Front Immunol 2018; 9:194. [PMID: 29483912 PMCID: PMC5816041 DOI: 10.3389/fimmu.2018.00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
Filarial parasites suppress, divert, or polarize the host immune response to aid their survival. However, mechanisms that govern the polarization of host MΦs during early filarial infection are not completely understood. In this study, we infected BALB/c mice with infective larvae stage-3 of Brugia malayi (Bm-L3) and studied their effect on the polarization of splenic MΦs. Results showed that MΦs displayed M2-phenotype by day 3 p.i. characterized by upregulated IL-4, but reduced IL-12 and Prostaglandin-D2 secretion. Increased arginase activity, higher arginase-1 but reduced NOS2 expression and poor phagocytic and antigen processing capacity was also observed. M2 MΦs supported T-cell proliferation and characteristically upregulated p-ERK but downregulated NF-κB-p65 and NF-κB-p50/105. Notably, Bm-L3 synergized with host regulatory T-cells (Tregs) and polarized M2 MΦs to regulatory MΦs (Mregs) by day 7 p.i., which secreted copious amounts of IL-10 and prostaglandin-E2. Mregs also showed upregulated expression levels of MHC-II, CD80, and CD86 and exhibited increased antigen-processing capacity but displayed impaired activation of NF-κB-p65 and NF-κB-p50/105. Neutralization of Tregs by anti-GITR + anti-CD25 antibodies checked the polarization of M2 MΦs to Mregs, decreased accumulation of regulatory B cells and inflammatory monocytes, and reduced secretion of IL-10, but enhanced IL-4 production and percentages of eosinophils, which led to Bm-L3 killing. In summary, we report hitherto undocumented effects of early Bm-L3 infection on the polarization of splenic MΦs and show how infective larvae deftly utilize the functional plasticity of host MΦs to establish themselves inside the host.
Collapse
Affiliation(s)
- Aditi Sharma
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Pankaj Sharma
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Laxmi Ganga
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Neha Satoeya
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shikha Mishra
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Achchhe Lal Vishwakarma
- Sophisticated Analytical Instrument Facility (SAIF), CSIR-Central Drug Research Institute, Lucknow, India
| | - Mrigank Srivastava
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
48
|
Mutengo MM, Mduluza T, Kelly P, Mwansa JCL, Kwenda G, Musonda P, Chipeta J. Low IL-6, IL-10, and TNF- α and High IL-13 Cytokine Levels Are Associated with Severe Hepatic Fibrosis in Schistosoma mansoni Chronically Exposed Individuals. J Parasitol Res 2018; 2018:9754060. [PMID: 29610679 PMCID: PMC5828471 DOI: 10.1155/2018/9754060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/21/2017] [Indexed: 01/29/2023] Open
Abstract
Several studies have attributed the etiopathogenesis of chronic Schistosoma mansoni related hepatic fibrosis to unregulated immune responses against trapped parasite ova in the host. However, there is limited data on immune profiles associated with varying degrees of the disease in a population under chronic exposure to the parasite. We therefore investigated the role of selected T-helper (Th)1, Th2, and Th17 cytokines in relation to hepatic fibrosis severity among individuals resident in a hyper-Schistosoma mansoni endemic region of Western Zambia. Two hundred and forty-four S. mansoni infected individuals with and without fibrosis were analysed for cytokine profiles. Based on hepatic fibrosis stage as determined by ultrasound, participants were categorized into Group 0, Group I, Group II, and Group III. Cytokines were measured in S. mansoni egg stimulated whole blood culture supernatants using the BD Cytometric Bead Array kits. Compared to the nonfibrotic group, participants in the severe hepatic fibrotic group produced less interleukin- (IL-) 6, IL-10, and tumour necrosis factor-alpha (TNF-α). On the other hand, IL-13 was significantly elevated in this group compared to the nonfibrotic group (p < 0.001). Our results suggest that low IL-6, IL-10, and TNF-α and high IL-13 levels may influence S. mansoni disease progression.
