1
|
Alqudah A, Qnais E, Gammoh O, Bseiso Y, Wedyan M, Oqal M. Panduratin A mitigates inflammation and oxidative stress in DSS-induced colitis mice model. Future Sci OA 2024; 10:2428129. [PMID: 39559852 PMCID: PMC11581177 DOI: 10.1080/20565623.2024.2428129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
AIM This study explored Panduratin A's protective effects against DSS-induced colitis in mice, focusing on reducing inflammation and oxidative stress in the colon. METHODS Mice were treated with dextran sodium sulfate (DSS) and Panduratin A (3, 6, 18 mg/kg), and changes in body weight, colon length, Disease Activity Index (DAI), histopathology, inflammation markers including tumor necrosis factor- α (TNF-α), Interleukin-1 β (IL-1β), Myeloperoxidase (MPO), and oxidative stress, Malondialdehyde (MDA) were evaluated. RESULTS Panduratin A significantly reversed DSS-induced symptoms, including body weight loss, colonic length shortening, and DAI increase, while reducing histopathological damage. It lowered inflammatory markers and oxidative stress, suppressed NF-κB activation, and enhanced Nrf2 and HO-1 expression. CONCLUSION Panduratin A shows promise as a colitis treatment, warranting further research for broader clinical application.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousra Bseiso
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Muna Oqal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
2
|
Liao YL, Fang YF, Sun JX, Dou GR. Senescent endothelial cells: a potential target for diabetic retinopathy. Angiogenesis 2024; 27:663-679. [PMID: 39215875 PMCID: PMC11564237 DOI: 10.1007/s10456-024-09943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Diabetic retinopathy (DR) is a diabetic complication that results in visual impairment and relevant retinal diseases. Current therapeutic strategies on DR primarily focus on antiangiogenic therapies, which particularly target vascular endothelial growth factor and its related signaling transduction. However, these therapies still have limitations due to the intricate pathogenesis of DR. Emerging studies have shown that premature senescence of endothelial cells (ECs) in a hyperglycemic environment is involved in the disease process of DR and plays multiple roles at different stages. Moreover, these surprising discoveries have driven the development of senotherapeutics and strategies targeting senescent endothelial cells (SECs), which present challenging but promising prospects in DR treatment. In this review, we focus on the inducers and mechanisms of EC senescence in the pathogenesis of DR and summarize the current research advances in the development of senotherapeutics and strategies that target SECs for DR treatment. Herein, we highlight the role played by key factors at different stages of EC senescence, which will be critical for facilitating the development of future innovative treatment strategies that target the different stages of senescence in DR.
Collapse
Affiliation(s)
- Ying-Lu Liao
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of the Cadet Team 6 of the School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yi-Fan Fang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Xing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Ruamsap N, Imerbsin R, Khanijou P, Gonwong S, Oransathit W, Barnoy S, Venkatesan MM, Chaudhury S, Islam D. A rhesus macaque intragastric challenge model for evaluating the safety, immunogenicity, and efficacy of live-attenuated Shigella dysenteriae 1 vaccine candidates. Front Microbiol 2024; 15:1454338. [PMID: 39309527 PMCID: PMC11413625 DOI: 10.3389/fmicb.2024.1454338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Shigellosis remains a significant global health challenge, particularly in Asia and Africa, where it is a major cause of morbidity and mortality among children. Despite the urgent need, the development of a licensed Shigella vaccine has been hindered, partly due to the lack of suitable animal models for preclinical evaluation. In this study, we used an intragastric adult rhesus macaque challenge model to evaluate the safety, immunogenicity, and efficacy of five live-attenuated Shigella dysenteriae 1 vaccine candidates, all derived from the 1617 parent strain. The vaccine strains included WRSd1, a previously tested candidate with deletions in virG(icsA), stxAB, and fnr, and four other strains-WRSd2, WRSd3, WRSd4, and WRSd5-each containing deletions in virG and stxAB, but retaining fnr. Additionally, WRSd3 and WRSd5 had further deletions in the Shigella enterotoxin gene senA and its paralog senB, with WRSd5 having an extra deletion in msbB2. Rhesus monkeys were immunized three times at two-day intervals with a target dose of 2 × 1010 CFU of the vaccine strains. Thirty days after the final immunization, all monkeys were challenged with a target dose of 2 × 109 CFU of the S. dysenteriae 1 1617 wild-type strain. Safety, immunogenicity, and efficacy were assessed through physical monitoring and the evaluation of immunologic and inflammatory markers following immunization and challenge. Initial doses of WRSd1, WRSd3, and WRSd5 led to mild adverse effects, such as vomiting and loose stools, but all five vaccine strains were well tolerated in subsequent doses. All strains elicited significant IgA and IgG antibody responses, as well as the production of antibody-secreting cells. Notably, none of the vaccinated animals exhibited shigellosis symptoms such as vomiting or loose/watery stool post-challenge, in stark contrast to the control group, where 39% and 61% of monkeys exhibited these symptoms, respectively. The aggregate clinical score used to evaluate Shigella attack rates post-challenge revealed a 72% attack rate in control animals, compared to only 13% in vaccinated animals, indicating a relative risk reduction of 81%. This study highlights the potential of this NHP model in evaluating the safety, immunogenicity, and efficacy of live-attenuated Shigella vaccine candidates, offering a valuable tool for preclinical assessment before advancing to Phase 1 or more advanced clinical trials.
Collapse
Affiliation(s)
- Nattaya Ruamsap
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Rawiwan Imerbsin
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Patchariya Khanijou
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siriphan Gonwong
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Wilawan Oransathit
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Shoshana Barnoy
- Department of Diarrheal Disease Research, Bacterial Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Malabi M. Venkatesan
- Department of Diarrheal Disease Research, Bacterial Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sidhartha Chaudhury
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Dilara Islam
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
4
|
Lu T, Das S, Howlader DR, Picking WD, Picking WL. Shigella Vaccines: The Continuing Unmet Challenge. Int J Mol Sci 2024; 25:4329. [PMID: 38673913 PMCID: PMC11050647 DOI: 10.3390/ijms25084329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Shigellosis is a severe gastrointestinal disease that annually affects approximately 270 million individuals globally. It has particularly high morbidity and mortality in low-income regions; however, it is not confined to these regions and occurs in high-income nations when conditions allow. The ill effects of shigellosis are at their highest in children ages 2 to 5, with survivors often exhibiting impaired growth due to infection-induced malnutrition. The escalating threat of antibiotic resistance further amplifies shigellosis as a serious public health concern. This review explores Shigella pathology, with a primary focus on the status of Shigella vaccine candidates. These candidates include killed whole-cells, live attenuated organisms, LPS-based, and subunit vaccines. The strengths and weaknesses of each vaccination strategy are considered. The discussion includes potential Shigella immunogens, such as LPS, conserved T3SS proteins, outer membrane proteins, diverse animal models used in Shigella vaccine research, and innovative vaccine development approaches. Additionally, this review addresses ongoing challenges that necessitate action toward advancing effective Shigella prevention and control measures.
Collapse
Affiliation(s)
- Ti Lu
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65201, USA; (D.R.H.); (W.D.P.)
| | - Sayan Das
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
| | - Debaki R. Howlader
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65201, USA; (D.R.H.); (W.D.P.)
| | - William D. Picking
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65201, USA; (D.R.H.); (W.D.P.)
| | - Wendy L. Picking
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65201, USA; (D.R.H.); (W.D.P.)
| |
Collapse
|
5
|
Li Y, Wu S, Zhao Y, Dinh T, Jiang D, Selfridge JE, Myers G, Wang Y, Zhao X, Tomchuck S, Dubyak G, Lee RT, Estfan B, Shapiro M, Kamath S, Mohamed A, Huang SCC, Huang AY, Conlon R, Krishnamurthi S, Eads J, Willis JE, Khorana AA, Bajor D, Wang Z. Neutrophil extracellular traps induced by chemotherapy inhibit tumor growth in murine models of colorectal cancer. J Clin Invest 2024; 134:e175031. [PMID: 38194275 PMCID: PMC10904055 DOI: 10.1172/jci175031] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Neutrophil extracellular traps (NETs), a web-like structure of cytosolic and granule proteins assembled on decondensed chromatin, kill pathogens and cause tissue damage in diseases. Whether NETs can kill cancer cells is unexplored. Here, we report that a combination of glutaminase inhibitor CB-839 and 5-FU inhibited the growth of PIK3CA-mutant colorectal cancers (CRCs) in xenograft, syngeneic, and genetically engineered mouse models in part through NETs. Disruption of NETs by either DNase I treatment or depletion of neutrophils in CRCs attenuated the efficacy of the drug combination. Moreover, NETs were present in tumor biopsies from patients treated with the drug combination in a phase II clinical trial. Increased NET levels in tumors were associated with longer progression-free survival. Mechanistically, the drug combination induced the expression of IL-8 preferentially in PIK3CA-mutant CRCs to attract neutrophils into the tumors. Further, the drug combination increased the levels of ROS in neutrophils, thereby inducing NETs. Cathepsin G (CTSG), a serine protease localized in NETs, entered CRC cells through the RAGE cell surface protein. The internalized CTSG cleaved 14-3-3 proteins, released BAX, and triggered apoptosis in CRC cells. Thus, our studies illuminate a previously unrecognized mechanism by which chemotherapy-induced NETs kill cancer cells.
Collapse
Affiliation(s)
- Yamu Li
- Department of Genetics and Genome Sciences
- Case Comprehensive Cancer Center
| | - Sulin Wu
- Department of Genetics and Genome Sciences
- Department of Internal Medicine
- Department of Medical Genetics, Case Western Reserve University, Cleveland, Ohio. USA
| | - Yiqing Zhao
- Department of Genetics and Genome Sciences
- Case Comprehensive Cancer Center
| | - Trang Dinh
- Department of Genetics and Genome Sciences
- Case Comprehensive Cancer Center
| | - Dongxu Jiang
- Department of Genetics and Genome Sciences
- Case Comprehensive Cancer Center
| | - J. Eva Selfridge
- Department of Genetics and Genome Sciences
- Case Comprehensive Cancer Center
- Department of Internal Medicine
- Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - Yuxiang Wang
- Department of Genetics and Genome Sciences
- Case Comprehensive Cancer Center
| | - Xuan Zhao
- Department of Genetics and Genome Sciences
- Case Comprehensive Cancer Center
| | | | - George Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio. USA
| | - Richard T. Lee
- Department of Internal Medicine
- Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Bassam Estfan
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Marc Shapiro
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Suneel Kamath
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amr Mohamed
- Department of Internal Medicine
- Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | | | | | | | - Jennifer Eads
- Department of Internal Medicine
- Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Alok A. Khorana
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - David Bajor
- Department of Internal Medicine
- Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences
- Case Comprehensive Cancer Center
| |
Collapse
|
6
|
Tataru C, Livni M, Marean-Reardon C, Franco MC, David M. Cytokine induced inflammatory bowel disease model using organ-on-a-chip technology. PLoS One 2023; 18:e0289314. [PMID: 38091316 PMCID: PMC10718466 DOI: 10.1371/journal.pone.0289314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/14/2023] [Indexed: 12/18/2023] Open
Abstract
Over 2 million people in North America suffer from inflammatory bowel disease (IBD), a chronic and idiopathic inflammatory condition. While previous research has primarily focused on studying immune cells as a cause and therapeutic target for IBD, recent findings suggest that non-immune cells may also play a crucial role in mediating cytokine and chemokine signaling, and therefore IBD symptoms. In this study, we developed an organ-on-a-chip co-culture model of Caco2 epithelial and HUVEC endothelial cells and induced inflammation using pro-inflammatory cytokines TNF-α and IFN-γ. We tested different concentration ranges and delivery orientations (apical vs. basal) to develop a consistently inducible inflammatory response model. We then measured pro-inflammatory cytokines and chemokines IL-6, IL-8, and CXCL-10, as well as epithelial barrier integrity. Our results indicate that this model 1. induces IBD-like cytokine secretion in non-immune cells and 2. decreases barrier integrity, making it a feasible and reliable model to test the direct actions of potential anti-inflammatory therapeutics on epithelial and endothelial cells.
