1
|
Aliaga-Gaspar P, Brichette-Mieg I, Fernández-Arjona M, Rodríguez-Bada JL, López-Moreno Y, Serrano-Castro P, Fernández-Fernández O, Ciano-Petersen NL, Oliver-Martos B. Recombinant soluble type I interferon receptor exerts antiviral activity by inducing proteins related to autophagy. Biomed Pharmacother 2024; 181:117678. [PMID: 39577364 DOI: 10.1016/j.biopha.2024.117678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
The soluble type I IFN receptor (sIFNAR2) is produced by alternative splicing and is present in body fluids. Although it can modulate IFN-ß activity, its biological role remains unknown. METHODS An in-silico study was conducted to compare the structure of recombinant human soluble IFNAR2 (r-sIFNAR2) with its native form. The antiviral activity of r-sIFNAR2, produced in BL21-bacteria and CHO cells, was tested using a cytopathic effect assay including appropriate controls. Viability and toxicity were assessed by MTT assays. Proteomic analysis using mass spectrometry was conducted in the A549/EMCV bioassay to elucidate the mechanism of action, and then it was validated by Western blot. RESULTS The BL21-sIFNAR2 had a sequence identity of 83.6 % with the native form, showing variations only in terminal regions. BL21-sIFNAR2 and CHO-sIFNAR2 showed significantly higher percentage of cell viability compared to the viral control, similar to IFN-ß. Cell viability with BL21-sIFNAR2 was comparable to the cell control across all tested concentrations. Proteomic analysis revealed an up regulation of pathways related with autophagy (macroautophagy, autophagy, pexophagy, and mitophagy) with an SQSTM1 overexpression that was then confirmed by Western Blot, especially after virus infection. However, pathways related to interferon signaling, and antiviral mechanisms mediated by IFN-stimulated genes were down-regulated. CONCLUSION r-sIFNAR2 exhibits significant antiviral activity regardless of the expression system used for its production and good safety profile, suggesting its use as a potential antiviral drug. Proteins related to autophagy are involved in the protection from the virus. This study highlights the biological relevance of soluble cytokine receptors as effectors so far overlooked.
Collapse
Affiliation(s)
- Pablo Aliaga-Gaspar
- Neuroimmunology and Neuroinflammation group. Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand Hospital Regional Universitario de Málaga, Málaga, Spain; Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Isabel Brichette-Mieg
- Neuroimmunology and Neuroinflammation group. Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand Hospital Regional Universitario de Málaga, Málaga, Spain
| | - MdM Fernández-Arjona
- Neuroimmunology and Neuroinflammation group. Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand Hospital Regional Universitario de Málaga, Málaga, Spain
| | - José Luis Rodríguez-Bada
- Neuroimmunology and Neuroinflammation group. Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Yolanda López-Moreno
- Neuroimmunology and Neuroinflammation group. Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Pedro Serrano-Castro
- Neuroimmunology and Neuroinflammation group. Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand Hospital Regional Universitario de Málaga, Málaga, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Málaga, Spain; Department of Medicine and Dermatology, Faculty of Medicine, University of Málaga, Málaga, Spain
| | | | - Nicolás Lundahl Ciano-Petersen
- Neuroimmunology and Neuroinflammation group. Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand Hospital Regional Universitario de Málaga, Málaga, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Málaga, Spain.
| | - Begoña Oliver-Martos
- Neuroimmunology and Neuroinflammation group. Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand Hospital Regional Universitario de Málaga, Málaga, Spain; Facultad de Medicina, Universidad de Málaga, Málaga, Spain; Department of Cell Biology, Genetics and Physiology, Physiology Area, Faculty of Science University of Malaga, Málaga, Spain.
| |
Collapse
|
2
|
Gruol DL. The Neuroimmune System and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2511-2537. [PMID: 37950146 PMCID: PMC11585519 DOI: 10.1007/s12311-023-01624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The recognition that there is an innate immune system of the brain, referred to as the neuroimmune system, that preforms many functions comparable to that of the peripheral immune system is a relatively new concept and much is yet to be learned. The main cellular components of the neuroimmune system are the glial cells of the brain, primarily microglia and astrocytes. These cell types preform many functions through secretion of signaling factors initially known as immune factors but referred to as neuroimmune factors when produced by cells of the brain. The immune functions of glial cells play critical roles in the healthy brain to maintain homeostasis that is essential for normal brain function, to establish cytoarchitecture of the brain during development, and, in pathological conditions, to minimize the detrimental effects of disease and injury and promote repair of brain structure and function. However, dysregulation of this system can occur resulting in actions that exacerbate or perpetuate the detrimental effects of disease or injury. The neuroimmune system extends throughout all brain regions, but attention to the cerebellar system has lagged that of other brain regions and information is limited on this topic. This article is meant to provide a brief introduction to the cellular and molecular components of the brain immune system, its functions, and what is known about its role in the cerebellum. The majority of this information comes from studies of animal models and pathological conditions, where upregulation of the system facilitates investigation of its actions.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Aksu MD, van der Ent T, Zhang Z, Riza AL, de Nooijer AH, Ricaño-Ponce I, Janssen N, Engel JJ, Streata I, Dijkstra H, Lemmers H, Grondman I, Koeken VACM, Antoniadou E, Antonakos N, van de Veerdonk FL, Li Y, Giamarellos-Bourboulis EJ, Netea MG, Ziogas A. Regulation of plasma soluble receptors of TNF and IL-1 in patients with COVID-19 differs from that observed in sepsis. J Infect 2024; 89:106300. [PMID: 39357572 PMCID: PMC11624491 DOI: 10.1016/j.jinf.2024.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES IL-1α/β and TNF are closely linked to the pathology of severe COVID-19 and sepsis. The soluble forms of their receptors, functioning as decoy receptors, exhibit inhibitory effects. However, little is known about their regulation in severe bacterial and viral infections, which we aimed to investigate in this study. METHODS The circulating soluble receptors of TNF (sTNFR1 and sTNFR2) and IL-1α/β (sIL-1R1, sIL-1R2) were evaluated in the plasma of patients with COVID-19, severe bacterial infections, and sepsis and compared with healthy controls. Additionally, IL1R1, IL1R2, TNFRSF1A, and TNFRSF1B expression was evaluated at the single cell level in PBMCs derived from COVID-19 or sepsis patients. RESULTS Plasma concentrations of sIL-1R1, sTNFR1, and sTNFR2 were significantly higher in COVID-19 patients compared to healthy subjects. Notably, sIL-1R1 levels were particularly elevated in ICU COVID-19 patients, and transcriptome analysis indicated heightened IL1R1 expression in PBMCs from severe COVID-19 patients. In severe bacterial infections, only sTNFR1 and sTNFR2 exhibited increased levels compared to healthy controls. Sepsis patients had decreased sIL-1R1 plasma concentrations but elevated sIL-1R2, sTNFR1, and sTNFR2 levels compared to healthy individuals, reflecting the heightened expression due to the increased numbers of monocytes present in sepsis. Finally, elevated concentrations of sIL-1R2, sTNFR1, and sTNFR2 were moderately associated with reduced 28-day survival in sepsis patients. CONCLUSION Our study reveals distinct regulation of plasma concentrations of soluble IL-1 receptors in COVID-19 and sepsis. Moreover, soluble TNF receptors 1 and 2 consistently rise in all conditions and show a positive correlation with disease severity in sepsis.
Collapse
Affiliation(s)
- Muhammed D Aksu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Tijmen van der Ent
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Zhenhua Zhang
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | - Anca L Riza
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, Romania; Regional Centre of Medical Genetics Dolj, County Clinical Emergency Hospital Craiova, Romania
| | - Aline H de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Isis Ricaño-Ponce
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Nico Janssen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Job J Engel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Ioana Streata
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, Romania; Regional Centre of Medical Genetics Dolj, County Clinical Emergency Hospital Craiova, Romania
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Inge Grondman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; Research Centre Innovations in Care, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
| | - Eleni Antoniadou
- Intensive Care Unit, "G. Gennimatas" Hospital, Thessaloniki, Greece
| | - Nikolaos Antonakos
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | | | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
5
|
Minvielle Moncla LH, Briend M, Sokhna Sylla M, Mathieu S, Rufiange A, Bossé Y, Mathieu P. Mendelian randomization reveals interactions of the blood proteome and immunome in mitral valve prolapse. COMMUNICATIONS MEDICINE 2024; 4:108. [PMID: 38844506 PMCID: PMC11156961 DOI: 10.1038/s43856-024-00530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Mitral valve prolapse (MVP) is a common heart disorder characterized by an excessive production of proteoglycans and extracellular matrix in mitral valve leaflets. Large-scale genome-wide association study (GWAS) underlined that MVP is heritable. The molecular underpinnings of the disease remain largely unknown. METHODS We interrogated cross-modality data totaling more than 500,000 subjects including GWAS, 4809 molecules of the blood proteome, and genome-wide expression of mitral valves to identify candidate drivers of MVP. Data were investigated through Mendelian randomization, network analysis, ligand-receptor inference and digital cell quantification. RESULTS In this study, Mendelian randomization identify that 33 blood proteins, enriched in networks for immunity, are associated with the risk of MVP. MVP- associated blood proteins are enriched in ligands for which their cognate receptors are differentially expressed in mitral valve leaflets during MVP and enriched in cardiac endothelial cells and macrophages. MVP-associated blood proteins are involved in the renewal-polarization of macrophages and regulation of adaptive immune response. Cytokine activity profiling and digital cell quantification show in MVP a shift toward cytokine signature promoting M2 macrophage polarization. Assessment of druggability identify CSF1R, CX3CR1, CCR6, IL33, MMP8, ENPEP and angiotensin receptors as actionable targets in MVP. CONCLUSIONS Hence, integrative analysis identifies networks of candidate molecules and cells involved in immune control and remodeling of the extracellular matrix, which drive the risk of MVP.
Collapse
Affiliation(s)
| | - Mewen Briend
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Mame Sokhna Sylla
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Samuel Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Anne Rufiange
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Patrick Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada.
- Department of Surgery, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
6
|
Mackeh R, El Bsat Y, Elmi A, Bibawi H, Karim MY, Hassan A, Lo B. Novel Synonymous Variant in IL7R Causes Preferential Expression of the Soluble Isoform. J Clin Immunol 2024; 44:96. [PMID: 38587703 PMCID: PMC11001715 DOI: 10.1007/s10875-024-01688-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE The interleukin-7 receptor (IL-7R) is primarily expressed on lymphoid cells and plays a crucial role in the development, proliferation, and survival of T cells. Autosomal recessive mutations that disrupt IL-7Rα chain expression give rise to a severe combined immunodeficiency (SCID), which is characterized by lymphopenia and a T-B+NK+ phenotype. The objective here was to diagnose two siblings displaying the T-B+NK+ SCID phenotype as initial clinical genetic testing did not detect any variants in known SCID genes. METHODS Whole genome sequencing (WGS) was utilized to identify potential variants causing the SCID phenotype. Splicing prediction tools were employed to assess the deleterious impact of the mutation. Polymerase Chain Reaction (PCR), Sanger sequencing, flow cytometry, and ELISA were then used to validate the pathogenicity of the detected mutation. RESULTS We discovered a novel homozygous synonymous mutation in the IL7R gene. Our functional studies indicate that this variant is pathogenic, causing exon 6, which encodes the transmembrane domain, to be preferentially spliced out. CONCLUSION In this study, we identified a novel rare synonymous mutation causing a loss of IL-7Rα expression at the cellular membrane. This case demonstrates the value of reanalyzing genetic data based on the clinical phenotype and highlights the significance of functional studies in determining the pathogenicity of genetic variants.
