1
|
Zhao D, Liu M, Zeng W, Chen S, Bibi S, Wang M, Huang X, Zhu F, Zheng P, Gao Y, Wu Q, Zhang H, Cheng Q, Sun C, Bai L, Zhu Z, Li B, Wu S, Shang Y, Hasi C, Ma H, Zhou S, Jin T. A bispecific antibody targeting the Ig domains of Siglec-E displays enhanced antitumor effects. Int J Biol Macromol 2024; 281:136635. [PMID: 39419134 DOI: 10.1016/j.ijbiomac.2024.136635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Siglec-9 is a promising immune checkpoint molecule, and therapeutics targeting Siglec-9 have the potential to augment anti-tumor immunity. Here, we generated a bispecific antibody, named as aSE4-1-Fc, by fusing two distinct alpaca derived nanobodies, which can simultaneously target the extracellular Ig variable (V)-set domain and C2-set domains of murine Siglec-9 (also known as Siglec-E) with high affinity. In vivo studies showed that aSE4-1-Fc was better than its component antibodies in inhibiting tumor growth/metastasis, and Siglec-E blockade using aSE4-1-Fc generated protective anti-tumor T cell memory. Furthermore, the combination of aSE4-1-Fc with anti-PD-L1 therapy greatly improved the antitumor effects by augmenting both T and NK cells. Taken together, this study emphasizes the importance of Siglec-9 as a potential cancer therapeutic target, demonstrates the synergistic effect of co-inhibition of Siglec-9 and PD-L1, and may have implications for developing engineered antibodies targeting Siglec-9 with enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Muziying Liu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weihong Zeng
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shi Chen
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shaheen Bibi
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Meihua Wang
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoxue Huang
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fang Zhu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Peiyi Zheng
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yongxiang Gao
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiqin Wu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hongliang Zhang
- College of Medicine, Lishui University, Lishui, 323000, China
| | - Qingyu Cheng
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| | - Cheng Sun
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Li Bai
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhongliang Zhu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Anhui Genebiol Biotech. LTD., Hefei, 230000, China
| | - Bofeng Li
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Anhui Genebiol Biotech. LTD., Hefei, 230000, China
| | - Songquan Wu
- College of Medicine, Lishui University, Lishui, 323000, China
| | - Yuhua Shang
- Anhui Genebiol Biotech. LTD., Hefei, 230000, China
| | - Chaolu Hasi
- Sonid Suoqi Animal Husbandry Workstation, Xilinhot City, Inner Mongolia Xilin Gol League, China
| | - Huan Ma
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shoubing Zhou
- Department of Breast Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Anhui, 230031, China; Department of Breast Oncology, Anhui Provincial Cancer Hospital. Hefei, Anhui, 230031, China.
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui 230001, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; College of Medicine, Lishui University, Lishui, 323000, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Anhui Genebiol Biotech. LTD., Hefei, 230000, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
2
|
van Houtum EJ, Valk AH, Granado D, Lok J, van den Bogaard L, Remkes N, van Eck van der Sluijs J, Span PN, Cornelissen LA, Adema GJ. Siglec-7 and Siglec-9 expression in primary triple negative and oestrogen receptor positive breast cancer and in vitro signalling. Clin Transl Immunology 2024; 13:e1524. [PMID: 39246414 PMCID: PMC11378723 DOI: 10.1002/cti2.1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Objectives PD-1/PD-L1 immune checkpoint blockade can be an effective treatment for advanced breast cancer patients. However, patients with oestrogen receptor positive (ER+) tumors often display only low lymphocyte infiltration, while a large part of triple negative (TN) breast tumors does not generate an effective immunotherapy response. Therefore, new treatment strategies have to be developed. Here, we investigate Siglec-7 and Siglec-9 as novel ITIM-bearing inhibitory immune checkpoint receptors similar to PD-1, but expressed on a broader range of immune cells. Methods We assessed Siglec-7 and Siglec-9 (ligand) expression in TN and ER+ breast cancer tumors and their breast cancer cell line-induced signalling. Results We report that Siglec-7 and Siglec-9 are highly expressed in TN tumors, and to a low extent in ER+ tumors. Siglec-7 was observed on myeloid cells, T cells, and NK cells and Siglec-9 preferentially on myeloid cells. Expression of sialoglycans, including Siglec-7 and Siglec-9 ligands, was observed in both TN and ER+ breast cancer tissue sections. Expression levels of Siglec-7 and Siglec-9 ligands were higher on in vitro cultured TN cell lines than ER+ cell lines. Importantly, by applying chimeric Siglec-7 reporter cells, we showed the induction of Siglec-7 signalling by multiple TN cell lines, but only by one ER+ cell line. Moreover, Siglec-7 signalling is directly related to Siglec-7 ligand expression levels of breast cancer cell lines. Conclusion These data imply that immunotherapy targeting Siglec receptors may be particularly interesting for TN breast cancer patients not responding to current treatment strategies with tumors displaying high immune cell infiltration.
Collapse
Affiliation(s)
- Eline Jh van Houtum
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Anne Hc Valk
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Daniel Granado
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Jasper Lok
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Lune van den Bogaard
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Naomi Remkes
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Jesper van Eck van der Sluijs
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Lenneke Am Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
3
|
Cardenas AJ, Thomas KS, Broden MW, Ferraro NJ, Pires MM, John CM, Jarvis GA, Criss AK. Neisseria gonorrhoeae scavenges host sialic acid for Siglec-mediated, complement-independent suppression of neutrophil activation. mBio 2024; 15:e0011924. [PMID: 38587424 PMCID: PMC11078009 DOI: 10.1128/mbio.00119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophilic influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid, which is scavenged from the host using LOS sialyltransferase (Lst) since Gc cannot make its sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress the oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea. IMPORTANCE Neisseria gonorrhoeae, the bacterium that causes gonorrhea, is an urgent global health concern due to increasing infection rates, widespread antibiotic resistance, and its ability to thwart protective immune responses. The mechanisms by which Gc subverts protective immune responses remain poorly characterized. One way N. gonorrhoeae evades human immunity is by adding sialic acid that is scavenged from the host onto its lipooligosaccharide, using the sialyltransferase Lst. Here, we found that sialylation enhances N. gonorrhoeae survival from neutrophil assault and inhibits neutrophil activation, independently of the complement system. Our results implicate bacterial binding of sialic acid-binding lectins (Siglecs) on the neutrophil surface, which dampens neutrophil antimicrobial responses. This work identifies a new role for sialylation in protecting N. gonorrhoeae from cellular innate immunity, which can be targeted to enhance the human immune response in gonorrhea.
Collapse
Affiliation(s)
- Amaris J. Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Keena S. Thomas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mary W. Broden
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Noel J. Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Constance M. John
- VA Medical Center and University of California, San Francisco, San Francisco, California, USA
| | - Gary A. Jarvis
- VA Medical Center and University of California, San Francisco, San Francisco, California, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Kukan EN, Fabiano GL, Cobb BA. Siglecs as modulators of macrophage phenotype and function. Semin Immunol 2024; 73:101887. [PMID: 39357273 DOI: 10.1016/j.smim.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors expressed widely on cells of the hematopoietic system. Siglecs recognize terminal sialic acid residues on glycans and often initiate intracellular signaling upon ligation. Cells can express several Siglec family members concurrently with each showing differential specificities for sialic acid linkages to the underlying glycan as well as varied hydroxyl substitutions, allowing these receptors to fine tune downstream responses. Macrophages are among the many immune cells that express Siglec family members. Macrophages exhibit wide diversity in their phenotypes and functions, and this diversity is often mediated by signals from the local environment, including those from glycans. In this review, we detail the known expression of Siglecs in macrophages while focusing on their functional importance and potential clinical relevance.
Collapse
Affiliation(s)
- Emily N Kukan
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Gabrielle L Fabiano
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Brian A Cobb
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States.
| |
Collapse
|
5
|
Du F, Rische CH, Li Y, Vincent MP, Krier-Burris RA, Qian Y, Yuk SA, Almunif S, Bochner BS, Qiao B, Scott EA. Controlled adsorption of multiple bioactive proteins enables targeted mast cell nanotherapy. NATURE NANOTECHNOLOGY 2024; 19:698-704. [PMID: 38228804 PMCID: PMC11105988 DOI: 10.1038/s41565-023-01584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Protein adsorption onto nanomaterials often results in denaturation and loss of bioactivity. Controlling the adsorption process to maintain the protein structure and function has potential for a range of applications. Here we report that self-assembled poly(propylene sulfone) (PPSU) nanoparticles support the controlled formation of multicomponent enzyme and antibody coatings and maintain their bioactivity. Simulations indicate that hydrophobic patches on protein surfaces induce a site-specific dipole relaxation of PPSU assemblies to non-covalently anchor the proteins without disrupting the protein hydrogen bonding or structure. As a proof of concept, a nanotherapy employing multiple mast-cell-targeted antibodies for preventing anaphylaxis is demonstrated in a humanized mouse model. PPSU nanoparticles displaying an optimized ratio of co-adsorbed anti-Siglec-6 and anti-FcεRIα antibodies effectively inhibit mast cell activation and degranulation, preventing anaphylaxis. Protein immobilization on PPSU surfaces provides a simple and rapid platform for the development of targeted protein nanomedicines.
Collapse
Affiliation(s)
- Fanfan Du
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Clayton H Rische
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yang Li
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Rebecca A Krier-Burris
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan Qian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Simseok A Yuk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sultan Almunif
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Domma AJ, Henderson LA, Nurdin JA, Kamil JP. Uncloaking the viral glycocalyx: How do viruses exploit glycoimmune checkpoints? Adv Virus Res 2024; 119:63-110. [PMID: 38897709 PMCID: PMC11192240 DOI: 10.1016/bs.aivir.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The surfaces of cells and enveloped viruses alike are coated in carbohydrates that play multifarious roles in infection and immunity. Organisms across all kingdoms of life make use of a diverse set of monosaccharide subunits, glycosidic linkages, and branching patterns to encode information within glycans. Accordingly, sugar-patterning enzymes and glycan binding proteins play integral roles in cell and organismal biology, ranging from glycoprotein quality control within the endoplasmic reticulum to lymphocyte migration, coagulation, inflammation, and tissue homeostasis. Unsurprisingly, genes involved in generating and recognizing oligosaccharide patterns are playgrounds for evolutionary conflicts that abound in cross-species interactions, exemplified by the myriad plant lectins that function as toxins. In vertebrates, glycans bearing acidic nine-carbon sugars called sialic acids are key regulators of immune responses. Various bacterial and fungal pathogens adorn their cells in sialic acids that either mimic their hosts' or are stolen from them. Yet, how viruses commandeer host sugar-patterning enzymes to thwart immune responses remains poorly studied. Here, we review examples of viruses that interact with sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immune cell receptors that regulate toll-like receptor signaling and govern glycoimmune checkpoints, while highlighting knowledge gaps that merit investigation. Efforts to illuminate how viruses leverage glycan-dependent checkpoints may translate into new clinical treatments that uncloak viral antigens and infected cell surfaces by removing or masking immunosuppressive sialoglycans, or by inhibiting viral gene products that induce their biosynthesis. Such approaches may hold the potential to unleash the immune system to clear long intractable chronic viral infections.
