1
|
Hada A, Xiao Z. Ligands for Intestinal Intraepithelial T Lymphocytes in Health and Disease. Pathogens 2025; 14:109. [PMID: 40005486 PMCID: PMC11858322 DOI: 10.3390/pathogens14020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The intestinal tract is constantly exposed to a diverse mixture of luminal antigens, such as those derived from commensals, dietary substances, and potential pathogens. It also serves as a primary route of entry for pathogens. At the forefront of this intestinal defense is a single layer of epithelial cells that forms a critical barrier between the gastrointestinal (GI) lumen and the underlying host tissue. The intestinal intraepithelial T lymphocytes (T-IELs), one of the most abundant lymphocyte populations in the body, play a crucial role in actively surveilling and maintaining the integrity of this barrier by tolerating non-harmful factors such as commensal microbiota and dietary components, promoting epithelial turnover and renewal while also defending against pathogens. This immune balance is maintained through interactions between ligands in the GI microenvironment and receptors on T-IELs. This review provides a detailed examination of the ligands present in the intestinal epithelia and the corresponding receptors expressed on T-IELs, including T cell receptors (TCRs) and non-TCRs, as well as how these ligand-receptor interactions influence T-IEL functions under both steady-state and pathological conditions. By understanding these engagements, we aim to shed light on the mechanisms that govern T-IEL activities within the GI microenvironment. This knowledge may help in developing strategies to target GI ligands and modulate T-IEL receptor expression, offering precise approaches for treating intestinal disorders.
Collapse
Affiliation(s)
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
2
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
3
|
Abstract
The intestinal epithelium, which segregates the highly stimulatory lumen from the underlying tissue, harbors one of the largest lymphocyte populations in the body, intestinal intraepithelial lymphocytes (IELs). IELs must balance tolerance, resistance, and tissue protection to maintain epithelial homeostasis and barrier integrity. This review discusses the ontogeny, environmental imprinting, T cell receptor (TCR) repertoire, and function of intestinal IELs. Despite distinct developmental pathways, IEL subsets share core traits including an epithelium-adapted profile, innate-like properties, cytotoxic potential, and limited TCR diversity. IELs also receive important developmental and functional cues through interactions with epithelial cells, microbiota, and dietary components. The restricted TCR diversity of IELs suggests that a limited set of intestinal antigens drives IEL responses, with potential functional consequences. Finally, IELs play a key role in promoting homeostatic immunity and epithelial barrier integrity but can become pathogenic upon dysregulation. Therefore, IELs represent intriguing but underexamined therapeutic targets for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Current affiliation: Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
4
|
Harfmann M, Schröder T, Głów D, Jung M, Uhde A, Kröger N, Horn S, Riecken K, Fehse B, Ayuk FA. CD45-Directed CAR-T Cells with CD45 Knockout Efficiently Kill Myeloid Leukemia and Lymphoma Cells In Vitro Even after Extended Culture. Cancers (Basel) 2024; 16:334. [PMID: 38254824 PMCID: PMC10814116 DOI: 10.3390/cancers16020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND CAR-T cell therapy has shown impressive results and is now part of standard-of-care treatment of B-lineage malignancies, whereas the treatment of myeloid diseases has been limited by the lack of suitable targets. CD45 is expressed on almost all types of blood cells including myeloid leukemia cells, but not on non-hematopoietic tissue, making it a potential target for CAR-directed therapy. Because of its high expression on T and NK cells, fratricide is expected to hinder CD45CAR-mediated therapy. Due to its important roles in effector cell activation, signal transduction and cytotoxicity, CD45 knockout aimed at preventing fratricide in T and NK cells has been expected to lead to considerable functional impairment. METHODS CD45 knockout was established on T and NK cell lines using CRISPR/Cas9-RNPs and electroporation, and the successful protocol was transferred to primary T cells. A combined protocol was developed enabling CD45 knockout and retroviral transduction with a third-generation CAR targeting CD45 or CD19. The functionality of CD45ko effector cells, CD45ko/CD45CAR-T and CD45ko/CD19CAR-T cells was studied using proliferation as well as short- and long-term cytotoxicity assays. RESULTS As expected, the introduction of a CD45-CAR into T cells resulted in potent fratricide that can be avoided by CD45 knockout. Unexpectedly, the latter had no negative impact on T- and NK-cell proliferation in vitro. Moreover, CD45ko/CD45CAR-T cells showed potent cytotoxicity against CD45-expressing AML and lymphoma cell lines in short-term and long-term co-culture assays. A pronounced cytotoxicity of CD45ko/CD45CAR-T cells was maintained even after four weeks of culture. In a further setup, we confirmed the conserved functionality of CD45ko cells using a CD19-CAR. Again, the proliferation and cytotoxicity of CD45ko/CD19CAR-T cells showed no differences from those of their CD45-positive counterparts in vitro. CONCLUSIONS We report the efficient production of highly and durably active CD45ko/CAR-T cells. CD45 knockout did not impair the functionality of CAR-T cells in vitro, irrespective of the target antigen. If their activity can be confirmed in vivo, CD45ko/CD45CAR-T cells might, for example, be useful as part of conditioning regimens prior to stem cell transplantation.
Collapse
Affiliation(s)
- Maraike Harfmann
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Tanja Schröder
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Dawid Głów
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Maximilian Jung
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Almut Uhde
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany (A.U.)
| | - Francis A. Ayuk
- Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|
5
|
Tan G, Spillane KM, Maher J. The Role and Regulation of the NKG2D/NKG2D Ligand System in Cancer. BIOLOGY 2023; 12:1079. [PMID: 37626965 PMCID: PMC10452210 DOI: 10.3390/biology12081079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The family of human NKG2D ligands (NKG2DL) consists of eight stress-induced molecules. Over 80% of human cancers express these ligands on the surface of tumour cells and/or associated stromal elements. In mice, NKG2D deficiency increases susceptibility to some types of cancer, implicating this system in immune surveillance for malignancy. However, NKG2DL can also be shed, released via exosomes and trapped intracellularly, leading to immunosuppressive effects. Moreover, NKG2D can enhance chronic inflammatory processes which themselves can increase cancer risk and progression. Indeed, tumours commonly deploy a range of countermeasures that can neutralise or even corrupt this surveillance system, tipping the balance away from immune control towards tumour progression. Consequently, the prognostic impact of NKG2DL expression in human cancer is variable. In this review, we consider the underlying biology and regulation of the NKG2D/NKG2DL system and its expression and role in a range of cancer types. We also consider the opportunities for pharmacological modulation of NKG2DL expression while cautioning that such interventions need to be carefully calibrated according to the biology of the specific cancer type.
Collapse
Affiliation(s)
- Ge Tan
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
| | | | - John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
6
|
Meng F, Zhang S, Xie J, Zhou Y, Wu Q, Lu B, Zhou S, Zhao X, Li Y. Leveraging CD16 fusion receptors to remodel the immune response for enhancing anti-tumor immunotherapy in iPSC-derived NK cells. J Hematol Oncol 2023; 16:62. [PMID: 37316891 DOI: 10.1186/s13045-023-01455-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The cytotoxicity of NK cells is largely dependent on IgG Fc receptor CD16a, which mediates antibody-dependent cell-mediated cytotoxicity (ADCC). The high-affinity and non-cleavable CD16 (hnCD16) is developed and demonstrated a multi-tumor killing potential. However, the hnCD16 receptor activates a single CD16 signal and provides limited tumor suppression. How to exploit the properties of hnCD16 and incorporate NK cell-specific activation domains is a promising development direction to further improve the anti-tumor activity of NK cells. METHODS To expand the applications of hnCD16-mediated ADCC for NK cell-based immunotherapy in cancer, we designed the hnCD16 Fusion Receptor (FR) constructs with the ectodomain of hnCD16 fused with NK cell-specific activating domains in the cytoplasm. FR constructs were transduced into CD16-negative NK cell line and human iPSC-derived NK (iNK) cells and effective FR constructs were screened. The up-regulation of immune activation- and cytokine-releasing-related pathways in FR-transduced NK cells was screened and validated by RNA sequencing and multiplex cytokines release assay, respectively. The tumor-killing efficiency was tested in vitro and in vivo via co-culture with tumor cell lines and xenograft mice-bearing human B-cell lymphoma, respectively. RESULTS We screened the most effective combination to kill B cell lymphoma, which was fused with the ectodomain of hnCD16a, NK-specific co-stimulators (2B4 and DAP10) and CD3ζ in cytoplasmic domains. The screened construct showed excellent cytotoxicity effects and sharp multiple cytokines releasing both in the NK cell line and iNK cells. The transcriptomic analysis and validation assays of hnCD16- and hnCD16FR-transduced NK cells showed that hnCD16FR transduction remodeled immune-related transcriptome in NK cells, where significant upregulation of genes related to cytotoxicity, high cytokines releasing, induced tumor cell apoptosis, and ADCC in comparison with hnCD16 transduction were highlighted. In vivo xenograft studies demonstrated that a single low-dose regimen of engineered hnCD16FR iPSC-derived NK cells co-administered with anti-CD20 mAb treatment mediated potent activity and significantly improved survival. CONCLUSION We developed a novel hnCD16FR construct that exhibits more potent cytotoxicity than reported hnCD16, which is a promising approach to treat malignancies with improved ADCC properties. We also offer a rationale for NK activation domains that remodel immune response to enhance CD16 signaling in NK cells.