Collapse
Affiliation(s)
- Christine Tataru
- Oregon State University, College of Science, Microbiology, Corvallis, OR, United States of America
| | - Maya Livni
- Oregon State University, College of Science, Microbiology, Corvallis, OR, United States of America
| | - Carrie Marean-Reardon
- Oregon State University, College of Science, Biochemistry and Biophysics, Corvallis, OR, United States of America
| | - Maria Clara Franco
- Oregon State University, College of Science, Biochemistry and Biophysics, Corvallis, OR, United States of America
- Florida International University, Herbert Wertheim College of Medicine, Center for Translational Science, Port St. Lucie, FL, United States of America
| | - Maude David
- Oregon State University, College of Science, Microbiology, Corvallis, OR, United States of America
- Oregon State University, College of Pharmacy, Corvallis, OR, United States of America
| |
Collapse
|
7
|
Alphonse N, Odendall C. Animal models of shigellosis: a historical overview. Curr Opin Immunol 2023; 85:102399. [PMID: 37952487 DOI: 10.1016/j.coi.2023.102399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Shigella spp. are major causative agents of bacillary dysentery, a severe enteric disease characterized by destruction and inflammation of the colonic epithelium accompanied by acute diarrhea, fever, and abdominal pain. Although antibiotics have traditionally been effective, the prevalence of multidrug-resistant strains is increasing, stressing the urgent need for a vaccine. The human-specific nature of shigellosis and the absence of a dependable animal model have posed significant obstacles in understanding Shigella pathogenesis and the host immune response, both of which are crucial for the development of an effective vaccine. Efforts have been made over time to develop a physiological model that mimics the pathological features of the human disease with limited success until the recent development of genetically modified mouse models. In this review, we provide an overview of Shigella pathogenesis and chronicle the historical development of various shigellosis models, emphasizing their strengths and weaknesses.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Immunoregulation Laboratory, Francis Crick Institute, London, UK.
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
8
|
Roncaioli JL, Babirye JP, Chavez RA, Liu FL, Turcotte EA, Lee AY, Lesser CF, Vance RE. A hierarchy of cell death pathways confers layered resistance to shigellosis in mice. eLife 2023; 12:e83639. [PMID: 36645406 PMCID: PMC9876568 DOI: 10.7554/elife.83639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/15/2023] [Indexed: 01/17/2023] Open
Abstract
Bacteria of the genus Shigella cause shigellosis, a severe gastrointestinal disease driven by bacterial colonization of colonic intestinal epithelial cells. Vertebrates have evolved programmed cell death pathways that sense invasive enteric pathogens and eliminate their intracellular niche. Previously we reported that genetic removal of one such pathway, the NAIP-NLRC4 inflammasome, is sufficient to convert mice from resistant to susceptible to oral Shigella flexneri challenge (Mitchell et al., 2020). Here, we investigate the protective role of additional cell death pathways during oral mouse Shigella infection. We find that the Caspase-11 inflammasome, which senses Shigella LPS, restricts Shigella colonization of the intestinal epithelium in the absence of NAIP-NLRC4. However, this protection is limited when Shigella expresses OspC3, an effector that antagonizes Caspase-11 activity. TNFα, a cytokine that activates Caspase-8-dependent apoptosis, also provides potent protection from Shigella colonization of the intestinal epithelium when mice lack both NAIP-NLRC4 and Caspase-11. The combined genetic removal of Caspases-1, -11, and -8 renders mice hyper-susceptible to oral Shigella infection. Our findings uncover a layered hierarchy of cell death pathways that limit the ability of an invasive gastrointestinal pathogen to cause disease.
Collapse
Affiliation(s)
- Justin L Roncaioli
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Janet Peace Babirye
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Roberto A Chavez
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Fitty L Liu
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Elizabeth A Turcotte
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
| | - Cammie F Lesser
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medicine, Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
| | - Russell E Vance
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
- Immunotherapeutics and Vaccine Research Initiative, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
9
|
Tanner L, Bergwik J, Bhongir RKV, Puthia M, Lång P, Ali MN, Welinder C, Önnerfjord P, Erjefält JS, Palmberg L, Andersson G, Egesten A. Tartrate resistant acid phosphatase 5 (TRAP5) mediates immune cell recruitment in a murine model of pulmonary bacterial infection. Front Immunol 2022; 13:1079775. [PMID: 36569898 PMCID: PMC9779928 DOI: 10.3389/fimmu.2022.1079775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction During airway infection, upregulation of proinflammatory cytokines and subsequent immune cell recruitment is essential to mitigate bacterial infection. Conversely, during prolonged and non-resolving airway inflammation, neutrophils contribute to tissue damage and remodeling. This occurs during diseases including cystic fibrosis (CF) and COPD where bacterial pathogens, not least Pseudomonas aeruginosa, contribute to disease progression through long-lasting infections. Tartrate-resistant acid phosphatase (TRAP) 5 is a metalloenzyme expressed by alveolar macrophages and one of its target substrates is the phosphoglycoprotein osteopontin (OPN). Methods We used a knockout mouse strain (Trap5-/-) and BALB/c-Tg (Rela-luc)31Xen mice paired with siRNA administration or functional protein add-back to elucidate the role of Trap5 during bacterial infection. In a series of experiments, Trap5-/- and wild-type control mice received intratracheal administration of P.aerugniosa (Xen41) or LPS, with mice monitored using intravital imaging (IVIS). In addition, multiplex cytokine immunoassays, flow cytometry, multispectral analyses, histological staining were performed. Results In this study, we found that Trap5-/- mice had impaired clearance of P. aeruginosa airway infection and reduced recruitment of immune cells (i.e. neutrophils and inflammatory macrophages). Trap5 knockdown using siRNA resulted in a decreased activation of the proinflammatory transcription factor NF-κB in reporter mice and a subsequent decrease of proinflammatory gene expression. Add-back experiments of enzymatically active TRAP5 to Trap5-/- mice restored immune cell recruitment and bacterial killing. In human CF lung tissue, TRAP5 of alveolar macrophages was detected in proximity to OPN to a higher degree than in normal lung tissue, indicating possible interactions. Discussion Taken together, the findings of this study suggest a key role for TRAP5 in modulating airway inflammation. This could have bearing in diseases such as CF and COPD where excessive neutrophilic inflammation could be targeted by pharmacological inhibitors of TRAP5.
Collapse
Affiliation(s)
- Lloyd Tanner
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jesper Bergwik
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi K. V. Bhongir
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Manoj Puthia
- Department of Dermatology and Venereology, Lund University and Skåne University Hospital, Lund, Sweden,Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mohamad N. Ali
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Charlotte Welinder
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Molecular Skeletal Biology, Section for Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jonas S. Erjefält
- Unit of Airway Inflammation, Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Lena Palmberg
- Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arne Egesten
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden,*Correspondence: Arne Egesten,
| |
Collapse
|
10
|
Yuliani FS, Chen JY, Cheng WH, Wen HC, Chen BC, Lin CH. Thrombin induces IL-8/CXCL8 expression by DCLK1-dependent RhoA and YAP activation in human lung epithelial cells. J Biomed Sci 2022; 29:95. [PMID: 36369000 PMCID: PMC9650896 DOI: 10.1186/s12929-022-00877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Doublecortin-like kinase 1 (DCLK1) has been recognized as a marker of cancer stem cell in several malignancies. Thrombin is crucial in asthma severity as it can promote IL-8/CXCL8 production in lung epithelial cells, which is a potent chemoattractant for neutrophils. However, the pathologic role of DCLK1 in asthma and its involvement in thrombin-stimulated IL-8/CXCL8 expression remain unknown. Methods IL-8/CXCL8, thrombin, and DCLK1 expression were observed in the lung tissues of severe asthma patients and ovalbumin (OVA)-induced asthmatic mice model. A549 and BEAS-2B cells were either pretreated with inhibitors or small interfering RNAs (siRNAs) before being treated with thrombin. IL-8/CXCL8 expression and the molecules involved in signaling pathway were performed using ELISA, luciferase activity assay, Western blot, or ChIP assay. Results IL-8/CXCL8, thrombin, and DCLK1 were overexpressed in the lung tissues of severe asthma patients and ovalbumin (OVA)-induced asthmatic mice model. Our in vitro study found that DCLK siRNA or LRKK2-IN-1 (DCLK1 inhibitor) attenuated IL-8/CXCL8 release after thrombin induction in A549 and BEAS-2B cells. Thrombin activated DCLK1, RhoA, and YAP in a time-dependent manner, in which DCLK1 siRNA inhibited RhoA and YAP activation. YAP was dephosphorylated on the Ser127 site after thrombin stimulation, resulting in YAP translocation to the nucleus from the cytosol. DCLK1, RhoA and YAP activation following thrombin stimulation were inhibited by U0126 (ERK inhibitor). Moreover, DCLK1 and YAP siRNA inhibited κB-luciferase activity. Thrombin stimulated the recruitment of YAP and p65 to the NF-κB site of the IL-8/CXCL8 promoter and was inhibited by DCLK1 siRNA. Conclusions Thrombin activates the DCLK1/RhoA signaling pathway, which promotes YAP activation and translocation to the nucleus from the cytosol, resulting in YAP/p65 formation, and binding to the NF-κB site, which enhances IL-8/CXCL8 expression. DCLK1 might be essential in thrombin-stimulated IL-8/CXCL8 expression in asthmatic lungs and indicates a potential therapeutic strategy for severe asthma treatment.
Collapse
|
11
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. The Role of Reactive Species on Innate Immunity. Vaccines (Basel) 2022; 10:vaccines10101735. [PMID: 36298601 PMCID: PMC9609844 DOI: 10.3390/vaccines10101735] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
This review examines the role of reactive species RS (of oxygen ROS, nitrogen RNS and halogen RHS) on innate immunity. The importance of these species in innate immunity was first recognized in phagocytes that underwent a “respiratory burst” after activation. The anion superoxide •O2− and hydrogen peroxide H2O2 are detrimental to the microbial population. NADPH oxidase NOx, as an •O2− producer is essential for microbial destruction, and patients lacking this functional oxidase are more susceptible to microbial infections. Reactive nitrogen species RNS (the most important are nitric oxide radical -•NO, peroxynitrite ONOO— and its derivatives), are also harmful to microorganisms, including bacteria, viruses, and parasites. Hypochlorous acid HOCl and hypothiocyanous acid HOSCN synthesized through the enzyme myeloperoxidase MPO, which catalyzes the reaction between H2O2 and Cl− or SCN−, are important inorganic bactericidal molecules, effective against a wide range of microbes. This review also discusses the role of antimicrobial peptides AMPs and their induction of ROS. In summary, reactive species RS are the heart of the innate immune system, and they are necessary for microbial lysis in infections that can affect mammals throughout their lives.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Spain
- Correspondence:
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
12
|
Bothrops moojeni snake venom induces an inflammatory response in preadipocytes: Insights into a new aspect of envenomation. PLoS Negl Trop Dis 2022; 16:e0010658. [PMID: 35939519 PMCID: PMC9359566 DOI: 10.1371/journal.pntd.0010658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
Bothrops envenomation is a public health problem in Brazil. Despite the advances in the knowledge of the pathogenesis of systemic and local effects induced by Bothrops venom, the target tissues to this venom are not completely characterised. As preadipocytes are important cells of the adipose tissue and synthesize inflammatory mediators, we investigated the ability of B. moojeni snake venom (Bmv) to stimulate an inflammatory response in 3T3-L1 preadipocytes in vitro, focusing on (1) the release of PGE2, IL-6, TNF-α, MCP-1, KC, leptin and adiponectin; (2) the mechanisms involved in PGE2 release and (3) differentiation of these cells. Cytotoxicity of Bmv was determined by MTT assay. The concentrations of PGE2, cytokines and adipokines were quantified by EIA. Participation of the COX-1 and COX-2 enzymes, NF-κB and PGE2 receptors (EP1-4) was assessed using a pharmacological approach, and protein expression of the COX enzymes and P-NF-κB was analysed by western blotting. Preadipocyte differentiation was quantified by Oil Red O staining. Bmv (1 μg/mL) induced release of PGE2, IL-6 and KC and increased expression of COX-2 in preadipocytes. Basal levels of TNF-α, MCP-1, leptin and adiponectin were not modified. Treatment of cells with SC560 (COX-1 inhibitor) and NS398 (COX-2 inhibitor) inhibited Bmv-induced PGE2 release. Bmv induced phosphorylation of NF-κB, and treatment of the cells with TPCK and SN50, which inhibit distinct NF-κB domains, significantly reduced Bmv-induced PGE2 release, as did the treatment with an antagonist of PGE2 receptor EP1, unlike treatment with antagonists of EP2, EP3 or EP4. Bmv also induced lipid accumulation in differentiating cells. These results demonstrate that Bmv can activate an inflammatory response in preadipocytes by inducing the release of inflammatory mediators; that PGE2 production is mediated by the COX-1, COX-2 and NF-κB pathways; and that engagement of EP1 potentiates PGE2 synthesis via a positive feedback mechanism. Our findings highlight the role of the adipose tissue as another target for Bmv and suggest that it contributes to Bothrops envenomation by producing inflammatory mediators.