Collapse
Affiliation(s)
| | | | - Asha Elmi
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Hani Bibawi
- Division of Hematopathology, Sidra Medicine, Doha, Qatar
| | - Mohammed Yousuf Karim
- Division of Hematopathology, Sidra Medicine, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Amel Hassan
- Pediatric Allergy and Immunology Department, Sidra Medicine, Ar-Rayyan, Qatar
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
7
|
Park EJ, Lee CW. Soluble receptors in cancer: mechanisms, clinical significance, and therapeutic strategies. Exp Mol Med 2024; 56:100-109. [PMID: 38182653 PMCID: PMC10834419 DOI: 10.1038/s12276-023-01150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 01/07/2024] Open
Abstract
Soluble receptors are soluble forms of receptors found in the extracellular space. They have emerged as pivotal regulators of cellular signaling and disease pathogenesis. This review emphasizes their significance in cancer as diagnostic/prognostic markers and potential therapeutic targets. We provide an overview of the mechanisms by which soluble receptors are generated along with their functions. By exploring their involvement in cancer progression, metastasis, and immune evasion, we highlight the importance of soluble receptors, particularly soluble cytokine receptors and immune checkpoints, in the tumor microenvironment. Although current research has illustrated the emerging clinical relevance of soluble receptors, their therapeutic applications remain underexplored. As the landscape of cancer treatment evolves, understanding and targeting soluble receptors might pave the way for novel strategies for cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Eun-Ji Park
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
8
|
Astrakhantseva IV, Ershova AE, Chuvpilo SA, Kruglova NA, Ishmukhametov AA, Drutskaya MS, Kozlovskaya LI, Nedospasov SA. SARS-CoV-2 Binding and Neutralization Properties of Peptides Derived from N-Terminus of Human ACE2. Int J Mol Sci 2023; 24:ijms24098269. [PMID: 37175976 PMCID: PMC10179272 DOI: 10.3390/ijms24098269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The binding properties of synthetic and recombinant peptides derived from N-terminal part of ACE2, the main receptor for SARS-CoV-2, were evaluated. Additionally, the ability of these peptides to prevent virus entry in vitro was addressed using both pseudovirus particles decorated with the S protein, as well as through infection of Vero cells with live SARS-CoV-2 virus. Surprisingly, in spite of effective binding to S protein, all linear peptides of various lengths failed to neutralize the viral infection in vitro. However, the P1st peptide that was chemically "stapled" in order to stabilize its alpha-helical structure was able to interfere with virus entry into ACE2-expressing cells. Interestingly, this peptide also neutralized pseudovirus particles decorated with S protein derived from the Omicron BA.1 virus, in spite of variations in key amino acid residues contacting ACE2.
Collapse
Affiliation(s)
- Irina V Astrakhantseva
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Krasnodarsky Krai, 354349 Sochi, Russia
| | - Alina E Ershova
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Krasnodarsky Krai, 354349 Sochi, Russia
| | - Sergei A Chuvpilo
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Krasnodarsky Krai, 354349 Sochi, Russia
| | - Natalia A Kruglova
- Laboratory of Gene Therapy of Socially Significant Diseases, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Aydar A Ishmukhametov
- Department of Emerging and Reemerging Infections, Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Marina S Drutskaya
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Liubov I Kozlovskaya
- Department of Emerging and Reemerging Infections, Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Sergei A Nedospasov
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Krasnodarsky Krai, 354349 Sochi, Russia
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
9
|
Hirai H, Hong J, Fujii W, Sanjoba C, Goto Y. Leishmania Infection-Induced Proteolytic Processing of SIRPα in Macrophages. Pathogens 2023; 12:pathogens12040593. [PMID: 37111479 PMCID: PMC10146913 DOI: 10.3390/pathogens12040593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The shedding of cell surface receptors may bring synergistic outcomes through the loss of receptor-mediated cell signaling and competitive binding of the shed soluble receptor to its ligand. Thus, soluble receptors have both biological importance and diagnostic importance as biomarkers in immunological disorders. Signal regulatory protein α (SIRPα), one of the receptors responsible for the 'don't-eat-me' signal, is expressed by myeloid cells where its expression and function are in part regulated by proteolytic cleavage. However, reports on soluble SIRPα as a biomarker are limited. We previously reported that mice with experimental visceral leishmaniasis (VL) manifest anemia and enhanced hemophagocytosis in the spleen accompanied with decreased SIRPα expression. Here, we report increased serum levels of soluble SIRPα in mice infected with Leishmania donovani, a causative agent of VL. Increased soluble SIRPα was also detected in a culture supernatant of macrophages infected with L. donovani in vitro, suggesting the parasite infection promotes ectodomain shedding of SIRPα on macrophages. The release of soluble SIRPα was partially inhibited by an ADAM proteinase inhibitor in both LPS stimulation and L. donovani infection, suggesting a shared mechanism for cleavage of SIRPα in both cases. In addition to the ectodomain shedding of SIRPα, both LPS stimulation and L. donovani infection induced the loss of the cytoplasmic region of SIRPα. Although the effects of these proteolytic processes or changes in SIRPα still remain unclear, these proteolytic regulations on SIRPα during L. donovani infection may explain hemophagocytosis and anemia induced by infection, and serum soluble SIRPα may serve as a biomarker for hemophagocytosis and anemia in VL and the other inflammatory disorders.
Collapse
Affiliation(s)
- Hana Hirai
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Jing Hong
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Wataru Fujii
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
10
|
Ludke A, Hatta K, Yao A, Li RK. Uterus: A Unique Stem Cell Reservoir Able to Support Cardiac Repair via Crosstalk among Uterus, Heart, and Bone Marrow. Cells 2022; 11:cells11142182. [PMID: 35883625 PMCID: PMC9324611 DOI: 10.3390/cells11142182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical evidence suggests that the prevalence of cardiac disease is lower in premenopausal women compared to postmenopausal women and men. Although multiple factors contribute to this difference, uterine stem cells may be a major factor, as a high abundance of these cells are present in the uterus. Uterine-derived stem cells have been reported in several studies as being able to contribute to cardiac neovascularization after injury. However, our studies uniquely show the presence of an “utero-cardiac axis”, in which uterine stem cells are able to home to cardiac tissue to promote tissue repair. Additionally, we raise the possibility of a triangular relationship among the bone marrow, uterus, and heart. In this review, we discuss the exchange of stem cells across different organs, focusing on the relationship that exists between the heart, uterus, and bone marrow. We present increasing evidence for the existence of an utero-cardiac axis, in which the uterus serves as a reservoir for cardiac reparative stem cells, similar to the bone marrow. These cells, in turn, are able to migrate to the heart in response to injury to promote healing.
Collapse
Affiliation(s)
- Ana Ludke
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.L.); (K.H.); (A.Y.)
| | - Kota Hatta
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.L.); (K.H.); (A.Y.)
| | - Alina Yao
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.L.); (K.H.); (A.Y.)
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.L.); (K.H.); (A.Y.)
- Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Correspondence: ; Tel.: +1-416-581-7492
| |
Collapse
|
11
|
Cantres-Rosario YM, Wojna V, Ruiz R, Diaz B, Matos M, Rodriguez-Benitez RJ, Rodriguez E, Skolasky RL, Gerena Y. Soluble Insulin Receptor Levels in Plasma, Exosomes, and Urine and Its Association With HIV-Associated Neurocognitive Disorders. Front Neurol 2022; 13:809956. [PMID: 35720083 PMCID: PMC9202317 DOI: 10.3389/fneur.2022.809956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background HIV-associated neurocognitive disorders (HAND) are one of the HIV-associated comorbidities affecting 20-50% of the people with HIV (PWH) infection. We found that the soluble insulin receptor (sIR) levels in plasma and cerebrospinal fluid (CSF) were significantly higher in HIV-infected women. The mechanism of sIR release into the plasma remains unknown, but the detection of the sIR in exosomes may uncover novel mechanisms of sIR secretion from HIV-infected cells and its contribution to HIV disease progression and HAND development. Quantification of sIR in urine may represent a less invasive and more accessible diagnostic tool. Our objective was to quantify sIR levels in plasma, plasma-derived exosomes, and urine, and evaluate their association with HAND and renal function. Methods We measured full-length sIR in the plasma and urine of 38 controls and 76 HIV-infected women by ELISA, and sIR, HIV-1 Tat, and reactive oxygen species (ROS) in exosomes by flow cytometry. Results Plasma and exosomes with sIR were significantly higher in HIV-infected women when compared with controls and HAND. Exosomal sIR positively correlated with exosomal ROS and exosomal HIV-1 Tat in HIV-infected women. Exosomal ROS was significantly higher in HIV-infected women with more symptomatic cognitive impairment. Plasma-derived exosomes exhibited significantly higher levels of astrocyte (GFAP) and neuronal (L1CAM) markers in HIV-infected women, confirming the presence of circulating CNS-derived exosomes in the blood of HIV-infected women. Urine sIR positively correlated with eGFR in controls, but not in HIV-infected women, regardless there was no significant difference in renal function as determined by the estimated glomerular filtration rate (eGFR, p = 0.762). In HIV-infected women, higher plasma sIR correlated with lower urine sIR that could suggest sIR retention in blood or decreased renal filtration. Discussion Higher plasma sIR levels and their correlation with ROS in plasma-derived exosomes with HAND suggest a combined role of metabolic disturbances, oxidative stress, exosome release, and cognitive decline. Communication between CNS and periphery is compromised in PWH, thus plasma-derived exosomes may shed light on disrupted cellular mechanisms in the brain of PWH. High plasma and low urine sIR levels could suggest sIR retention in blood or decreased renal filtration.
Collapse
Affiliation(s)
- Yisel M. Cantres-Rosario
- NeuroHIV Research Program, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Valerie Wojna
- Division of Neurology, Internal Medicine Department and NeuroHIV Research Program, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Rafael Ruiz
- NeuroHIV Research Program, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Bexaida Diaz
- NeuroHIV Research Program, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Miriam Matos
- NeuroHIV Research Program, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | | | - Elaine Rodriguez
- NeuroHIV Research Program, School of Medicine, University of Puerto Rico, San Juan, PR, United States
| | - Richard L. Skolasky
- Orthopaedic Surgery and Physical Medicine & Rehabilitation, Johns Hopkins University, Baltimore, MD, United States
| | - Yamil Gerena
- Department of Pharmacology and Toxicology, School of Medicine, NeuroHIV Research Program, Pharmacology Department, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
12
|
Immunosuppressant Therapies in COVID-19: Is the TNF Axis an Alternative? Pharmaceuticals (Basel) 2022; 15:ph15050616. [PMID: 35631442 PMCID: PMC9147078 DOI: 10.3390/ph15050616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
The study of cytokine storm in COVID-19 has been having different edges in accordance with the knowledge of the disease. Various cytokines have been the focus, especially to define specific treatments; however, there are no conclusive results that fully support any of the options proposed for emergency treatment. One of the cytokines that requires a more exhaustive review is the tumor necrosis factor (TNF) and its receptors (TNFRs) as increased values of soluble formats for both TNFR1 and TNFR2 have been identified. TNF is a versatile cytokine with different impacts at the cellular level depending on the action form (transmembrane or soluble) and the receptor to which it is associated. In that sense, the triggered mechanisms can be diversified. Furthermore, there is the possibility of the joint action provided by synergism between one or more cytokines with TNF, where the detonation of combined cellular processes has been suggested. This review aims to discuss some roles of TNF and its receptors in the pro-inflammatory stage of COVID-19, understand its ways of action, and let to reposition this cytokine or some of its receptors as therapeutic targets.