Collapse
Affiliation(s)
- Anthony J Domma
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | | | - Jeffery A Nurdin
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Jeremy P Kamil
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States.
| |
Collapse
|
7
|
McCord K, Wang C, Anhalt M, Poon WW, Gavin AL, Wu P, Macauley MS. Dissecting the Ability of Siglecs To Antagonize Fcγ Receptors. ACS CENTRAL SCIENCE 2024; 10:315-330. [PMID: 38435516 PMCID: PMC10906256 DOI: 10.1021/acscentsci.3c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 03/05/2024]
Abstract
Fcγ receptors (FcγRs) play key roles in the effector function of IgG, but their inappropriate activation plays a role in several disease etiologies. Therefore, it is critical to better understand how FcγRs are regulated. Numerous studies suggest that sialic acid-binding immunoglobulin-type lectins (Siglecs), a family of immunomodulatory receptors, modulate FcγR activity; however, it is unclear of the circumstances in which Siglecs can antagonize FcγRs and which Siglecs have this ability. Using liposomes displaying selective ligands to coengage FcγRs with a specific Siglec, we explore the ability of Siglec-3, Siglec-5, Siglec-7, and Siglec-9 to antagonize signaling downstream of FcγRs. We demonstrate that Siglec-3 and Siglec-9 can fully inhibit FcγR activation in U937 cells when coengaged with FcγRs. Cells expressing Siglec mutants reveal differential roles for the immunomodulatory tyrosine-based inhibitory motif (ITIM) and immunomodulatory tyrosine-based switch motif (ITSM) in this inhibition. Imaging flow cytometry enabled visualization of SHP-1 recruitment to Siglec-3 in an ITIM-dependent manner, while SHP-2 recruitment is more ITSM-dependent. Conversely, both cytosolic motifs of Siglec-9 contribute to SHP-1/2 recruitment. Siglec-7 poorly antagonizes FcγR activation for two reasons: masking by cis ligands and differences in its ITIM and ITSM. A chimera of the Siglec-3 extracellular domains and Siglec-5 cytosolic tail strongly inhibits FcγR when coengaged, providing evidence that Siglec-5 is more like Siglec-3 and Siglec-9 in its ability to antagonize FcγRs. Additionally, Siglec-3 and Siglec-9 inhibited FcγRs when coengaged by cells displaying ligands for both the Siglec and FcγRs. These results suggest a role for Siglecs in mediating FcγR inhibition in the context of an immunological synapse, which has important relevance to the effectiveness of immunotherapies.
Collapse
Affiliation(s)
- Kelli
A. McCord
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Chao Wang
- Department
of Molecular Medicine, Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Mirjam Anhalt
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Wayne W. Poon
- Institute
for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92617, United States
| | - Amanda L. Gavin
- Department
of Immunology and Microbiology, Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Wu
- Department
of Molecular Medicine, Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Matthew S. Macauley
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
8
|
Atxabal U, Nycholat C, Pröpster JM, Fernández A, Oyenarte I, Lenza MP, Franconetti A, Soares CO, Coelho H, Marcelo F, Schubert M, Paulson JC, Jiménez-Barbero J, Ereño-Orbea J. Unraveling Molecular Recognition of Glycan Ligands by Siglec-9 via NMR Spectroscopy and Molecular Dynamics Modeling. ACS Chem Biol 2024; 19:483-496. [PMID: 38321945 PMCID: PMC10877568 DOI: 10.1021/acschembio.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Human sialic-acid-binding immunoglobulin-like lectin-9 (Siglec-9) is a glycoimmune checkpoint receptor expressed on several immune cells. Binding of Siglec-9 to sialic acid containing glycans (sialoglycans) is well documented to modulate its functions as an inhibitory receptor. Here, we first assigned the amino acid backbone of the Siglec-9 V-set domain (Siglec-9d1), using well-established triple resonance three-dimensional nuclear magnetic resonance (NMR) methods. Then, we combined solution NMR and molecular dynamic simulation methods to decipher the molecular details of the interaction of Siglec-9 with the natural ligands α2,3 and α2,6 sialyl lactosamines (SLN), sialyl Lewis X (sLeX), and 6-O sulfated sLeX and with two synthetically modified sialoglycans that bind with high affinity. As expected, Neu5Ac is accommodated between the F and G β-strands at the canonical sialic acid binding site. Addition of a heteroaromatic scaffold 9N-5-(2-methylthiazol-4-yl)thiophene sulfonamide (MTTS) at the C9 position of Neu5Ac generates new interactions with the hydrophobic residues located at the G-G' loop and the N-terminal region of Siglec-9. Similarly, the addition of the aromatic substituent (5-N-(1-benzhydryl-1H-1,2,3-triazol-4-yl)methyl (BTC)) at the C5 position of Neu5Ac stabilizes the conformation of the long and flexible B'-C loop present in Siglec-9. These results expose the underlying mechanism responsible for the enhanced affinity and specificity for Siglec-9 for these two modified sialoglycans and sheds light on the rational design of the next generation of modified sialoglycans targeting Siglec-9.
Collapse
Affiliation(s)
- Unai Atxabal
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Corwin Nycholat
- Departments
of Molecular Medicine and Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Johannes M. Pröpster
- Institute
of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Andrea Fernández
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Iker Oyenarte
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Maria Pia Lenza
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Antonio Franconetti
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Cátia O. Soares
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Helena Coelho
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Filipa Marcelo
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Mario Schubert
- Institute
of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
- Department
of Biosciences and Molecular Biology, University
of Salzburg, Hellbrunnerstrasse
34, 5020 Salzburg, Austria
| | - James C. Paulson
- Departments
of Molecular Medicine and Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jesús Jiménez-Barbero
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Euskadi Pl., 5, 48009 Bilbao, Biscay, Spain
- Department
of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain
- Centro
de Investigacion Biomedica en Red de Enfermedades Respiratorias, Av. Monforte de Lemos, 3-5, Pabellón
11, Planta 0, 28029 Madrid, Spain
| | - June Ereño-Orbea
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Euskadi Pl., 5, 48009 Bilbao, Biscay, Spain
| |
Collapse
|
9
|
Cardenas AJ, Thomas KS, Broden MW, Ferraro NJ, John CM, Pires MM, Jarvis GA, Criss AK. Neisseria gonorrhoeae scavenges host sialic acid for Siglec-mediated, complement-independent suppression of neutrophil activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576097. [PMID: 38293026 PMCID: PMC10827150 DOI: 10.1101/2024.01.17.576097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophil influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid (CMP-NANA) scavenged from the host using LOS sialyltransferase (Lst), since Gc cannot make its own sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea.
Collapse
Affiliation(s)
- Amaris J Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Keena S. Thomas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Mary W. Broden
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Noel J. Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Constance M. John
- VA Medical Center and University of California, San Francisco, San Francisco, CA, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Gary A. Jarvis
- VA Medical Center and University of California, San Francisco, San Francisco, CA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
10
|
Weaver DF. Druggable targets for the immunopathy of Alzheimer's disease. RSC Med Chem 2023; 14:1645-1661. [PMID: 37731705 PMCID: PMC10507808 DOI: 10.1039/d3md00096f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/21/2023] [Indexed: 09/22/2023] Open
Abstract
Alzheimer's disease (AD) is one of the leading threats to the health and socioeconomic well-being of humankind. Though research to develop disease modifying therapies for AD has traditionally focussed on the misfolding and aggregation of proteins, this approach has failed to yield a definitively curative agent. Accordingly, the search for additional or alternative approaches is a medicinal chemistry priority. Dysfunction of the brain's neuroimmune-neuroinflammation axis has emerged as a leading contender. Neuroimmunity however is mechanistically complex, rendering the recognition of candidate receptors a challenging task. Herein, a review of the role of neuroimmunity in the biomolecular pathogenesis of AD is presented with the identification of a 'druggable dozen' targets; in turn, each identified target represents one or more discrete receptors centred on a common biochemical mechanism. The druggable dozen is composed of both cellular and molecular messenger targets, with a 'targetable ten' microglial targets as well as two cytokine-based targets. For each target, the underlying molecular basis, with a consideration of strengths and weaknesses, is considered.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Department of Chemistry, University of Toronto 60 Leonard Avenue Toronto ON M5T 0S8 Canada
| |
Collapse
|
11
|
Miralda I, Samanas NB, Seo AJ, Foronda JS, Sachen J, Hui Y, Morrison SD, Oskeritzian CA, Piliponsky AM. Siglec-9 is an inhibitory receptor on human mast cells in vitro. J Allergy Clin Immunol 2023; 152:711-724.e14. [PMID: 37100120 PMCID: PMC10524464 DOI: 10.1016/j.jaci.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Mast cell activation is critical for the development of allergic diseases. Ligation of sialic acid-binding immunoglobin-like lectins (Siglecs), such as Siglec-6, -7, and -8 as well as CD33, have been shown to inhibit mast cell activation. Recent studies showed that human mast cells express Siglec-9, an inhibitory receptor also expressed by neutrophils, monocytes, macrophages, and dendritic cells. OBJECTIVE We aimed to characterize Siglec-9 expression and function in human mast cells in vitro. METHODS We assessed the expression of Siglec-9 and Siglec-9 ligands on human mast cell lines and human primary mast cells by real-time quantitative PCR, flow cytometry, and confocal microscopy. We used a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing approach to disrupt the SIGLEC9 gene. We evaluated Siglec-9 inhibitory activity on mast cell function by using native Siglec-9 ligands, glycophorin A (GlycA), and high-molecular-weight hyaluronic acid, a monoclonal antibody against Siglec-9, and coengagement of Siglec-9 with the high-affinity receptor for IgE (FcεRI). RESULTS Human mast cells express Siglec-9 and Siglec-9 ligands. SIGLEC9 gene disruption resulted in increased expression of activation markers at baseline and increased responsiveness to IgE-dependent and IgE-independent stimulation. Pretreatment with GlycA or high-molecular-weight hyaluronic acid followed by IgE-dependent or -independent stimulation had an inhibitory effect on mast cell degranulation. Coengagement of Siglec-9 with FcεRI in human mast cells resulted in reduced degranulation, arachidonic acid production, and chemokine release. CONCLUSIONS Siglec-9 and its ligands play an important role in limiting human mast cell activation in vitro.
Collapse
Affiliation(s)
- Irina Miralda
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Nyssa B Samanas
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Albert J Seo
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Jake S Foronda
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Josie Sachen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Yvonne Hui
- University of South Carolina School of Medicine, Columbia, SC
| | - Shane D Morrison
- Department of Surgery, Division of Plastic Surgery, Seattle Children's Hospital, Seattle, Wash
| | | | - Adrian M Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash; Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Department of Pathology, University of Washington School of Medicine, Seattle, Wash; Department of Global Health, University of Washington School of Medicine, Seattle, Wash.
| |
Collapse
|
12
|
Yi S, Feng Y, Wang Y, Ma F. Sialylation: fate decision of mammalian sperm development, fertilization, and male fertility†. Biol Reprod 2023; 109:137-155. [PMID: 37379321 DOI: 10.1093/biolre/ioad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Sperm development, maturation, and successful fertilization within the female reproductive tract are intricate and orderly processes that involve protein translation and post-translational modifications. Among these modifications, sialylation plays a crucial role. Any disruptions occurring throughout the sperm's life cycle can result in male infertility, yet our current understanding of this process remains limited. Conventional semen analysis often fails to diagnose some infertility cases associated with sperm sialylation, emphasizing the need to comprehend and investigate the characteristics of sperm sialylation. This review reanalyzes the significance of sialylation in sperm development and fertilization and evaluates the impact of sialylation damage on male fertility under pathological conditions. Sialylation serves a vital role in the life journey of sperm, providing a negatively charged glycocalyx and enriching the molecular structure of the sperm surface, which is beneficial to sperm reversible recognition and immune interaction. These characteristics are particularly crucial during sperm maturation and fertilization within the female reproductive tract. Moreover, enhancing the understanding of the mechanism underlying sperm sialylation can promote the development of relevant clinical indicators for infertility detection and treatment.