Collapse
Affiliation(s)
- Mable M. Mutengo
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
- University of Zambia, Lusaka, Zambia
| | - Takafira Mduluza
- Department of Biochemistry, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Paul Kelly
- Department of Internal Medicine, School of Medicine, University of Zambia, Lusaka, Zambia
| | - James C. L. Mwansa
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
- University of Zambia, Lusaka, Zambia
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Patrick Musonda
- Department of Epidemiology and Biostatistics, School of Public Health, University of Zambia, Lusaka, Zambia
| | - James Chipeta
- Department of Pediatrics and Child Health, School of Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
49
|
Elmasry A, Aladeeb NM, Elkaref A, Aboulfotouh N. Simvastatin exerts antifibrotic effect and potentiates the antischistosomal effects of praziquantel in a murine model: Role of IL10. Biomed Pharmacother 2017; 96:215-221. [DOI: 10.1016/j.biopha.2017.09.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 01/14/2023] Open
|
50
|
Adedoja A, Hoan NX, van Tong H, Adukpo S, Tijani DB, Akanbi AA, Meyer CG, Ojurongbe O, Velavan TP. Differential contribution of interleukin-10 promoter variants in malaria and schistosomiasis mono- and co-infections among Nigerian children. Trop Med Int Health 2017; 23:45-52. [PMID: 29131459 DOI: 10.1111/tmi.13007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Interleukin-10 (IL-10) is an anti-inflammatory cytokine produced by Th1 cells and macrophages. The rationale of this study was to examine and validate possible contributions of IL-10 promoter polymorphisms in sub-Saharan Africa in children infected with either Plasmodium falciparum or Schistosoma haematobium and in children co-infected with both parasites. MATERIALS AND METHODS A total of 309 Nigerian children aged 4-15 years were recruited. The study group consisted of individuals infected either with P. falciparum (n = 76) or S. haematobium (n = 94) in mono-infections, a group of children co-infected with both P. falciparum and S. haematobium (n = 62) and matched healthy controls (n = 77). The IL-10 promoter polymorphisms -1082G/A, -819C/T and -592C/A were genotyped by direct sequencing. RESULTS The frequencies of the IL-10 -1082GG genotype, the -1082G allele and haplotype GCC (positions -1082, -819 and -592) were higher in children infected with P. falciparum than in healthy controls, indicating that the -1082GG genotype and the -1082G allele and the GCC haplotype are associated with increased susceptibility to malaria infection (OR = 3.4, 95% CI = 1.2-10.8, P = 0.02; OR = 2.5, 95% CI = 1.1-3.4, P = 0.02; OR = 3.8, 95% CI = 2.0-7.2, P = 0.0001, respectively). Children with the -1082GG genotype had a higher parasitaemia than children with the -1082AA or -1082AG genotypes (P = 0.0017). Haplotype GCC occurred more frequently in children infected with S. haematobium, while haplotype GTA was less frequent than in controls (OR = 2.2, 95% CI = 1.2-4.4, P = 0.017 and OR = 0.1, 95% CI = 0.02-0.5, P = 0.0004, respectively). No differences in the frequencies of IL-10 promoter polymorphisms were observed between children with P. falciparum-S. haematobium co-infections and healthy controls. CONCLUSION Although IL-10 promoter polymorphisms are not associated with P. falciparum and S. haematobium co-infection, variant -1082G/A and haplotype GCC are associated with malaria, whereas the IL-10 haplotypes GCC and GTA are associated with schistosomiasis.
Collapse
Affiliation(s)
- Ayodele Adedoja
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria.,Department of Medical Microbiology and Parasitology, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Selorme Adukpo
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Deborah B Tijani
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria.,Department of Medical Microbiology and Parasitology, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Ajibola A Akanbi
- Department of Medical Microbiology and Parasitology, University of Ilorin, Ilorin, Nigeria
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Duy Tan University, Da Nang, Vietnam.,Vietnamese-German Centre for Excellence in Medical Research, Hanoi, Vietnam
| | - Olusola Ojurongbe
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Duy Tan University, Da Nang, Vietnam.,Vietnamese-German Centre for Excellence in Medical Research, Hanoi, Vietnam
| |
Collapse
|