Collapse
|
13
|
Alphonse N, Wanford JJ, Voak AA, Gay J, Venkhaya S, Burroughs O, Mathew S, Lee T, Evans SL, Zhao W, Frowde K, Alrehaili A, Dickenson RE, Munk M, Panina S, Mahmood IF, Llorian M, Stanifer ML, Boulant S, Berchtold MW, Bergeron JRC, Wack A, Lesser CF, Odendall C. A family of conserved bacterial virulence factors dampens interferon responses by blocking calcium signaling. Cell 2022; 185:2354-2369.e17. [PMID: 35568036 PMCID: PMC9596379 DOI: 10.1016/j.cell.2022.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
Interferons (IFNs) induce an antimicrobial state, protecting tissues from infection. Many viruses inhibit IFN signaling, but whether bacterial pathogens evade IFN responses remains unclear. Here, we demonstrate that the Shigella OspC family of type-III-secreted effectors blocks IFN signaling independently of its cell death inhibitory activity. Rather, IFN inhibition was mediated by the binding of OspC1 and OspC3 to the Ca2+ sensor calmodulin (CaM), blocking CaM kinase II and downstream JAK/STAT signaling. The growth of Shigella lacking OspC1 and OspC3 was attenuated in epithelial cells and in a murine model of infection. This phenotype was rescued in both models by the depletion of IFN receptors. OspC homologs conserved in additional pathogens not only bound CaM but also inhibited IFN, suggesting a widespread virulence strategy. These findings reveal a conserved but previously undescribed molecular mechanism of IFN inhibition and demonstrate the critical role of Ca2+ and IFN targeting in bacterial pathogenesis.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | - Joseph J Wanford
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Andrew A Voak
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jack Gay
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Shayla Venkhaya
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Owen Burroughs
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sanjana Mathew
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Truelian Lee
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sasha L Evans
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Weiting Zhao
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Kyle Frowde
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Abrar Alrehaili
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ruth E Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Mads Munk
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Svetlana Panina
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ishraque F Mahmood
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Miriam Llorian
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Megan L Stanifer
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Julien R C Bergeron
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
14
|
Nasser A, Mosadegh M, Azimi T, Shariati A. Molecular mechanisms of Shigella effector proteins: a common pathogen among diarrheic pediatric population. Mol Cell Pediatr 2022; 9:12. [PMID: 35718793 PMCID: PMC9207015 DOI: 10.1186/s40348-022-00145-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Different gastrointestinal pathogens cause diarrhea which is a very common problem in children aged under 5 years. Among bacterial pathogens, Shigella is one of the main causes of diarrhea among children, and it accounts for approximately 11% of all deaths among children aged under 5 years. The case-fatality rates for Shigella among the infants and children aged 1 to 4 years are 13.9% and 9.4%, respectively. Shigella uses unique effector proteins to modulate intracellular pathways. Shigella cannot invade epithelial cells on the apical site; therefore, it needs to pass epithelium through other cells rather than the epithelial cell. After passing epithelium, macrophage swallows Shigella, and the latter should prepare itself to exhibit at least two types of responses: (I) escaping phagocyte and (II) mediating invasion of and injury to the recurrent PMN. The presence of PMN and invitation to a greater degree resulted in gut membrane injuries and greater bacterial penetration. Infiltration of Shigella to the basolateral space mediates (A) cell attachment, (B) cell entry, (C) evasion of autophagy recognition, (D) vacuole formation and and vacuole rapture, (E) intracellular life, (F) Shiga toxin, and (G) immune response. In this review, an attempt is made to explain the role of each factor in Shigella infection.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| |
Collapse
|
15
|
Wu X, Hussain M, Syed SK, Saadullah M, Alqahtani AM, Alqahtani T, Aldahish A, Fatima M, Shaukat S, Hussain L, Jamil Q, Mukhtar I, Khan KUR, Zeng LH. Verapamil attenuates oxidative stress and inflammatory responses in cigarette smoke (CS)-induced murine models of acute lung injury and CSE-stimulated RAW 264.7 macrophages via inhibiting the NF-κB pathway. Biomed Pharmacother 2022; 149:112783. [PMID: 35299124 DOI: 10.1016/j.biopha.2022.112783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), severe form of ALI, are characterized by overwhelming of lung inflammation, and no treatment is currently available to treat ALI/ARDS. Cigarette smoke (CS) is one of the prime causes to induce ALI/ARDS via oxidative stress. Despite extensive research, no appropriate therapy is currently available to treat ALI/ARDS. Hence, new potential approaches are needed to treat ALI/ARDS. Consequently, this project was designed to explore the protective effects of verapamil against CS-induced ALI by in vivo and in vitro method. In vivo data obtained from respiratory mechanics, pulmonary morphometric analyses and lung histopathology revealed that verapamil dose-dependently and strikingly decreased the lung weight coefficient, attenuated the albumin exudation into lungs, minimized the infiltration of macrophages and neutrophils into lungs, reduced the pro-inflammatory cytokines (tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and keratinocyte chemoattractant (KC)) production, and improved the hypoxemia and lung histopathological changes. Similarly, verapamil also reduced the production of TNF-α, IL-6 and KC from cigarette smoke extract (CSE)-stimulated RAW 264.7 macrophage. Importantly, verapamil dose-dependently and remarkably suppressed the CS-induced oxidative stress via not only reducing the myeloperoxidase (MPO) activity of lungs, total oxidative stress (TOS) and malondialdehyde (MDA) content in the lungs and supernatant of RAW 264.7 macrophage but also improving total antioxidant capacity (TAC) and superoxide dismutase (SOD) production. Finally, verapamil strikingly decreased the NF-κB expression both in in vivo and in vitro models. Hence, verapamil has positive therapeutic effects against CS-induced ALI via suppressing uncontrolled inflammatory response, oxidative stress and NF-κB p65 signaling.
Collapse
Affiliation(s)
- Ximei Wu
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China.
| | - Musaddique Hussain
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology Lahore, 54000, Pakistan
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mobeen Fatima
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Saira Shaukat
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Government College University, Faisalabad 38000, Pakistan
| | - Qurratulain Jamil
- Department of Pharmacy Practice, Faculty of Pharmacy, The Islamia University of Bahawalpur, Pakistan
| | - Imran Mukhtar
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Sir Sadiq Muhammad Khan Abassi post Graduate Medical College, The Islamia University of Bahawalpur, Pakistan
| | - Kashif-Ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China
| |
Collapse
|
16
|
Quach HQ, Johnson C, Ekholt K, Islam R, Mollnes TE, Nilsson PH. Platelet-Depletion of Whole Blood Reveals That Platelets Potentiate the Release of IL-8 From Leukocytes Into Plasma in a Thrombin-Dependent Manner. Front Immunol 2022; 13:865386. [PMID: 35444648 PMCID: PMC9013889 DOI: 10.3389/fimmu.2022.865386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Objective In a recent study, we found an elevated level of interleukin 8 (IL-8) in response to bacterial incubation in thrombin-sufficient human whole blood anticoagulated by the fibrin polymerization blocking peptide GPRP. Whether thrombin directly activated leukocytes or mediated the release via thrombin-dependent activation of platelets remains unresolved. Herein, we addressed the role of thrombin and platelets in IL-8 release. Methods We separated platelets from whole blood using a combination of 0.7% (w/v) citrate and GPRP for attenuating the hemostatic response during the separation of platelets. Cytokine responses were compared in whole blood and platelet-depleted blood upon Escherichia coli incubation. Cytokine responses were also profiled with and without reconstitution of either platelets or the supernatant from activated platelets. Results Platelets were not activated during the separation process but responded to stimuli upon re-calcification. Plasma levels of IL-1β, IL-1Ra, IL-6, IL-8, IP-10, MIP-1α, and MIP-1β were significantly reduced in platelet-depleted blood compared to whole blood, but recovered in the presence of platelets, or with the supernatant of activated platelets. The leukocyte fraction and platelets were each found to contribute to the elevation of IL-8 at around 5 ng/ml; however, if combined, the release of IL-8 increased to 26 ng/ml. This process was dependent on thrombin since the levels of IL-8 remained at 5 ng/ml in whole blood if thrombin was blocked. Intracellular staining revealed that monocytes were the main source for IL-8 expression. Conclusion Our findings suggest that the release of IL-8 is mediated by the leukocytes, mainly monocytes, but potentiated via thrombin-dependent activation of platelets.
Collapse
Affiliation(s)
- Huy Quang Quach
- Department of Immunology, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Christina Johnson
- Department of Immunology, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Karin Ekholt
- Department of Immunology, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Rakibul Islam
- Department of Immunology, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, K.G Jebsen Center TREC, University of Tromsø, Bodø, Norway.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway.,Department of Chemistry and Biomedicine, Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
17
|
Gutierrez MW, van Tilburg Bernardes E, Changirwa D, McDonald B, Arrieta MC. "Molding" immunity-modulation of mucosal and systemic immunity by the intestinal mycobiome in health and disease. Mucosal Immunol 2022; 15:573-583. [PMID: 35474360 DOI: 10.1038/s41385-022-00515-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Fungi are important yet understudied contributors to the microbial communities of the gastrointestinal tract. Starting at birth, the intestinal mycobiome undergoes a period of dynamic maturation under the influence of microbial, host, and extrinsic influences, with profound functional implications for immune development in early life, and regulation of immune homeostasis throughout life. Candida albicans serves as a model organism for understanding the cross-talk between fungal colonization dynamics and immunity, and exemplifies unique mechanisms of fungal-immune interactions, including fungal dimorphism, though our understanding of other intestinal fungi is growing. Given the prominent role of the gut mycobiome in promoting immune homeostasis, emerging evidence points to fungal dysbiosis as an influential contributor to immune dysregulation in a variety of inflammatory and infectious diseases. Here we review current knowledge on the factors that govern host-fungi interactions in the intestinal tract and immunological outcomes in both mucosal and systemic compartments.
Collapse
Affiliation(s)
- Mackenzie W Gutierrez
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada
| | - Erik van Tilburg Bernardes
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada
| | - Diana Changirwa
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Immunology Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada. .,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,International Microbiome Centre, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
18
|
Rawle DJ, Dumenil T, Tang B, Bishop CR, Yan K, Le TT, Suhrbier A. Microplastic consumption induces inflammatory signatures in the colon and prolongs a viral arthritis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152212. [PMID: 34890673 DOI: 10.1016/j.scitotenv.2021.152212] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Global microplastic (MP) contamination and the effects on the environment are well described. However, the potential for MP consumption to affect human health remains controversial. Mice consuming ≈80 μg/kg/day of 1 μm polystyrene MPs via their drinking water showed no weight loss, nor were MPs detected in internal organs. The microbiome was also not significantly changed. MP consumption did lead to small transcriptional changes in the colon suggesting plasma membrane perturbations and mild inflammation. Mice were challenged with the arthritogenic chikungunya virus, with MP consumption leading to a significantly prolonged arthritic foot swelling that was associated with elevated Th1, NK cell and neutrophil signatures. Immunohistochemistry also showed a significant increase in the ratio of neutrophils to monocyte/macrophages. The picture that emerges is reminiscent of enteropathic arthritis, whereby perturbations in the colon are thought to activate innate lymphoid cells that can inter alia migrate to joint tissues to promote inflammation.