Collapse
Affiliation(s)
- Shiqi Yi
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
van Houtum EJH, Kers-Rebel ED, Looman MW, Hooijberg E, Büll C, Granado D, Cornelissen LAM, Adema GJ. Tumor cell-intrinsic and tumor microenvironmental conditions co-determine signaling by the glycoimmune checkpoint receptor Siglec-7. Cell Mol Life Sci 2023; 80:169. [PMID: 37253806 DOI: 10.1007/s00018-023-04816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/01/2023]
Abstract
Tumors create an immunosuppressive tumor microenvironment by altering protein expression, but also by changing their glycosylation status, like altered expression of sialoglycans. Sialoglycans are capped with sialic acid sugar residues and are recognized by Siglec immune receptors. Siglec-7 is an inhibitory immune receptor similar to PD-1, and is emerging as glycoimmune checkpoint exploited by cancer cells to evade the immune system. However, the exact cellular and molecular conditions required for Siglec-7-mediated immune cell inhibition remain largely unknown. Here, we report on the development of a chimeric Siglec-7 cell system that enables dissection of Siglec-7 signaling, rather than Siglec-7 binding. Antibody-induced clustering, sialic acid-containing polymers, and highly sialylated erythrocytes effectively induced Siglec-7 signaling, thereby validating functionality of this reporter system. Moreover, the system reveals tumor cell-dependent Siglec-7 signaling. Tumor-associated conditions important for Siglec-7 signaling were defined, such as Siglec-7 ligand expression levels, presence of the known Siglec-7 ligand CD43, and sialic acid availability for sialylation of glycans. Importantly, therapeutic targeting of the Siglec-7/sialic acid axis using a sialyltransferase inhibitor resulted in strong reduction of Siglec-7 signaling. In conclusion, using a newly established cellular tool, we defined a set of tumor-associated conditions that influence Siglec-7 signaling. Moreover, the system allows to assess the efficacy of novel cancer drugs interfering with the Siglec-7/sialic acid axis as immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Eline J H van Houtum
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Esther D Kers-Rebel
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Maaike W Looman
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Erik Hooijberg
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christian Büll
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Daniel Granado
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Lenneke A M Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Raïch-Regué D, Resa-Infante P, Gallemí M, Laguia F, Muñiz-Trabudua X, Muñoz-Basagoiti J, Perez-Zsolt D, Chojnacki J, Benet S, Clotet B, Martinez-Picado J, Izquierdo-Useros N. Role of Siglecs in viral infections: A double-edged sword interaction. Mol Aspects Med 2023; 90:101113. [PMID: 35981912 PMCID: PMC9923124 DOI: 10.1016/j.mam.2022.101113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Sialic-acid-binding immunoglobulin-like lectins are cell surface immune receptors known as Siglecs that play a paramount role as modulators of immunity. In recent years, research has underscored how the underlaying biology of this family of receptors influences the outcome of viral infections. While Siglecs are needed to promote effective antiviral immune responses, they can also pave the way to viral dissemination within tissues. Here, we review how recent preclinical findings focusing on the interplay between Siglecs and viruses may translate into promising broad-spectrum therapeutic interventions or key biomarkers to monitor the course of viral infections.
Collapse
Affiliation(s)
- Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Patricia Resa-Infante
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain
| | - Marçal Gallemí
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Fernando Laguia
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Xabier Muñiz-Trabudua
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | | | - Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Jakub Chojnacki
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Susana Benet
- Fundació lluita contra la SIDA, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Fundació lluita contra la SIDA, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
15
|
Saini P, Adeniji OS, Bordoloi D, Kinslow J, Martinson J, Parent DM, Hong KY, Koshy J, Kulkarni AJ, Zilberstein NF, Balk RA, Moy JN, Giron LB, Tracy RP, Keshavarzian A, Muthumani K, Landay A, Weiner DB, Abdel-Mohsen M. Siglec-9 Restrains Antibody-Dependent Natural Killer Cell Cytotoxicity against SARS-CoV-2. mBio 2023; 14:e0339322. [PMID: 36728420 PMCID: PMC9973332 DOI: 10.1128/mbio.03393-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 02/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the immunological profiles of natural killer (NK) cells. However, whether NK antiviral functions are impaired during severe coronavirus disease 2019 (COVID-19) and what host factors modulate these functions remain unclear. We found that NK cells from hospitalized COVID-19 patients degranulate less against SARS-CoV-2 antigen-expressing cells (in direct cytolytic and antibody-dependent cell cytotoxicity [ADCC] assays) than NK cells from mild COVID-19 patients or negative controls. The lower NK degranulation was associated with higher plasma levels of SARS-CoV-2 nucleocapsid antigen. Phenotypic and functional analyses showed that NK cells expressing the glyco-immune checkpoint Siglec-9 elicited higher ADCC than Siglec-9- NK cells. Consistently, Siglec-9+ NK cells exhibit an activated and mature phenotype with higher expression of CD16 (FcγRIII; mediator of ADCC), CD57 (maturation marker), and NKG2C (activating receptor), along with lower expression of the inhibitory receptor NKG2A, than Siglec-9- CD56dim NK cells. These data are consistent with the concept that the NK cell subpopulation expressing Siglec-9 is highly activated and cytotoxic. However, the Siglec-9 molecule itself is an inhibitory receptor that restrains NK cytotoxicity during cancer and other viral infections. Indeed, blocking Siglec-9 significantly enhanced the ADCC-mediated NK degranulation and lysis of SARS-CoV-2-antigen-positive target cells. These data support a model in which the Siglec-9+ CD56dim NK subpopulation is cytotoxic even while it is restrained by the inhibitory effects of Siglec-9. Alleviating the Siglec-9-mediated restriction on NK cytotoxicity may further improve NK immune surveillance and presents an opportunity to develop novel immunotherapeutic tools against SARS-CoV-2 infected cells. IMPORTANCE One mechanism that cancer cells use to evade natural killer cell immune surveillance is by expressing high levels of sialoglycans, which bind to Siglec-9, a glyco-immune checkpoint molecule on NK cells. This binding inhibits NK cell cytotoxicity. Several viruses, such as hepatitis B virus (HBV) and HIV, also use a similar mechanism to evade NK surveillance. We found that NK cells from SARS-CoV-2-hospitalized patients are less able to function against cells expressing SARS-CoV-2 Spike protein than NK cells from SARS-CoV-2 mild patients or uninfected controls. We also found that the cytotoxicity of the Siglec-9+ NK subpopulation is indeed restrained by the inhibitory nature of the Siglec-9 molecule and that blocking Siglec-9 can enhance the ability of NK cells to target cells expressing SARS-CoV-2 antigens. Our results suggest that a targetable glyco-immune checkpoint mechanism, Siglec-9/sialoglycan interaction, may contribute to the ability of SARS-CoV-2 to evade NK immune surveillance.
Collapse
Affiliation(s)
- Pratima Saini
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - Kai Ying Hong
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jane Koshy
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | - Kar Muthumani
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
16
|
Setting the stage for universal pharmacological targeting of the glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:61-88. [PMID: 37080681 DOI: 10.1016/bs.ctm.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
All cells in the human body are covered by a complex meshwork of sugars as well as proteins and lipids to which these sugars are attached, collectively termed the glycocalyx. Over the past few decades, the glycocalyx has been implicated in a range of vital cellular processes in health and disease. Therefore, it has attracted considerable interest as a therapeutic target. Considering its omnipresence and its relevance for various areas of cell biology, the glycocalyx should be a versatile platform for therapeutic intervention, however, the full potential of the glycocalyx as therapeutic target is yet to unfold. This might be attributable to the fact that glycocalyx alterations are currently discussed mainly in the context of specific diseases. In this perspective review, we shift the attention away from a disease-centered view of the glycocalyx, focusing on changes in glycocalyx state. Furthermore, we survey important glycocalyx-targeted drugs currently available and finally discuss future steps. We hope that this approach will inspire a unified, holistic view of the glycocalyx in disease, helping to stimulate novel glycocalyx-targeted therapy strategies.
Collapse
|
17
|
Qian Y, Yang T, Liang H, Deng M. Myeloid checkpoints for cancer immunotherapy. Chin J Cancer Res 2022; 34:460-482. [PMID: 36398127 PMCID: PMC9646457 DOI: 10.21147/j.issn.1000-9604.2022.05.07] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2023] Open
Abstract
Myeloid checkpoints are receptors on the myeloid cell surface which can mediate inhibitory signals to modulate anti-tumor immune activities. They can either inhibit cellular phagocytosis or suppress T cells and are thus involved in the pathogenesis of various diseases. In the tumor microenvironment, besides killing tumor cells by phagocytosis or activating anti-tumor immunity by tumor antigen presentation, myeloid cells could execute pro-tumor efficacies through myeloid checkpoints by interacting with counter-receptors on other immune cells or cancer cells. In summary, myeloid checkpoints may be promising therapeutic targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Yixin Qian
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Ting Yang
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Huan Liang
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Mi Deng
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| |
Collapse
|
18
|
Fliniaux I, Marchand G, Molinaro C, Decloquement M, Martoriati A, Marin M, Bodart JF, Harduin-Lepers A, Cailliau K. Diversity of sialic acids and sialoglycoproteins in gametes and at fertilization. Front Cell Dev Biol 2022; 10:982931. [PMID: 36340022 PMCID: PMC9630641 DOI: 10.3389/fcell.2022.982931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 09/22/2023] Open
Abstract
Sialic acids are a family of 9-carbon monosaccharides with particular physicochemical properties. They modulate the biological functions of the molecules that carry them and are involved in several steps of the reproductive process. Sialoglycoproteins participate in the balance between species recognition and specificity, and the mechanisms of these aspects remain an issue in gametes formation and binding in metazoan reproduction. Sialoglycoproteins form a specific coat at the gametes surface and specific polysialylated chains are present on marine species oocytes. Spermatozoa are submitted to critical sialic acid changes in the female reproductive tract facilitating their migration, their survival through the modulation of the female innate immune response, and the final oocyte-binding event. To decipher the role of sialic acids in gametes and at fertilization, the dynamical changes of enzymes involved in their synthesis and removal have to be further considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
19
|
Robida PA, Rische CH, Morgenstern NBB, Janarthanam R, Cao Y, Krier-Burris RA, Korver W, Xu A, Luu T, Schanin J, Leung J, Rothenberg ME, Wechsler JB, Youngblood BA, Bochner BS, O’Sullivan JA. Functional and Phenotypic Characterization of Siglec-6 on Human Mast Cells. Cells 2022; 11:1138. [PMID: 35406705 PMCID: PMC8997871 DOI: 10.3390/cells11071138] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Mast cells are tissue-resident cells that contribute to allergic diseases, among others, due to excessive or inappropriate cellular activation and degranulation. Therapeutic approaches to modulate mast cell activation are urgently needed. Siglec-6 is an immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptor selectively expressed by mast cells, making it a promising target for therapeutic intervention. However, the effects of its engagement on mast cells are poorly defined. Siglec-6 expression and endocytosis on primary human mast cells and mast cell lines were assessed by flow cytometry. SIGLEC6 mRNA expression was examined by single-cell RNAseq in esophageal tissue biopsy samples. The ability of Siglec-6 engagement or co-engagement to prevent primary mast cell activation was determined based on assessments of mediator and cytokine secretion and degranulation markers. Siglec-6 was highly expressed by all mast cells examined, and the SIGLEC6 transcript was restricted to mast cells in esophageal biopsy samples. Siglec-6 endocytosis occurred with delayed kinetics relative to the related receptor Siglec-8. Co-crosslinking of Siglec-6 with FcεRIα enhanced the inhibition of mast cell activation and diminished downstream ERK1/2 and p38 phosphorylation. The selective, stable expression and potent inhibitory capacity of Siglec-6 on human mast cells are favorable for its use as a therapeutic target in mast cell-driven diseases.