Collapse
Affiliation(s)
- Fanyi Meng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, China
| | - Siqi Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, China
| | - Juan Xie
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qingling Wu
- Guangzhou Regenverse Therapeutics Co.,Ltd., Guangzhou, China
| | - Binyan Lu
- Guangzhou Regenverse Therapeutics Co.,Ltd., Guangzhou, China
| | - Shixin Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, China.
| | - Xiangyu Zhao
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China.
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, China.
| |
Collapse
|
7
|
Mace EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol 2023; 151:371-385. [PMID: 36195172 PMCID: PMC9905317 DOI: 10.1016/j.jaci.2022.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human natural killer (NK) cells are innate lymphoid cells that mediate important effector functions in the control of viral infection and malignancy. Their ability to distinguish "self" from "nonself" and lyse virally infected and tumorigenic cells through germline-encoded receptors makes them important players in maintaining human health and a powerful tool for immunotherapeutic applications and fighting disease. This review introduces our current understanding of NK cell biology, including key facets of NK cell differentiation and the acquisition and execution of NK cell effector function. Further, it addresses the clinical relevance of NK cells in both primary immunodeficiency and immunotherapy. It is intended to provide an up-to-date and comprehensive overview of this important and interesting innate immune effector cell subset.
Collapse
Affiliation(s)
- Emily M Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York.
| |
Collapse
|
8
|
Anang V, Singh A, Kottarath SK, Verma C. Receptors of immune cells mediates recognition for tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:219-267. [PMID: 36631194 DOI: 10.1016/bs.pmbts.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last few decades, the immune system has been steered toward eradication of cancer cells with the help of cancer immunotherapy. T cells, B cells, monocytes/macrophages, dendritic cells, T-reg cells, and natural killer (NK) cells are some of the numerous immune cell types that play a significant part in cancer cell detection and reduction of inflammation, and the antitumor response. Briefly stated, chimeric antigen receptors, adoptive transfer and immune checkpoint modulators are currently the subjects of research focus for successful immunotherapy-based treatments for a variety of cancers. This chapter discusses ongoing investigations on the mechanisms and recent developments by which receptors of immune cells especially that of lymphocytes and monocytes/macrophages regulate the detection of immune system leading to malignancies. We will also be looking into the treatment strategies based on these mechanisms.
Collapse
Affiliation(s)
- Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sarat Kumar Kottarath
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Huston, TX, United States.
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
9
|
Shemesh A, Pickering H, Roybal KT, Lanier LL. Differential IL-12 signaling induces human natural killer cell activating receptor-mediated ligand-specific expansion. J Exp Med 2022; 219:e20212434. [PMID: 35758909 PMCID: PMC9240274 DOI: 10.1084/jem.20212434] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
IL-12 is an essential cytokine involved in the generation of memory or memory-like NK cells. Mouse cytomegalovirus infection triggers NK receptor-induced, ligand-specific IL-12-dependent NK cell expansion, yet specific IL-12 stimulation ex vivo leading to NK cell proliferation and expansion is not established. Here, we show that IL-12 alone can sustain human primary NK cell survival without providing IL-2 or IL-15 but was insufficient to promote human NK cell proliferation. IL-12 signaling analysis revealed STAT5 phosphorylation and weak mTOR activation, which was enhanced by activating NK receptor upregulation and crosslinking leading to STAT5-dependent, rapamycin-sensitive, or TGFβ-sensitive NK cell IL-12-dependent expansion, independently of IL-12 receptor upregulation. Prolonged IL-2 culture did not impair IL-12-dependent ligand-specific NK cell expansion. These findings demonstrate that activating NK receptor stimulation promotes differential IL-12 signaling, leading to human NK cell expansion, and suggest adopting strategies to provide IL-12 signaling in vivo for ligand-specific IL-2-primed NK cell-based therapies.
Collapse
Affiliation(s)
- Avishai Shemesh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
- Gladstone University of California, San Francisco Institute for Genetic Immunology, San Francisco, CA
- University of California, San Francisco Cell Design Institute, San Francisco, CA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| |
Collapse
|
10
|
Yu T, Yu SK, Xiang Y, Lu KH, Sun M. Revolution of CAR Engineering For Next-Generation Immunotherapy In Solid Tumors. Front Immunol 2022; 13:936496. [PMID: 35903099 PMCID: PMC9315443 DOI: 10.3389/fimmu.2022.936496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 01/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have enormous potentials for clinical therapies. The CAR-T therapy has been approved for treating hematological malignancies. However, their application is limited in solid tumors owing to antigen loss and mutation, physical barriers, and an immunosuppressive tumor microenvironment. To overcome the challenges of CAR-T, increasing efforts are put into developing CAR-T to expand its applied ranges. Varied receptors are utilized for recognizing tumor-associated antigens and relieving immunosuppression. Emerging co-stimulatory signaling is employed for CAR-T activation. Furthermore, other immune cells such as NK cells and macrophages have manifested potential for delivering CAR. Hence, we collected and summarized the last advancements of CAR engineering from three aspects, namely, the ectodomains, endogenous domains, and immune cells, aiming to inspire the design of next-generation adoptive immunotherapy for treating solid tumors.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shao-kun Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai-Hua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kai-Hua Lu, ; Ming Sun,
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Kai-Hua Lu, ; Ming Sun,
| |
Collapse
|
11
|
Jones AB, Rocco A, Lamb LS, Friedman GK, Hjelmeland AB. Regulation of NKG2D Stress Ligands and Its Relevance in Cancer Progression. Cancers (Basel) 2022; 14:2339. [PMID: 35565467 PMCID: PMC9105350 DOI: 10.3390/cancers14092339] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Under cellular distress, multiple facets of normal homeostatic signaling are altered or disrupted. In the context of the immune landscape, external and internal stressors normally promote the expression of natural killer group 2 member D (NKG2D) ligands that allow for the targeted recognition and killing of cells by NKG2D receptor-bearing effector populations. The presence or absence of NKG2D ligands can heavily influence disease progression and impact the accessibility of immunotherapy options. In cancer, tumor cells are known to have distinct regulatory mechanisms for NKG2D ligands that are directly associated with tumor progression and maintenance. Therefore, understanding the regulation of NKG2D ligands in cancer will allow for targeted therapeutic endeavors aimed at exploiting the stress response pathway. In this review, we summarize the current understanding of regulatory mechanisms controlling the induction and repression of NKG2D ligands in cancer. Additionally, we highlight current therapeutic endeavors targeting NKG2D ligand expression and offer our perspective on considerations to further enhance the field of NKG2D ligand biology.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Abbey Rocco
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | | | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
12
|
Raven N, Klaassen M, Madsen T, Thomas F, Hamede R, Ujvari B. Transmissible cancer influences immune gene expression in an endangered marsupial, the Tasmanian devil (Sarcophilus harrisii). Mol Ecol 2022; 31:2293-2311. [PMID: 35202488 PMCID: PMC9310804 DOI: 10.1111/mec.16408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Understanding the effects of wildlife diseases on populations requires insight into local environmental conditions, host defence mechanisms, host life‐history trade‐offs, pathogen population dynamics, and their interactions. The survival of Tasmanian devils (Sarcophilus harrisii) is challenged by a novel, fitness limiting pathogen, Tasmanian devil facial tumour disease (DFTD), a clonally transmissible, contagious cancer. In order to understand the devils’ capacity to respond to DFTD, it is crucial to gain information on factors influencing the devils’ immune system. By using RT‐qPCR, we investigated how DFTD infection in association with intrinsic (sex and age) and environmental (season) factors influences the expression of 10 immune genes in Tasmanian devil blood. Our study showed that the expression of immune genes (both innate and adaptive) differed across seasons, a pattern that was altered when infected with DFTD. The expression of immunogbulins IgE and IgM:IgG showed downregulation in colder months in DFTD infected animals. We also observed strong positive association between the expression of an innate immune gene, CD16, and DFTD infection. Our results demonstrate that sampling across seasons, age groups and environmental conditions are beneficial when deciphering the complex ecoevolutionary interactions of not only conventional host‐parasite systems, but also of host and diseases with high mortality rates, such as transmissible cancers.