Collapse
Affiliation(s)
- Daniel J Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Cameron R Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland 4029 and 4072, Australia.
| |
Collapse
|
19
|
Nozaki K, Li L, Miao EA. Innate Sensors Trigger Regulated Cell Death to Combat Intracellular Infection. Annu Rev Immunol 2022; 40:469-498. [PMID: 35138947 PMCID: PMC9614550 DOI: 10.1146/annurev-immunol-101320-011235] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intracellular pathogens pose a significant threat to animals. In defense, innate immune sensors attempt to detect these pathogens using pattern recognition receptors that either directly detect microbial molecules or indirectly detect their pathogenic activity. These sensors trigger different forms of regulated cell death, including pyroptosis, apoptosis, and necroptosis, which eliminate the infected host cell niche while simultaneously promoting beneficial immune responses. These defenses force intracellular pathogens to evolve strategies to minimize or completely evade the sensors. In this review, we discuss recent advances in our understanding of the cytosolic pattern recognition receptors that drive cell death, including NLRP1, NLRP3, NLRP6, NLRP9, NLRC4, AIM2, IFI16, and ZBP1. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kengo Nozaki
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA;
| | - Lupeng Li
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA; .,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward A Miao
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA;
| |
Collapse
|
20
|
Intestinal Organoids: New Tools to Comprehend the Virulence of Bacterial Foodborne Pathogens. Foods 2022; 11:foods11010108. [PMID: 35010234 PMCID: PMC8750402 DOI: 10.3390/foods11010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Foodborne diseases cause high morbidity and mortality worldwide. Understanding the relationships between bacteria and epithelial cells throughout the infection process is essential to setting up preventive and therapeutic solutions. The extensive study of their pathophysiology has mostly been performed on transformed cell cultures that do not fully mirror the complex cell populations, the in vivo architectures, and the genetic profiles of native tissues. Following advances in primary cell culture techniques, organoids have been developed. Such technological breakthroughs have opened a new path in the study of microbial infectious diseases, and thus opened onto new strategies to control foodborne hazards. This review sheds new light on cellular messages from the host–foodborne pathogen crosstalk during in vitro organoid infection by the foodborne pathogenic bacteria with the highest health burden. Finally, future perspectives and current challenges are discussed to provide a better understanding of the potential applications of organoids in the investigation of foodborne infectious diseases.
Collapse
|
21
|
Tkáčová Z, Bhide K, Mochnáčová E, Petroušková P, Hruškovicová J, Kulkarni A, Bhide M. Comprehensive Mapping of the Cell Response to Borrelia bavariensis in the Brain Microvascular Endothelial Cells in vitro Using RNA-Seq. Front Microbiol 2021; 12:760627. [PMID: 34819924 PMCID: PMC8606740 DOI: 10.3389/fmicb.2021.760627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
Borrelia bavariensis can invade the central nervous system (CNS) by crossing the blood-brain barrier (BBB). It is predicted that B. bavariensis evokes numerous signaling cascades in the human brain microvascular endothelial cells (hBMECs) and exploits them to traverse across the BBB. The complete picture of signaling events in hBMECs induced by B. bavariensis remains uncovered. Using RNA sequencing, we mapped 11,398 genes and identified 295 differentially expressed genes (DEGs, 251 upregulated genes and 44 downregulated genes) in B. bavariensis challenged hBMECs. The results obtained from RNA-seq were validated with qPCR. Gene ontology analysis revealed the participation of DEGs in a number of biological processes like cell communication, organization of the extracellular matrix, vesicle-mediated transport, cell response triggered by pattern recognition receptors, antigen processing via MHC class I, cellular stress, metabolism, signal transduction, etc. The expression of several non-protein coding genes was also evoked. In this manuscript, we discuss in detail the correlation between several signaling cascades elicited and the translocation of BBB by B. bavariensis. The data revealed here may contribute to a better understanding of the mechanisms employed by B. bavariensis to cross the BBB.
Collapse
Affiliation(s)
- Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Evelina Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Jana Hruškovicová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
22
|
Mihaila AC, Ciortan L, Macarie RD, Vadana M, Cecoltan S, Preda MB, Hudita A, Gan AM, Jakobsson G, Tucureanu MM, Barbu E, Balanescu S, Simionescu M, Schiopu A, Butoi E. Transcriptional Profiling and Functional Analysis of N1/N2 Neutrophils Reveal an Immunomodulatory Effect of S100A9-Blockade on the Pro-Inflammatory N1 Subpopulation. Front Immunol 2021; 12:708770. [PMID: 34447377 PMCID: PMC8384118 DOI: 10.3389/fimmu.2021.708770] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils have been classically viewed as a homogenous population. Recently, neutrophils were phenotypically classified into pro-inflammatory N1 and anti-inflammatory N2 sub-populations, but the functional differences between the two subtypes are not completely understood. We aimed to investigate the phenotypic and functional differences between N1 and N2 neutrophils, and to identify the potential contribution of the S100A9 alarmin in neutrophil polarization. We describe distinct transcriptomic profiles and functional differences between N1 and N2 neutrophils. Compared to N2, the N1 neutrophils exhibited: i) higher levels of ROS and oxidative burst, ii) increased activity of MPO and MMP-9, and iii) enhanced chemotactic response. N1 neutrophils were also characterized by elevated expression of NADPH oxidase subunits, as well as activation of the signaling molecules ERK and the p65 subunit of NF-kB. Moreover, we found that the S100A9 alarmin promotes the chemotactic and enzymatic activity of N1 neutrophils. S100A9 inhibition with a specific small-molecule blocker, reduced CCL2, CCL3 and CCL5 chemokine expression and decreased MPO and MMP-9 activity, by interfering with the NF-kB signaling pathway. Together, these findings reveal that N1 neutrophils are pro-inflammatory effectors of the innate immune response. Pharmacological blockade of S100A9 dampens the function of the pro-inflammatory N1 phenotype, promoting the alarmin as a novel target for therapeutic intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Andreea C Mihaila
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Letitia Ciortan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Razvan D Macarie
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Mihaela Vadana
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Sergiu Cecoltan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Mihai Bogdan Preda
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ariana Hudita
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ana-Maria Gan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Gabriel Jakobsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Monica M Tucureanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Elena Barbu
- Departament of Cardiology, Elias Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Serban Balanescu
- Departament of Cardiology, Elias Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Maya Simionescu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Alexandru Schiopu
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.,Department of Pathophysiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures, Targu-Mures, Romania
| | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| |
Collapse
|
23
|
Ruan F, Wu L, Yin H, Fang L, Tang C, Huang S, Fang L, Zuo Z, He C, Huang J. Long-term exposure to environmental level of phenanthrene causes adaptive immune response and fibrosis in mouse kidneys. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117028. [PMID: 33892371 DOI: 10.1016/j.envpol.2021.117028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
As ubiquitous, persistent organic pollutants, polycyclic aromatic hydrocarbons (PAHs) have adverse impacts on human health. Phenanthrene (Phe) is one of the most abundant PAHs in the environment. However, the long-term effects of exposure to environmental level of Phe on the kidneys and the potential mechanisms are unclear. T helper (Th) cells, a subtype of CD4+ T cells that play a central role in the renal immune microenvironment. In this study, male mice were chronically exposed to 5, 50, and 500 ng/kg bw Phe every other day for total 210 days. Those results indicated that environmental Phe exposure caused kidney hypertrophy, injury and fibrosis in the mice. Chronic, long-term environmental level of Phe exposure did not significantly alter the innate immune response but induced adaptive immune response changes (Th1/Th2 related cytokines release), causing a type 1 immune response in the 5 ng/kg bw Phe group and a type 2 immune response in the high dose groups (50 and 500 ng/kg bw). This study provides novel insights into the roles of adaptive immune response in long-term PAH exposure-induced chronic kidney injury and fibrosis, which is beneficial for further understanding the potential health hazards of PAHs and providing new avenues for immune intervention strategies to alleviate PAHs toxicity.
Collapse
Affiliation(s)
- Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lifang Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025, China
| | - Hanying Yin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Siyang Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Longxiang Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
24
|
Aumayer H, Leonard CA, Pesch T, Prähauser B, Wunderlin S, Guscetti F, Borel N. Chlamydia suis is associated with intestinal NF-κB activation in experimentally infected gnotobiotic piglets. Pathog Dis 2021; 78:5893292. [PMID: 32804203 PMCID: PMC8140907 DOI: 10.1093/femspd/ftaa040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Chlamydia suis intestinal infection of single-animal experimental groups of gnotobiotic newborn piglets was previously reported to cause severe, temporary small intestinal epithelium damage. We investigated archived intestinal samples for pro-inflammatory nuclear factor kappa B (NF-κB) activation, Interleukin (IL)-6 and IL-8 production and immune cell influx. Samples were collected 2, 4 and 7 days post-inoculation with C. suis strain S45/6 or mock inoculum (control). Increased nuclear localization of epithelial NF-κB, representative of activation, in the jejunum and ileum of C. suis-infected animals, compared to uninfected controls, began by 2 days post-infection (dpi) and persisted through 7 dpi. Infected animals showed increased production of IL-8, peaking at 2 dpi, compared to controls. Infection-mediated CD45-positive immune cell influx into the jejunal lamina propria peaked at 7 dpi, when epithelial damage was largely resolved. Activation of NF-κB appears to be a key early event in the innate response of the unprimed porcine immune system challenged with C. suis. This results in an acute phase, coinciding with the most severe clinical symptoms, diarrhea and weight loss. Immune cells recruited shortly after infection remain present in the lamina propria during the recovery phase, which is characterized by reduced chlamydial shedding and restored intestinal epithelium integrity.
Collapse
Affiliation(s)
- Helen Aumayer
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Cory Ann Leonard
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Theresa Pesch
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Barbara Prähauser
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Sabina Wunderlin
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Franco Guscetti
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Nicole Borel
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| |
Collapse
|
25
|
Deng Z, Xu S, Peng Q, Sha K, Xiao W, Liu T, Zhang Y, Wang B, Xie H, Chen M, Li J. Aspirin alleviates skin inflammation and angiogenesis in rosacea. Int Immunopharmacol 2021; 95:107558. [PMID: 33743316 DOI: 10.1016/j.intimp.2021.107558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 01/09/2023]
Abstract
Rosacea is a chronic, relapsing inflammatory skin disease featured by abnormal activation of immune responses, vascular dysfunction and prominent permeability barrier alterations. Aspirin, as the first nonsteroidal anti-inflammatory drug (NSAID), is widely used for various inflammatory conditions due to its anti-inflammatory and anti-angiogenic properties. However, its effects on rosacea are unclear. In this study, we demonstrated that aspirin dramatically improved pathological phenotypes in LL37-induced rosacea-like mice. The RNA-sequencing analysis revealed that aspirin alleviated rosacea-like skin dermatitis mainly via modulating immune responses. Mechanically, we showed that aspirin decreased the production of chemokines and cytokines associated with rosacea, and suppressed the Th1- and Th17-polarized immune responses in LL37-induced rosacea-like mice. Besides, aspirin administration decreased the microvessels density and the VEGF expression in rosacea-like skin. We further demonstrated that aspirin inhibited the activation of NF-κB signaling and the release of its downstream pro-inflammatory cytokines. Collectively we showed that aspirin exerts a curative effect on rosacea by attenuating skin inflammation and angiogenesis, suggesting a promising therapeutic candidate for the treatment of rosacea.