Collapse
Affiliation(s)
- Piper A. Robida
- Division of Allergy and Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.A.R.); (Y.C.); (R.A.K.-B.); (J.B.W.); (B.S.B.)
| | - Clayton H. Rische
- McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA;
| | - Netali Ben-Baruch Morgenstern
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (N.B.-B.M.); (M.E.R.)
| | - Rethavathi Janarthanam
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Yun Cao
- Division of Allergy and Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.A.R.); (Y.C.); (R.A.K.-B.); (J.B.W.); (B.S.B.)
| | - Rebecca A. Krier-Burris
- Division of Allergy and Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.A.R.); (Y.C.); (R.A.K.-B.); (J.B.W.); (B.S.B.)
| | - Wouter Korver
- Allakos, Inc., Redwood City, CA 94065, USA; (W.K.); (A.X.); (T.L.); (J.S.); (J.L.); (B.A.Y.)
| | - Alan Xu
- Allakos, Inc., Redwood City, CA 94065, USA; (W.K.); (A.X.); (T.L.); (J.S.); (J.L.); (B.A.Y.)
| | - Thuy Luu
- Allakos, Inc., Redwood City, CA 94065, USA; (W.K.); (A.X.); (T.L.); (J.S.); (J.L.); (B.A.Y.)
| | - Julia Schanin
- Allakos, Inc., Redwood City, CA 94065, USA; (W.K.); (A.X.); (T.L.); (J.S.); (J.L.); (B.A.Y.)
| | - John Leung
- Allakos, Inc., Redwood City, CA 94065, USA; (W.K.); (A.X.); (T.L.); (J.S.); (J.L.); (B.A.Y.)
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (N.B.-B.M.); (M.E.R.)
| | - Joshua B. Wechsler
- Division of Allergy and Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.A.R.); (Y.C.); (R.A.K.-B.); (J.B.W.); (B.S.B.)
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Bradford A. Youngblood
- Allakos, Inc., Redwood City, CA 94065, USA; (W.K.); (A.X.); (T.L.); (J.S.); (J.L.); (B.A.Y.)
| | - Bruce S. Bochner
- Division of Allergy and Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.A.R.); (Y.C.); (R.A.K.-B.); (J.B.W.); (B.S.B.)
| | - Jeremy A. O’Sullivan
- Division of Allergy and Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.A.R.); (Y.C.); (R.A.K.-B.); (J.B.W.); (B.S.B.)
| |
Collapse
|
20
|
CD33 rs2455069 SNP: Correlation with Alzheimer's Disease and Hypothesis of Functional Role. Int J Mol Sci 2022; 23:ijms23073629. [PMID: 35408990 PMCID: PMC8998932 DOI: 10.3390/ijms23073629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
The CD33 gene encodes for a member of the sialic-acid-binding immunoglobulin-type lectin (Siglec) family, and is one of the top-ranked Alzheimer’s disease (AD) risk genes identified by genome-wide association studies (GWAS). Many CD33 polymorphisms are associated with an increased risk of AD, but the function and potential mechanism of many CD33 single-nucleotide polymorphisms (SNPs) in promoting AD have yet to be elucidated. We recently identified the CD33 SNP rs2455069-A>G (R69G) in a familial form of dementia. Here, we demonstrate an association between the G allele of the rs2455069 gene variant and the presence of AD in a cohort of 195 patients from southern Italy. We carried out in silico analysis of the 3D structures of CD33 carrying the identified SNP to provide insights into its functional effect. Structural models of the CD33 variant carrying the R69G amino acid change were compared to the CD33 wild type, and used for the docking analysis using sialic acid as the ligand. Our analysis demonstrated that the CD33-R69G variant may bind sialic acid at additional binding sites compared to the wild type, thus potentially increasing its affinity/specificity for this molecule. Our results led to a new hypothesis of rs2455069-A>G SNP as a risk factor for AD, suggesting that a long-term cumulative effect of the CD33-R69G variant results from the binding of sialic acid, acting as an enhancer of the CD33 inhibitory effects on amyloid plaque degradation.
Collapse
|
21
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
22
|
Abstract
The discovery of immune checkpoints (ICs) and the development of specific blockers to relieve immune effector cells from this inhibiting mechanism has changed the view of anti-cancer therapy. In addition to cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed death 1 (PD1), classical ICs of T lymphocytes and recently described also on a fraction of natural killer (NK) cells, several NK cell receptors, including killer immunoglobulin-like inhibitory receptors (KIRs) and NGK2A, have been recognized as checkpoint members typical of the NK cell population. This offers the opportunity of a dual-checkpoint inhibition approach, targeting classical and non-classical ICs and leading to a synergistic therapeutic effect. In this review, we will overview and discuss this new perspective, focusing on the most relevant candidates for this role among the variety of potential NK ICs. Beside listing and defining classical ICs expressed also by NK cells, or non-classical ICs either on T or on NK cells, we will address their role in NK cell survival, chronic stimulation or functional exhaustion, and the potential relevance of this phenomenon on anti-tumor immune response. Furthermore, NK ICs will be proposed as possible new targets for the development of efficient combined immunotherapy, not forgetting the relevant concerns that may be raised on NK IC blockade. Finally, the impact of epigenetic drugs in such a complex therapeutic picture will be briefly addressed.
Collapse
|
23
|
Westermann S, Dietschmann A, Doehler D, Castiglione K, Bochner BS, Voehringer D, Radtke D. Siglec-F Promotes IL-33-Induced Cytokine Release from Bone Marrow-Derived Eosinophils Independently of the ITIM and ITIM-like Motif Phosphorylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:732-744. [PMID: 34996839 DOI: 10.4049/jimmunol.2100184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
Eosinophils are potent innate effector cells associated mainly with type 2 immune responses elicited by helminths and allergens. Their activity needs to be tightly controlled to prevent severe inflammation and tissue damage. Eosinophil degranulation and secretion of inflammatory effector molecules, including cytokines, chemokines, and lipid mediators, can be regulated by activating and inhibitory receptors on the cell surface. In this study, we investigated the modulation of proliferation, apoptosis, gene expression, and cytokine/chemokine secretion from IL-33-activated Mus musculus eosinophils on cross-linking of the transmembrane receptor Sialic acid-binding Ig-like lectin F (Siglec-F). Siglec-F contains an ITIM plus an ITIM-like motif in its intracellular tail and is mainly regarded as an inhibitory and apoptosis-inducing receptor. In vitro costimulation of bone marrow-derived eosinophils with anti-Siglec-F and IL-33 compared with treatment with either alone led to enhanced STAT6 phosphorylation, stronger induction of hypoxia/glycolysis-related proinflammatory genes, and elevated secretion of type 2 cytokines (IL-4, IL-13) and chemokines (CCL3, CCL4) with only minor effects on proliferation and apoptosis. Using a competitive mixed bone marrow chimera approach with wild-type and Siglec-F-deficient eosinophils, we observed no evidence for Siglec-F-regulated inhibition of Aspergillus fumigatus-elicited lung eosinophilia. Truncation of the Siglec-F cytoplasmic tail, but not mutation of the ITIM and ITIM-like motifs, ablated the effect of enhanced cytokine/chemokine secretion. This provides evidence for an ITIM phosphorylation-independent signaling pathway from the cytoplasmic tail of the Siglec-F receptor that enhances effector molecule release from activated eosinophils.
Collapse
Affiliation(s)
- Stefanie Westermann
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; and
| | - Axel Dietschmann
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; and
| | - Daniela Doehler
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; and
| | - Kirstin Castiglione
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; and
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; and
| | - Daniel Radtke
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; and
| |
Collapse
|
24
|
Theruvath J, Menard M, Smith BAH, Linde MH, Coles GL, Dalton GN, Wu W, Kiru L, Delaidelli A, Sotillo E, Silberstein JL, Geraghty AC, Banuelos A, Radosevich MT, Dhingra S, Heitzeneder S, Tousley A, Lattin J, Xu P, Huang J, Nasholm N, He A, Kuo TC, Sangalang ERB, Pons J, Barkal A, Brewer RE, Marjon KD, Vilches-Moure JG, Marshall PL, Fernandes R, Monje M, Cochran JR, Sorensen PH, Daldrup-Link HE, Weissman IL, Sage J, Majeti R, Bertozzi CR, Weiss WA, Mackall CL, Majzner RG. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nat Med 2022; 28:333-344. [PMID: 35027753 PMCID: PMC9098186 DOI: 10.1038/s41591-021-01625-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
The disialoganglioside GD2 is overexpressed on several solid tumors, and monoclonal antibodies targeting GD2 have substantially improved outcomes for children with high-risk neuroblastoma. However, approximately 40% of patients with neuroblastoma still relapse, and anti-GD2 has not mediated significant clinical activity in any other GD2+ malignancy. Macrophages are important mediators of anti-tumor immunity, but tumors resist macrophage phagocytosis through expression of the checkpoint molecule CD47, a so-called 'Don't eat me' signal. In this study, we establish potent synergy for the combination of anti-GD2 and anti-CD47 in syngeneic and xenograft mouse models of neuroblastoma, where the combination eradicates tumors, as well as osteosarcoma and small-cell lung cancer, where the combination significantly reduces tumor burden and extends survival. This synergy is driven by two GD2-specific factors that reorient the balance of macrophage activity. Ligation of GD2 on tumor cells (a) causes upregulation of surface calreticulin, a pro-phagocytic 'Eat me' signal that primes cells for removal and (b) interrupts the interaction of GD2 with its newly identified ligand, the inhibitory immunoreceptor Siglec-7. This work credentials the combination of anti-GD2 and anti-CD47 for clinical translation and suggests that CD47 blockade will be most efficacious in combination with monoclonal antibodies that alter additional pro- and anti-phagocytic signals within the tumor microenvironment.