Collapse
Affiliation(s)
- N Raven
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - M Klaassen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - T Madsen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - F Thomas
- CREEC/CANECEV (CREES), Montpellier, France.,MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - R Hamede
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia.,School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - B Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| |
Collapse
|
13
|
Alves E, McLeish E, Blancafort P, Coudert JD, Gaudieri S. Manipulating the NKG2D Receptor-Ligand Axis Using CRISPR: Novel Technologies for Improved Host Immunity. Front Immunol 2021; 12:712722. [PMID: 34456921 PMCID: PMC8397441 DOI: 10.3389/fimmu.2021.712722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
The activating immune receptor natural killer group member D (NKG2D) and its cognate ligands represent a fundamental surveillance system of cellular distress, damage or transformation. Signaling through the NKG2D receptor-ligand axis is critical for early detection of viral infection or oncogenic transformation and the presence of functional NKG2D ligands (NKG2D-L) is associated with tumor rejection and viral clearance. Many viruses and tumors have developed mechanisms to evade NKG2D recognition via transcriptional, post-transcriptional or post-translational interference with NKG2D-L, supporting the concept that circumventing immune evasion of the NKG2D receptor-ligand axis may be an attractive therapeutic avenue for antiviral therapy or cancer immunotherapy. To date, the complexity of the NKG2D receptor-ligand axis and the lack of specificity of current NKG2D-targeting therapies has not allowed for the precise manipulation required to optimally harness NKG2D-mediated immunity. However, with the discovery of clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins, novel opportunities have arisen in the realm of locus-specific gene editing and regulation. Here, we give a brief overview of the NKG2D receptor-ligand axis in humans and discuss the levels at which NKG2D-L are regulated and dysregulated during viral infection and oncogenesis. Moreover, we explore the potential for CRISPR-based technologies to provide novel therapeutic avenues to improve and maximize NKG2D-mediated immunity.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Emily McLeish
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Pilar Blancafort
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA, Australia
- The Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jerome D. Coudert
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
14
|
NKG2D Natural Killer Cell Receptor-A Short Description and Potential Clinical Applications. Cells 2021; 10:cells10061420. [PMID: 34200375 PMCID: PMC8229527 DOI: 10.3390/cells10061420] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Natural Killer (NK) cells are natural cytotoxic, effector cells of the innate immune system. They can recognize transformed or infected cells. NK cells are armed with a set of activating and inhibitory receptors which are able to bind to their ligands on target cells. The right balance between expression and activation of those receptors is fundamental for the proper functionality of NK cells. One of the best known activating receptors is NKG2D, a member of the CD94/NKG2 family. Due to a specific NKG2D binding with its eight different ligands, which are overexpressed in transformed, infected and stressed cells, NK cells are able to recognize and attack their targets. The NKG2D receptor has an enormous significance in various, autoimmune diseases, viral and bacterial infections as well as for transplantation outcomes and complications. This review focuses on the NKG2D receptor, the mechanism of its action, clinical relevance of its gene polymorphisms and a potential application in various clinical settings.
Collapse
|
15
|
Lee GH, An HJ, Kim TH, Kim G, Park KS, Park H, Lee TH, Kwon AY. Clinical Impact of Natural Killer Group 2D Receptor Expression and That of Its Ligand in Ovarian Carcinomas: A Retrospective Study. Yonsei Med J 2021; 62:288-297. [PMID: 33779082 PMCID: PMC8007423 DOI: 10.3349/ymj.2021.62.4.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Natural killer (NK) cells are innate immune cells with antitumor activity. NKG2D is the most important activating receptor expressed on the NK cell surface; this receptor binds to the ligands MICA/B and ULBPs to activate NK cells. The current study aimed to evaluate the expression of NKG2D by NK cells, and to the evaluate expression of its ligands in ovarian carcinomas; it also examined the clinical relevance of NK receptor/ligand expression by analyzing the relationship between expression, clinicopathological parameters, and prognosis. MATERIALS AND METHODS Formalin-fixed paraffin-embedded archival ovarian high-grade serous carcinoma (HGSC, n=79) tissue samples were used for tissue microarray analysis. The expressions of NK cell markers (CD56 and NKG2D) and NKG2D ligands (MICA/B, ULBP1, ULBP3, and ULBP2/5/6) in carcinoma tissues were evaluated by immunohistochemical staining, and the association between these results and clinical prognostic parameters was analyzed statistically. RESULTS ULBP1 was highly expressed in 51 cases (64.6%), and ULBP2/5/6 was highly expressed in 56 cases (70.9%) of HGSC. High expression of ULBP1 and ULBP2/5/6 was significantly associated with lower recurrence of HGSC, whereas high expression of ULBP3 was significantly associated with higher recurrence. Multivariate Cox regression analysis revealed that high expression of ULBP1 was associated with increased overall survival and a decreased hazard ratio (0.150, p=0.044), suggesting that it is an independent predictor of better survival. CONCLUSION High expression of ULBP1 predicts a better prognosis for HGSC, suggesting that ULBP1 expression could be a novel prognostic indicator in this subset of carcinomas.
Collapse
Affiliation(s)
- Gee Hoon Lee
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Korea
| | - Hee Jung An
- Institute for Clinical Research, CHA University School of Medicine, Seongnam, Korea
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Tae Hoen Kim
- Institute for Clinical Research, CHA University School of Medicine, Seongnam, Korea
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Gwangil Kim
- Institute for Clinical Research, CHA University School of Medicine, Seongnam, Korea
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Kyung Soon Park
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Korea
| | - Hyun Park
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Tae Ho Lee
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Korea
| | - Ah Young Kwon
- Institute for Clinical Research, CHA University School of Medicine, Seongnam, Korea
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.
| |
Collapse
|
16
|
Denaeghel S, De Pelsmaeker S, Van Waesberghe C, Favoreel HW. Pseudorabies Virus Infection Causes Downregulation of Ligands for the Activating NK Cell Receptor NKG2D. Viruses 2021; 13:266. [PMID: 33572245 PMCID: PMC7915010 DOI: 10.3390/v13020266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Herpesviruses display a complex and carefully balanced interaction with important players in the antiviral immune response of immunocompetent natural hosts, including natural killer (NK) cells. With regard to NK cells, this delicate balance is illustrated on the one hand by severe herpesvirus disease reported in individuals with NK cell deficiencies and on the other hand by several NK cell evasion strategies described for herpesviruses. In the current study, we report that porcine cells infected with the porcine alphaherpesvirus pseudorabies virus (PRV) display a rapid and progressive downregulation of ligands for the major activating NK cell receptor NKG2D. This downregulation consists both of a downregulation of NKG2D ligands that are already expressed on the cell surface of an infected cell and an inhibition of cell surface expression of newly expressed NKG2D ligands. Flow cytometry and RT-qPCR assays showed that PRV infection results in downregulation of the porcine NKG2D ligand pULBP1 from the cell surface and a very substantial suppression of mRNA expression of pULBP1 and of another potential NKG2D ligand, pMIC2. Furthermore, PRV-induced NKG2D ligand downregulation was found to be independent of late viral gene expression. In conclusion, we report that PRV infection of host cells results in a very pronounced downregulation of ligands for the activating NK cell receptor NKG2D, representing an additional NK evasion strategy of PRV.
Collapse
Affiliation(s)
| | | | | | - Herman W. Favoreel
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (S.D.); (S.D.P.); (C.V.W.)
| |
Collapse
|
17
|
Sugawara S, Manickam C, Reeves K. TRIGGERED: could refocused cell signaling be key to natural killer cell-based HIV immunotherapeutics? AIDS 2021; 35:165-176. [PMID: 33116071 PMCID: PMC7775286 DOI: 10.1097/qad.0000000000002743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Natural killer (NK) cells are one of the critical innate immune effector cells that directly kill tumors and virus-infected cells, and modulate other immune cells including dendritic cells, CD4+ and CD8+ T cells. Signals from activating and inhibitory surface receptors orchestrate the regulatory and cytotoxic functions of NK cells. Although a number of surface receptors are involved, multiple signaling molecules are shared so that NK cell responses are synergistically regulated. Many pathogens and tumors evade NK cell responses by targeting NK cell signaling. Particularly in HIV/simian immunodeficiency virus (SIV) infection, the NK cell repertoire is diminished by changes in subsets of NK cells, expression of activating and inhibitory receptors, and intracellular signaling molecules. However, in-depth studies on intracellular signaling in NK cells in HIV/SIV infections remain limited. Checkpoint blockade and chimeric antigen receptor (CAR)-NK cells have demonstrated enhanced NK cell activities against tumors and viral infections. In addition, targeting intracellular signaling molecules by small molecules could also improve NK cell responses towards HIV/SIV infection in vivo. Therefore, further understanding of NK cell signaling including identification of key signaling molecules is crucial to maximize the efficacy of NK cell-based treatments. Herein, we review the current state of the literature and outline potential future avenues where optimized NK cells could be utilized in HIV-1 cure strategies and other immunotherapeutics in PLWH.