Collapse
|
13
|
Li W, Syed F, Yu R, Yang J, Xia Y, Relich RF, Russell PM, Zhang S, Khalili M, Huang L, Kacena MA, Zheng X, Yu Q. Soluble Immune Checkpoints Are Dysregulated in COVID-19 and Heavy Alcohol Users With HIV Infection. Front Immunol 2022; 13:833310. [PMID: 35281051 PMCID: PMC8904355 DOI: 10.3389/fimmu.2022.833310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
Immune checkpoints (ICPs) consist of paired receptor-ligand molecules that exert inhibitory or stimulatory effects on immune defense, surveillance, regulation, and self-tolerance. ICPs exist in both membrane and soluble forms in vivo and in vitro. Imbalances between inhibitory and stimulatory membrane-bound ICPs (mICPs) in malignant cells and immune cells in the tumor immune microenvironment (TIME) have been well documented. Blockades of inhibitory mICPs have emerged as an immense breakthrough in cancer therapeutics. However, the origin, structure, production regulation, and biological significance of soluble ICPs (sICPs) in health and disease largely remains elusive. Soluble ICPs can be generated through either alternative mRNA splicing and secretion or protease-mediated shedding from mICPs. Since sICPs are found in the bloodstream, they likely form a circulating immune regulatory system. In fact, there is increasing evidence that sICPs exhibit biological functions including (1) regulation of antibacterial immunity, (2) interaction with their mICP compartments to positively or negatively regulate immune responses, and (3) competition with their mICP compartments for binding to the ICP blocking antibodies, thereby reducing the efficacy of ICP blockade therapies. Here, we summarize current data of sICPs in cancer and infectious diseases. We particularly focus on sICPs in COVID-19 and HIV infection as they are the two ongoing global pandemics and have created the world's most serious public health challenges. A "storm" of sICPs occurs in the peripheral circulation of COVID-19 patients and is associated with the severity of COVID-19. Similarly, sICPs are highly dysregulated in people living with HIV (PLHIV) and some sICPs remain dysregulated in PLHIV on antiretroviral therapy (ART), indicating these sICPs may serve as biomarkers of incomplete immune reconstitution in PLHIV on ART. We reveal that HIV infection in the setting of alcohol misuse exacerbates sICP dysregulation as PLHIV with heavy alcohol consumption have significantly elevated plasma levels of many sICPs. Thus, both stimulatory and inhibitory sICPs are present in the bloodstream of healthy people and their balance can be disrupted under pathophysiological conditions such as cancer, COVID-19, HIV infection, and alcohol misuse. There is an urgent need to study the role of sICPs in immune regulation in health and disease.
Collapse
Affiliation(s)
- Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Fahim Syed
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard Yu
- Department of Internal Medicine, School of Medicine, University of Nevada, Reno, NV, United States
| | - Jing Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Xia
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ryan F. Relich
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Patrick M. Russell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shanxiang Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mandana Khalili
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Laurence Huang
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaoqun Zheng
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
14
|
Kefaloyianni E. Soluble forms of cytokine and growth factor receptors: Mechanisms of generation and modes of action in the regulation of local and systemic inflammation. FEBS Lett 2022; 596:589-606. [PMID: 35113454 DOI: 10.1002/1873-3468.14305] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022]
Abstract
Cytokine and growth factor receptors are usually transmembrane proteins but they can also exist in soluble forms, either through cleavage and release of their ligand-binding extracellular domain, or through secretion of a soluble isoform. As an extension of this concept, transmembrane receptors on exosomes released into the circulation may act similarly to circulating soluble receptors. These soluble receptors add to the complexity of cytokine and growth factor signalling: they can function as decoy receptor that compete for ligand binding with their respective membrane-bound forms thereby attenuating signalling, or stabilize their ligands, or activate additional signalling events through interactions with other cell-surface proteins. Their soluble nature allows for a functional role away from the production sites, in remote cell types and organs. Accumulating evidence demonstrates that soluble receptors participate in the regulation and orchestration of various key cellular processes, particularly inflammatory responses. In this review, we will discuss release mechanisms of soluble cytokine and growth factor receptors, their mechanisms of action, as well as strategies for targeting their pathways in disease.
Collapse
Affiliation(s)
- Eirini Kefaloyianni
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
15
|
Sadri M, Hirosawa N, Le J, Romero H, Martellucci S, Kwon HJ, Pizzo D, Ohtori S, Gonias SL, Campana WM. Tumor necrosis factor receptor-1 is selectively sequestered into Schwann cell extracellular vesicles where it functions as a TNFα decoy. Glia 2022; 70:256-272. [PMID: 34559433 PMCID: PMC10656730 DOI: 10.1002/glia.24098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Schwann cells (SCs) are known to produce extracellular vesicles (EV) that participate in cell-cell communication by transferring cargo to target cells, including mRNAs, microRNAs, and biologically active proteins. Herein, we report a novel mechanism whereby SC EVs may regulate PNS physiology, especially in injury, by controlling the activity of TNFα. SCs actively sequester tumor necrosis factor receptor-1 (TNFR1) into EVs at high density, accounting for about 2% of the total protein in SC EVs (~1000 copies TNFR1/EV). Although TNFR2 was robustly expressed by SCs in culture, TNFR2 was excluded from SC EVs. SC EV TNFR1 bound TNFα, decreasing the concentration of free TNFα available to bind to cells and thus served as a TNFα decoy. SC EV TNFR1 significantly inhibited TNFα-induced p38 MAPK phosphorylation in cultured SCs. When TNFR1 was proteolytically removed from SC EVs using tumor necrosis factor-α converting enzyme (TACE) or neutralized with antibody, the ability of TNFα to activate p38 MAPK in the presence of these EVs was restored. As further evidence of its decoy activity, SC EV TNFR1 modified TNFα activities in vitro including: (1) regulation of expression of other cytokines; (2) effects on SC morphology; and (3) effects on SC viability. SC EVs also modified the effects of TNFα on sciatic nerve morphology and neuropathic pain-related behavior in vivo. By sequestering TNFR1 in EVs, SCs may buffer against the potentially toxic effects of TNFα. SC EVs provide a novel mechanism for the spatial and temporal regulation of neuro-inflammation.
Collapse
Affiliation(s)
- Mahrou Sadri
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Naoya Hirosawa
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Department of Orthopaedic Surgery and Graduate School in Medicine, Chiba University, Chiba, Japan
| | - Jasmine Le
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Veterans Administration San Diego Healthcare System, San Diego, California, USA
| | - Haylie Romero
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Program in Neuroscience, University of California, San Diego, La Jolla, California, USA
| | - Stefano Martellucci
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Hyo Jun Kwon
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Donald Pizzo
- Department of Pathology, University of California, San Diego, California, USA
| | - Seiji Ohtori
- Department of Orthopaedic Surgery and Graduate School in Medicine, Chiba University, Chiba, Japan
| | - Steven L. Gonias
- Department of Pathology, University of California, San Diego, California, USA
| | - Wendy M. Campana
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Veterans Administration San Diego Healthcare System, San Diego, California, USA
- Program in Neuroscience, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Rodríguez‐Montaño R, Bernard‐Medina AG, Oregon‐Romero E, Martínez‐Rodríguez VMDC, Pita‐López ML, Gómez‐Meda BC, Guerrero‐Velázquez C. IL-23/IL-17 axis and soluble receptors isoforms sIL-23R and sIL-17RA in patients with rheumatoid arthritis-presenting periodontitis. J Clin Lab Anal 2021; 35:e23963. [PMID: 34403509 PMCID: PMC8418468 DOI: 10.1002/jcla.23963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/21/2021] [Accepted: 08/07/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) and periodontitis (P) are chronic inflammatory diseases characterized by joint and radiographic bone loss, respectively. IL-23 and IL-17 have an essential role in the immunopathogenesis of RA, and P. IL-23 stimulates Th17 cells through which produces IL-17, IL-21, and RANKL. IL-17 stimulates fibroblasts to produce RANKL, which initiates bone loss in the joints in RA and the periodontal tissue in periodontitis. The aim of this study was to determine the expression pattern of IL-23/IL-17 axis and soluble receptors isoforms sIL-23R and sIL-17RA of patients with RA presenting P (RAP). MATERIAL AND METHODS Healthy subjects (HS) (n = 42), patients with P (n = 40), RA (n = 20), and patients with RAP (n = 40) were included. Plasma samples were obtained to evaluate the IL-23, IL-17A, sIL-23R, and sIL-17RA by ELISA technique. A nonparametric Mann-Whitney U test was used to compare the differences between groups. A Chi-square was used to compare gender, grade and stage of periodontitis, and DAS28-ESR between the groups. Spearman's rank correlation coefficient was used to study the association between the molecules and clinical parameters. RESULTS IL-23 levels were increased in the RAP group, and lower sIL-23R levels were found in the RAP groups. However, IL-17A was lower in the P and RAP group but not in RA patients. RAP group showed a decrease IL-17A levels in advanced stages of the periodontal disease. CONCLUSION These results suggest that IL-23 and IL-17A tend to downregulate their expression patterns when patients present both rheumatoid arthritis and periodontitis.