Collapse
Affiliation(s)
- Johanna Theruvath
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Marie Menard
- Departments of Neurology, Pediatrics, and Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin A H Smith
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA, USA
| | - Miles H Linde
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Garry L Coles
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Wei Wu
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Louise Kiru
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Elena Sotillo
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - John L Silberstein
- Immunology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University Schools of Engineering and Medicine, Stanford, CA, USA
| | - Anna C Geraghty
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Allison Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Shaurya Dhingra
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sabine Heitzeneder
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Aidan Tousley
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - John Lattin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Peng Xu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Huang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole Nasholm
- Departments of Neurology, Pediatrics, and Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Andy He
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - Amira Barkal
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Rachel E Brewer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristopher D Marjon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton L Marshall
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Ricardo Fernandes
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michelle Monje
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University Schools of Engineering and Medicine, Stanford, CA, USA
| | | | - Heike E Daldrup-Link
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA, USA
| | - William A Weiss
- Departments of Neurology, Pediatrics, and Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Korver W, Wong A, Gebremeskel S, Negri GL, Schanin J, Chang K, Leung J, Benet Z, Luu T, Brock EC, Luehrsen K, Xu A, Youngblood BA. The Inhibitory Receptor Siglec-8 Interacts With FcεRI and Globally Inhibits Intracellular Signaling in Primary Mast Cells Upon Activation. Front Immunol 2022; 13:833728. [PMID: 35154156 PMCID: PMC8837033 DOI: 10.3389/fimmu.2022.833728] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Immunomodulation of mast cell (MC) activity is warranted in allergic and inflammatory diseases where MCs have a central role in pathogenesis. Targeting Siglec-8, an inhibitory receptor on MCs and eosinophils, has shown promising activity in preclinical and clinical studies. While the intracellular pathways that regulate Siglec-8 activity in eosinophils have been well studied, the signaling mechanisms that lead to MC inhibition have not been fully elucidated. Here, we evaluate the intracellular signaling pathways of Siglec-8-mediated inhibition in primary MCs using an anti-Siglec-8 monoclonal antibody (mAb). Phospho-proteomic profiling of FcεRI-activated MCs revealed Siglec-8 mAb-treatment globally inhibited proximal and downstream kinases, leading to attenuated MC activation and degranulation. In fact, Siglec-8 was found to directly interact with FcεRI signaling molecules. Siglec-8 inhibition was dependent on both cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that interact with the SH2 containing protein phosphatase Shp-2 upon Siglec-8 phosphorylation. Taken together, these data support a model in which Siglec-8 regulates proximal FcεRI-induced phosphorylation events through phosphatase recruitment and interaction with FcεRIγ, resulting in global inhibition of MCs upon Siglec-8 mAb engagement.
Collapse
Affiliation(s)
| | - Alan Wong
- Allakos Inc., Redwood City, CA, United States
| | | | | | | | | | - John Leung
- Allakos Inc., Redwood City, CA, United States
| | | | - Thuy Luu
- Allakos Inc., Redwood City, CA, United States
| | | | | | - Alan Xu
- Allakos Inc., Redwood City, CA, United States
| | | |
Collapse
|
26
|
Allott EH, Dean K, Robson T, Meaney C. Characterizing and Exploiting Tumor Microenvironments to Optimize Treatment Outcomes. Cancers (Basel) 2021; 13:cancers13225752. [PMID: 34830906 PMCID: PMC8616459 DOI: 10.3390/cancers13225752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The Irish Association for Cancer Research (IACR) held its 57th annual conference from the 24–26 March 2021 in a virtual format due to the ongoing pandemic. This report provides a summary overview of the work presented at the conference, which had a particular focus on the tumor microenvironment. Tumors do not develop and grow in isolation, but rather within the context of their surrounding environment. The work presented at the conference outlined the complexity of the tumor microenvironment and highlighted several ways in which it influences tumor growth and progression. Moreover, the tumor microenvironment was discussed as a potential target for new cancer treatments. Traditionally, laboratory research has focused on the tumor only, but conference speakers highlighted the importance of modeling the surrounding microenvironment to gain a more physiologically relevant view of tumorigenesis. Finally, conference attendees heard from the patient’s perspective regarding the development of novel targeted therapies. Abstract Our understanding of cancer initiation, progression, and treatment is continually progressing through dedicated research achieved through laboratory investigation, clinical trials, and patient engagement. The importance and complexity of the microenvironment and its role in tumor development and behavior is pivotal to the understanding of tumor growth and the best course of treatment. The 57th Irish Association for Cancer Research (IACR) Annual Conference collected key researchers, clinicians, and patient advocates together to highlight and discuss the recognized importance of the microenvironment and treatment advances in cancer. In this article, we describe the key components of the microenvironment that influence tumor development and treatment, including the microbiome, metabolism, and immune response and the progress of preclinical models to reflect these complex environments. From a psycho-social oncology perspective, we highlight expert opinion and data on the process of shared decision-making in the context of emerging cancer treatments.
Collapse
Affiliation(s)
- Emma H. Allott
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland
- Correspondence:
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland;
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons Ireland, D02 YN77 Dublin, Ireland;
| | - Claire Meaney
- Department of Mechanical and Automobile Engineering, Limerick Institute of Technology, V94 EC5T Limerick, Ireland;
| |
Collapse
|
27
|
Adeniji OS, Kuri-Cervantes L, Yu C, Xu Z, Ho M, Chew GM, Shikuma C, Tomescu C, George AF, Roan NR, Ndhlovu LC, Liu Q, Muthumani K, Weiner DB, Betts MR, Xiao H, Abdel-Mohsen M. Siglec-9 defines and restrains a natural killer subpopulation highly cytotoxic to HIV-infected cells. PLoS Pathog 2021; 17:e1010034. [PMID: 34762717 PMCID: PMC8584986 DOI: 10.1371/journal.ppat.1010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Siglec-9 is an MHC-independent inhibitory receptor expressed on a subset of natural killer (NK) cells. Siglec-9 restrains NK cytotoxicity by binding to sialoglycans (sialic acid-containing glycans) on target cells. Despite the importance of Siglec-9 interactions in tumor immune evasion, their role as an immune evasion mechanism during HIV infection has not been investigated. Using in vivo phenotypic analyses, we found that Siglec-9+ CD56dim NK cells, during HIV infection, exhibit an activated phenotype with higher expression of activating receptors and markers (NKp30, CD38, CD16, DNAM-1, perforin) and lower expression of the inhibitory receptor NKG2A, compared to Siglec-9- CD56dim NK cells. We also found that levels of Siglec-9+ CD56dim NK cells inversely correlate with viral load during viremic infection and CD4+ T cell-associated HIV DNA during suppressed infection. Using in vitro cytotoxicity assays, we confirmed that Siglec-9+ NK cells exhibit higher cytotoxicity towards HIV-infected cells compared to Siglec-9- NK cells. These data are consistent with the notion that Siglec-9+ NK cells are highly cytotoxic against HIV-infected cells. However, blocking Siglec-9 enhanced NK cells' ability to lyse HIV-infected cells, consistent with the known inhibitory function of the Siglec-9 molecule. Together, these data support a model in which the Siglec-9+ CD56dim NK subpopulation is highly cytotoxic against HIV-infected cells even whilst being restrained by the inhibitory effects of Siglec-9. To harness the cytotoxic capacity of the Siglec-9+ NK subpopulation, which is dampened by Siglec-9, we developed a proof-of-concept approach to selectively disrupt Siglec/sialoglycan interactions between NK and HIV-infected cells. We achieved this goal by conjugating Sialidase to several HIV broadly neutralizing antibodies. These conjugates selectively desialylated HIV-infected cells and enhanced NK cells' capacity to kill them. In summary, we identified a novel, glycan-based interaction that may contribute to HIV-infected cells' ability to evade NK immunosurveillance and developed an approach to break this interaction.
Collapse
Affiliation(s)
- Opeyemi S. Adeniji
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Chenfei Yu
- Rice University, Houston, Texas, United States of America
| | - Ziyang Xu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michelle Ho
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Glen M. Chew
- University of Hawaii, Honolulu, Hawaii, United States of America
| | - Cecilia Shikuma
- University of Hawaii, Honolulu, Hawaii, United States of America
| | - Costin Tomescu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Ashley F. George
- Gladstone Institutes, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
| | - Nadia R. Roan
- Gladstone Institutes, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
| | - Lishomwa C. Ndhlovu
- University of Hawaii, Honolulu, Hawaii, United States of America
- Weill Cornell Medicine, New York, New York, United States of America
| | - Qin Liu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Kar Muthumani
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David B. Weiner
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Betts
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Han Xiao
- Rice University, Houston, Texas, United States of America
| | - Mohamed Abdel-Mohsen
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Xu X, Masubuchi T, Cai Q, Zhao Y, Hui E. Molecular features underlying differential SHP1/SHP2 binding of immune checkpoint receptors. eLife 2021; 10:74276. [PMID: 34734802 PMCID: PMC8631942 DOI: 10.7554/elife.74276] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 12/19/2022] Open
Abstract
A large number of inhibitory receptors recruit SHP1 and/or SHP2, tandem-SH2-containing phosphatases through phosphotyrosine-based motifs immunoreceptor tyrosine-based inhibitory motif (ITIM) and immunoreceptor tyrosine-based switch motif (ITSM). Despite the similarity, these receptors exhibit differential effector binding specificities, as exemplified by the immune checkpoint receptors PD-1 and BTLA, which preferentially recruit SHP2 and SHP1, respectively. The molecular basis by which structurally similar receptors discriminate SHP1 and SHP2 is unclear. Here, we provide evidence that human PD-1 and BTLA optimally bind to SHP1 and SHP2 via a bivalent, parallel mode that involves both SH2 domains of SHP1 or SHP2. PD-1 mainly uses its ITSM to prefer SHP2 over SHP1 via their C-terminal SH2 domains (cSH2): swapping SHP1-cSH2 with SHP2-cSH2 enabled PD-1:SHP1 association in T cells. In contrast, BTLA primarily utilizes its ITIM to prefer SHP1 over SHP2 via their N-terminal SH2 domains (nSH2). The ITIM of PD-1, however, appeared to be de-emphasized due to a glycine at pY+1 position. Substitution of this glycine with alanine, a residue conserved in BTLA and several SHP1-recruiting receptors, was sufficient to induce PD-1:SHP1 interaction in T cells. Finally, structural simulation and mutagenesis screening showed that SHP1 recruitment activity exhibits a bell-shaped dependence on the molecular volume of the pY+1 residue of ITIM. Collectively, we provide a molecular interpretation of the SHP1/SHP2-binding specificities of PD-1 and BTLA, with implications for the mechanisms of a large family of therapeutically relevant receptors.
Collapse
Affiliation(s)
- Xiaozheng Xu
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Takeya Masubuchi
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yunlong Zhao
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Enfu Hui
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
29
|
Dandopath Patra M. Comparative study of binding abilities of Siglec-7 to different ligands using molecular modeling techniques and structural analysis. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1954656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Shibru B, Fey K, Fricke S, Blaudszun AR, Fürst F, Weise M, Seiffert S, Weyh MK, Köhl U, Sack U, Boldt A. Detection of Immune Checkpoint Receptors - A Current Challenge in Clinical Flow Cytometry. Front Immunol 2021; 12:694055. [PMID: 34276685 PMCID: PMC8281132 DOI: 10.3389/fimmu.2021.694055] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Immunological therapy principles are increasingly determining modern medicine. They are used to treat diseases of the immune system, for tumors, but also for infections, neurological diseases, and many others. Most of these therapies base on antibodies, but small molecules, soluble receptors or cells and modified cells are also used. The development of immune checkpoint inhibitors is amazingly fast. T-cell directed antibody therapies against PD-1 or CTLA-4 are already firmly established in the clinic. Further targets are constantly being added and it is becoming increasingly clear that their expression is not only relevant on T cells. Furthermore, we do not yet have any experience with the long-term systemic effects of the treatment. Flow cytometry can be used for diagnosis, monitoring, and detection of side effects. In this review, we focus on checkpoint molecules as target molecules and functional markers of cells of the innate and acquired immune system. However, for most of the interesting and potentially relevant parameters, there are still no test kits suitable for routine use. Here we give an overview of the detection of checkpoint molecules on immune cells in the peripheral blood and show examples of a possible design of antibody panels.