Collapse
Affiliation(s)
- Sho Sugawara
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA
| |
Collapse
|
18
|
Wu Z, Zhang H, Wu M, Peng G, He Y, Wan N, Zeng Y. Targeting the NKG2D/NKG2D-L axis in acute myeloid leukemia. Biomed Pharmacother 2021; 137:111299. [PMID: 33508619 DOI: 10.1016/j.biopha.2021.111299] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) receptor is a crucial activating receptor in the immune recognition and eradication of abnormal cells by natural killer (NK) cells, and T lymphocytes. NKG2D can transmit activation signals and activate the immune system by recognizing the NKG2D ligands (NKG2D-L) on acute myeloid leukemia (AML) cells. Downregulation of NKG2D-L in AML can circumvent resistance to chemotherapy and immune recognition. Considering this effect, the exploration of targeting the NKG2D/NKG2D-L axis is considered to have tremendous potential for the discovery of novel biomacromolecule antibodies and pharmacological modulators in AML. This review was to outline the impact of NKG2D/NKG2D-L axis on intrinsic immunosurveillance and the development of AML. Furthermore, the NKG2D/NKG2D-L axis related modulators and progress in preclinical and clinical trials was also to be reviewed.
Collapse
Affiliation(s)
- Zhenhui Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Huan Zhang
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Min Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Guorui Peng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Yanqiu He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Na Wan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yingjian Zeng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
19
|
Arima N. Dual effects of natural killer cells in transplantation for leukemia. Crit Rev Oncol Hematol 2020; 158:103206. [PMID: 33388454 DOI: 10.1016/j.critrevonc.2020.103206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells were originally considered to belong to the innate immune system to play a protective role against tumor cells and viral infections. In human, they can recognize self and non-self HLA class 1 as their ligand. So, analyzing the outcomes of allogeneic hematopoietic stem cell transplantation is a good opportunity to know the antitumor effects and regulatory effects of NK cells through HLA class 1 matching and mismatching of donor and recipient. In this review, I looked back on the main analysis results of the past transplants, summarized our reports consisting of many cases in a single ethnic, and showed that NK cells might work oppositely depending on the type of leukemia. New treatment strategies based on these concepts may offer individualized treatment options and ultimately increase offer the possibility of a cure for patients with leukemia.
Collapse
Affiliation(s)
- Nobuyoshi Arima
- Department of Hematology, Shinko Hospital, 1-4-47, Wakihamacho, Chuo-ku, Kobe, 651-0072, Hyogo, Japan.
| |
Collapse
|
20
|
T Cells Expressing NKG2D CAR with a DAP12 Signaling Domain Stimulate Lower Cytokine Production While Effective in Tumor Eradication. Mol Ther 2020; 29:75-85. [PMID: 32956627 DOI: 10.1016/j.ymthe.2020.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/08/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cytokine-related toxicity associated with the use of highly active chimeric antigen receptor T cells (CAR-T cells) is a significant clinical problem. By fusing the natural killer group 2D (NKG2D) ectodomain to 4-1BB and the DAP12 cytoplasmic domain containing only one immunoreceptor tyrosine-based activation motif, we have developed a 2nd-generation (2nd-Gen) NKG2D CAR for stable expression in human T cells. When compared to T cells modified with NKG2D CAR containing the commonly used CD3ζ activation domain, T cells expressing the NKG2D-DAP12 CAR stimulated lower level release of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin (IL)-2 during tumor cell lysis and their proliferative activity was lower upon repeated antigen stimulation, although no difference between the two CARs was observed in mediating in vitro tumor cell lysis. In tumor-bearing NSG mice, both types of CAR-T cells displayed similar anti-tumor activity, being able to completely eradicate established solid tumor xenografts. However, treatment with the NKG2D-CD3ζ CAR-T cells led to the death of most mice from xenogeneic graft versus host disease starting 30 days post-CAR-T cell injection, which was associated with a higher level of cytokine release, whereas all the mice treated with the NKG2D-DAP12 CAR-T cells survived well. Thus, the incorporation of the DAP12 activation domain in a CAR design may possibly provide a potential clinical advantage in mitigating the risk of cytokine release syndrome (CRS).
Collapse
|
21
|
Obajdin J, Davies DM, Maher J. Engineering of chimeric natural killer cell receptors to develop precision adoptive immunotherapies for cancer. Clin Exp Immunol 2020; 202:11-27. [PMID: 32544282 PMCID: PMC7488126 DOI: 10.1111/cei.13478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are innate immune effectors which play a crucial role in recognizing and eliminating virally infected and cancerous cells. They effectively distinguish between healthy and distressed self through the integration of signals delivered by germline‐encoded activating and inhibitory cell surface receptors. The frequent up‐regulation of stress markers on genetically unstable cancer cells has prompted the development of novel immunotherapies that exploit such innate receptors. One prominent example entails the development of chimeric antigen receptors (CAR) that detect cell surface ligands bound by NK receptors, coupling this engagement to the delivery of tailored immune activating signals. Here, we review strategies to engineer CARs in which specificity is conferred by natural killer group 2D (NKG2D) or other NK receptor types. Multiple preclinical studies have demonstrated the remarkable ability of chimeric NK receptor‐targeted T cells and NK cells to effectively and specifically eliminate cancer cells and to reject established tumour burdens. Importantly, such systems act not only acutely but, in some cases, they also incite immunological memory. Moreover, CARs targeted with the NKG2D ligand binding domain have also been shown to disrupt the tumour microenvironment, through the targeting of suppressive T regulatory cells, myeloid‐derived suppressor cells and tumour vasculature. Collectively, these findings have led to the initiation of early‐phase clinical trials evaluating both autologous and allogeneic NKG2D‐targeted CAR T cells in the haematological and solid tumour settings.
Collapse
Affiliation(s)
- J Obajdin
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - D M Davies
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - J Maher
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, UK.,Department of Immunology, Eastbourne Hospital, Eastbourne, UK.,Leucid Bio Ltd, Guy's Hospital, London, UK
| |
Collapse
|
22
|
Meza Guzman LG, Keating N, Nicholson SE. Natural Killer Cells: Tumor Surveillance and Signaling. Cancers (Basel) 2020; 12:cancers12040952. [PMID: 32290478 PMCID: PMC7226588 DOI: 10.3390/cancers12040952] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in cancer immunotherapy due to their innate ability to detect and kill tumorigenic cells. The decision to kill is determined by the expression of a myriad of activating and inhibitory receptors on the NK cell surface. Cell-to-cell engagement results in either self-tolerance or a cytotoxic response, governed by a fine balance between the signaling cascades downstream of the activating and inhibitory receptors. To evade a cytotoxic immune response, tumor cells can modulate the surface expression of receptor ligands and additionally, alter the conditions in the tumor microenvironment (TME), tilting the scales toward a suppressed cytotoxic NK response. To fully harness the killing power of NK cells for clinical benefit, we need to understand what defines the threshold for activation and what is required to break tolerance. This review will focus on the intracellular signaling pathways activated or suppressed in NK cells and the roles signaling intermediates play during an NK cytotoxic response.
Collapse
Affiliation(s)
- Lizeth G. Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| |
Collapse
|
23
|
Connolly A, Gagnon E. Electrostatic interactions: From immune receptor assembly to signaling. Immunol Rev 2019; 291:26-43. [DOI: 10.1111/imr.12769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Audrey Connolly
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| | - Etienne Gagnon
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| |
Collapse
|
24
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
25
|
NK cell recognition of hematopoietic cells by SLAM-SAP families. Cell Mol Immunol 2019; 16:452-459. [PMID: 30911116 DOI: 10.1038/s41423-019-0222-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
The signaling lymphocyte activation molecule (SLAM) family of receptors (SFRs) are ubiquitously expressed on immune cells, and they regulate multiple immune events by recruiting SH2 (Src homology 2) domain-containing SAP family adapters, including SAP and its homologs, Ewing's sarcoma-associated transcript 2 (EAT-2) and EAT-2 related transducer (ERT). In human patients with X-linked lymphoproliferative (XLP) disease, which is caused by SAP mutations, SFRs alternatively bind other inhibitory SH2 domain-containing molecules to suppress immune cell activation and development. NK cells express multiple SFRs and all SAP family adapters. In recent decades, SFRs have been found to be critical for enhancing NK cell activation in response to abnormal hematopoietic cells in SAP-family-intact NK cells; however, SFRs might suppress NK cell activation in SAP-family-deficient mice or patients with XLP1. In this paper, we review how these two distinct SFR signaling pathways orchestrate NK cell activation and inhibition and highlight the importance of SFR regulation of NK cell biology and their physiological status and pathological relevance in patients with XLP1.