Collapse
Affiliation(s)
- Ruth Rodríguez‐Montaño
- Instituto de Investigación en OdontologíaDepartamento de Clínicas Odontológicas IntegralesCentro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico
- Doctorado en Ciencias Biomédicas (Orientación Inmunología)Centro Universitario de Ciencias de la Salud. Universidad de GuadalajaraGuadalajaraMéxico
| | | | - Edith Oregon‐Romero
- Instituto de Investigación en Ciencias BiomédicasDepartamento de Biología Molecular y GenómicaCentro Universitario de Ciencias de la Salud. Universidad de GuadalajaraGuadalajaraMéxico
| | | | - María Luisa Pita‐López
- Centro de Investigación en Biología Molecular de las Enfermedades Crónicas (CIBIMEC)Departamento de Ciencias Básicas para la SaludCentro Universitario del Sur. Universidad de GuadalajaraGuadalajaraMéxico
| | - Belinda Claudia Gómez‐Meda
- Departamento de Biología Molecular y GenómicaInstituto de Genética Humana “Dr. Enrique Corona Rivera”Centro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico
| | - Celia Guerrero‐Velázquez
- Instituto de Investigación en OdontologíaDepartamento de Clínicas Odontológicas IntegralesCentro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico
| |
Collapse
|
17
|
Liu C, Chu D, Kalantar‐Zadeh K, George J, Young HA, Liu G. Cytokines: From Clinical Significance to Quantification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004433. [PMID: 34114369 PMCID: PMC8336501 DOI: 10.1002/advs.202004433] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Cytokines are critical mediators that oversee and regulate immune and inflammatory responses via complex networks and serve as biomarkers for many diseases. Quantification of cytokines has significant value in both clinical medicine and biology as the levels provide insights into physiological and pathological processes and can be used to aid diagnosis and treatment. Cytokines and their clinical significance are introduced from the perspective of their pro- and anti-inflammatory effects. Factors affecting cytokines quantification in biological fluids, native levels in different body fluids, sample processing and storage conditions, sensitivity to freeze-thaw, and soluble cytokine receptors are discussed. In addition, recent advances in in vitro and in vivo assays, biosensors based on different signal outputs and intracellular to extracellular protein expression are summarized. Various quantification platforms for high-sensitivity and reliable measurement of cytokines in different scenarios are discussed, and commercially available cytokine assays are compared. A discussion of challenges in the development and advancement of technologies for cytokine quantification that aim to achieve real-time multiplex cytokine analysis for point-of-care situations applicable for both biomedical research and clinical practice are discussed.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Dewei Chu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Jacob George
- Storr Liver CentreWestmead Institute of Medical ResearchUniversity of Sydney and Department of Gastroenterology and HepatologyWestmead HospitalWestmeadNSW2145Australia
| | - Howard A. Young
- Laboratory of Cancer ImmunometabolismCenter for Cancer ResearchNational Cancer Institute at FrederickFrederickMD21702USA
| | - Guozhen Liu
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P. R. China
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
18
|
Soluble Receptors Affecting Stroke Outcomes: Potential Biomarkers and Therapeutic Tools. Int J Mol Sci 2021; 22:ijms22031108. [PMID: 33498620 PMCID: PMC7865279 DOI: 10.3390/ijms22031108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Soluble receptors are widely understood to be freestanding moieties formed via cleavage from their membrane-bound counterparts. They have unique structures, are found among various receptor families, and have intriguing mechanisms of generation and release. Soluble receptors’ ability to exhibit pleiotropic action by receptor modulation or by exhibiting a dual role in cytoprotection and neuroinflammation is concentration dependent and has continually mystified researchers. Here, we have compiled findings from preclinical and clinical studies to provide insights into the role of soluble/decoy receptors, focusing on the soluble cluster of differentiation 36, the soluble cluster of differentiation 163, and soluble lipoprotein-related protein 1 (sCD36, sCD163, and sLRP1, respectively) and the functions they could likely serve in the management of stroke, as they would notably regulate the bioavailability of the hemoglobin and heme after red blood cell lysis. The key roles that these soluble receptors play in inflammation, oxidative stress, and the related pharmacotherapeutic potential in improving stroke outcomes are described. The precise pleiotropic physiological functions of soluble receptors remain unclear, and further scientific investigation/validation is required to establish their respective role in diagnosis and therapy.
Collapse
|
19
|
Veeramani S, Weiner GJ. Quantification of Receptor Occupancy by Ligand—An Understudied Class of Potential Biomarkers. Cancers (Basel) 2020; 12:cancers12102956. [PMID: 33066142 PMCID: PMC7601969 DOI: 10.3390/cancers12102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
Molecular complexes, such as ligand–receptor complexes, are vital for both health and disease and can be shed into the circulation in soluble form. Relatively little is known about the biology of soluble ligand–receptor complexes. The functional importance of such complexes and their potential use as clinical biomarkers in diagnosis and therapy remains underappreciated. Most traditional technologies used to study ligand–receptor complexes measure the individual levels of soluble ligands or receptors rather than the complexes themselves. The fraction of receptors occupied by ligand, and the potential clinical relevance of such information, has been largely overlooked. Here, we review the biological significance of soluble ligand–receptor complexes with a specific focus on their potential as biomarkers of cancer and other inflammatory diseases. In addition, we discuss a novel RNA aptamer-based technology, designated ligand–receptor complex-binding aptamers (LIRECAP), that can provide precise measurement of the fraction of a soluble receptor occupied by its ligand. The potential applicability of the LIRECAP technology as a biomarker discovery platform is also described.
Collapse
Affiliation(s)
- Suresh Veeramani
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52241, USA;
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52241, USA
| | - George J. Weiner
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52241, USA;
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52241, USA
- Correspondence:
| |
Collapse
|
20
|
Litman-Zawadzka A, Łukaszewicz-Zając M, Gryko M, Kulczyńska-Przybik A, Kędra B, Mroczko B. Specific Receptors for the Chemokines CXCR2 and CXCR4 in Pancreatic Cancer. Int J Mol Sci 2020; 21:ijms21176193. [PMID: 32867211 PMCID: PMC7504436 DOI: 10.3390/ijms21176193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background: The mortality rate of pancreatic cancer (PC) is equal to its incidence and the majority of PC patients die within a few months of diagnosis. Therefore, a search for new biomarkers useful in the diagnosis and prognosis of PC is ongoing. Objectives: The aim of our study was to compare the utility of CXCR2 and CXCR4 in the diagnosis and prediction of PC with classical tumor marker (carcinoembryonic antigen, CEA) and marker of inflammation–C-reactive protein (CRP). Patients and Methods: The study comprised 64 subjects — 32 PC patients and 32 healthy volunteers. Serum concentrations of tested proteins were analysed using immunological methods. Results: Serum CXCR2 and CXCR4 concentrations, similarly to those of CEA and CRP, were significantly elevated in PC patients compared to healthy controls. Moreover, concentrations of CXCR4 were significantly correlated with CXCR2 and CRP levels, while CRP concentrations were correlated with CXCR2 and CEA levels. The diagnostic sensitivity and the predictive value for negative (PV−ve) results for CXCR4 were similar to those of CEA and higher than those of CXCR2 and CRP, while the area under the ROC curve (AUC) for CXCR4 was the highest among all tested proteins (CXCR2, CEA, CRP). Moreover, serum CXCR2 was found to be a significant predictor of PC risk. Conclusions: CXCR4 is a better candidate for a tumor marker than CXCR2 in the diagnosis of PC, while serum CXCR2 is a significant predictor of PC risk.
Collapse
Affiliation(s)
- Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (B.M.)
- Correspondence: ; Tel.: +48-85-8318785; Fax: +48-85-8318585
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Mariusz Gryko
- Second Department of General Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.G.); (B.K.)
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (B.M.)
| | - Bogusław Kędra
- Second Department of General Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.G.); (B.K.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| |
Collapse
|
21
|
Santer DM, Minty GES, Golec DP, Lu J, May J, Namdar A, Shah J, Elahi S, Proud D, Joyce M, Tyrrell DL, Houghton M. Differential expression of interferon-lambda receptor 1 splice variants determines the magnitude of the antiviral response induced by interferon-lambda 3 in human immune cells. PLoS Pathog 2020; 16:e1008515. [PMID: 32353085 PMCID: PMC7217487 DOI: 10.1371/journal.ppat.1008515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/12/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Type III interferons (IFN-lambdas(λ)) are important cytokines that inhibit viruses and modulate immune responses by acting through a unique IFN-λR1/IL-10RB heterodimeric receptor. Until now, the primary antiviral function of IFN-λs has been proposed to be at anatomical barrier sites. Here, we examine the regulation of IFN-λR1 expression and measure the downstream effects of IFN-λ3 stimulation in primary human blood immune cells, compared with lung or liver epithelial cells. IFN-λ3 directly bound and upregulated IFN-stimulated gene (ISG) expression in freshly purified human B cells and CD8+ T cells, but not monocytes, neutrophils, natural killer cells, and CD4+ T cells. Despite similar IFNLR1 transcript levels in B cells and lung epithelial cells, lung epithelial cells bound more IFN-λ3, which resulted in a 50-fold greater ISG induction when compared to B cells. The reduced response of B cells could be explained by higher expression of the soluble variant of IFN-λR1 (sIFN-λR1), which significantly reduced ISG induction when added with IFN-λ3 to peripheral blood mononuclear cells or liver epithelial cells. T-cell receptor stimulation potently, and specifically, upregulated membrane-bound IFNLR1 expression in CD4+ T cells, leading to greater antiviral gene induction, and inhibition of human immunodeficiency virus type 1 infection. Collectively, our data demonstrate IFN-λ3 directly interacts with the human adaptive immune system, unlike what has been previously shown in published mouse models, and that type III IFNs could be potentially utilized to suppress both mucosal and blood-borne viral infections.
Collapse
Affiliation(s)
- Deanna M. Santer
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Gillian E. S. Minty
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dominic P. Golec
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Lu
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Julia May
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Afshin Namdar
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Juhi Shah
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - David Proud
- Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Michael Joyce
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - D. Lorne Tyrrell
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Gerena Y, Menéndez-Delmestre R, Delgado-Nieves A, Vélez J, Méndez-Álvarez J, Sierra-Pagan JE, Skolasky RL, Henderson L, Nath A, Wojna V. Release of Soluble Insulin Receptor From Neurons by Cerebrospinal Fluid From Patients With Neurocognitive Dysfunction and HIV Infection. Front Neurol 2019; 10:285. [PMID: 30972014 PMCID: PMC6443904 DOI: 10.3389/fneur.2019.00285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/05/2019] [Indexed: 01/03/2023] Open
Abstract
Previously, we found that high levels of soluble insulin receptor (sIR) in the cerebrospinal fluid (CSF) of an HIV-infected women cohort were associated with the presence and severity of HIV-associated neurocognitive disorders (HAND). In this study we investigated if CSF from this population, HIV-1 Tat, and selected cytokines induces sIR secretion from human neuronal cells. Twenty-three (23) HIV-seropositive women stratified by cognitive status and five HIV- seronegative women were evaluated. Soluble IR levels were measured in the extracellular medium of neuronal cells (SH-SY5Y) that were exposed (for 24 h) to the CSF of patients. The levels of sIR, HIV-1 Tat, and cytokine levels (IL-2, IL4, IL-6, IFNγ, TNFα, and IL-10) were quantified in the CSF of participants by ELISA and flow cytometry. Neuronal secretion of sIR was measured after exposure (24 h) to HIV-1 Tat (0.5–250 nM), or specific cytokines. The effects of TNFα and HIV-1 Tat on sIR secretion were also evaluated in the presence of R7050 (TNFα antagonist; 10 nM). Neurons exposed to the CSF of HIV-infected women had higher sIR levels according to the severity of neurocognitive impairment of the participant. Increased CSF sIR levels were associated with the presence and severity of HAND and were positively correlated with CSF HIV-1 Tat levels in HIV-infected women with cognitive impairment. CSF levels of IL-2, IFNγ, and TNFα were significantly increased with HAND. However, only TNFα (5 pg/mL) and HIV-1 Tat (100 nM) induced a significant increase in neuronal sIR secretion after 24 h exposure, an effect that was antagonized when each were combined with R7050. Our data suggests that TNFα and HIV-1 Tat from the CSF of HIV-infected women may regulate the secretion of sIR from neuronal cells and that the effect of HIV-1 Tat on sIR secretion may depend on TNFα receptor activation.