Collapse
Affiliation(s)
- Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, Hunan, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, Hunan, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, Hunan, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, Hunan, China
| | - Qinqin Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Sha
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tangxiele Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, Hunan, China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, Hunan, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, Hunan, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, Hunan, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, Hunan, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, Hunan, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, Hunan, China; Department of Dermatology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
26
|
Qiao W, Wong KHM, Shen J, Wang W, Wu J, Li J, Lin Z, Chen Z, Matinlinna JP, Zheng Y, Wu S, Liu X, Lai KP, Chen Z, Lam YW, Cheung KMC, Yeung KWK. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nat Commun 2021; 12:2885. [PMID: 34001887 PMCID: PMC8128914 DOI: 10.1038/s41467-021-23005-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/09/2021] [Indexed: 02/03/2023] Open
Abstract
Despite the widespread observations on the osteogenic effects of magnesium ion (Mg2+), the diverse roles of Mg2+ during bone healing have not been systematically dissected. Here, we reveal a previously unknown, biphasic mode of action of Mg2+ in bone repair. During the early inflammation phase, Mg2+ contributes to an upregulated expression of transient receptor potential cation channel member 7 (TRPM7), and a TRPM7-dependent influx of Mg2+ in the monocyte-macrophage lineage, resulting in the cleavage and nuclear accumulation of TRPM7-cleaved kinase fragments (M7CKs). This then triggers the phosphorylation of Histone H3 at serine 10, in a TRPM7-dependent manner at the promoters of inflammatory cytokines, leading to the formation of a pro-osteogenic immune microenvironment. In the later remodeling phase, however, the continued exposure of Mg2+ not only lead to the over-activation of NF-κB signaling in macrophages and increased number of osteoclastic-like cells but also decelerates bone maturation through the suppression of hydroxyapatite precipitation. Thus, the negative effects of Mg2+ on osteogenesis can override the initial pro-osteogenic benefits of Mg2+. Taken together, this study establishes a paradigm shift in the understanding of the diverse and multifaceted roles of Mg2+ in bone healing.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Dental Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR., China
| | - Karen H M Wong
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jie Shen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wenhao Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jun Wu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jinhua Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Zhengjie Lin
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zetao Chen
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
- Zhujiang New Town Clinic, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jukka P Matinlinna
- Dental Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR., China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Zhuofan Chen
- Zhujiang New Town Clinic, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
27
|
Low RECK Expression Is Part of the Cervical Carcinogenesis Mechanisms. Cancers (Basel) 2021; 13:cancers13092217. [PMID: 34066355 PMCID: PMC8124470 DOI: 10.3390/cancers13092217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Human papillomavirus (HPV)-induced carcinogenesis comprises alterations in the expression and activity of matrix metalloproteinases (MMP) and their regulators. Reversion-inducing Cysteine-rich protein with Kazal motifs (RECK) inhibits the activation of specific metalloproteinases and its expression is frequently lost in human cancers. Here we analyzed the role of RECK in cervical carcinogenesis. Cervical cancer derived cell lines over expressing RECK were used to determine tumor kinetics as well as, cellular, immune and molecular properties in vivo. Besides, we analyzed RECK expression in cervical cancer samples. RECK over expression (RECK+) delayed tumor growth and increased overall survival in vivo. RECK+ tumors displayed an increase in lymphoid-like inflammatory infiltrating cells, reduced number and viability of tumor and endothelial cells and lower collagenase activity. RECK+ tumors exhibited an enrichment of cell adhesion processes both in the mouse model and cervical cancer clinical samples. Finally, we found that lower RECK mRNA levels were associated with cervical lesions progression and worse response to chemotherapy in cervical cancer patients. Altogether, we show that increased RECK expression reduced the tumorigenic potential of HPV-transformed cells both in vitro and in vivo, and that RECK down regulation is a consistent and clinically relevant event in the natural history of cervical cancer.
Collapse
|
28
|
Saliu F, Rizzo G, Bragonzi A, Cariani L, Cirillo DM, Colombo C, Daccò V, Girelli D, Rizzetto S, Sipione B, Cigana C, Lorè NI. Chronic infection by nontypeable Haemophilus influenzae fuels airway inflammation. ERJ Open Res 2021; 7:00614-2020. [PMID: 33778054 PMCID: PMC7983230 DOI: 10.1183/23120541.00614-2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is commonly isolated from airways of patients suffering from chronic respiratory diseases, such as COPD or cystic fibrosis (CF). However, to what extent NTHi long-term infection contributes to the lung inflammatory burden during chronic airway disease is still controversial. Here, we exploited human respiratory samples from a small cohort of CF patients and found that patients chronically infected with NTHi had significantly higher levels of interleukin (IL)-8 and CXCL1 than those who were not infected. To better define the impact of chronic NTHi infection in fuelling inflammatory response in chronic lung diseases, we developed a new mouse model using both laboratory and clinical strains. Chronic NTHi infection was associated with chronic inflammation of the lung, characterised by recruitment of neutrophils and cytokine release keratinocyte-derived chemokine (KC), macrophage inflammatory protein 2 (MIP-2), granulocyte colony-stimulating factor (G-CFS), IL-6, IL-17A and IL-17F) at 2 and 14 days post-infection. An increased burden of T-cell-mediated response (CD4+ and γδ cells) and higher levels of pro-matrix metalloproteinase 9 (pro-MMP9), known to be associated with tissue remodelling, were observed at 14 days post-infection. Of note we found that both CD4+IL-17+ cells and levels of IL-17 cytokines were enriched in mice at advanced stages of NTHi chronic infection. Moreover, by immunohistochemistry we found CD3+, B220+ and CXCL-13+ cells localised in bronchus-associated lymphoid tissue-like structures at day 14. Our results demonstrate that chronic NTHi infection exerts a pro-inflammatory activity in the human and murine lung and could therefore contribute to the exaggerated burden of lung inflammation in patients at risk. The pathological impact of long-term infection by nontypeable Haemophilus influenzae (NTHi) is still debated. Chronic NTHi infection fuels lung inflammation in human samples and in a new mouse model of bacterial long-term persistence.https://bit.ly/3lvyvge
Collapse
Affiliation(s)
- Fabio Saliu
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Emerging bacterial pathogens Unit, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy.,IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Infections and cystic fibrosis unit, Milan, Italy
| | - Giulia Rizzo
- Università Vita-Salute San Raffaele, Milan, Italy.,IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Infections and cystic fibrosis unit, Milan, Italy
| | - Alessandra Bragonzi
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Infections and cystic fibrosis unit, Milan, Italy
| | - Lisa Cariani
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Daniela M Cirillo
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Emerging bacterial pathogens Unit, Milan, Italy
| | - Carla Colombo
- Cystic Fibrosis Regional Reference Center, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Valeria Daccò
- Cystic Fibrosis Regional Reference Center, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Daniela Girelli
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Sara Rizzetto
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Barbara Sipione
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Infections and cystic fibrosis unit, Milan, Italy
| | - Cristina Cigana
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Infections and cystic fibrosis unit, Milan, Italy
| | - Nicola I Lorè
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Emerging bacterial pathogens Unit, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy.,IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Infections and cystic fibrosis unit, Milan, Italy
| |
Collapse
|
29
|
Ranganathan S, Smith EM, Foulke-Abel JD, Barry EM. Research in a time of enteroids and organoids: how the human gut model has transformed the study of enteric bacterial pathogens. Gut Microbes 2020; 12:1795492. [PMID: 32795243 PMCID: PMC7524385 DOI: 10.1080/19490976.2020.1795389] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/03/2023] Open
Abstract
Enteric bacterial pathogens cause significant morbidity and mortality globally. Studies in tissue culture and animal models shaped our initial understanding of these host-pathogen interactions. However, intrinsic shortcomings in these models limit their application, especially in translational applications like drug screening and vaccine development. Human intestinal enteroid and organoid models overcome some limitations of existing models and advance the study of enteric pathogens. In this review, we detail the use of human enteroids and organoids to investigate the pathogenesis of invasive bacteria Shigella, Listeria, and Salmonella, and noninvasive bacteria pathogenic Escherichia coli, Clostridium difficile, and Vibrio cholerae. We highlight how these studies confirm previously identified mechanisms and, importantly, reveal novel ones. We also discuss the challenges for model advancement, including platform engineering to integrate environmental conditions, innate immune cells and the resident microbiome, and the potential for pre-clinical testing of recently developed antimicrobial drugs and vaccines.
Collapse
Affiliation(s)
- Sridevi Ranganathan
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M. Smith
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer D. Foulke-Abel
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eileen M. Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Smith DK, Hasanali SL, Wang J, Kallifatidis G, Morera DS, Jordan AR, Terris MK, Klaassen Z, Bollag R, Lokeshwar VB, Lokeshwar BL. Promotion of epithelial hyperplasia by interleukin-8-CXCR axis in human prostate. Prostate 2020; 80:938-949. [PMID: 32542667 PMCID: PMC8327464 DOI: 10.1002/pros.24026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The clinical manifestation of benign prostatic hyperplasia (BPH) is causally linked to the inflammatory microenvironment and proliferation of epithelial and stromal cells in the prostate transitional zone. The CXC-chemokine interleukin-8 (IL-8) contributes to inflammation. We evaluated the expression of inflammatory cytokines in clinical specimens, primary cultures, and prostatic lineage cell lines. We investigated whether IL-8 via its receptor system (IL-8 axis) promotes BPH. METHODS The messenger RNA and protein expression of chemokines, including components of the IL-8 axis, were measured in normal prostate (NP; n = 7) and BPH (n = 21), urine (n = 24) specimens, primary cultures, prostatic lineage epithelial cell lines (NHPrE1, BHPrE1, BPH-1), and normal prostate cells (RWPE-1). The functional role of the IL-8 axis in prostate epithelial cell growth was evaluated by CRISPR/Cas9 gene editing. The effect of a combination with two natural compounds, oleanolic acid (OA) and ursolic acid (UA), was evaluated on the expression of the IL-8 axis and epithelial cell growth. RESULTS Among the 19 inflammatory chemokines and chemokine receptors we analyzed, levels of IL-8 and its receptors (CXCR1, CXCR2), as well as, of CXCR7, a receptor for CXCL12, were 5- to 25-fold elevated in BPH tissues when compared to NP tissues (P ≤ .001). Urinary IL-8 levels were threefold to sixfold elevated in BPH patients, but not in asymptomatic males and females with lower urinary tract symptoms (P ≤ .004). The expression of the IL-8 axis components was confined to the prostate luminal epithelial cells in both normal and BPH tissues. However, these components were elevated in BPH-1 and primary explant cultures as compared to RWPE-1, NHPrE1, and BHPrE1 cells. Knockout of CXCR7 reduced IL-8, and CXCR1 expression by 4- to 10-fold and caused greater than or equal to 50% growth inhibition in BPH-1 cells. Low-dose OA + UA combination synergistically inhibited the growth of BPH-1 and BPH primary cultures. In the combination, the drug reduction indices for UA and OA were 16.4 and 7852, respectively, demonstrating that the combination was effective in inhibiting BPH-1 growth at significantly reduced doses of UA or OA alone. CONCLUSION The IL-8 axis is a promotor of BPH pathogenesis. Low-dose OA + UA combination inhibits BPH cell growth by inducing autophagy and reducing IL-8 axis expression in BPH-epithelial cells.
Collapse
Affiliation(s)
- Diandra K. Smith
- Department of Medicine, Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Sarrah L. Hasanali
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jiaojiao Wang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Georgios Kallifatidis
- Department of Medicine, Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Department of Biological Sciences, College of Science and Mathematics, Augusta University, Augusta, Georgia
- Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia
| | - Daley S. Morera
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Andre R. Jordan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Martha K. Terris
- Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zachary Klaassen
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Roni Bollag
- Department of Pathology, Bio-Repository Alliance of Georgia for Oncology (BRAG-Onc), Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Vinata B. Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Bal L. Lokeshwar
- Department of Medicine, Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
31
|
Kang KW, Lee SJ, Kim JH, Lee BH, Kim SJ, Park Y, Kim BS. Etoposide-mediated interleukin-8 secretion from bone marrow stromal cells induces hematopoietic stem cell mobilization. BMC Cancer 2020; 20:619. [PMID: 32615949 PMCID: PMC7330970 DOI: 10.1186/s12885-020-07102-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background We assessed the mechanism of hematopoietic stem cell (HSC) mobilization using etoposide with granulocyte-colony stimulating factor (G-CSF), and determined how this mechanism differs from that induced by cyclophosphamide with G-CSF or G-CSF alone. Methods We compared the clinical features of 173 non-Hodgkin’s lymphoma patients who underwent autologous peripheral blood stem cell transplantation (auto-PBSCT). Additionally, we performed in vitro experiments to assess the changes in human bone marrow stromal cells (hBMSCs), which support the HSCs in the bone marrow (BM) niche, following cyclophosphamide or etoposide exposure. We also performed animal studies under standardized conditions to ensure the following: exclude confounding factors, mimic the conditions in clinical practice, and identify the changes in the BM niche caused by etoposide-induced chemo-mobilization or other mobilization methods. Results Retrospective analysis of the clinical data revealed that the etoposide with G-CSF mobilization group showed the highest yield of CD34+ cells and the lowest change in white blood cell counts during mobilization. In in vitro experiments, etoposide triggered interleukin (IL)-8 secretion from the BMSCs and caused long-term BMSC toxicity. To investigate the manner in which the hBMSC-released IL-8 affects hHSCs in the BM niche, we cultured hHSCs with or without IL-8, and found that the number of total, CD34+, and CD34+/CD45- cells in IL-8-treated cells was significantly higher than the respective number in hHSCs cultured without IL-8 (p = 0.014, 0.020, and 0.039, respectively). Additionally, the relative expression of CXCR2 (an IL-8 receptor), and mTOR and c-MYC (components of IL-8-related signaling pathways) increased 1 h after IL-8 treatment. In animal studies, the etoposide with G-CSF mobilization group presented higher IL-8-related cytokine and MMP9 expression and lower SDF-1 expression in the BM, compared to the groups not treated with etoposide. Conclusion Collectively, the unique mechanism of etoposide with G-CSF-induced mobilization is associated with IL-8 secretion from the BMSCs, which is responsible for the enhanced proliferation and mobilization of HSCs in the bone marrow; this was not observed with mobilization using cyclophosphamide with G-CSF or G-CSF alone. However, the long-term toxicity of etoposide toward BMSCs emphasizes the need for the development of more efficient and safe chemo-mobilization strategies.