Collapse
|
26
|
Abstract
Natural killer (NK) cells have evolved to complement T and B cells in host defense against pathogens and cancer. They recognize infected cells and tumors using a sophisticated array of activating, costimulatory, and inhibitory receptors that are expressed on NK cell subsets to create extensive functional diversity. NK cells can be targeted to kill with exquisite antigen specificity by antibody-dependent cellular cytotoxicity. NK and T cells share many of the costimulatory and inhibitory receptors that are currently under evaluation in the clinic for cancer immunotherapy. As with T cells, genetic engineering is being employed to modify NK cells to specifically target them to tumors and to enhance their effector functions. As the selective pressures exerted by immunotherapies to augment CD8+T cell responses may result in loss of MHC class I, NK cells may provide an important fail-safe to eliminate these tumors by their capacity to eliminate tumors that are “missing self.”
Collapse
Affiliation(s)
- Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
- The Parker Institute for Cancer Immunotherapy, San Francisco, California 94143, USA
| |
Collapse
|
27
|
Lazarova M, Steinle A. The NKG2D axis: an emerging target in cancer immunotherapy. Expert Opin Ther Targets 2019; 23:281-294. [DOI: 10.1080/14728222.2019.1580693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Mayassi T, Jabri B. Human intraepithelial lymphocytes. Mucosal Immunol 2018; 11:1281-1289. [PMID: 29674648 PMCID: PMC6178824 DOI: 10.1038/s41385-018-0016-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 02/04/2023]
Abstract
The location of intraepithelial lymphocytes (IEL) between epithelial cells, their effector memory, cytolytic and inflammatory phenotype positions them to kill infected epithelial cells and protect the intestine against pathogens. Human TCRαβ+CD8αβ+ IEL have the dual capacity to recognize modified self via natural killer (NK) receptors (autoreactivity) as well as foreign antigen via the T cell receptor (TCR), which is accomplished in mouse by two cell subsets, the naturally occurring TCRαβ+CD8αα+ and adaptively induced TCRαβ+CD8αβ+ IEL subsets, respectively. The private/oligoclonal nature of the TCR repertoire of both human and mouse IEL suggests local environmental factors dictate the specificity of IEL responses. The line between sensing of foreign antigens and autoreactivity is blurred for IEL in celiac disease, where recognition of stress ligands by induced activating NK receptors in conjunction with inflammatory signals such as IL-15 can result in low-affinity TCR/non-cognate antigen and NK receptor/stress ligand interactions triggering destruction of intestinal epithelial cells.
Collapse
Affiliation(s)
- Toufic Mayassi
- Department of Medicine, University of Chicago, Chicago, USA
- Committee on Immunology, University of Chicago, Chicago, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, USA.
- Committee on Immunology, University of Chicago, Chicago, USA.
- Department of Pathology, University of Chicago, Chicago, USA.
- Department of Pediatrics, University of Chicago, Chicago, USA.
| |
Collapse
|
29
|
Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol 2018; 9:1869. [PMID: 30150991 PMCID: PMC6099181 DOI: 10.3389/fimmu.2018.01869] [Citation(s) in RCA: 737] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are the predominant innate lymphocyte subsets that mediate anti-tumor and anti-viral responses, and therefore possess promising clinical utilization. NK cells do not express polymorphic clonotypic receptors and utilize inhibitory receptors (killer immunoglobulin-like receptor and Ly49) to develop, mature, and recognize “self” from “non-self.” The essential roles of common gamma cytokines such as interleukin (IL)-2, IL-7, and IL-15 in the commitment and development of NK cells are well established. However, the critical functions of pro-inflammatory cytokines IL-12, IL-18, IL-27, and IL-35 in the transcriptional-priming of NK cells are only starting to emerge. Recent studies have highlighted multiple shared characteristics between NK cells the adaptive immune lymphocytes. NK cells utilize unique signaling pathways that offer exclusive ways to genetically manipulate to improve their effector functions. Here, we summarize the recent advances made in the understanding of how NK cells develop, mature, and their potential translational use in the clinic.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Excellence in Prostate Cancer, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
30
|
Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell 2018; 23:181-192.e5. [PMID: 30082067 PMCID: PMC6084450 DOI: 10.1016/j.stem.2018.06.002] [Citation(s) in RCA: 675] [Impact Index Per Article: 96.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/13/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022]
Abstract
Chimeric antigen receptors (CARs) significantly enhance the anti-tumor activity of immune effector cells. Although most studies have evaluated CAR expression in T cells, here we evaluate different CAR constructs that improve natural killer (NK) cell-mediated killing. We identified a CAR containing the transmembrane domain of NKG2D, the 2B4 co-stimulatory domain, and the CD3ζ signaling domain to mediate strong antigen-specific NK cell signaling. NK cells derived from human iPSCs that express this CAR (NK-CAR-iPSC-NK cells) have a typical NK cell phenotype and demonstrate improved anti-tumor activity compared with T-CAR-expressing iPSC-derived NK cells (T-CAR-iPSC-NK cells) and non-CAR-expressing cells. In an ovarian cancer xenograft model, NK-CAR-iPSC-NK cells significantly inhibited tumor growth and prolonged survival compared with PB-NK cells, iPSC-NK cells, or T-CAR-iPSC-NK cells. Additionally, NK-CAR-iPSC-NK cells demonstrate in vivo activity similar to that of T-CAR-expressing T cells, although with less toxicity. These NK-CAR-iPSC-NK cells now provide standardized, targeted "off-the-shelf" lymphocytes for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Li
- Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - David L Hermanson
- Department of Medicine, University of Minnesota Minneapolis, Minneapolis, MN 55455, USA
| | - Branden S Moriarity
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
31
|
Silva-Santos B, Strid J. Working in "NK Mode": Natural Killer Group 2 Member D and Natural Cytotoxicity Receptors in Stress-Surveillance by γδ T Cells. Front Immunol 2018; 9:851. [PMID: 29740448 PMCID: PMC5928212 DOI: 10.3389/fimmu.2018.00851] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 01/26/2023] Open
Abstract
Natural killer cell receptors (NKRs) are germline-encoded transmembrane proteins that regulate the activation and homeostasis of NK cells as well as other lymphocytes. For γδ T cells, NKRs play critical roles in discriminating stressed (transformed or infected) cells from their healthy counterparts, as proposed in the “lymphoid stress-surveillance” theory. Whereas the main physiologic role is seemingly fulfilled by natural killer group 2 member D, constitutively expressed by γδ T cells, enhancement of their therapeutic potential may rely on natural cytotoxicity receptors (NCRs), like NKp30 or NKp44, that can be induced selectively on human Vδ1+ T cells. Here, we review the contributions of NCRs, NKG2D, and their multiple ligands, to γδ T cell biology in mouse and human.
Collapse
Affiliation(s)
- Bruno Silva-Santos
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Jessica Strid
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Wensveen FM, Jelenčić V, Polić B. NKG2D: A Master Regulator of Immune Cell Responsiveness. Front Immunol 2018; 9:441. [PMID: 29568297 PMCID: PMC5852076 DOI: 10.3389/fimmu.2018.00441] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/19/2018] [Indexed: 01/11/2023] Open
Abstract
NKG2D is an activating receptor that is mostly expressed on cells of the cytotoxic arm of the immune system. Ligands of NKG2D are normally of low abundance, but can be induced in virtually any cell in response to stressors, such as infection and oncogenic transformation. Engagement of NKG2D stimulates the production of cytokines and cytotoxic molecules and traditionally this receptor is, therefore, viewed as a molecule that mediates direct responses against cellular threats. However, accumulating evidence indicates that this classical view is too narrow. During NK cell development, engagement of NKG2D has a long-term impact on the expression of NK cell receptors and their responsiveness to extracellular cues, suggesting a role in NK cell education. Upon chronic NKG2D engagement, both NK and T cells show reduced responsiveness of a number of activating receptors, demonstrating a role of NKG2D in induction of peripheral tolerance. The image that emerges is that NKG2D can mediate both inhibitory and activating signals, which depends on the intensity and duration of ligand engagement. In this review, we provide an overview of the impact of NKG2D stimulation during hematopoietic development and during acute and chronic stimulation in the periphery on responsiveness of other receptors than NKG2D. We propose that NKG2D interprets the context of the immunological environment through detection of cellular cues and in response sets the appropriate activation threshold for a large number of immune receptors. This perspective is of particular importance for future therapies that aim to exploit NKG2D signaling to fight tumors or infection.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
33
|
Dukovska D, Fernández-Soto D, Valés-Gómez M, Reyburn HT. NKG2H-Expressing T Cells Negatively Regulate Immune Responses. Front Immunol 2018; 9:390. [PMID: 29545803 PMCID: PMC5837990 DOI: 10.3389/fimmu.2018.00390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/12/2018] [Indexed: 01/03/2023] Open
Abstract
The biology and function of NKG2H receptor, unlike the better characterized members of the NKG2 family NKG2A, NKG2C, and NKG2D, remains largely unclear. Here, we show that NKG2H is able to associate with the signaling adapter molecules DAP12 and DAP10 suggesting that this receptor can signal for cell activation. Using a recently described NKG2H-specific monoclonal antibody (mAb), we have characterized the expression and function of lymphocytes that express this receptor. NKG2H is expressed at the cell surface of a small percentage of peripheral blood mononuclear cell (PBMC) and is found more frequently on T cells, rather than NK cells. Moreover, although NKG2H is likely to trigger activation, co-cross-linking of this receptor with an NKG2H-specific mAb led to decreased T cell activation and proliferation in polyclonal PBMC cultures stimulated by anti-CD3 mAbs. This negative regulatory activity was seen only after cross-linking with NKG2H, but not NKG2A- or NKG2C-specific monoclonal antibodies. The mechanism underlying this negative effect is as yet unclear, but did not depend on the release of soluble factors or recognition of MHC class I molecules. These observations raise the intriguing possibility that NKG2H may be a novel marker for T cells able to negatively regulate T cell responses.