Collapse
Affiliation(s)
- Yamil Gerena
- NeuroHIV Research Program, Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| | - Raissa Menéndez-Delmestre
- NeuroHIV Research Program, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| | - Andrea Delgado-Nieves
- NeuroHIV Research Program, Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| | - Joyce Vélez
- NeuroHIV Research Program, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| | | | - Javier E Sierra-Pagan
- NeuroHIV Research Program, Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| | - Richard L Skolasky
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Lisa Henderson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Valerie Wojna
- NeuroHIV Research Program, Division of Neurology, Internal Medicine Department, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| |
Collapse
|
23
|
Gary MA, Tanner EA, Davis AA, McFarlin BK. Combined bead-based multiplex detection of RNA and protein biomarkers: Implications for understanding the time course of skeletal muscle injury and repair. Methods 2018; 158:92-96. [PMID: 30472250 DOI: 10.1016/j.ymeth.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 01/14/2023] Open
Abstract
Biological response to skeletal muscle injury time course is generally classified as initial (elevated within first 4-h), delayed (elevated at 24-h), and/or prolonged (elevated at 4-h and sustained to 24-h). Accurate description of this process requires the ability to measure a robust set of RNA and protein biomarkers, yet such an approach is not common and not always feasible. This method proposes a novel experimental approach that focuses on the use of bead-based multiplex detection to measure mRNA, lncRNA, cytokines, soluble cytokine receptors, and myokines at 4-h and 24-h post muscle injury. We used an extreme aerobic exercise session (half-marathon race) to create a consistent muscle injury stimulus via oxidative stress and eccentric contractions. Venous blood samples were analyzed to determine the change in 90 targets. Specifically, we identified 14 mRNA, 2 lncRNA, 4 cytokines, and 5 myokines that had only an initial response (change at 4-h). We identified 2 mRNA, 2 cytokines, 13 soluble cytokine receptors, and 1 myokine that had only a delayed response (change at 24-h). Finally, we identified 18 mRNA, 4 lncRNA, 6 myokines and 15 cytokines that had a prolonged response (change at 4-h and sustained at 24-h). We found 4 targets to be undetectable or having no response relative to muscle injury recovery. These findings demonstrate the interplay between RNA and protein biomarkers in response to skeletal muscle injury. This novel experimental application of bead-based multiplexing is applicable to a variety of clinical models that involve muscle injury and/or wasting.
Collapse
Affiliation(s)
- Melody A Gary
- Applied Physiology Laboratory, University of North Texas, Denton, TX, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Elizabeth A Tanner
- Applied Physiology Laboratory, University of North Texas, Denton, TX, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Asheal A Davis
- Applied Physiology Laboratory, University of North Texas, Denton, TX, USA
| | - Brian K McFarlin
- Applied Physiology Laboratory, University of North Texas, Denton, TX, USA; Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| |
Collapse
|
24
|
Machoń-Grecka A, Dobrakowski M, Kasperczyk A, Birkner E, Korzonek-Szlacheta I, Kasperczyk S. The association between occupational lead exposure and serum levels of selected soluble receptors. Toxicol Ind Health 2018; 34:555-562. [PMID: 29759036 DOI: 10.1177/0748233718773015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study was designed to evaluate soluble receptors as potential targets for lead (Pb). Analyses included the serum levels of soluble Vascular Endothelial Growth Factor Receptors 2 (sVEGFR-2), soluble Epidermal Growth Factor Receptor (sEGFR), soluble Human Epidermal Growth Factor 2 (sHER-2/neu), and soluble Interleukin 6 Receptors (sIL-6R) in the groups of chronically and subchronically occupationally exposed workers. The first group consisted of 56 male workers chronically exposed to Pb. The second group (control) comprised 24 male administrative workers. The third group included 36 male workers exposed to Pb for 40 ± 3 days. Examined subjects were employed in the Pb-zinc works to perform periodic maintenance of blast furnaces and production lines. The serum levels of sHER-2/neu and sIL-6R were significantly lower in the group of workers chronically exposed to Pb compared to control values by 45% ( p < 0.05) and 44% ( p < 0.05), respectively. The values of sVEGFR-2 and sEGFR decreased after a subchronic exposure to Pb compared to baseline by 14% ( p < 0.05) and 21% ( p < 0.05), respectively. At the same time, the levels of sIL-6R also decreased by 14% ( p < 0.05). Results of the present study indicated that both chronic and subchronic occupational Pb exposures resulted in decreased levels of several soluble receptors (sVEGFR-2, sEGFR, sHER-2/neu, and sIL-6R), probably due to Pb-induced modulations of the transcription factors and metalloprotease activities, that are necessary for soluble receptor synthesis.
Collapse
Affiliation(s)
- Anna Machoń-Grecka
- 1 Department of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Michał Dobrakowski
- 1 Department of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Aleksandra Kasperczyk
- 1 Department of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Ewa Birkner
- 1 Department of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Ilona Korzonek-Szlacheta
- 2 Department of Nutrition-Related Disease Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Bytom, Poland
| | - Sławomir Kasperczyk
- 1 Department of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
25
|
Bilotta A, Dattilo V, D'Agostino S, Belviso S, Scalise S, Bilotta M, Gaudio E, Paduano F, Perrotti N, Florio T, Fusco A, Iuliano R, Trapasso F. A novel splice variant of the protein tyrosine phosphatase PTPRJ that encodes for a soluble protein involved in angiogenesis. Oncotarget 2018; 8:10091-10102. [PMID: 28052032 PMCID: PMC5354644 DOI: 10.18632/oncotarget.14350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/13/2016] [Indexed: 02/01/2023] Open
Abstract
PTPRJ is a receptor protein tyrosine phosphatase with tumor suppressor activity. Very little is known about the role of PTPRJ ectodomain, although recently both physiological and synthetic PTPRJ ligands have been identified. A putative shorter spliced variant, coding for a 539 aa protein corresponding to the extracellular N-terminus of PTPRJ, is reported in several databases but, currently, no further information is available. Here, we confirmed that the PTPRJ short isoform (named sPTPRJ) is a soluble protein secreted into the supernatant of both endothelial and tumor cells. Like PTPRJ, also sPTPRJ undergoes post-translational modifications such as glycosylation, as assessed by sPTPRJ immunoprecipitation. To characterize its functional activity, we performed an endothelial cell tube formation assay and a wound healing assay on HUVEC cells overexpressing sPTPRJ and we found that sPTPRJ has a proangiogenic activity. We also showed that sPTPRJ expression down-regulates endothelial adhesion molecules, that is a hallmark of proangiogenic activity. Moreover, sPTPRJ mRNA levels in human high-grade glioma, one of the most angiogenic tumors, are higher in tumor samples compared to controls. Further studies will be helpful not only to clarify the way sPTPRJ works but also to supply clues to circumvent its activity in cancer therapy.
Collapse
Affiliation(s)
- Anna Bilotta
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Vincenzo Dattilo
- Department of Scienze della Salute, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Sabrina D'Agostino
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Stefania Belviso
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Stefania Scalise
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mariaconcetta Bilotta
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Eugenio Gaudio
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Lymphoma and Genomics Research Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Francesco Paduano
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Tecnologica Research Institute, Biomedical Section, Crotone, Italy
| | - Nicola Perrotti
- Department of Scienze della Salute, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Tullio Florio
- Laboratory of Pharmacology, Dept. of Internal Medicine, and Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University Federico II of Napoli, Napoli, Italy
| | - Rodolfo Iuliano
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of Medicina Sperimentale e Clinica, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
26
|
Chao J, Lv Y, Chen J, Wang J, Yao H. SiO 2-induced release of sVEGFRs from pulmonary macrophages. Respir Physiol Neurobiol 2017; 247:1-8. [PMID: 28855120 DOI: 10.1016/j.resp.2017.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The inhalation of silicon dioxide (SiO2) particles causes silicosis, a stubborn pulmonary disease that is characterized by alveolar inflammation during the early stage. Soluble cytokine receptors (SCRs) play important roles in regulating inflammation by either attenuating or promoting cytokine signaling. However, the role of SCRs in silicosis remains unknown. METHODS AND RESULTS Luminex assays revealed increased soluble vascular endothelial growth factor receptor (sVEGFR) family levels in the plasma of silicosis patients. In an enzyme-linked immunosorbent assay (ELISA), cells from the differentiated human monocytic cell line U937 released sVEGFR family proteins after exposure to SiO2 (50μg/cm2). Further Western blot experiments revealed that VEGFR expression was also elevated in U937 cells. In contrast, levels of sVEGFR family members did not change in the supernatants of human umbilical vein endothelial cells (HUVECs) after exposure to SiO2 (50μg/cm2). Interestingly, VEGFR expression in HUVECs decreased after SiO2 treatment. In a scratch assay, HUVECs exhibited cell migration ability, indicating the acquisition of mesenchymal properties. CONCLUSION Our findings highlight the important role of sVEGFRs in both inflammation and fibrosis induced by SiO2, suggesting a possible mechanism for the fibrogenic effects observed in pulmonary diseases associated with fibrosis.
Collapse
Affiliation(s)
- Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China; Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Yan Lv
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jin Chen
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jing Wang
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| |
Collapse
|
27
|
Kubysheva N, Postnikova L, Soodaeva S, Novikov V, Eliseeva T, Batyrshin I, Li T, Klimanov I, Chuchalin A. Relationship of the Content of Systemic and Endobronchial Soluble Molecules of CD25, CD38, CD8, and HLA-I-CD8 and Lung Function Parameters in COPD Patients. DISEASE MARKERS 2017; 2017:8216723. [PMID: 28848245 PMCID: PMC5564111 DOI: 10.1155/2017/8216723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/15/2017] [Accepted: 07/02/2017] [Indexed: 02/03/2023]
Abstract
The definition of new markers of local and systemic inflammation of chronic obstructive pulmonary disease (COPD) is one of the priority directions in the study of pathogenesis and diagnostic methods improvement for this disease. We investigated 91 patients with COPD and 21 healthy nonsmokers. The levels of soluble CD25, CD38, CD8, and HLA-I-CD8 molecules in the blood serum and exhaled breath condensate (EBC) in moderate-to-severe COPD patients during exacerbation and stable phase were studied. An unidirectional change in the content of sCD25, sCD38, and sCD8 molecules with increasing severity of COPD was detected. The correlations between the parameters of lung function and sCD8, sCD25, and sHLA-I-CD8 levels in the blood serum and EBC were discovered in patients with severe COPD. The findings suggest a pathogenetic role of the investigated soluble molecules of the COPD development and allow considering the content of sCD8, sCD25, and sHLA-I-CD8 molecules as additional novel systemic and endobronchial markers of the progression of chronic inflammation of this disease.