Collapse
Affiliation(s)
- Ka-Won Kang
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University School of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Seung-Jin Lee
- Institute of Stem Cell Research, Korea University, Seoul, South Korea.,Department of Biomedical and Science, Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Ji Hye Kim
- Institute of Stem Cell Research, Korea University, Seoul, South Korea.,Department of Biomedical and Science, Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Byung-Hyun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University School of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yong Park
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University School of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Byung Soo Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University School of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea. .,Institute of Stem Cell Research, Korea University, Seoul, South Korea. .,Department of Biomedical and Science, Graduate School of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
32
|
Nigro G, Arena ET, Sachse M, Moya-Nilges M, Marteyn BS, Sansonetti PJ, Campbell-Valois FX. Mapping of Shigella flexneri's tissue distribution and type III secretion apparatus activity during infection of the large intestine of guinea pigs. Pathog Dis 2020; 77:5580288. [PMID: 31578543 PMCID: PMC6920510 DOI: 10.1093/femspd/ftz054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Shigella spp. are bacterial pathogens that invade the human colonic mucosa using a type III secretion apparatus (T3SA), a proteinaceous device activated upon contact with host cells. Active T3SAs translocate proteins that carve the intracellular niche of Shigella spp. Nevertheless, the activation state of the T3SA has not been addressed in vivo. Here, we used a green fluorescent protein transcription-based secretion activity reporter (TSAR) to provide a spatio-temporal description of S. flexneri T3SAs activity in the colon of Guinea pigs. First, we observed that early mucus release is triggered in the vicinity of luminal bacteria with inactive T3SA. Subsequent mucosal invasion showed bacteria with active T3SA associated with the brush border, eventually penetrating into epithelial cells. From 2 to 8 h post-challenge, the infection foci expanded, and these intracellular bacteria displayed homogeneously high-secreting activity, while extracellular foci within the lamina propria featured bacteria with low secretion activity. We also found evidence that within lamina propria macrophages, bacteria reside in vacuoles instead of accessing the cytosol. Finally, bacteria were cleared from tissues between 8 and 24 h post-challenge, highlighting the hit-and-run colonization strategy of Shigella. This study demonstrates how genetically encoded reporters can contribute to deciphering pathogenesis in vivo.
Collapse
Affiliation(s)
- Giulia Nigro
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 24-28 rue du Docteur-Roux, 75015 Paris, France
| | - Ellen T Arena
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 24-28 rue du Docteur-Roux, 75015 Paris, France.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Laboratory for Optical and Computational Instrumentation, 271 Animal Sciences, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Martin Sachse
- Ultrastructural Bioimaging unit, Institut Pasteur, 24-28 rue du Docteur-Roux, 75015 Paris, France
| | - Maryse Moya-Nilges
- Ultrastructural Bioimaging unit, Institut Pasteur, 24-28 rue du Docteur-Roux, 75015 Paris, France
| | - Benoit S Marteyn
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 24-28 rue du Docteur-Roux, 75015 Paris, France.,Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS UPR9002, 2 Allée Konrad Roentgen, 67084 Strasbourg, France.,Unité Pathogenèse des Infections Vasculaires, Institut Pasteur, 24-28 rue du Docteur-Roux, 75015 Paris, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 24-28 rue du Docteur-Roux, 75015 Paris, France.,Chaire de Microbiologie et Maladies Infectieuses, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris, France
| | - F-X Campbell-Valois
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, INSERM U1202, 24-28 rue du Docteur-Roux, 75015 Paris, France.,The Host-Microbe Interactions Laboratory, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur private, Ottawa, ON, K1N 6N5, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Rd, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
33
|
Pulavendran S, Rudd JM, Maram P, Thomas PG, Akhilesh R, Malayer JR, Chow VTK, Teluguakula N. Combination Therapy Targeting Platelet Activation and Virus Replication Protects Mice against Lethal Influenza Pneumonia. Am J Respir Cell Mol Biol 2020; 61:689-701. [PMID: 31070937 DOI: 10.1165/rcmb.2018-0196oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Excessive neutrophils recruited during influenza pneumonia contribute to severe lung pathology through induction of neutrophil extracellular traps (NETs) and release of extracellular histones. We have recently shown that activation of platelets during influenza enhances pulmonary microvascular thrombosis, leading to vascular injury and hemorrhage. Emerging evidence indicates that activated platelets also interact with neutrophils, forming neutrophil-platelet aggregates (NPAs) that contribute to tissue injury. Here, we examined neutrophil-platelet interactions and evaluated the formation of NPAs during influenza pneumonia. We also evaluated the efficacy of clopidogrel (CLP), an antagonist of the ADP-P2Y12 platelet receptor, alone or in combination with an antiviral agent (oseltamivir) against influenza infection in mice. Our studies demonstrated increased platelet activation and induction of NPAs in influenza-infected lungs, and that these NPAs led to NET release both in vitro and in vivo. Furthermore, neutrophil integrin Mac-1 (macrophage-1 antigen)-mediated platelet binding was critical for NPA formation and NET release. Administration of CLP reduced platelet activation and NPA formation but did not protect the mice against lethal influenza challenge. However, administration of CLP together with oseltamivir improved survival rates in mice compared with oseltamivir alone. The combination treatment reduced lung pathology, neutrophil influx, NPAs, NET release, and inflammatory cytokine release in infected lungs. Taken together, these results provide the first evidence that NPAs formed during influenza contribute to acute lung injury. Targeting both platelet activation and virus replication could represent an effective therapeutic option for severe influenza pneumonia.
Collapse
Affiliation(s)
- Sivasami Pulavendran
- Center for Veterinary Health Sciences and.,Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Jennifer M Rudd
- Center for Veterinary Health Sciences and.,Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Prasanthi Maram
- Center for Veterinary Health Sciences and.,Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee; and
| | | | | | - Vincent T K Chow
- Department of Microbiology and Immunology, School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore
| | - Narasaraju Teluguakula
- Center for Veterinary Health Sciences and.,Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
34
|
Bogucka K, Pompaiah M, Marini F, Binder H, Harms G, Kaulich M, Klein M, Michel C, Radsak MP, Rosigkeit S, Grimminger P, Schild H, Rajalingam K. ERK3/MAPK6 controls IL-8 production and chemotaxis. eLife 2020; 9:52511. [PMID: 32314963 PMCID: PMC7192585 DOI: 10.7554/elife.52511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
ERK3 is a ubiquitously expressed member of the atypical mitogen activated protein kinases (MAPKs) and the physiological significance of its short half-life remains unclear. By employing gastrointestinal 3D organoids, we detect that ERK3 protein levels steadily decrease during epithelial differentiation. ERK3 is not required for 3D growth of human gastric epithelium. However, ERK3 is stabilized and activated in tumorigenic cells, but deteriorates over time in primary cells in response to lipopolysaccharide (LPS). ERK3 is necessary for production of several cellular factors including interleukin-8 (IL-8), in both, normal and tumorigenic cells. Particularly, ERK3 is critical for AP-1 signaling through its interaction and regulation of c-Jun protein. The secretome of ERK3-deficient cells is defective in chemotaxis of neutrophils and monocytes both in vitro and in vivo. Further, knockdown of ERK3 reduces metastatic potential of invasive breast cancer cells. We unveil an ERK3-mediated regulation of IL-8 and epithelial secretome for chemotaxis.
Collapse
Affiliation(s)
- Katarzyna Bogucka
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Malvika Pompaiah
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Harald Binder
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Gregory Harms
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Departments of Biology and Physics, Wilkes University, Wilkes Barre, United States
| | - Manuel Kaulich
- Gene Editing Group, Institute of Biochemistry II, Goethe University, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Matthias Klein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christian Michel
- Department of Hematology, Medical Oncology, & Pneumology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus P Radsak
- Department of Hematology, Medical Oncology, & Pneumology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Rosigkeit
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Grimminger
- Department of General, Visceral- and Transplant Surgery, University Medical Center, Mainz, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center Mainz, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
35
|
Cho KH, Choi JI, Kim JO, Jung JE, Kim DW, Kim M. Therapeutic mechanism of cord blood mononuclear cells via the IL-8-mediated angiogenic pathway in neonatal hypoxic-ischaemic brain injury. Sci Rep 2020; 10:4446. [PMID: 32157146 PMCID: PMC7064601 DOI: 10.1038/s41598-020-61441-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/25/2020] [Indexed: 01/08/2023] Open
Abstract
In a clinical trial of cerebral palsy, the level of plasma interleukin-8 (IL-8) was increased, correlated with motor improvement, after human umbilical cord blood mononuclear cell (hUCBC) infusion. This study aimed to elucidate the role of IL-8 in the therapeutic effects of hUCBCs in a mouse model of hypoxic-ischaemic brain injury (HI). In P7 HI mouse brains, hUCBC administration at day 7 after HI upregulated the gene expression of Cxcl2, the mouse IL-8 homologue and increased the expression of its receptor, CXCR2. hUCBC administration restored the sequential downstream signalling axis of p-p38/p-MAPKAPK2, NFκB, and angiogenic factors, which were downregulated by HI. An in vitro assay revealed the downregulation of the angiogenic pathway by CXCR2 knockdown and p38 inhibition. In vivo p38 inhibition prior to hUCBC administration in HI mouse brains produced identical results. Behavioural outcomes revealed a therapeutic effect (ps < 0.01) of hUCBC or IL-8 administration, which was correlated with decreases in infarct size and angiogenic findings in the striatum. In conclusion, the response of the host to hUCBC administration in mice upregulated Cxcl2, which led to the activation of the IL-8-mediated p-p38 signalling pathway. The upregulation of the downstream pathway and angiogenic growth factors via NFκB can be inferred to be the potential therapeutic mechanism of hUCBCs.
Collapse
Affiliation(s)
- Kye Hee Cho
- Department of Rehabilitation Medicine, CHA Gumi Medical Center, CHA University College of Medicine, Gumi, Gyeongsangbukdo, Republic of Korea
| | - Jee In Choi
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, Republic of Korea
| | - Jin-Ock Kim
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Joo Eun Jung
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam, Republic of Korea. .,Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
36
|
Kuehl CJ, D'Gama JD, Warr AR, Waldor MK. An Oral Inoculation Infant Rabbit Model for Shigella Infection. mBio 2020; 11:e03105-19. [PMID: 31964739 PMCID: PMC6974573 DOI: 10.1128/mbio.03105-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Shigella species cause diarrheal disease globally. Shigellosis is typically characterized by bloody stools and colitis with mucosal damage and is the leading bacterial cause of diarrheal death worldwide. After the pathogen is orally ingested, it invades and replicates within the colonic epithelium through mechanisms that rely on its type III secretion system (T3SS). Currently, oral infection-based small animal models to study the pathogenesis of shigellosis are lacking. Here, we found that orogastric inoculation of infant rabbits with Shigella flexneri resulted in diarrhea and colonic pathology resembling that found in human shigellosis. Fasting animals prior to S. flexneri inoculation increased the frequency of disease. The pathogen colonized the colon, where both luminal and intraepithelial foci were observed. The intraepithelial foci likely arise through S. flexneri spreading from cell to cell. Robust S. flexneri intestinal colonization, invasion of the colonic epithelium, and epithelial sloughing all required the T3SS as well as IcsA, a factor required for bacterial spreading and adhesion in vitro Expression of the proinflammatory chemokine interleukin 8 (IL-8), detected with in situ mRNA labeling, was higher in animals infected with wild-type S. flexneri versus mutant strains deficient in icsA or T3SS, suggesting that epithelial invasion promotes expression of this chemokine. Collectively, our findings suggest that oral infection of infant rabbits offers a useful experimental model for studies of the pathogenesis of shigellosis and for testing of new therapeutics.IMPORTANCEShigella species are the leading bacterial cause of diarrheal death globally. The pathogen causes bacillary dysentery, a bloody diarrheal disease characterized by damage to the colonic mucosa and is usually spread through the fecal-oral route. Small animal models of shigellosis that rely on the oral route of infection are lacking. Here, we found that orogastric inoculation of infant rabbits with S. flexneri led to a diarrheal disease and colonic pathology reminiscent of human shigellosis. Diarrhea, intestinal colonization, and pathology in this model were dependent on the S. flexneri type III secretion system and IcsA, canonical Shigella virulence factors. Thus, oral infection of infant rabbits offers a feasible model to study the pathogenesis of shigellosis and to develop and test new therapeutics.