Collapse
Affiliation(s)
- Daniela Dukovska
- Department of Immunology and Oncology, National Centre for Biotechnology, CSIC, Madrid, Spain
| | - Daniel Fernández-Soto
- Department of Immunology and Oncology, National Centre for Biotechnology, CSIC, Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, CSIC, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology, CSIC, Madrid, Spain
| |
Collapse
|
34
|
Trembath AP, Markiewicz MA. More than Decoration: Roles for Natural Killer Group 2 Member D Ligand Expression by Immune Cells. Front Immunol 2018; 9:231. [PMID: 29483917 PMCID: PMC5816059 DOI: 10.3389/fimmu.2018.00231] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/26/2018] [Indexed: 01/16/2023] Open
Abstract
The activating immune receptor natural killer group 2 member D (NKG2D), which is expressed by natural killer cells and T cell subsets, recognizes a number of ligands expressed by "stressed" or damaged cells. NKG2D has been extensively studied for its role in tumor immunosurveillance and antiviral immunity. To date, the majority of studies have focused on NKG2D-mediated killing of target cells expressing NKG2D ligands. However, with a number of reports describing expression of NKG2D ligands by cells that are not generally considered stressed, it is becoming clear that some healthy cells also express NKG2D ligands. Expression of these ligands by cells within the skin, intestinal epithelium, and the immune system suggests other immune functions for NKG2D ligand expression in addition to its canonical role as a "kill me" signal. How NKG2D ligands function in this capacity is just now starting to be unraveled. In this review, we examine the expression of NKG2D ligands by immune cells and discuss current literature describing the effects of this expression on immunity and immune regulation.
Collapse
Affiliation(s)
- Andrew P. Trembath
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, MO, United States
| | - Mary A. Markiewicz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, MO, United States
| |
Collapse
|
35
|
Lee JC, Lee KM, Ahn YO, Suh B, Heo DS. A possible mechanism of impaired NK cytotoxicity in cancer patients: Down-regulation of DAP10 by TGF-β1. TUMORI JOURNAL 2018; 97:350-7. [DOI: 10.1177/030089161109700316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and background Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. However, the molecular mechanism of immunosuppression by TGF-β1 is not yet clarified. Methods IL-2-activated human NK cells were cultured with TGF-β1. Protein levels of NKG2D and DAP10 were examined by FACS or immunoblot analyses. Real-time RT-PCR was performed to quantify the transcription levels. MAPK inhibitors were used to investigate intracellular signaling. Results TGF-β1 down-regulated total and surface NKG2D, which was partially dependent on transcriptional regulation. TGF-β1 treatment of human NK cells resulted in significant changes in both transcriptional and translational levels of DAP10. Moreover, treatment with bafilomycin A1 or folimycin restored total NKG2D levels in TGF-β1-treated NK cells. The impaired NKG2D down-modulation by TGF-β1 was not associated with activation of the MAPK signaling pathway. Conclusions TGF-β1 down-modulates surface NKG2D expression by controlling the transcriptional and translational levels of DAP10.
Collapse
Affiliation(s)
- June-Chul Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Division of Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Yong-Oon Ahn
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Beomseok Suh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Lee HR, Son CH, Koh EK, Bae JH, Kang CD, Yang K, Park YS. Expansion of cytotoxic natural killer cells using irradiated autologous peripheral blood mononuclear cells and anti-CD16 antibody. Sci Rep 2017; 7:11075. [PMID: 28894091 PMCID: PMC5593981 DOI: 10.1038/s41598-017-09259-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are considered a promising strategy for cancer treatment. Various methods for large-scale NK cell expansion have been developed, but they should guarantee that no viable cells are mixed with the expanded NK cells because most methods involve cancer cells or genetically modified cells as feeder cells. We used an anti-CD16 monoclonal antibody (mAb) and irradiated autologous peripheral blood mononuclear cells (PBMCs) (IrAPs) to provide a suitable environment (activating receptor-ligand interactions) for the NK cell expansion. This method more potently expanded NK cells, and the final product was composed of highly purified NK cells with lesser T-cell contamination. The expanded NK cells showed greater upregulation of various activation receptors, CD107a, and secreted larger amounts of interferon gamma. IrAPs expressed NKG2D ligands and CD48, and coengagement of CD16 with NKG2D and 2B4 caused potent NK cell activation and proliferation. The expanded NK cells were cytotoxic toward various cancer cells in vitro and in vivo. Moreover, irradiation or a chemotherapeutic drug further enhanced this antitumor effect. Therefore, we developed an effective in vitro culture method for large-scale expansion of highly purified cytotoxic NK cells with potent antitumor activity using IrAPs instead of cancer cell-based feeder cells.
Collapse
Affiliation(s)
- Hong-Rae Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.,Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Cheol-Hun Son
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea
| | - Eun-Kyoung Koh
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea
| | - Jae-Ho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Kwangmo Yang
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033, South Korea.
| |
Collapse
|
37
|
Reconstitution of a ligand-binding competent murine NKp30 receptor. Immunogenetics 2017; 70:185-194. [PMID: 28782088 DOI: 10.1007/s00251-017-1025-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
The activating natural cytotoxicity receptors on natural killer (NK) cells play a fundamental role in immunosurveillance of infections and cancer. Phylogenetic analyses showed that NKp30 is highly conserved in almost all jawed vertebrates and thus, represents one of the most ancient NK cell receptors. However, in contrast to other higher vertebrates, NKp30 is only a pseudogene in mouse, which contains two premature stop codons. To decipher the evolutionary role and biological function of NKp30 in mouse, we removed these premature stop codons and expressed the putative mouse NKp30 (mNKp30) protein as soluble Fc fusion construct and as full-length receptor on A5-GFP reporter cells. Interestingly, even though both NKp30 variants were expressed, maturation and targeting to the plasma membrane were impaired. Previous studies implicated that N-linked glycosylation is crucial for plasma membrane targeting and ligand binding of human NKp30. However, even though present in all other jawed vertebrates analyzed so far, these three N-linked glycosylation sites are missing in mouse NKp30. Interestingly, reconstitution of N-linked glycosylation enabled secretion of a mNKp30-Fc fusion protein which recognized a yet unknown ligand on the plasma membrane of mastocytoma cells. Based on these data, our study is the first to show expression and functional analysis of a mNKp30 protein suggesting that the mouse NKp30 pseudogene is the result of a species-specific loss of function.
Collapse
|
38
|
Jelenčić V, Lenartić M, Wensveen FM, Polić B. NKG2D: A versatile player in the immune system. Immunol Lett 2017; 189:48-53. [PMID: 28414183 DOI: 10.1016/j.imlet.2017.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
NKG2D is known as a potent activating receptor of the immune system. It is expressed on a multitude of immune cells, including NK cells and different subsets of T cells. NKG2D recognizes various MHC I-like ligands that are induced on target cells exposed to stressors such as viral infection, DNA damage and oncological transformation. NKG2D drives or facilitates cytotoxic and cytokine responses towards cells expressing its ligands to eliminate the threat. Therefore, NKG2D is usually classified as a sensor that translates cellular stress into activation signals for immune cells. However, more recently it has become evident that NKG2D plays a role beyond direct killing of target cells. Lack of NKG2D affects development of NK cells in the bone marrow, resulting in hyperreactive NK cells. NKG2D deficiency on CD8 T cells affects the ability of effector cells to produce cytokines in response to T cell receptor engagement and reduces their capacity to establish immunological memory. Although NKG2D is not expressed on B cells subsets, lack of this receptor in hematopoietic precursors affects B cell development. Homing of mature B2 cells is altered in NKG2D-deficient mice and they have a strong reduction in peripheral B1a cell numbers, resulting in increased susceptibility to bacterial infections. The exact molecular mechanisms via which NKG2D mediates these versatile functions is still being explored, but appears to depend on the control of activation thresholds, either in hematopoietic precursors or mature immune cell subsets. In this review, we will elaborate on the underappreciated developmental and regulatory roles of NKG2D.