Collapse
Affiliation(s)
- Nailya Kubysheva
- Kazan Federal University, Kremlyovskaya St, 18, Kazan 420000, Russia
| | - Larisa Postnikova
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square 10/1, Nizhny Novgorod 603005, Russia
| | - Svetlana Soodaeva
- Pulmonology Research Institute, 11-Parkovaya 32, Moscow 105077, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya, 8- 2, Moscow, Russia
| | - Viкtor Novikov
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia
| | - Tatyana Eliseeva
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square 10/1, Nizhny Novgorod 603005, Russia
| | - Ildar Batyrshin
- Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Av. Juan de Dios Bátiz, Esq. Miguel Othón de Mendizábal S/N, Gustavo A. Madero, 07738 Mexico City, Mexico
| | - Timur Li
- Central Clinical Hospital of RAS, Litovskiy Blvd. 1A, Moscow 117593, Russia
| | - Igor Klimanov
- Pulmonology Research Institute, 11-Parkovaya 32, Moscow 105077, Russia
| | | |
Collapse
|
28
|
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators Inflamm 2017; 2017:9621724. [PMID: 28260841 PMCID: PMC5316459 DOI: 10.1155/2017/9621724] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.
Collapse
|
29
|
Waickman AT, Park JY, Park JH. The common γ-chain cytokine receptor: tricks-and-treats for T cells. Cell Mol Life Sci 2016; 73:253-69. [PMID: 26468051 PMCID: PMC6315299 DOI: 10.1007/s00018-015-2062-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
Abstract
Originally identified as the third subunit of the high-affinity IL-2 receptor complex, the common γ-chain (γc) also acts as a non-redundant receptor subunit for a series of other cytokines, collectively known as γc family cytokines. γc plays essential roles in T cell development and differentiation, so that understanding the molecular basis of its signaling and regulation is a critical issue in T cell immunology. Unlike most other cytokine receptors, γc is thought to be constitutively expressed and limited in its function to the assembly of high-affinity cytokine receptors. Surprisingly, recent studies reported a series of findings that unseat γc as a simple housekeeping gene, and unveiled γc as a new regulatory molecule in T cell activation and differentiation. Cytokine-independent binding of γc to other cytokine receptor subunits suggested a pre-association model of γc with proprietary cytokine receptors. Also, identification of a γc splice isoform revealed expression of soluble γc proteins (sγc). sγc directly interacted with surface IL-2Rβ to suppress IL-2 signaling and to promote pro-inflammatory Th17 cell differentiation. As a result, endogenously produced sγc exacerbated autoimmune inflammatory disease, while the removal of endogenous sγc significantly ameliorated disease outcome. These data provide new insights into the role of both membrane and soluble γc in cytokine signaling, and open new venues to interfere and modulate γc signaling during immune activation. These unexpected discoveries further underscore the perspective that γc biology remains largely uncharted territory that invites further exploration.
Collapse
Affiliation(s)
- Adam T Waickman
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Joo-Young Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health (NIH), Bldg. 10, Room 5B17, 10 Center Dr, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, Cui J, Zeng YX, Li J. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 2015; 5:5439-52. [PMID: 24978137 PMCID: PMC4170615 DOI: 10.18632/oncotarget.2118] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor-derived exosomes contain biologically active proteins and messenger and microRNAs (miRNAs). These particles serve as vehicles of intercellular communication and are emerging mediators of tumorigenesis and immune escape. Here, we isolated 30-100 nm exosomes from the serum of patients with nasopharyngeal carcinoma (NPC) or the supernatant of TW03 cells. Increased circulating exosome concentrations were correlated with advanced lymphoid node stage and poor prognosis in NPC patients (P < 0.05). TW03-derived exosomes impaired T-cell function by inhibiting T-cell proliferation and Th1 and Th17 differentiation and promoting Treg induction by NPC cells in vitro. These results are associated with decreases in ERK, STAT1, and STAT3 phosphorylation and increases in STAT5 phosphorylation in exosome-stimulated T-cells. TW03-derived exosomes increased the proinflammatory cytokines IL-1β, IL-6, and IL-10 but decreased IFNγ, IL-2, and IL-17 release from CD4+ or CD8+ T-cells. Furthermore, five commonly over-expressed miRNAs were identified in the exosomes from patient sera or NPC cells: hsa-miR-24-3p, hsa-miR-891a, hsa-miR-106a-5p, hsa-miR-20a-5p, and hsa-miR-1908. These over-expressed miRNA clusters down-regulated the MARK1 signaling pathway to alter cell proliferation and differentiation. Overall, these observations reveal the clinical relevance and prognostic value of tumor-derived exosomes and identify a unique intercellular mechanism mediated by tumor-derived exosomes to modulate T-cell function in NPC.
Collapse
Affiliation(s)
- Shu-Biao Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China. Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ze-Lei Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China. Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dong-Hua Luo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China. Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu-Suan Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China. Department of Radiotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Shi Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China. Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiang Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China. Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China. Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
31
|
Lee B, Hong C. The role of soluble common gamma chain in autoimmune disease. Anat Cell Biol 2015; 48:10-5. [PMID: 25806117 PMCID: PMC4371176 DOI: 10.5115/acb.2015.48.1.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/08/2014] [Accepted: 12/23/2014] [Indexed: 01/18/2023] Open
Abstract
The common gamma chain (γc) is the central signaling unit for a number of cytokine receptors collectively known as the γc cytokine receptor family. γc is critical for ligand binding and signaling by γc cytokines. γc cytokine signaling had been thought to be mainly regulated by cytokine-specific receptor α chain expression levels with little or no effect by γc surface levels because γc expression was presumed to remain unchanged during T-cell activation and development. The extent of γc cytokine responses is thought to be regulated by cytokine specific receptor subunits and not by the γc receptor. In contrast to this prevailing view, we have recently reported that γc itself actively regulates γc cytokine responses. Interestingly, γc exerted its regulatory effects not only as a conventional membrane receptor protein but also as a secreted protein whose expression was upregulated upon T-cell stimulation. Here we will review how a soluble form of γc, which is generated by alternative splicing, regulates γc cytokine signaling and plays a role in controlling immune activation related to autoimmune disease.
Collapse
Affiliation(s)
- Byunghyuk Lee
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
32
|
Gerena Y, Menéndez-Delmestre R, Skolasky RL, Hechavarria RM, Pérez S, Hilera C, González C, Nath A, Wojna V. Soluble insulin receptor as a source of insulin resistance and cognitive impairment in HIV-seropositive women. J Neurovirol 2015; 21:113-9. [PMID: 25604495 DOI: 10.1007/s13365-014-0310-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/08/2014] [Accepted: 12/22/2014] [Indexed: 01/06/2023]
Abstract
Insulin resistance occurs in HIV-infected individuals and is associated with HIV-associated neurocognitive disorders (HAND). However, the mechanisms involved are not well understood. Previously, we showed a correlation between soluble insulin receptor (sIR) and HAND. Here, we investigated if binding of free insulin to sIR and soluble insulin-like growth factor-1 receptor (sIGF1-R) levels are associated with sIR in HAND. Thirty-four (34) HIV-seropositive women stratified by cognitive status and five HIV-seronegative women were evaluated. In a subgroup of 20 HIV positive and 5 donors, binding of plasma insulin to sIR was determined by ELISA assay of residual insulin levels in plasma immuno-depleted with anti-IR-monoclonal antibody-Sepharose beads. sIR and sIGF1-R levels were determined by ELISA. Nonparametric statistics were used. Higher percentages of insulin bound to sIR significantly correlated with sIR levels and were associated with HAND status. Higher levels of plasma sIGF1-R had a positive correlation with sIR levels (p = 0.011) and were associated with HAND (p = 0.006). No correlations were observed with age, viral-immune profile, antiretroviral therapy, or TNF. This study suggests that changes in sIGF1-R levels and insulin binding to sIR may contribute to HAND.
Collapse
Affiliation(s)
- Yamil Gerena
- Department of Pharmaceutical Sciences, School of Pharmacy and NeuroAIDS Program, Specialized Neuroscience Research Program (SNRP), University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, PR, 00936-5067, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Both experimental and clinical evidence accumulated over the last couple of decades has linked inflammatory activation to the initiation and progression of chronic heart failure (HF). Circulating levels of inflammatory mediators are associated with cardiac function and inform risk prediction in patients, but the effect of anti-inflammatory therapy in HF remains uncertain. Interleukin (IL)-6 type cytokines are central to the inflammatory response, and convey their signals through the ubiquitously expressed glycoprotein (gp) 130 receptor subunit. IL-6-type/gp130 signaling therefore represents an inflammatory nexus, with inherent potential for disease modification. This review focuses on the current knowledge of IL-6/gp130 signaling in relation to HF, with a particular emphasis on the role of soluble gp130 (sgp130), a signaling pathway modulator. Biological aspects of sgp130 and IL-6 signaling are discussed, as are potential novel therapeutic approaches to modulate this central inflammatory signaling pathway.
Collapse
|
34
|
Langjahr P, Díaz-Jiménez D, De la Fuente M, Rubio E, Golenbock D, Bronfman FC, Quera R, González MJ, Hermoso MA. Metalloproteinase-dependent TLR2 ectodomain shedding is involved in soluble toll-like receptor 2 (sTLR2) production. PLoS One 2014; 9:e104624. [PMID: 25531754 PMCID: PMC4273945 DOI: 10.1371/journal.pone.0104624] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 07/15/2014] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptor (TLR) 2, a type I membrane receptor that plays a key role in innate immunity, recognizes conserved molecules in pathogens, and triggering an inflammatory response. It has been associated with inflammatory and autoimmune diseases. Soluble TLR2 (sTLR2) variants have been identified in human body fluids, and the TLR2 ectodomain can negatively regulate TLR2 activation by behaving as a decoy receptor. sTLR2 generation does not involve alternative splicing mechanisms, indicating that this process might involve a post-translational modification of the full-length receptor; however, the specific mechanism has not been studied. Using CD14+ peripheral human monocytes and the THP-1 monocytic leukemia-derived cell line, we confirm that sTLR2 generation increases upon treatment with pro-inflammatory agents and requires a post-translational mechanism. We also find that the constitutive and ligand-induced release of sTLR2 is sensitive to pharmacological metalloproteinase activator and inhibitors leading us to conclude that metalloproteinase TLR2 shedding contributes to soluble receptor production. By expressing human TLR2 in ADAM10- or ADAM17-deficient MEF cells, we find both enzymes to be implicated in TLR2 ectodomain shedding. Moreover, using a deletion mutant of the TLR2 juxtamembrane region, we demonstrate that this domain is required for sTLR2 generation. Functional analysis suggests that sTLR2 generated by metalloproteinase activation inhibitsTLR2-induced cytokine production by this monocytic leukemia-derived cell line. The identification of the mechanisms involved in regulating the availability of soluble TLR2 ectodomain and cell surface receptors may contribute further research on TLR2-mediated processes in innate immunity and inflammatory disorders.