Collapse
Affiliation(s)
- Carole J Kuehl
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan D D'Gama
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alyson R Warr
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Yamamoto S, Kawano F, Yokoyama H, Kobayashi S. Effects of Kudoa septempunctata infections in a human intestinal epithelial model (Caco-2): a DNA microarray study. Biosci Biotechnol Biochem 2020; 84:1030-1038. [PMID: 31906820 DOI: 10.1080/09168451.2019.1709791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Kudoa septempunctata, a myxosporean parasite infecting the trunk muscles of olive flounder (Paralichthys olivaceus), is reported to cause food poisoning in humans. The molecular mechanisms underlying the toxicity of K. septempunctata spores remain largely unknown. In the present study, we examine the molecular basis of such toxicity using DNA microarray analysis of K. septempunctata-inoculated human colon adenocarcinoma cells (Caco-2). We observed that the transepithelial resistance of the K. septempunctata-inoculated Caco-2 cell monolayers decreased markedly. DNA microarray analysis revealed that the mRNA expression profiles of control and inoculated cells clearly differed. Inflammatory and bacteria-related pathways, such as interleukin-8 (IL-8) production and MAPK/NF-kappa B pathway, were enriched. The concentrations of IL-8 and serotonin (5-HT) were higher in inoculated cells than in controls. K. septempunctata invasion damages the human intestinal epithelium, causing increased production of IL-8 and 5-HT, which likely results in the vomiting associated with K. septempunctata invasion.Abbreviations: AP-1: activator protein 1; DAVID: Database for Annotation, Visualization and Integrated Discovery; ENS: enteric nervous system; FARMS: Factor Analysis for Robust Microarray Summarization; FDR: false discovery rate; GO: Gene Ontology; 5-HT: 5-hydroxytryptamine; IL-8: Interleukin-8; KEGG: Kyoto Encyclopedia of Genes and Genomes; K. septempunctata: Kudoa septempunctata; NF-kappa B: nuclear factor-kappa B; TJ: tight junction; TER: transepithelial electrical resistance.
Collapse
Affiliation(s)
- So Yamamoto
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumi Kawano
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yokoyama
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoko Kobayashi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Probiotic Propionibacterium freudenreichii requires SlpB protein to mitigate mucositis induced by chemotherapy. Oncotarget 2019; 10:7198-7219. [PMID: 31921383 PMCID: PMC6944450 DOI: 10.18632/oncotarget.27319] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Propionibacterium freudenreichii CIRM-BIA 129 (P. freudenreichii wild type, WT) is a probiotic bacterium, which exerts immunomodulatory effects. This strain possesses extractable surface proteins, including SlpB, which are involved in anti-inflammatory effect and in adhesion to epithelial cells. We decided to investigate the impact of slpB gene mutation on immunomodulation in vitro and in vivo. In an in vitro assay, P. freudenreichii WT reduced expression of IL-8 (p<0.0001) and TNF-α (p<0.0001) cytokines in LPS-stimulated HT-29 cells. P. freudenreichii ΔslpB, lacking the SlpB protein, failed to do so. Subsequently, both strains were investigated in vivo in a 5-FU-induced mucositis mice model. Mucositis is a common side effect of cytotoxic chemotherapy with 5-FU, characterized by mucosal injury, inflammation, diarrhea, and weight loss. The WT strain prevented weight loss, reduced inflammation and consequently histopathological scores. Furthermore, it regulated key markers, including Claudin-1 (cld1, p<0.0005) and IL-17a (Il17a, p<0.0001) genes, as well as IL-12 (p<0.0001) and IL-1β (p<0.0429) cytokines levels. Mutant strain displayed opposite regulatory effect on cld1 expression and on IL-12 levels. This work emphasizes the importance of SlpB in P. freudenreichii ability to reduce mucositis inflammation. It opens perspectives for the development of probiotic products to decrease side effects of chemotherapy using GRAS bacteria with immunomodulatory surface protein properties.
Collapse
|
39
|
Human Enteric Defensin 5 Promotes Shigella Infection of Macrophages. Infect Immun 2019; 88:IAI.00769-19. [PMID: 31611271 DOI: 10.1128/iai.00769-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 01/13/2023] Open
Abstract
Human α-defensins are 3- to 5-kDa disulfide-bridged peptides with a multitude of antimicrobial activities and immunomodulatory functions. Recent studies show that human enteric α-defensin 5 (HD5), a host defense peptide important for intestinal homeostasis and innate immunity, aids the highly infectious enteropathogen Shigella in breaching the intestinal epithelium in vitro and in vivo Whether and how HD5 influences Shigella infection of resident macrophages following its invasion of the intestinal epithelium remain poorly understood. Here, we report that HD5 greatly promoted phagocytosis of Shigella by macrophages by targeting the bacteria to enhance bacterium-to-cell contacts in a structure- and sequence-dependent fashion. Subsequent intracellular multiplication of phagocytosed Shigella led to massive necrotic cell death and release of the bacteria. HD5-promoted phagocytosis of Shigella was independent of the status of the type 3 secretion system. Furthermore, HD5 neither inhibited nor enhanced phagosomal escape of Shigella Collectively, these findings confirm a potential pathogenic role of HD5 in Shigella infection of not only epithelial cells but also macrophages, illuminating how an enteropathogen exploits a host protective factor for virulence and infection.
Collapse
|
40
|
Sakuma M, Khan MAS, Yasuhara S, Martyn JA, Palaniyar N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation. FASEB J 2019; 33:13602-13616. [PMID: 31577450 PMCID: PMC6894048 DOI: 10.1096/fj.201901098r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Pulmonary immunosuppression often occurs after burn injury (BI). However, the reasons for BI-induced pulmonary immunosuppression are not clearly understood. Neutrophil recruitment and neutrophil extracellular trap (NET) formation (NETosis) are important components of a robust pulmonary immune response, and we hypothesized that pulmonary inflammation and NETosis are defective after BI. To test this hypothesis, we established a mouse model with intranasal LPS instillation in the presence or absence of BI (15% of body surface burn) and determined the degree of immune cell infiltration, NETosis, and the cytokine levels in the airways and blood on d 2. Presence of LPS recruited monocytes and large numbers of neutrophils to the airways and induced NETosis (citrullinated histone H3, DNA, myeloperoxidase). By contrast, BI significantly reduced LPS-mediated leukocyte recruitment and NETosis. This BI-induced immunosuppression is attributable to the reduction of chemokine (C-C motif) ligand (CCL) 2 (monocyte chemoattractant protein 1) and CCL3 (macrophage inflammatory protein 1α). BI also suppressed LPS-induced increase in IL-17A, IL-17C, and IL-17E/IL-25 levels in the airways. Therefore, BI-mediated reduction in leukocyte recruitment and NETosis in the lungs are attributable to these cytokines. Regulating the levels of some of these key cytokines represents a potential therapeutic option for mitigating BI-mediated pulmonary immunosuppression.-Sakuma, M., Khan, M. A. S., Yasuhara, S., Martyn, J. A., Palaniyar, N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation.
Collapse
Affiliation(s)
- Miyuki Sakuma
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Mohammed A. S. Khan
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Shingo Yasuhara
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeevendra A. Martyn
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Nades Palaniyar
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Institute of Medical Sciences, Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Genipin attenuates dextran sulfate sodium-induced colitis via suppressing inflammatory and oxidative responses. Inflammopharmacology 2019; 28:333-339. [DOI: 10.1007/s10787-019-00639-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/23/2019] [Indexed: 01/01/2023]
|
42
|
Peng B, Che D, Hao Y, Zheng Y, Liu R, Qian Y, Cao J, Wang J, Zhang Y, He L, Geng S. Thimerosal induces skin pseudo-allergic reaction via Mas-related G-protein coupled receptor B2. J Dermatol Sci 2019; 95:99-106. [PMID: 31558225 DOI: 10.1016/j.jdermsci.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Thimerosal has been used as a preservative in many products which may cause contact dermatitis. It is the second most common allergen in positive patch test reactions, though being a clinical irrelevant allergen. Thimerosal-induced contact dermatitis is generally considered to be a delayed-type hypersensitivity reaction, but it is difficult to explain the fact that most patients develop an allergic reaction upon first encounter with thimerosal. Recent studies have demonstrated the association between Mas-related G protein coupled receptor X2 (MRGPRX2) and pseudo-allergic reactions which occur at the first contact with stimulation. This suggests the possibility that thimerosal may cause contact dermatitis via MRGPRX2 mediated mechanism. OBJECTIVES To investigate the role of Mas-related G-protein coupled receptor B2 (MrgprB2)/MRGPRX2 in contact dermatitis induced by thimerosal. METHODS Thimerosal induced pseudo-allergic reactions via MrgprB2/ MRGPRX2 were investigated using a novel skin pseudo-allergic reaction mouse model, footpad swelling and extravasation assays in vivo and mast cell degranulation assay in vitro. RESULTS Thimerosal induced contact dermatitis in dorsal skin and footpad swelling in wild-type mice, but had no significant effect in MrgprB2-knockout mice. Thimerosal-induced dermatitis is characterized by infiltration of inflammatory cells and elevation of serum histamine and inflammatory cytokines, rather than elevation of serum IgE level. Thimerosal increased the intracellular Ca2+ concentration in HEK293 cells overexpressing MrgprB2/MRGPRX2. Downregulation of MRGPRX2 resulted in the reduced degranulation of LAD2 human mast cells. CONCLUSIONS MrgprB2 mediates thimerosal-induced mast cell degranulation and pseudo-allergic reaction in mice. MRGPRX2 may be a key contributor to human contact dermatitis.
Collapse
Affiliation(s)
- Bin Peng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Delu Che
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yong Hao
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Dermatology, The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yi Zheng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rui Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ye Qian
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jiao Cao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jue Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongjing Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
43
|
Feng Y, Wang G, Chang Y, Cheng Y, Sun B, Wang L, Chen C, Zhang H. Electron Compensation Effect Suppressed Silver Ion Release and Contributed Safety of Au@Ag Core-Shell Nanoparticles. NANO LETTERS 2019; 19:4478-4489. [PMID: 31244230 DOI: 10.1021/acs.nanolett.9b01293] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Silver nanoparticles (Ag NPs) have promising plasmonic properties, however, they are rarely used in biomedical applications because of their potent toxicity. Herein, an electron compensation effect from Au to Ag was applied to design safe Au@Ag core-shell NPs. The Ag shell thickness was precisely regulated to enable the most efficient electron enrichment in Ag shell of Au@Ag2.4 NPs, preventing Ag oxidation and subsequent Ag+ ion release. X-ray photoelectron spectroscopy and X-ray absorption near-edge structure analysis revealed the electron transfer process from Au core to Ag shell, and inductively coupled plasma optical emission spectroscopy analysis confirmed the low Ag+ ion release from Au@Ag2.4 NPs. Bare Au@Ag2.4 NPs showed much lower toxicological responses than Ag NPs in BEAS-2B and Raw 264.7 cells and acute lung inflammation mouse models, and PEGylation of Au@Ag2.4 NPs could further improve their safety to L02 and HEK293T cells as well as mice through intravenous injection. Further, diethylthiatri carbocyanine iodide attached pAu@Ag2.4 NPs exhibited intense surface-enhanced Raman scattering signals and were used for Raman imaging of MCF7 cells and Raman biosensing in MCF7 tumor-bearing mice. This electron compensation effect opens up new opportunity for broadening biomedical application of Ag-based NPs.