Collapse
Affiliation(s)
- Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Department of Experimental Immunology, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
39
|
Altmeyer S, Zentek J, Vahjen W, Scharek-Tedin L. The expression of NKG2D on porcine IEL and its possible relation to the adaptive intestinal immune system. Vet Immunol Immunopathol 2017; 187:89-95. [PMID: 28494934 DOI: 10.1016/j.vetimm.2017.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/12/2017] [Accepted: 03/23/2017] [Indexed: 01/15/2023]
Abstract
The gastrointestinal tract contains a multitude of components which include intraepithelial lymphocytes (IEL). IELs have been reported to express a variety of surface receptors that enable cross talk among various cell populations. The purpose of the reported investigation was to determine which IEL populations express the natural killer cell receptor NKG2D which is an activating receptor that plays a role in cytolytic responses. In a feeding experiment with piglets, IELs were isolated from jejunal tissue at three different stages post weaning. The time dependent development of different cell populations was evaluated and an elevated number of lymphocytes (CD45+) shortly after weaning was observed compared to later time points. The number of T cells (CD3), including cytotoxic T cells (CD8β/CD16-), appeared to be particularly affected by the weaning period. Correlation analysis revealed an association between the NKG2D expression in jejunal tissue and the frequency of lymphocytes, esp. CD8β+ cytotoxic T cells. Gene expression analysis of NKG2D were performed on several isolated IEL populations and support the hypothesis that cytotoxic T cells (CD8β) in the porcine gut epithelium are capable of communicating with the surrounding enterocytes and inducing immune reactions via NKG2D. Unlike previous observations in porcine blood, the γδ T cells of the gut epithelium also showed expression of the stress factor binding NKG2D receptor. Subsequent analysis of the isolated IELs revealed that T cells appear to only express the receptor after isolation with an anti-CD3 mab, indicating that a previous stimulation of the TCR/CD3 complex may reinforce this signal transduction pathway.
Collapse
Affiliation(s)
- Sara Altmeyer
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany.
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - Lydia Scharek-Tedin
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| |
Collapse
|
40
|
Huang YQ, Li PY, Wang JB, Zhou HQ, Yang ZR, Yang RC, Bai ZF, Wang LF, Li JY, Liu HH, Zhao YL, Xiao XH. Inhibition of Sophocarpine on Poly I: C/D-GalN-Induced Immunological Liver Injury in Mice. Front Pharmacol 2016; 7:256. [PMID: 27570511 PMCID: PMC4981750 DOI: 10.3389/fphar.2016.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has suggested that natural killer (NK) cells contribute to the pathogenesis of human immunological liver injury (ILI). Previous studies have demonstrated that Sophocarpine exerts activity in immune modulation. It also has a therapeutic effect on liver protection in that it can alleviate liver fibrosis by suppressing both the activation of hepatic stellate cells and the proliferation of the activated hepatic stellate cells. However, whether Sophocarpine protects the liver by regulating NK cell activity remains unclear. In this study, the modulating effect of Sophocarpine on NK cells in the liver was investigated. The results showed that Sophocarpine dramatically decreased the production of pro-inflammatory cytokines and attenuated the liver injury induced by Poly I: C/D-GalN in C57BL/6- mice. More importantly, Sophocarpine pre-treatment significantly suppressed NK cell activation and downregulated the expression of NKG2D, a receptor responsible for NK cell activation. Moreover, the protein levels of DAP12, ZAP76 and Syk decreased, as did their corresponding mRNA levels. Overall, our study demonstrates that Sophocarpine inhibits NK cell activity, thus making it a promising therapy for ILI.
Collapse
Affiliation(s)
- Yin-Qiu Huang
- Pharmacy College, Chengdu University of Traditional Chinese MedicineChengdu, China; Department of Pharmacy, 302 Military Hospital of ChinaBeijing, China
| | - Peng-Yan Li
- China Military Institute of Chinese Medicine, 302 Military Hospital of China Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital of China Beijing, China
| | - Hou-Qin Zhou
- Pharmacy College, Chengdu University of Traditional Chinese MedicineChengdu, China; Department of Pharmacy, 302 Military Hospital of ChinaBeijing, China
| | - Zhi-Rui Yang
- Pharmacy College, Chengdu University of Traditional Chinese MedicineChengdu, China; Department of Pharmacy, 302 Military Hospital of ChinaBeijing, China
| | - Rui-Chuang Yang
- Research Center for Clinical and Translational Medicine, 302 Hospital of People's Liberation Army Beijing, China
| | - Zhao-Fang Bai
- China Military Institute of Chinese Medicine, 302 Military Hospital of China Beijing, China
| | - Li-Fu Wang
- Department of Integrative Medical Center, 302 Hospital of People's Liberation Army Beijing, China
| | - Jian-Yu Li
- Department of Integrative Medical Center, 302 Hospital of People's Liberation Army Beijing, China
| | - Hong-Hong Liu
- Department of Integrative Medical Center, 302 Hospital of People's Liberation Army Beijing, China
| | - Yan-Ling Zhao
- Department of Pharmacy, 302 Military Hospital of China Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, 302 Military Hospital of China Beijing, China
| |
Collapse
|
41
|
Abstract
NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California.
| |
Collapse
|
42
|
Tang F, Sally B, Lesko K, Discepolo V, Abadie V, Ciszewski C, Semrad C, Guandalini S, Kupfer SS, Jabri B. Cysteinyl leukotrienes mediate lymphokine killer activity induced by NKG2D and IL-15 in cytotoxic T cells during celiac disease. ACTA ACUST UNITED AC 2015; 212:1487-95. [PMID: 26304964 PMCID: PMC4577841 DOI: 10.1084/jem.20150303] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/06/2015] [Indexed: 11/21/2022]
Abstract
Tang et al. show that cytotoxic effector cells produce and respond to cysteinyl leukotrienes to allow target cell killing dependent on NKG2D and IL-15. They further demonstrate a role for cysteinyl leukotrienes in celiac disease pathogenesis. Eicosanoids are inflammatory mediators that play a key but incompletely understood role in linking the innate and adaptive immune systems. Here, we show that cytotoxic effector T cells (CTLs) are capable of both producing and responding to cysteinyl leukotrienes (CystLTs), allowing for the killing of target cells in a T cell receptor–independent manner. This process is dependent on the natural killer receptor NKG2D and exposure to IL-15, a cytokine induced in distressed tissues. IL-15 and NKG2D signaling drives the up-regulation of key enzymes implicated in the synthesis of CystLTs, as well as the expression of CystLT receptors, suggesting a positive feedback loop. Finally, although the CystLT pathway has been previously linked to various allergic disorders, we provide unexpected evidence for its involvement in the pathogenesis of celiac disease (CD), a T helper 1 cell–mediated enteropathy induced by gluten. These findings provide new insights into the cytolytic signaling pathway of NKG2D and the pathogenesis of organ-specific immune disorders. Furthermore, they suggest that the blockade of CystLT receptors may represent a potent therapeutic target for CD or potentially other autoimmune disorders in which NKG2D has been implicated.
Collapse
Affiliation(s)
- Fangming Tang
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Benjamin Sally
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Kathryn Lesko
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Valentina Discepolo
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 European Laboratory for the Investigation of Food-Induced Disorders (ELFID), Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Italy
| | - Valerie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Cezary Ciszewski
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Carol Semrad
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Stefano Guandalini
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Sonia S Kupfer
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Bana Jabri
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
43
|
Xiao G, Wang X, Sheng J, Lu S, Yu X, Wu JD. Soluble NKG2D ligand promotes MDSC expansion and skews macrophage to the alternatively activated phenotype. J Hematol Oncol 2015; 8:13. [PMID: 25887583 PMCID: PMC4342005 DOI: 10.1186/s13045-015-0110-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022] Open
Abstract
Expression of surface NKG2D ligand MIC on tumor cells is deemed to stimulate NK and co-stimulate CD8 T cell anti-tumor immunity. Human cancer cells however frequently adopt a proteinase-mediated shedding strategy to generate soluble MIC (sMIC) to circumvent host immunity. High levels of sMIC have been shown to correlate with advanced disease stages in cancer patients. The underlying mechanism is currently understood as systemic downregulation of NKG2D expression on CD8 T and NK cells and perturbing NK cell periphery maintenance. Herein we report a novel mechanism by which sMIC poses immune suppressive effect on host immunity and tumor microenvironment. We demonstrate that sMIC facilitates expansion of myeloid-derived suppressor cells (MDSCs) and skews macrophages to the more immune suppressive alternative phenotype through activation of STAT3. These findings further endorse that sMIC is an important therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Gang Xiao
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA. .,Present address: The Third Hospital of South Medical University, Guangzhou, China.
| | - Xuanjun Wang
- Key Lab for Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.
| | - Jun Sheng
- Key Lab for Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Shengjun Lu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA. .,Present Address: Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuezhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA. .,Cancer Immunology Program, Hollings Cancer Center, Charleston, SC, USA.
| | - Jennifer D Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA. .,Cancer Immunology Program, Hollings Cancer Center, Charleston, SC, USA.
| |
Collapse
|
44
|
Le Bert N, Gasser S. Advances in NKG2D ligand recognition and responses by NK cells. Immunol Cell Biol 2014; 92:230-6. [PMID: 24445601 DOI: 10.1038/icb.2013.111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 02/06/2023]
Abstract
The natural killer (NK) group 2 member D (NKG2D) is an activating immune receptor expressed on NK cells, cytotoxic T cells and a subset of other T cells. It has an important role in the recognition and lysis of a variety of infected and tumor cells. Despite significant gains in our understanding of NKG2D, the relevance of NKG2D and its ligands in human diseases has only recently started to emerge. Here, we present an overview of the recent advances in NKG2D biology, discuss the expression of NKG2D ligands in cancer patients and evaluate the diagnostic and prognostic potential of NKG2D ligands.