Collapse
Affiliation(s)
- Patricia Langjahr
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - David Díaz-Jiménez
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marjorie De la Fuente
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Estefhany Rubio
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Douglas Golenbock
- Division of Infectious Diseases & Immunology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Francisca C. Bronfman
- Physiology Department, Millennium Nucleus in Regenerative Biology (MINREB), Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Quera
- Gastroenterology Unit, Clínica Las Condes, Santiago, Chile
| | - María-Julieta González
- Cell and Molecular Biology Program, Biomedical Sciences Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcela A. Hermoso
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
35
|
IL12Rβ1ΔTM is a secreted product of il12rb1 that promotes control of extrapulmonary tuberculosis. Infect Immun 2014; 83:560-71. [PMID: 25404030 DOI: 10.1128/iai.01230-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
IL12RB1 is a human gene that is important for resistance to Mycobacterium tuberculosis infection. IL12RB1 is expressed by multiple leukocyte lineages, and encodes a type I transmembrane protein (IL12Rβ1) that associates with IL12p40 and promotes the development of host-protective T(H)1 cells. Recently, we observed that il12rb1—the mouse homolog of IL12RB1—is alternatively spliced by leukocytes to produce a second isoform (IL12Rβ1ΔTM) that has biological properties distinct from IL12Rβ1. Although the expression of IL12Rβ1ΔTM is elicited by M. tuberculosis in vivo, and its overexpression enhances IL12p40 responsiveness in vitro, the contribution of IL12Rβ1ΔTM to controlling M. tuberculosis infection has not been tested. Here, we demonstrate that IL12Rβ1ΔTM represents a secreted product of il12rb1 that, when absent from mice, compromises their ability to control M. tuberculosis infection in extrapulmonary organs. Furthermore, elevated M. tuberculosis burdens in IL12Rβ1ΔTM-deficient animals are associated with decreased lymph node cellularity and a decline in TH1 development. Collectively, these data support a model wherein IL12Rβ1ΔTM is a secreted product of il12rb1 that promotes resistance to M. tuberculosis infection by potentiating T(H) cells response to IL-12.
Collapse
|
36
|
cAMP ameliorates inflammation by modulation of macrophage receptor for advanced glycation end-products. Biochem J 2014; 463:75-82. [PMID: 24995813 DOI: 10.1042/bj20140084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Clarification of the roles of PAMPs (pathogen-associated molecular patterns) and DAMPs (damage-associated molecular patterns) is indispensable for therapeutic strategies against various inflammatory diseases. RAGE (receptor for advanced glycation end-products) is one of the PRRs (pattern recognition receptors) and has been implicated in autoimmune and inflammatory diseases. Effective remedies targeting RAGE are required for the diseases. In the present study, we show that cAMP-induced modulation of the RAGE isoform in macrophages can control the inflammatory state in both in vitro and in vivo experimental conditions. The RAGE ligand S100B stimulated MCP-1 (monocyte chemoattractant protein-1) secretion from peritoneal macrophages, but cAMP elevation suppressed it by converting the RAGE isoform from a membrane-bound into a soluble form. This shedding is the result of ectodomain cleavage of mRAGE (membrane-bound RAGE) by MMP9 (matrix metalloproteinase 9). Furthermore, forskolin significantly inhibited peritoneal macrophage accumulation in a mouse S100B-induced peritonitis model. These results suggest that cAMP serves as a negative regulator of ligand-RAGE signalling and macrophage recruitment by mRAGE down-regulation and formation of decoys as soluble receptors. The present study should deepen our understanding of the pathogenesis of RAGE-mediated tissue derangement and provide new clues for overcoming RAGE-related inflammatory diseases.
Collapse
|
37
|
Age-Related Changes in Soluble Vascular Endothelial Growth Factor Receptor 1 (sVEGFR1) and Receptor 2 (sVEGFR2) in Healthy Japanese Subjects. Indian J Clin Biochem 2014; 30:351-6. [PMID: 26089624 DOI: 10.1007/s12291-014-0463-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
We measured serum soluble vascular endothelial growth factor receptor 1 (sVEGFR1) and receptor 2 (sVEGFR2) levels in healthy Japanese individuals in order to establish a reference value using a specific ELISA. Significant differences were observed in serum sVEGFR1 and sVEGFR2 levels between children and adults. To demonstrate the usefulness of the reference value for children, we measured serum sVEGFR1 and sVEGFR2 levels in children with diarrhea positive (D+) hemolytic uremic syndrome (HUS) as a preliminary study. Serum sVEGFR2 levels in children with HUS were markedly higher than those in healthy children from the onset of D + HUS. The reference value for healthy children in the present study will allow normal and pathological conditions to be discriminated from each other in future study.
Collapse
|
38
|
Kane BA, Bryant KJ, McNeil HP, Tedla NT. Termination of immune activation: an essential component of healthy host immune responses. J Innate Immun 2014; 6:727-38. [PMID: 25033984 PMCID: PMC6741560 DOI: 10.1159/000363449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 12/15/2022] Open
Abstract
The ideal immune response is rapid, proportionate and effective. Crucially, it must also be finite. An inflammatory response which is disproportionate or lasts too long risks injury to the host; chronic un-regulated inflammation in autoimmune diseases is one example of this. Thus, mechanisms to regulate and ultimately terminate immune responses are central to a healthy immune system. Despite extensive knowledge of what drives immune responses, our understanding of mechanisms of immune termination remains relatively sparse. It is clear that such processes are more complex than a one-dimensional homeostatic balance. Recent discoveries have revealed ever more nuanced mechanisms of signal termination, such as intrinsically self-limiting signals, multiple inhibitory mechanisms acting in tandem and activating proteins behaving differently in a variety of contexts. This review will summarise some important mechanisms, including termination by immunoreceptor tyrosine-based inhibitory motifs (ITIM), inhibition by soluble antagonists, receptor endocytosis or ubiquitination, and auto-inhibition by newly synthesised intracellular inhibitory molecules. Several recent discoveries showing immunoreceptor tyrosine-based activation motifs transducing inhibitory signals, ITIM mediating activating responses and the possible roles of immunoreceptor tyrosine-based switch motifs will also be explored.
Collapse
Affiliation(s)
- Barry A. Kane
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
| | - Katherine J. Bryant
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, N.S.W., Australia
| | - H. Patrick McNeil
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, N.S.W., Australia
| | - Nicodemus T. Tedla
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, N.S.W., Australia
| |
Collapse
|
39
|
Sangith N, Srinivasaraghavan K, Sahu I, Desai A, Medipally S, Somavarappu AK, Verma C, Venkatraman P. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules. FEBS Open Bio 2014; 4:571-83. [PMID: 25009770 PMCID: PMC4087146 DOI: 10.1016/j.fob.2014.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/21/2022] Open
Abstract
The structure and functions of PSMD9, a proteasomal chaperone, are uncharacterized. PDZ-like domain of PSMD9 may recognize C-terminal residues in proteins. Using conserved C-terminal motifs in human proteome, we identify novel binding partners. hnRNPA1, GH, IL6-receptor, S14 and E12 interact with PSMD9 via a specific C-terminal motif. We predict and confirm residues in the PDZ domain that are involved in this interaction.
PSMD9 (Proteasome Macropain non-ATPase subunit 9), a proteasomal assembly chaperone, harbors an uncharacterized PDZ-like domain. Here we report the identification of five novel interacting partners of PSMD9 and provide the first glimpse at the structure of the PDZ-domain, including the molecular details of the interaction. We based our strategy on two propositions: (a) proteins with conserved C-termini may share common functions and (b) PDZ domains interact with C-terminal residues of proteins. Screening of C-terminal peptides followed by interactions using full-length recombinant proteins, we discovered hnRNPA1 (an RNA binding protein), S14 (a ribosomal protein), CSH1 (a growth hormone), E12 (a transcription factor) and IL6 receptor as novel PSMD9-interacting partners. Through multiple techniques and structural insights, we clearly demonstrate for the first time that human PDZ domain interacts with the predicted Short Linear Sequence Motif (SLIM) at the C-termini of the client proteins. These interactions are also recapitulated in mammalian cells. Together, these results are suggestive of the role of PSMD9 in transcriptional regulation, mRNA processing and editing, hormone and receptor activity and protein translation. Our proof-of-principle experiments endorse a novel and quick method for the identification of putative interacting partners of similar PDZ-domain proteins from the proteome and for discovering novel functions.
Collapse
Affiliation(s)
- Nikhil Sangith
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Kannan Srinivasaraghavan
- Bioinformatics Institute ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore ; Experimental Therapeutics Centre (A*STAR), 31 Biopolis Street, #03-01 Helios, Singapore 138669, Singapore
| | - Indrajit Sahu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Ankita Desai
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Spandana Medipally
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Arun Kumar Somavarappu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Chandra Verma
- Bioinformatics Institute ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore ; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore ; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Prasanna Venkatraman
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| |
Collapse
|
40
|
Hong C, Luckey MA, Ligons DL, Waickman AT, Park JY, Kim GY, Keller HR, Etzensperger R, Tai X, Lazarevic V, Feigenbaum L, Catalfamo M, Walsh STR, Park JH. Activated T cells secrete an alternatively spliced form of common γ-chain that inhibits cytokine signaling and exacerbates inflammation. Immunity 2014; 40:910-23. [PMID: 24909888 DOI: 10.1016/j.immuni.2014.04.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/09/2014] [Indexed: 12/20/2022]
Abstract
The common γ-chain (γc) plays a central role in signaling by IL-2 and other γc-dependent cytokines. Here we report that activated T cells produce an alternatively spliced form of γc mRNA that results in protein expression and secretion of the γc extracellular domain. The soluble form of γc (sγc) is present in serum and directly binds to IL-2Rβ and IL-7Rα proteins on T cells to inhibit cytokine signaling and promote inflammation. sγc suppressed IL-7 signaling to impair naive T cell survival during homeostasis and exacerbated Th17-cell-mediated inflammation by inhibiting IL-2 signaling upon T cell activation. Reciprocally, the severity of Th17-cell-mediated inflammatory diseases was markedly diminished in mice lacking sγc. Thus, sγc expression is a naturally occurring immunomodulator that regulates γc cytokine signaling and controls T cell activation and differentiation.
Collapse
Affiliation(s)
- Changwan Hong
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Megan A Luckey
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Davinna L Ligons
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Adam T Waickman
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Joo-Young Park
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Grace Y Kim
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hilary R Keller
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ruth Etzensperger
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lionel Feigenbaum
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marta Catalfamo
- Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Scott T R Walsh
- Department of Cell Biology and Molecular Genetics, Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, University of Maryland, Rockville, MD 20850, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Elman JS, Li M, Wang F, Gimble JM, Parekkadan B. A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation. JOURNAL OF INFLAMMATION-LONDON 2014; 11:1. [PMID: 24397734 PMCID: PMC3895743 DOI: 10.1186/1476-9255-11-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/06/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bone marrow-derived mesenchymal stromal cells (BMSCs) are a cell population of intense exploration for therapeutic use in inflammatory diseases. Secreted factors released by BMSCs are responsible for the resolution of inflammation in several pre-clinical models. New studies have uncovered that adipose tissue also serves as a reservoir of multipotent, non-hematopoietic stem cells, termed adipose-derived stromal/stem cells (ASCs), with many common characteristics to BMSCs. We hypothesized that ASC and BMSC secreted factors would lead to a comparable benefit in the context of generalized inflammation. FINDINGS Proteomic profiling of conditioned media revealed that BMSCs express significantly higher levels of sVEGFR1 and sTNFR1, two soluble cytokine receptors with known therapeutic activity in sepsis. In a prophylactic study of endotoxin-induced inflammation in mice, we observed that BMSC secreted factors provided a greater survival benefit and tissue protection of endotoxemic mice compared to ASCs. Neutralization of sVEGFR1 and sTNFR1 did not significantly affect the survival benefit experienced by mice treated with BMSC secreted factors. CONCLUSIONS Our findings suggest that BMSCs may be more effective as a cell therapeutic for use in endotoxic shock and that ASCs may be positioned for continued exploration in immunomodulatory diseases. Soluble cytokine receptors can distinguish stromal cells from different tissue origins, though they may not be the sole contributors to the therapeutic benefit of BMSCs. Furthermore, other secreted factors not discussed in this study may also differentiate these stromal cell populations from one another.