Collapse
Affiliation(s)
- Benjamin Shibru
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Katharina Fey
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | | | - Friederike Fürst
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Max Weise
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sabine Seiffert
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Maria Katharina Weyh
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ulrike Köhl
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Andreas Boldt
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
31
|
Reporter cell assay for human CD33 validated by specific antibodies and human iPSC-derived microglia. Sci Rep 2021; 11:13462. [PMID: 34188106 PMCID: PMC8242067 DOI: 10.1038/s41598-021-92434-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
CD33/Sialic acid-binding Ig-like lectin 3 (SIGLEC3) is an innate immune receptor expressed on myeloid cells and mediates inhibitory signaling via tyrosine phosphatases. Variants of CD33 are associated with Alzheimer’s disease (AD) suggesting that modulation of CD33 signaling might be beneficial in AD. Hence, there is an urgent need for reliable cellular CD33 reporter systems. Therefore, we generated a CD33 reporter cell line expressing a fusion protein consisting of the extracellular domain of either human full-length CD33 (CD33M) or the AD-protective variant CD33ΔE2 (D2-CD33/CD33m) linked to TYRO protein tyrosine kinase binding protein (TYROBP/DAP12) to investigate possible ligands and antibodies for modulation of CD33 signaling. Application of the CD33-specific antibodies P67.6 and 1c7/1 to the CD33M-DAP12 reporter cells resulted in increased phosphorylation of the kinase SYK, which is downstream of DAP12. CD33M-DAP12 but not CD33ΔE2-DAP12 expressing reporter cells showed increased intracellular calcium levels upon treatment with CD33 antibody P67.6 and partially for 1c7/1. Furthermore, stimulation of human induced pluripotent stem cell-derived microglia with the CD33 antibodies P67.6 or 1c7/1 directly counteracted the triggering receptor expressed on myeloid cells 2 (TREM2)-induced phosphorylation of SYK and decreased the phagocytic uptake of bacterial particles. Thus, the developed reporter system confirmed CD33 pathway activation by CD33 antibody clones P67.6 and 1c7/1. In addition, data showed that phosphorylation of SYK by TREM2 activation and phagocytosis of bacterial particles can be directly antagonized by CD33 signaling.
Collapse
|
32
|
Giamougiannis P, Martin-Hirsch PL, Martin FL. The evolving role of MUC16 (CA125) in the transformation of ovarian cells and the progression of neoplasia. Carcinogenesis 2021; 42:327-343. [PMID: 33608706 DOI: 10.1093/carcin/bgab010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/19/2021] [Accepted: 02/15/2021] [Indexed: 12/23/2022] Open
Abstract
MUC16 (the cancer antigen CA125) is the most commonly used serum biomarker in epithelial ovarian cancer, with increasing levels reflecting disease progression. It is a transmembrane glycoprotein with multiple isoforms, undergoing significant changes through the metastatic process. Aberrant glycosylation and cleavage with overexpression of a small membrane-bound fragment consist MUC16-related mechanisms that enhance malignant potential. Even MUC16 knockdown can induce an aggressive phenotype but can also increase susceptibility to chemotherapy. Variable MUC16 functions help ovarian cancer cells avoid immune cytotoxicity, survive inside ascites and form metastases. This review provides a comprehensive insight into MUC16 transformations and interactions, with description of activated oncogenic signalling pathways, and adds new elements on the role of its differential glycosylation. By following the journey of the molecule from pre-malignant states to advanced stages of disease it demonstrates its behaviour, in relation to the phenotypic shifts and progression of ovarian cancer. Additionally, it presents proposed differences of MUC16 structure in normal/benign conditions and epithelial ovarian malignancy.
Collapse
Affiliation(s)
- Panagiotis Giamougiannis
- Department of Gynaecological Oncology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK.,School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Pierre L Martin-Hirsch
- Department of Gynaecological Oncology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK.,Division of Cancer Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
33
|
Lübbers J, Eveline Li RJ, Gorki FS, Bruijns SCM, Gallagher A, Kalay H, Ambrosini M, Molenaar D, Van den Bossche J, van Vliet SJ, van Kooyk Y. α2-3 Sialic acid binding and uptake by human monocyte-derived dendritic cells alters metabolism and cytokine release and initiates tolerizing T cell programming. IMMUNOTHERAPY ADVANCES 2021; 1:ltab012. [PMID: 35919745 PMCID: PMC9327115 DOI: 10.1093/immadv/ltab012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/03/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Summary
Dendritic cells (DCs) are key in the initiation of the adaptive T cell responses to tailor adequate immunity that corresponds to the type of pathogen encountered. Oppositely, DCs control the resolution phase of inflammation and are able to induce tolerance after receiving anti-inflammatory cytokines or upon encounter of self-associated molecular patterns, such as α2-3 linked sialic acid (α2-3sia).
Objective: We here investigated whether α2-3sia, that bind immune inhibitory Siglec receptors, would alter signaling and reprogramming of LPS-stimulated human monocyte-derived DCs (moDCs).
Methods and Results: Transcriptomic analysis of moDCs stimulated with α2-3sia-conjugated dendrimers revealed differentially expressed genes related to metabolic pathways, cytokines, and T cell differentiation. An increase in genes involved in ATPase regulator activity, oxidoreductase activity, and glycogen metabolic processes was detected. Metabolic extracellular flux analysis confirmed a more energetic moDC phenotype upon α2-3sia binding as evidenced by an increase in both glycolysis and mitochondrial oxidative phosphorylation. TH1 differentiation promoting genes IFNL and IL27, were significantly downregulated in the presence of α2-3sia. Functional assays confirmed that α2-3sia binding to moDCs induced phosphorylation of Siglec-9, reduced production of inflammatory cytokines IL-12 and IL-6, and increased IL-10. Surprisingly, α2-3sia-differentiated moDCs promoted FoxP3+CD25+/-CD127- regulatory T cell differentiation and decreased FoxP3-CD25-CD127- effector T cell proliferation.
Conclusions: In conclusion, we demonstrate that α2-3sia binding to moDCs, phosphorylates Siglec-9, alters metabolic pathways, cytokine signaling, and T cell differentiation processes in moDCs and promotes regulatory T cells. The sialic acid-Siglec axis on DCs is therefore, a novel target to induce tolerance and to explore for immunotherapeutic interventions aimed to restore inflammatory processes.
Collapse
Affiliation(s)
- Joyce Lübbers
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Rui-Jún Eveline Li
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Friederike S Gorki
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sven C M Bruijns
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Ashley Gallagher
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Hakan Kalay
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Martino Ambrosini
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Douwe Molenaar
- Systems Bioinformatics, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Jan Van den Bossche
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Wißfeld J, Nozaki I, Mathews M, Raschka T, Ebeling C, Hornung V, Brüstle O, Neumann H. Deletion of Alzheimer's disease-associated CD33 results in an inflammatory human microglia phenotype. Glia 2021; 69:1393-1412. [PMID: 33539598 DOI: 10.1002/glia.23968] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies demonstrated that polymorphisms in the CD33/sialic acid-binding immunoglobulin-like lectin 3 gene are associated with late-onset Alzheimer's disease (AD). CD33 is expressed on myeloid immune cells and mediates inhibitory signaling through protein tyrosine phosphatases, but the exact function of CD33 in microglia is still unknown. Here, we analyzed CD33 knockout human THP1 macrophages and human induced pluripotent stem cell-derived microglia for immunoreceptor tyrosine-based activation motif pathway activation, cytokine transcription, phagocytosis, and phagocytosis-associated oxidative burst. Transcriptome analysis of the macrophage lines showed that knockout of CD33 as well as knockdown of the CD33 signaling-associated protein tyrosine phosphatase, nonreceptor type 6 (PTPN6) led to constitutive activation of inflammation-related pathways. Moreover, deletion of CD33 or expression of Exon 2-deleted CD33 (CD33ΔE2 /CD33m) led to increased phosphorylation of the kinases spleen tyrosine kinase (SYK) and extracellular signal-regulated kinase 1 and 2 (ERK1 and 2). Transcript analysis by quantitative real-time polymerase chain reaction confirmed increased levels of interleukin (IL) 1B, IL8, and IL10 after knockout of CD33 in macrophages and microglia. In addition, upregulation of the gene transcripts of the AD-associated phosphatase INPP5D was observed after knockout of CD33. Functional analysis of macrophages and microglia showed that phagocytosis of aggregated amyloid-β1-42 and bacterial particles were increased after knockout of CD33 or CD33ΔE2 expression and knockdown of PTPN6. Furthermore, the phagocytic oxidative burst during uptake of amyloid-β1-42 or bacterial particles was increased after CD33 knockout but not in CD33ΔE2 -expressing microglia. In summary, deletion of CD33 or expression of CD33ΔE2 in human macrophages and microglia resulted in putative beneficial phagocytosis of amyloid β1-42 , but potentially detrimental oxidative burst and inflammation, which was absent in CD33ΔE2 -expressing microglia.
Collapse
Affiliation(s)
- Jannis Wißfeld
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Ichiro Nozaki
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Mona Mathews
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany
| | - Tamara Raschka
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
| | - Christian Ebeling
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany.,LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
35
|
Rosenstock P, Kaufmann T. Sialic Acids and Their Influence on Human NK Cell Function. Cells 2021; 10:263. [PMID: 33572710 PMCID: PMC7911748 DOI: 10.3390/cells10020263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function.
Collapse
Affiliation(s)
- Philip Rosenstock
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany;
| | | |
Collapse
|
36
|
Delaveris CS, Chiu SH, Riley NM, Bertozzi CR. Modulation of immune cell reactivity with cis-binding Siglec agonists. Proc Natl Acad Sci U S A 2021; 118:e2012408118. [PMID: 33431669 PMCID: PMC7826350 DOI: 10.1073/pnas.2012408118] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammatory pathologies caused by phagocytes lead to numerous debilitating conditions, including chronic pain and blindness due to age-related macular degeneration. Many members of the sialic acid-binding immunoglobulin-like lectin (Siglec) family are immunoinhibitory receptors whose agonism is an attractive approach for antiinflammatory therapy. Here, we show that synthetic lipid-conjugated glycopolypeptides can insert into cell membranes and engage Siglec receptors in cis, leading to inhibitory signaling. Specifically, we construct a cis-binding agonist of Siglec-9 and show that it modulates mitogen-activated protein kinase (MAPK) signaling in reporter cell lines, immortalized macrophage and microglial cell lines, and primary human macrophages. Thus, these cis-binding agonists of Siglecs present a method for therapeutic suppression of immune cell reactivity.