Collapse
Affiliation(s)
- Yanlin Feng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Guorui Wang
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education , Northeast Normal University , Changchun 130024 , P.R. China
| | - Yun Chang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
| | - Yan Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
| | - Bingbing Sun
- School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , P.R. China
| | - Liming Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, Institute of High Energy Physics, and National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Chunying Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, Institute of High Energy Physics, and National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| |
Collapse
|
44
|
Liao C, Fang K, Xiao J, Zhang W, Zhang B, Yuan W, Lu W, Xu D. Critical determinants of human neutrophil peptide 1 for enhancing host epithelial adhesion of Shigella flexneri. Cell Microbiol 2019; 21:e13069. [PMID: 31218775 DOI: 10.1111/cmi.13069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 11/27/2022]
Abstract
Human neutrophil peptides (HNPs), also known as human myeloid α-defensins degranulated by infiltrating neutrophils at bacterial infection loci, exhibit broad antomicrobial activities against bacteria, fungi, and viruses. We have made a surprising recent finding that Shigella, a highly contagious, yet poorly adhesive enteric pathogen, exploits human α-defensins including HNP1 to enhance its adhesion to and invasion of host epithelial cells. However, the critical molecular determinants responsible for HNP1-enhanced Shigella adhesion and invasion have yet to be investigated. Using cultured epithelial cells and polarised Caco2 cells as an in vitro infection model, we demonstrated that HNP1 promoted Shigella infection in a structure- and sequence-dependent manner, with two bulky hydrophobic residues, Trp26 and Phe28 important for HNP1 self-assembly, being most critical. The functional importance of hydrophobicity for HNP1-enhanced Shigella infection was further verified by substitutions for Trp26 of a series of unnatural amino acids with straight aliphatic side chains of different lengths. Dissection of the Shigella infection process revealed that bacteria-rather than host cells-bound HNP1 contributed most to the enhancement. Further, mutagenesis analysis of bacterial surface components, while precluding the involvement of lipopolysaccharides (LPS) in the interaction with HNP1, identified outer membrane proteins and the Type 3 secretion apparatus as putative binding targets of HNP1 involved in enhanced Shigella adhesion and invasion. Our findings provide molecular and mechanistic insights into the mode of action of HNP1 in promoting Shigella infection, thus showcasing another example of how innate immune factors may serve as a double-edged sword in health and disease.
Collapse
Affiliation(s)
- Chongbing Liao
- Center for Translational Medicine Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kun Fang
- Department of Internal Medicine, Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiu Xiao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wei Zhang
- Center for Translational Medicine Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bing Zhang
- Center for Translational Medicine Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weirong Yuan
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dan Xu
- Center for Translational Medicine Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Azevedo EP, Guimaraes-Costa AB, Bandeira-Melo C, Chimelli L, Waddington-Cruz M, Saraiva EM, Palhano FL, Foguel D. Inflammatory profiling of patients with familial amyloid polyneuropathy. BMC Neurol 2019; 19:146. [PMID: 31253122 PMCID: PMC6599258 DOI: 10.1186/s12883-019-1369-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Familial amyloid polyneuropathy (FAP) or ATTRv (amyloid TTR variant) amyloidosis is a fatal hereditary disease characterized by the deposition of amyloid fibrils composed of transthyretin (TTR). The current diagnosis of ATTRv relies on genetic identification of TTR mutations and on Congo Red-positive amyloid deposits, which are absent in most ATTRv patients that are asymptomatic or early symptomatic, supporting the need for novel biomarkers to identify patients in earlier disease phases allowing disease control. METHODS In an effort to search for new markers for ATTRv, our group searched for nine inflammation markers in ATTRv serum from a cohort of 28 Brazilian ATTRv patients. RESULTS We found that the levels of six markers were increased (TNF-α, IL-1β, IL-8, IL-33, IFN-β and IL-10), one had decreased levels (IL-12) and two of them were unchanged (IL-6 and cortisol). Interestingly, asymptomatic patients already presented high levels of IL-33, IL-1β and IL-10, suggesting that inflammation may take place before fibril deposition. CONCLUSIONS Our findings shed light on a new, previously unidentified aspect of ATTRv, which might help define new criteria for disease management, as well as provide additional understanding of ATTRv aggressiveness.
Collapse
Affiliation(s)
- Estefania P Azevedo
- Instituto de Bioquímica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson B Guimaraes-Costa
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christianne Bandeira-Melo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leila Chimelli
- Serviço de Anatomia Patológica do Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Waddington-Cruz
- Serviço de Neurologia do Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando L Palhano
- Instituto de Bioquímica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
46
|
Khanam A, Trehanpati N, Sarin SK. Increased interleukin-23 receptor (IL-23R) expression is associated with disease severity in acute-on-chronic liver failure. Liver Int 2019; 39:1062-1070. [PMID: 30506912 DOI: 10.1111/liv.14015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/22/2018] [Accepted: 11/17/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Th17 cells mediated immune response is important in chronic hepatitis B (CHB) infection and inflammation associated diseases; however, little is known about their immunopathogenic role in acute-on-chronic liver failure (ACLF). Interleukin-23 receptor (IL-23R) is essential for the generation of pathogenic Th17 cells; therefore, we aimed to evaluate IL-23R expression and its correlation with disease severity in ACLF. METHODS Forty-two patients with ACLF (HBV and alcohol-related), thirty-two with CHB and twenty healthy controls (HC) were studied. Circulating and intrahepatic profile of Th17 cells and IL-23R was investigated. Association of IL-23R with disease severity was determined. RESULTS Circulating Th17 cells were significantly increased in both ACLF groups (P = 0.03, P = 0.006) than CHB and HC. Percentage of Th17 cells was higher in liver than peripheral blood of ACLF patients (P = 0.04). Expression of IL-23R was immensely up-regulated on Th17 cells of ACLF patients. Importantly, IL-23R not only correlated with the increased percentage of Th17 cells but also had significant association with inflammation (P = 0.03) and clinical disease severity indices including Child-Turcotte-Pugh (P = 0.001) and Model for End-Stage Liver Disease (P = 0.002) scores. The ACLF non-survivors showed higher IL-23R expression (P = 0.01). Transcription factor retinoic acid receptor-related orphan nuclear receptor gamma-t (ROR-γt) was also high in circulation and in liver of ACLF patients and it positively correlated with ALT levels (P = 0.03). Surface receptors, including CCR6, IL-17R and pro-inflammatory cytokines IL-17A, IL-22, CXCL8 and GM-CSF were highly augmented in ACLF. CONCLUSION ACLF patients express high IL-23R on Th17 cells which induces inflammation and strongly correlates with liver disease severity.
Collapse
Affiliation(s)
- Arshi Khanam
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.,Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
47
|
Mendes V, Galvão I, Vieira AT. Mechanisms by Which the Gut Microbiota Influences Cytokine Production and Modulates Host Inflammatory Responses. J Interferon Cytokine Res 2019; 39:393-409. [PMID: 31013453 DOI: 10.1089/jir.2019.0011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract encounters a wide variety of microorganisms, including beneficial symbionts, pathobionts, and pathogens. Recent evidence has shown that the gut microbiota, directly or indirectly through its components, such as metabolites, actively participates in the host inflammatory response by cytokine-microbiota or microbiota-cytokine modulation interactions, both in the gut and systemically. Therefore, further elucidation of host cytokine molecular pathways and microbiota components will provide a novel and promising therapeutic approach to control or prevent inflammatory disease and to maintain host homeostasis. The purpose of this review is to summarize well-established scientific findings and provide an updated overview regarding the direct and indirect mechanisms by which the gut microbiota can influence the inflammatory response by modulating the host's cytokine pathways that are mostly involved, but not exclusively so, with gut homeostasis. In addition, we will highlight recent results from our group, which suggest that the microbiota promotes cytokine release from inflammatory cells though activation of microbial metabolite sensor receptors that are more highly expressed on inflammatory and intestinal epithelial cells.
Collapse
Affiliation(s)
- Viviani Mendes
- 1 Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,2 Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Galvão
- 3 Department of Cellular Biology ICB, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Angelica Thomaz Vieira
- 1 Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,2 Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
48
|
Brunner K, Samassa F, Sansonetti PJ, Phalipon A. Shigella-mediated immunosuppression in the human gut: subversion extends from innate to adaptive immune responses. Hum Vaccin Immunother 2019; 15:1317-1325. [PMID: 30964713 PMCID: PMC6663138 DOI: 10.1080/21645515.2019.1594132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
The enteropathogen, Shigella, is highly virulent and remarkably adjusted to the intestinal environment of its almost exclusive human host. Key for Shigella pathogenicity is the injection of virulence effectors into the host cell via its type three secretion system (T3SS), initiating disease onset and progression by the vast diversity of the secreted T3SS effectors and their respective cellular targets. The multifaceted modulation of host signaling pathways exerted by Shigella T3SS effectors, which include the subversion of host innate immune defenses and the promotion of intracellular bacterial survival and dissemination, have been extensively reviewed in the recent past. This review focuses on the human species specificity of Shigella by discussing some possible evasion mechanisms towards the human, but not non-human or rodent gut innate defense barrier, leading to the lack of a relevant animal infection model. In addition, subversion mechanisms of the adaptive immune response are highlighted summarizing research advances of the recent years. In particular, the new paradigm of Shigella pathogenicity constituted of invasion-independent T3SS effector-mediated targeting of activated, human lymphocytes is discussed. Along with consequences on vaccine development, these findings offer new directions for future research endeavors towards a better understanding of immunity to Shigella infection.
Collapse
Affiliation(s)
- Katja Brunner
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| | - Fatoumata Samassa
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| | - Philippe J. Sansonetti
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - Armelle Phalipon
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| |
Collapse
|
49
|
Jayathilake C, Maini PK, Hopf HW, Sean McElwain DL, Byrne HM, Flegg MB, Flegg JA. A mathematical model of the use of supplemental oxygen to combat surgical site infection. J Theor Biol 2019; 466:11-23. [PMID: 30659823 DOI: 10.1016/j.jtbi.2019.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/13/2018] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
Infections are a common complication of any surgery, often requiring a recovery period in hospital. Supplemental oxygen therapy administered during and immediately after surgery is thought to enhance the immune response to bacterial contamination. However, aerobic bacteria thrive in oxygen-rich environments, and so it is unclear whether oxygen has a net positive effect on recovery. Here, we develop a mathematical model of post-surgery infection to investigate the efficacy of supplemental oxygen therapy on surgical-site infections. A 4-species, coupled, set of non-linear partial differential equations that describes the space-time dependence of neutrophils, bacteria, chemoattractant and oxygen is developed and analysed to determine its underlying properties. Through numerical solutions, we quantify the efficacy of different supplemental oxygen regimes on the treatment of surgical site infections in wounds of different initial bacterial load. A sensitivity analysis is performed to investigate the robustness of the predictions to changes in the model parameters. The numerical results are in good agreement with analyses of the associated well-mixed model. Our model findings provide insight into how the nature of the contaminant and its initial density influence bacterial infection dynamics in the surgical wound.
Collapse
Affiliation(s)
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom.
| | | | - D L Sean McElwain
- School of Mathematical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom.
| | - Mark B Flegg
- School of Mathematical Sciences, Monash University, Australia.
| | - Jennifer A Flegg
- School of Mathematics and Statistics, University of Melbourne, Australia.
| |
Collapse
|
50
|
A CRTH2 antagonist, CT-133, suppresses NF-κB signalling to relieve lipopolysaccharide-induced acute lung injury. Eur J Pharmacol 2019; 854:79-91. [PMID: 30951719 PMCID: PMC8627115 DOI: 10.1016/j.ejphar.2019.03.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/25/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome are life-threatening conditions that still have no definite pharmacotherapy. Hence, we investigate the potential effectiveness and underlying mechanism of CT-133, a newly developed selective antagonist of prostaglandin D2 receptor 2 (DP2) or of chemoattractant receptor homologous molecule expressed on Th2 cells (CRTH2), against lipopolysaccharide (LPS)-induced ALI. CT-133 (10 or 30 mg/kg) or dexamethasone (1 mg/kg, positive control) were intragastrically administered 1 h before and 12 h after intratracheal LPS instillation, and primary neutrophils and macrophages and RAW264.7 macrophages were used to investigate the role of CT-133 in regulation of their functions. LPS induced a significant secretion of PGD2 from primary macrophages, however, CT-133 dose-dependently and markedly decreased the infiltration of neutrophils and macrophages into lungs, reduced the IL-1β, TNF-α, IL-6, and KC levels in broncho-alveolar lavage (BAL) fluids, decreased the wet weight and myeloperoxidase activity of lungs, reduced Evans blue and albumin exudation into lungs, and improved the lung histopathological changes and hypoxemia. Moreover, CT-133 significantly suppressed the primary neutrophil migration toward the PGD2 and robustly inhibited the mRNA and protein expression of IL-1β, TNF-α, IL-6, and KC in primary and RAW264.7 macrophages in response to either LPS- or PGD2 stimulation. Finally, CT-133 significantly blocked the LPS-induced P65 activation in both RAW264.7 macrophages and mouse lungs. Thus, This is the first report that a CRTH2 antagonist, CT-133, is capable of significantly alleviating LPS-induced lung injury by probably down-regulating the NF-κB signalling.
Collapse
|