Collapse
Affiliation(s)
- Nina Le Bert
- Immunology Programme, Department of Microbiology, National University of Singapore, Singapore
| | - Stephan Gasser
- Immunology Programme, Department of Microbiology, National University of Singapore, Singapore
| |
Collapse
|
45
|
Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, Wang L, Shifrin N, Raulet DH. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol 2014; 122:91-128. [PMID: 24507156 PMCID: PMC4228931 DOI: 10.1016/b978-0-12-800267-4.00003-1] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, roles of the immune system in immune surveillance of cancer have been explored using a variety of approaches. The roles of the adaptive immune system have been a major emphasis, but increasing evidence supports a role for innate immune effector cells such as natural killer (NK) cells in tumor surveillance. Here, we discuss some of the evidence for roles in tumor surveillance of innate immune cells. In particular, we focus on NK cells and other immune cells that express germline-encoded receptors, often labeled NK receptors. The impact of these receptors and the cells that express them on tumor suppression is summarized. We discuss in detail some of the pathways and events in tumor cells that induce or upregulate cell-surface expression of the ligands for these receptors, and the logic of how those pathways serve to identify malignant, or potentially malignant cells. How tumors often evade tumor suppression mediated by innate killer cells is another major subject of the review. We end with a discussion on some of the implications of the various findings with respect to possible therapeutic approaches.
Collapse
Affiliation(s)
- Assaf Marcus
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Benjamin G Gowen
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Thornton W Thompson
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Alexandre Iannello
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Michele Ardolino
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Weiwen Deng
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Lin Wang
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Nataliya Shifrin
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - David H Raulet
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA.
| |
Collapse
|
46
|
Hosomi S, Chen Z, Baker K, Chen L, Huang YH, Olszak T, Zeissig S, Wang JH, Mandelboim O, Beauchemin N, Lanier LL, Blumberg RS. CEACAM1 on activated NK cells inhibits NKG2D-mediated cytolytic function and signaling. Eur J Immunol 2013; 43:2473-83. [PMID: 23696226 PMCID: PMC3775953 DOI: 10.1002/eji.201242676] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 04/09/2013] [Accepted: 05/17/2013] [Indexed: 12/29/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed on activated natural killer (NK) cells wherein it inhibits lysis of CEACAM1-bearing tumor cell lines. The mechanism for this is unknown. Here, we show that interleukin-2-induced expression of CEACAM1 on both mouse and primary human NK cells impairs the ability of NK gene complex group 2 member D (NKG2D) to stimulate cytolysis of CEACAM1-bearing cells. This process requires the expression of CEACAM1 on the NK cells and on the tumor cells, which is consistent with the involvement of trans-homophilic interactions between CEACAM1. Mechanistically, co-engagement of NKG2D and CEACAM1 results in a biochemical association between these two surface receptors and the recruitment of Src homology phosphatase 1 by CEACAM1 that leads to dephosphorylation of the guanine nucleotide exchange factor Vav1 and blockade of downstream signaling that is associated with the initiation of cytolysis. Thus, CEACAM1 on activated NK cells functions as an inhibitory receptor for NKG2D-mediated cytolysis, which has important implications for understanding the means by which CEACAM1 expression adversely affects tumor immunity.
Collapse
Affiliation(s)
- Shuhei Hosomi
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhangguo Chen
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Immunology, National Jewish Health, University of Colorado Denver, Denver, CO, USA
| | - Kristi Baker
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lanfen Chen
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu-Hwa Huang
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Torsten Olszak
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sebastian Zeissig
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing H. Wang
- Department of Immunology, National Jewish Health, University of Colorado Denver, Denver, CO, USA
| | - Ofer Mandelboim
- Lautenberg Center for General and Tumor Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Nicole Beauchemin
- Goodman Cancer Research Centre and Depts. of Biochemistry, Medicine and Oncology, McGill University, Montreal, Canada
| | - Lewis L. Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Richard S. Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
NKG2D triggers cytotoxicity in murine epidermal γδ T cells via PI3K-dependent, Syk/ZAP70-independent signaling pathway. J Invest Dermatol 2013; 134:396-404. [PMID: 23962808 DOI: 10.1038/jid.2013.353] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/17/2013] [Accepted: 07/29/2013] [Indexed: 01/29/2023]
Abstract
Murine epidermal γδ T cells, known as dendritic epidermal T cells (DETCs), survey tissue stress through the invariant T-cell receptor (TCR) and non-clonotypic receptors such as NKG2D. NKG2D signaling via the DAP10-phosphatidylinositol 3-kinase (PI3K) pathway directly stimulates cytotoxicity in natural killer (NK) cells and costimulates CD8(+) T cells to augment TCR signals. In activated murine NK cells, NKG2D signals also via the DAP12-Syk/ZAP70 pathway that triggers both cytotoxicity and cytokine production. It remains controversial whether NKG2D on DETCs is a primary activating receptor or functions only as a costimulatory receptor, and signaling pathways initiated by NKG2D ligation in DETCs have not been analyzed. We show that stimulation of short-term DETC lines with recombinant NKG2D ligands triggers degranulation (exocytosis of cytotoxic granules) via the PI3K-dependent signaling pathway, but does not induce cytokine production or Syk/ZAP70 activation. Coengagement of TCR or Syk/ZAP70 signaling was not crucial for DETC-mediated killing of NKG2D ligand-expressing target cells. Thus, NKG2D can function as a coactivating stress receptor that directly triggers cytotoxicity in DETCs, at least after priming, via the PI3K-dependent, Syk/ZAP70-independent signaling pathway.
Collapse
|
48
|
Langers I, Renoux VM, Thiry M, Delvenne P, Jacobs N. Natural killer cells: role in local tumor growth and metastasis. Biologics 2012; 6:73-82. [PMID: 22532775 PMCID: PMC3333822 DOI: 10.2147/btt.s23976] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Historically, the name of natural killer (NK) cells came from their natural ability to kill tumor cells in vitro. From the 1970s to date, accumulating data highlighted the importance of NK cells in host immune response against cancer and in therapy-induced antitumor response. The recognition and the lysis of tumor cells by NK cells are regulated by a complex balance of inhibitory and activating signals. This review summarizes NK cell mechanisms to kill cancer cells, their role in host immune responses against tumor growth or metastasis, and their implications in antitumor immunotherapies via cytokines, antibodies, or in combination with other therapies. The regulatory role of NK cells in autoimmunity is also discussed.
Collapse
Affiliation(s)
- Inge Langers
- Laboratory of Experimental Pathology, GIGA-I3/GIGA-Cancer, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
49
|
Slavuljica I, Krmpotić A, Jonjić S. Manipulation of NKG2D ligands by cytomegaloviruses: impact on innate and adaptive immune response. Front Immunol 2011; 2:85. [PMID: 22566874 PMCID: PMC3342069 DOI: 10.3389/fimmu.2011.00085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/12/2011] [Indexed: 01/20/2023] Open
Abstract
NKG2D is a potent activating receptor expressed on NK cells, NKT cells, γδ T cells, and CD8 T cells. NKG2D recognizes cell surface molecules structurally related to MHC class I proteins induced by infection or other type of cellular stress. The engagement of NKG2D leads to NK cell cytotoxicity and cytokine secretion or to a co-stimulation of CD8 T cells. Both human and mouse cytomegalovirus (CMV) have evolved numerous mechanisms to evade NKG2D-mediated immune response. This review describes the mechanisms used by CMV to inhibit NKG2D ligand expression and the recent advances in exploiting the NKG2D recognition pathway for mounting efficient and long-lasting immune response.
Collapse
Affiliation(s)
- Irena Slavuljica
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka Rijeka, Croatia
| | | | | |
Collapse
|
50
|
Saether PC, Hoelsbrekken SE, Fossum S, Dissen E. Rat and Mouse CD94 Associate Directly with the Activating Transmembrane Adaptor Proteins DAP12 and DAP10 and Activate NK Cell Cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2011; 187:6365-73. [DOI: 10.4049/jimmunol.1102345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|