Collapse
Affiliation(s)
- Corleone S Delaveris
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Shannon H Chiu
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305;
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| |
Collapse
|
37
|
Strategies for Mast Cell Inhibition in Food Allergy. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:719-731. [PMID: 33380934 PMCID: PMC7757070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mast cells are tissue resident allergic effector cells that drive IgE-mediated food allergies. There are several steps leading to mast cell activation in the context of allergic disease that can be targeted to prevent mast cell activation and degranulation. These include blocking IgE-FcεRI crosslinking and type 2 cytokine receptor activation; modulating cell-surface neural chemical receptors; stabilizing mast cell membranes to prevent co-localization of activating receptors; impeding intracellular signaling; and engaging cell surface inhibitory receptors. This review highlights several ITIM-containing inhibitory mast cell surface receptors that could serve as pharmaceutical targets to prevent mast cell activation and degranulation in the context of food allergy. When activated, these ITIM-containing inhibitory receptors recruit the phosphatases SHP-1, SHP-2, and/or SHIP to dephosphorylate the tyrosine kinases responsible for activation signals downstream of the IgE-FcεRI complex. We describe several members of the Ig and Ig-like inhibitory receptor and C-type lectin inhibitory receptor superfamilies. Fundamental studies exploring the behavior of these receptors within the context of experimental food allergy models are needed. A deeper understanding of how these receptors modulate mast cell-driven food allergic responses will shape future strategies to harness these inhibitory receptors to treat food allergy.
Collapse
|
38
|
Beatson R, Graham R, Grundland Freile F, Cozzetto D, Kannambath S, Pfeifer E, Woodman N, Owen J, Nuamah R, Mandel U, Pinder S, Gillett C, Noll T, Bouybayoune I, Taylor-Papadimitriou J, Burchell JM. Cancer-associated hypersialylated MUC1 drives the differentiation of human monocytes into macrophages with a pathogenic phenotype. Commun Biol 2020; 3:644. [PMID: 33149188 PMCID: PMC7642421 DOI: 10.1038/s42003-020-01359-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
The tumour microenvironment plays a crucial role in the growth and progression of cancer, and the presence of tumour-associated macrophages (TAMs) is associated with poor prognosis. Recent studies have demonstrated that TAMs display transcriptomic, phenotypic, functional and geographical diversity. Here we show that a sialylated tumour-associated glycoform of the mucin MUC1, MUC1-ST, through the engagement of Siglec-9 can specifically and independently induce the differentiation of monocytes into TAMs with a unique phenotype that to the best of our knowledge has not previously been described. These TAMs can recruit and prolong the lifespan of neutrophils, inhibit the function of T cells, degrade basement membrane allowing for invasion, are inefficient at phagocytosis, and can induce plasma clotting. This macrophage phenotype is enriched in the stroma at the edge of breast cancer nests and their presence is associated with poor prognosis in breast cancer patients. Beatson et al. show that a sialylated tumour-associated glycoform of the mucin MUC1 induces the differentiation of monocytes into tumour-associated macrophages. These macrophages are found in breast cancer stroma and their presence is associated with poor prognosis.
Collapse
Affiliation(s)
- Richard Beatson
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK.
| | - Rosalind Graham
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Fabio Grundland Freile
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Domenico Cozzetto
- Translational Bioinformatics, Genomics Facility, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Shichina Kannambath
- Genomics Facility, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Ester Pfeifer
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Natalie Woodman
- KHP Tissue Bank, Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Julie Owen
- KHP Tissue Bank, Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Rosamond Nuamah
- Genomics Facility, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Ulla Mandel
- Copenhagen Centre for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200N, Copenhagen, Denmark
| | - Sarah Pinder
- Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Cheryl Gillett
- KHP Tissue Bank, Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Thomas Noll
- Cell Culture Technology, Faculty of Technology & CeBiTec, Bielefeld University, P.O. Box 10 01 31, 33501, Bielefeld, Germany
| | - Ihssane Bouybayoune
- Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Joyce Taylor-Papadimitriou
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Joy M Burchell
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
39
|
Movsisyan LD, Macauley MS. Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation. Org Biomol Chem 2020; 18:5784-5797. [PMID: 32756649 DOI: 10.1039/d0ob01116a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are transmembrane proteins of the immunoglobulin (Ig) superfamily predominantly expressed on the cells of our immune system. Siglecs recognize sialic acid via their terminal V-set domain. In mammals, sialic acid-terminated glycolipids and glycoproteins are the ligands of Siglecs, and the monomeric affinity of Siglecs for their sialic acid-containing ligands is weak. Significant efforts have been devoted toward the development of chemically modified sialoside ligands to target Siglecs with higher affinity and selectivity. In this review we discuss natural and synthetic sialoside ligands for each human Siglec, emphasizing the ligand binding determinants uncovered from recent advances in protein structural information. Potential therapeutic applications of these ligands are also discussed.
Collapse
Affiliation(s)
- Levon D Movsisyan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
40
|
Liao H, Klaus C, Neumann H. Control of Innate Immunity by Sialic Acids in the Nervous Tissue. Int J Mol Sci 2020; 21:ijms21155494. [PMID: 32752058 PMCID: PMC7432451 DOI: 10.3390/ijms21155494] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sialic acids (Sias) are the most abundant terminal sugar residues of glycoproteins and glycolipids on the surface of mammalian cells. The nervous tissue is the organ with the highest expression level of Sias. The ‘sialylation’ of glycoconjugates is performed via sialyltransferases, whereas ‘desialylation’ is done by sialidases or is a possible consequence of oxidative damage. Sialic acid residues on the neural cell surfaces inhibit complement and microglial activation, as well as phagocytosis of the underlying structures, via binding to (i) complement factor H (CFH) or (ii) sialic acid-binding immunoglobulin-like lectin (SIGLEC) receptors. In contrast, activated microglial cells show sialidase activity that desialylates both microglia and neurons, and further stimulates innate immunity via microglia and complement activation. The desialylation conveys neurons to become susceptible to phagocytosis, as well as triggers a microglial phagocytosis-associated oxidative burst and inflammation. Dysfunctions of the ‘Sia–SIGLEC’ and/or ‘Sia–complement’ axes often lead to neurological diseases. Thus, Sias on glycoconjugates of the intact glycocalyx and its desialylation are major regulators of neuroinflammation.
Collapse
Affiliation(s)
| | | | - Harald Neumann
- Correspondence: ; Tel.: +49-228-6885-500; Fax: +49-228-6885-501
| |
Collapse
|
41
|
Buffone A, Weaver VM. Don't sugarcoat it: How glycocalyx composition influences cancer progression. J Cell Biol 2020; 219:133536. [PMID: 31874115 PMCID: PMC7039198 DOI: 10.1083/jcb.201910070] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Buffone and Weaver discuss how the structure of the backbones and glycans of the tumor glycocalyx governs cell–matrix interactions and directs cancer progression. Mechanical interactions between tumors and the extracellular matrix (ECM) of the surrounding tissues have profound effects on a wide variety of cellular functions. An underappreciated mediator of tumor–ECM interactions is the glycocalyx, the sugar-decorated proteins and lipids that act as a buffer between the tumor and the ECM, which in turn mediates all cell-tissue mechanics. Importantly, tumors have an increase in the density of the glycocalyx, which in turn increases the tension of the cell membrane, alters tissue mechanics, and drives a more cancerous phenotype. In this review, we describe the basic components of the glycocalyx and the glycan moieties implicated in cancer. Next, we examine the important role the glycocalyx plays in driving tension-mediated cancer cell signaling through a self-enforcing feedback loop that expands the glycocalyx and furthers cancer progression. Finally, we discuss current tools used to edit the composition of the glycocalyx and the future challenges in leveraging these tools into a novel tractable approach to treat cancer.
Collapse
Affiliation(s)
- Alexander Buffone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA.,Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA.,Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
42
|
Vazquez J, Chavarria M, Lopez GE, Felder MA, Kapur A, Romo Chavez A, Karst N, Barroilhet L, Patankar MS, Stanic AK. Identification of unique clusters of T, dendritic, and innate lymphoid cells in the peritoneal fluid of ovarian cancer patients. Am J Reprod Immunol 2020; 84:e13284. [PMID: 32524661 DOI: 10.1111/aji.13284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/09/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
PROBLEM We hypothesize that activated peritoneal immune cells can be redirected to target ovarian tumors. Here, we obtain fundamental knowledge of the peritoneal immune environment through deep immunophenotyping of T cells, dendritic cells (DC), and innate lymphoid cells (ILC) of ovarian cancer patients. METHOD OF STUDY T cells, DC, and ILC from ascites of ovarian cancer patients (n = 15) and peripheral blood of post-menopausal healthy donors (n = 6) were immunophenotyped on a BD Fortessa cytometer using three panels-each composed of 16 antibodies. The data were analyzed manually and by t-SNE/DensVM. CA125 levels were obtained from patient charts. RESULTS We observed decreased CD3+ T cells and a higher proportion of activated CD4+ and effector memory CD4+ /CD8+ T cells, plasmacytoid DC, CD1c+ and CD141+ myeloid DC and CD56Hi NK cells in ascites. t-SNE/DensVM identified eight T cell, 17 DC, and 17 ILC clusters that were unique in the ascites compared to controls. Hierarchical clustering of cell frequency distinctly segregated the T-cell and ILC clusters from controls. Increased CA125 levels were associated with decreased CD8+ /CD45RA+ /CD45RO- /CCR7- T cells. CONCLUSION The identified immune clusters serve as the basis for interrogation of the peritoneal immune environment and the development of novel immunologic modalities against ovarian cancer.
Collapse
Affiliation(s)
- Jessica Vazquez
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Melina Chavarria
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gladys E Lopez
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mildred A Felder
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Arvinder Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Antonio Romo Chavez
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan Karst
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lisa Barroilhet
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
43
|
Kang EA, Soh H, Park S, Lee HJ, Im JP, Kim JS. Soluble Siglec-9 alleviates intestinal inflammation through inhibition of the NF-κB pathway. Int Immunopharmacol 2020; 86:106695. [PMID: 32570035 DOI: 10.1016/j.intimp.2020.106695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a superfamily of immunoreceptors recognizing sialic acid. Siglec-9 has been shown to mediate inhibitory immune responses. The aim of this study was to evaluate the effect of a soluble form of Siglec-9 (sSiglec-9) on inflamed intestinal epithelial cells (IECs), murine macrophages, and experimental murine colitis models. METHODS COLO 205 human IECs and RAW 264.7 murine macrophages were pretreated with sSiglec-9 and then stimulated with TNF-α or lipopolysaccharides, respectively. The expression of proinflammatory cytokines such as IL-8 and TNF-α was measured using real-time RT-PCR and ELISA. To demonstrate the inhibitory effects of sSiglec-9 on the NF-κB pathway, IκBα phosphorylation/degradation was determined using western blotting and the DNA binding activity of NF-κB was evaluated using an electrophoretic mobility shift assay. Further, mouse models with dextran sulfate sodium-induced acute colitis and piroxicam-induced IL-10-/- chronic colitis were generated. Intraperitoneal injections of sSiglec-9 were performed, and body weight, colon length, and histopathologic findings were examined. RESULTS sSiglec-9 suppressed IL-8 and TNF-α gene expression in stimulated COLO 205 and RAW 264.7 cells. sSiglec-9 inhibited IκBα phosphorylation/degradation and the DNA binding activity of NF-κB. sSiglec-9 injections significantly ameliorated weight loss, colon shortening, and the severity of intestinal inflammation in acute and chronic colitis mouse models. CONCLUSION sSiglec-9 may inhibit NF-κB activation in IECs and macrophages and alleviate experimental colitis in mice, suggesting that sSiglec-9 is a potential therapeutic agent for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Eun Ae Kang
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hosim Soh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seona Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Gastroenterology, Mediplex Sejong Hospital, Incheon 21080, Republic of Korea
| | - Hyun Jung Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
44
|
The Roles of Siglec7 and Siglec9 on Natural Killer Cells in Virus Infection and Tumour Progression. J Immunol Res 2020; 2020:6243819. [PMID: 32322597 PMCID: PMC7165337 DOI: 10.1155/2020/6243819] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
The function of natural killer (NK) cells, defending against virus infection and tumour progression, is regulated by multiple activating and inhibiting receptors expressed on NK cells, among which sialic acid-bind immunoglobulin-like lectins (Siglecs) act as a vital inhibitory group. Previous studies have shown that Siglec7 and Siglec9 are expressed on NK cells, which negatively regulate the function of NK cells and modulate the immune response through the interaction of sialic acid-containing ligands. Siglec7 and Siglec9 are very similar in distribution, gene encoding, protein sequences, ligand affinity, and functions in regulating the immune system against virus and cancers, but differences still exist between them. In this review, we aim to discuss the similarities and differences between Siglec7 and Siglec9 and analyze their functions in virus infection and tumour progression in order to develop better anti-viral and anti-tumor immunotherapy in the future.
Collapse
|
45
|
Rossi GR, Trindade ES, Souza-Fonseca-Guimaraes F. Tumor Microenvironment-Associated Extracellular Matrix Components Regulate NK Cell Function. Front Immunol 2020; 11:73. [PMID: 32063906 PMCID: PMC7000552 DOI: 10.3389/fimmu.2020.00073] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment (TME) is composed of multiple infiltrating host cells (e.g., endothelial cells, fibroblasts, lymphocytes, and myeloid cells), extracellular matrix, and various secreted or cell membrane-presented molecules. Group 1 innate lymphoid cells (ILCs), which includes natural killer (NK) cells and ILC1, contribute to protecting the host against cancer and infection. Both subsets are able to quickly produce cytokines such as interferon gamma (IFN-γ), chemokines, and other growth factors in response to activating signals. However, the TME provides many molecules that can prevent the potential effector function of these cells, thereby protecting the tumor. For example, TME-derived tumor growth factor (TGF)-β and associated members of the superfamily downregulate NK cell cytotoxicity, cytokine secretion, metabolism, proliferation, and induce effector NK cells to upregulate ILC1-like characteristics. In concert, a family of carbohydrate-binding proteins called galectins, which can be produced by different cells composing the TME, can downregulate NK cell function. Matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase (ADAM) are also enzymes that can remodel the extracellular matrix and shred receptors from the tumor cell surface, impairing the activation of NK cells and leading to less effective effector functions. Gaining a better understanding of the characteristics of the TME and its associated factors, such as infiltrating cells and extracellular matrix, could lead to tailoring of new personalized immunotherapy approaches. This review provides an overview of our current knowledge on the impact of the TME and extracellular matrix-associated components on differentiation, impairment, and function of NK cells.
Collapse
Affiliation(s)
| | - Edvaldo S Trindade
- Cellular Biology Department, Federal University of Paraná, Curitiba, Brazil
| | | |
Collapse
|
46
|
Galli SJ. Recruiting CD33 on mast cells to inhibit IgE-mediated mast cell-dependent anaphylaxis. J Clin Invest 2019; 129:955-957. [PMID: 30776022 DOI: 10.1172/jci127100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IgE-mediated activation of mast cells is a hallmark of an anaphylactic reaction to allergen. In this issue of the JCI, Duan et al. describe an approach for suppressing IgE-dependent mast cell activation, thereby suppressing anaphylaxis. Specifically, the authors show that delivery of liposomes containing both the specific antigen recognized by the mast cell-bound IgE and a high-affinity glycan ligand of the inhibitory receptor CD33 (CD33L) to targeted mast cells inhibits antigen-induced, FcεRI-dependent spleen tyrosine kinase (Syk) phosphorylation and downstream protein tyrosine kinase (PTK) phosphorylation, Ca++ flux, and β-hexosaminidase release (i.e., degranulation). However, this strategy only worked if both the antigen (reactive with the mast cell-bound IgE) and CD33L were on the same liposome. This approach promises to rapidly reduce IgE-dependent mast cell activation in response to challenge with offending allergens.
Collapse
|
47
|
Duan S, Koziol-White CJ, Jester WF, Smith SA, Nycholat CM, Macauley MS, Panettieri RA, Paulson JC. CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J Clin Invest 2019; 129:1387-1401. [PMID: 30645205 DOI: 10.1172/jci125456] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
Allergen immunotherapy for patients with allergies begins with weekly escalating doses of allergen under medical supervision to monitor and treat IgE mast cell-mediated anaphylaxis. There is currently no treatment to safely desensitize mast cells to enable robust allergen immunotherapy with therapeutic levels of allergen. Here, we demonstrated that liposomal nanoparticles bearing an allergen and a high-affinity glycan ligand of the inhibitory receptor CD33 profoundly suppressed IgE-mediated activation of mast cells, prevented anaphylaxis in Tg mice with mast cells expressing human CD33, and desensitized mice to subsequent allergen challenge for several days. We showed that high levels of CD33 were consistently expressed on human skin mast cells and that the antigenic liposomes with CD33 ligand prevented IgE-mediated bronchoconstriction in slices of human lung. The results demonstrated the potential of exploiting CD33 to desensitize mast cells to provide a therapeutic window for administering allergen immunotherapy without triggering anaphylaxis.
Collapse
Affiliation(s)
- Shiteng Duan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Cynthia J Koziol-White
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Hampshire, USA
| | - William F Jester
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Hampshire, USA
| | - Scott A Smith
- Department of Medicine, and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Corwin M Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Matthew S Macauley
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Hampshire, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
48
|
Lübbers J, Rodríguez E, van Kooyk Y. Modulation of Immune Tolerance via Siglec-Sialic Acid Interactions. Front Immunol 2018; 9:2807. [PMID: 30581432 PMCID: PMC6293876 DOI: 10.3389/fimmu.2018.02807] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
One of the key features of the immune system is its extraordinary capacity to discriminate between self and non-self and to respond accordingly. Several molecular interactions allow the induction of acquired immune responses when a foreign antigen is recognized, while others regulate the resolution of inflammation, or the induction of tolerance to self-antigens. Post-translational signatures, such as glycans that are part of proteins (glycoproteins) and lipids (glycolipids) of host cells or pathogens, are increasingly appreciated as key molecules in regulating immunity vs. tolerance. Glycans are sensed by glycan binding receptors expressed on immune cells, such as C-type lectin receptors (CLRs) and Sialic acid binding immunoglobulin type lectins (Siglecs), that respond to specific glycan signatures by triggering tolerogenic or immunogenic signaling pathways. Glycan signatures present on healthy tissue, inflamed and malignant tissue or pathogens provide signals for “self” or “non-self” recognition. In this review we will focus on sialic acids that serve as “self” molecular pattern ligands for Siglecs. We will emphasize on the function of Siglec-expressing mononuclear phagocytes as sensors for sialic acids in tissue homeostasis and describe how the sialic acid-Siglec axis is exploited by tumors and pathogens for the induction of immune tolerance. Furthermore, we highlight how the sialic acid-Siglec axis can be utilized for clinical applications to induce or inhibit immune tolerance.
Collapse
Affiliation(s)
- Joyce Lübbers
- Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ernesto Rodríguez
- Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
49
|
Yu Y, Blokhuis BRJ, Diks MAP, Keshavarzian A, Garssen J, Redegeld FA. Functional Inhibitory Siglec-6 Is Upregulated in Human Colorectal Cancer-Associated Mast Cells. Front Immunol 2018; 9:2138. [PMID: 30294327 PMCID: PMC6159741 DOI: 10.3389/fimmu.2018.02138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Mast cells (MC) accumulate in colorectal cancer (CRC) and the relationship between MC density and cancer progression has been well recognized. MC can be either pro-tumor or anti-tumor players, depending on the local factors present in the tumor microenvironment. Upon malignant transformation, cancer cells express high levels of sialic acids on cell membrane or by secretion. Siglecs are a family of immunoglobulin-like receptors that bind sialic acids and each subtype has a distinct pattern of expression on immune cells. Among them, Siglec-6 is expressed predominately by MC. However, the function of Siglec-6 in MC is largely unexplored and whether it is expressed by CRC-associated MC remains unknown. In this study, we explored the function of Siglec-6 in CD34+ derived human MC. MC activation was initiated by IgE crosslinking with or without preincubation of anti-Siglec-6 Ab. Siglec-6 engagement significantly attenuated IgE-dependent MC degranulation as measured by ß-hexosaminidase release and CD63 expression. Interestingly, the production of GM-CSF was also shown reduced upon Siglec-6 engagement. To mimic the milieu of CRC, we cultured primary human MC with colon cancer cells or under hypoxia and Siglec-6 was then measured on these conditioned MC. Coculture with colon cancer cells (HT29 and Caco2) induced upregulation of Siglec-6 on MC. In comparison, normal colon cells (CCD841) had no effect. Also, a time-dependent increase of Siglec-6 by MC was observed under 1% O2. Immunohistochemistry of CRC tissue showed expression of Siglec-6 by MC in submucosa. Lectin immunochemistry revealed the presence of actual ligands for Siglec-6 in human CRC tissues. Together, our findings illustrate that Siglec-6 is a functionally inhibitory receptor on MC and suggest that Siglec-6 expression may be relevant for MC activity in the tumor microenvironment of CRC.
Collapse
MESH Headings
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD34/immunology
- Antigens, CD34/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Biopsy
- Caco-2 Cells
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Coculture Techniques
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/pathology
- Gene Expression Regulation, Neoplastic/immunology
- HT29 Cells
- Humans
- Lectins/immunology
- Lectins/metabolism
- Mast Cells/immunology
- Mast Cells/metabolism
- Primary Cell Culture
- Tumor Microenvironment/immunology
- Up-Regulation
Collapse
Affiliation(s)
- Yingxin Yu
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Bart R. J. Blokhuis
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Mara A. P. Diks
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Nutricia Research, Utrecht, Netherlands
| | - Frank A. Redegeld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
50
|
Intravenous immunoglobulin replacement treatment reduces in vivo elastase secretion in patients with common variable immune disorders. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 17:103-111. [PMID: 30036181 DOI: 10.2450/2018.0043-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intravenous immunoglobulin (IVIg) treatment partially replaces antibody defects and modulates innate and adaptive immune cells in patients with primary antibody deficiencies. MATERIALS AND METHODS This study was focused on the evaluation of the effects of in vivo IVIg administration on neutrophils from patients with common variable immune disorders (CVID). We examined polymorphonuclear neutrophil (PMN) phagocytosis, PMN oxidative burst, release of neutrophil elastase, serum level of interleukin-8 and PMN expression of CXCR1, CD11c and CD66b. RESULTS CVID patients on chronic IVIg treatment had reduced elastase release, but normal expression of CXCR1, CD66b and CD11c receptors on PMN, normal phagocytic ability and normal secretion of interleukin-8. We found that IVIg infusions rapidly reduced the serum level of interleukin-8, the expression of its receptor, CXCR1, and the release of neutrophil elastase, suggesting that IVIg exert a dampening effect on neutrophil activity. In contrast, IVIg infusions did not alter neutrophil phagocytosis or the expression of the other receptors analysed. DISCUSSION These findings add further information regarding the anti-inflammatory role of immunoglobulins and suggest additional benefits in keeping with recent attempts to use new therapies targeting neutrophil inflammation.
Collapse
|