Collapse
Affiliation(s)
| | | | | | | | - Biju Parekkadan
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children in Boston, Boston, MA 02114, USA.
| |
Collapse
|
42
|
Sakai A, Yoshida N. The Role of Tumor-Associated Macrophages on Serum Soluble IL-2R Levels in B-Cell Lymphomas. J Clin Exp Hematop 2014; 54:49-57. [DOI: 10.3960/jslrt.54.49] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
43
|
Lin YZ, Yang F, Zhang SQ, Sun LK, Wang XF, Du C, Zhou JH. The soluble form of the EIAV receptor encoded by an alternative splicing variant inhibits EIAV infection of target cells. PLoS One 2013; 8:e79299. [PMID: 24278125 PMCID: PMC3838338 DOI: 10.1371/journal.pone.0079299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 09/20/2013] [Indexed: 01/21/2023] Open
Abstract
Equine lentivirus receptor 1 (ELR1) has been identified as the sole receptor for equine infectious anemia virus (EIAV) and is a member of the tumor necrosis factor receptor (TNFR) superfamily. In addition to the previously described membrane-associated form of ELR1, two other major alternative splicing variant mRNAs were identified in equine monocyte-derived macrophages (eMDMs). One major spliced species (ELR1-IN) contained an insertion of 153 nt, which resulted in a premature stop codon situated 561 nt upstream of the predicted membrane spanning domain. The other major species (ELR1-DE) has a deletion of 109 nt that causes a shift of the open reading frame and generates a stop codon 312 nt downstream. Because ELR1-DE presumably encodes a peptide of a mere 23 residues, only ELR1-IN was further analyzed. The expression of a soluble form of ELR1 (sELR1) by ELR1-IN was confirmed by Western blot and immunofluorescence analyses. Similar to ELR1, the transcription level of ELR1-IN varied among individual horses and at different time points in the same individuals. The ratio of ELR1-IN mRNA species to ELR1 mRNA was approximately 1∶2.5. Pre-incubation of the recombinant sELR1 with EIAV significantly inhibited EIAV infection in equine macrophages, the primary in vivo target cell of the virus. Fetal equine dermal (FED) cells are susceptible to EIAV in vitro, and the replication of EIAV in FED cells transiently transfected with ELR1-IN was markedly reduced when compared with replication in cells transfected with the empty vector. Finally, the expression levels of both forms of the EIAV receptor were significantly regulated by infection with this virus. Taken together, our data indicate that sELR1 acts as a secreted cellular factor that inhibits EIAV infection in host cells.
Collapse
Affiliation(s)
- Yue-Zhi Lin
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China
| | - Fei Yang
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China
| | - Shu-Qin Zhang
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Science, Changchun, China
| | - Liu-Ke Sun
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China
| | - Xue-Feng Wang
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China
| | - Cheng Du
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China
| | - Jian-Hua Zhou
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China
| |
Collapse
|
44
|
Development and evaluation of a sandwich ELISA method for the detection of human CD306. J Immunol Methods 2013; 396:65-73. [PMID: 23954474 DOI: 10.1016/j.jim.2013.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 01/08/2023]
|
45
|
Shedding of tumor necrosis factor receptor 1 induced by protein A decreases tumor necrosis factor alpha availability and inflammation during systemic Staphylococcus aureus infection. Infect Immun 2013; 81:4200-7. [PMID: 24002060 DOI: 10.1128/iai.00593-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus infections are an important public health concern due to their increasing incidence and high rates of mortality. The success of S. aureus as a pathogen is highly related to its enormous capacity to evade the host immune response. The critical role of tumor necrosis factor alpha (TNF-α) in the initial host defense against systemic staphylococcal infection has been demonstrated in experimental models and may partially explain the lack of significant benefits observed in clinical trials attempting to neutralize this cytokine in septic patients. S. aureus protein A plays a key role in regulating inflammation through its ability to bind and signal through the TNF-α receptor 1 (TNFR1). In this study, we demonstrate that S. aureus, via protein A-mediated signaling, induces early shedding of TNFR1, which precedes the secretion of TNF-α in vitro and in vivo. The results obtained using a protein A-deficient mutant and tnfr1(-/-) mice strongly suggest that the increased levels of soluble TNFR1 present during experimental S. aureus infection may neutralize circulating TNF-α and impair the host inflammatory response. Early shedding of TNFR1 induced by protein A may constitute a novel mechanism by which S. aureus subverts the host immune response.
Collapse
|
46
|
Moriasi C, Subramaniam D, Awasthi S, Ramalingam S, Anant S. Prevention of colitis-associated cancer: natural compounds that target the IL-6 soluble receptor. Anticancer Agents Med Chem 2013; 12:1221-38. [PMID: 22583410 DOI: 10.2174/187152012803833080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 12/17/2022]
Abstract
The risk of developing colorectal cancer increases in patients with inflammatory bowel disease (IBD) and a growing body of evidence shows the critical role of interleukin (IL-6) in this process. IL-6 is both a pro- and anti-inflammatory cytokine whose effects are mediated through activation of STAT3. Recent studies have also demonstrated that IL-6 trans-signaling through its soluble receptor occurs in IBD and cancer. IL-6 trans-signaling therefore is emerging as an attractive approach to diminish the inflammatory signals in conditions of chronic inflammation. The purpose of cancer chemoprevention is to either delay the onset or progression from precancerous lesions. Natural compounds because of their low toxicity render themselves excellent candidates that can be administered over the lifetime of an individual. With the focus of managing IBD over a long time and preventing onset of colitis-associated cancer, we believe that there should be increased research focus on identifying chemopreventive compounds that can render themselves to long term use possibly for the lifetime of predisposed individuals. Here, we review the role of IL-6 signaling in IBD and colitis-associated cancer and underscore the importance of searching for natural compounds that would target the IL-6 trans-signaling pathway as a way to diminish chronic inflammatory conditions in the gastrointestinal tract and possibly hamper the progression to colon cancer. We propose that effective screening and identification of natural chemopreventive compounds that target IL-6 trans-signaling has important implications for the development of optimal strategies against cancer development triggered by inflammation.
Collapse
Affiliation(s)
- Cate Moriasi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
47
|
Tseng WY, Huang YS, Chiang NY, Chou YP, Wu YJJ, Luo SF, Kuo CF, Lin KM, Lin HH. Increased soluble CD4 in serum of rheumatoid arthritis patients is generated by matrix metalloproteinase (MMP)-like proteinases. PLoS One 2013; 8:e63963. [PMID: 23700441 PMCID: PMC3660307 DOI: 10.1371/journal.pone.0063963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/10/2013] [Indexed: 12/24/2022] Open
Abstract
Higher soluble CD4 (sCD4) levels in serum have been detected in patients of infectious and chronic inflammatory diseases. However, how and why sCD4 is produced remains poorly understood. We establish sensitive ELISA and WB assays for sCD4 detection in conditioned medium of in vitro cell culture system and serum of chronic inflammatory patients. Serum samples from patients with systemic lupus erythematosus (SLE) (n = 79), rheumatoid arthritis (RA) (n = 59), ankylosing spondylitis (AS) (n = 25), gout (n = 31), and normal controls (n = 99) were analyzed using ELISA for sCD4 detection. Results from each assay were analyzed by the Kruskal-Wallis test. Dunn's multiple comparison post-test was then applied between groups. We confirm that cells expressing exogenous CD4 produce sCD4 in a constitutive and PMA-induced manner. Importantly, sCD4 production in a heterologous expression system is inhibited by GM6001 and TAPI-0, suggesting receptor shedding by matrix metalloproteinase (MMP)-like proteinases. Moreover, similar findings are recapitulated in human primary CD4(+) T cells. Finally, we show that serum sCD4 levels are increased in patients of chronic inflammatory diseases including RA and SLE, but not in those with gout. Intriguingly, sCD4 levels in RA patients are correlated positively with the disease activities and higher sCD4 levels seem to associate with poor prognosis. Taken together, we conclude that CD4 is shed from cell surface by a MMP-like sheddase and sCD4 level is closely related with the inflammatory condition in certain chronic diseases. Hence, sCD4 might be considered an important parameter for RA disease progression with potential diagnostic importance.
Collapse
Affiliation(s)
- Wen-Yi Tseng
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
- Graduate Institute of Clinical Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yi-Shu Huang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | - Nien-Yi Chiang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | - Yeh-Pin Chou
- Department of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Yeong-Jian Jan Wu
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Shue-Fen Luo
- Department of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan
| | - Chang-Fu Kuo
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan
| | - Ko-Ming Lin
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Hsi-Hsien Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
48
|
Simone R, Pesce G, Antola P, Merlo DF, Bagnasco M, Saverino D. Serum LAIR-2 is increased in autoimmune thyroid diseases. PLoS One 2013; 8:e63282. [PMID: 23691008 PMCID: PMC3653941 DOI: 10.1371/journal.pone.0063282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/30/2013] [Indexed: 12/02/2022] Open
Abstract
Leukocyte-associated Ig-like receptor (LAIR) is a small family-receptor able to inhibit immune cell function via collagen binding. It exists as both membrane-bound and soluble forms. LAIR-1 functions as an inhibitory receptor on natural killer cells, T lymphocytes and monocytes. In addition to LAIR-1, the human genome encodes LAIR-2, a soluble homolog. Several studies have focused on LAIR-1, whereas few investigations concentrate on the expression and function of LAIR-2. We demonstrate the presence of high LAIR-2 levels in 74/80 sera from patients with autoimmune thyroid diseases (both Graves’ disease and autoimmune thyroiditis). LAIR-2 levels seemed not to be related to specific clinical manifestations, such as thyroid functions (hypo- or hyperthyroidism), or specific clinical features (such as ophtalmopathy). In addition, serum LAIR-2 is able, in vitro, to bind its natural ligand, collagen. Since LAIR-2 has been found to have higher affinity for collagens than LAIR-1 did, we hypothesize a potential regulating capability of serum LAIR-2 in finally regulating the inhibitory capability of LAIR-1.
Collapse
Affiliation(s)
- Rita Simone
- Department of Experimental Medicine – Section of Human Anatomy, University of Genova, Genova, Italy
- Departments of Medicine and Cell Biology, North Shore University Hospital, Manhasset, New York, United States of America
| | - Giampaola Pesce
- Autoimmunity Unit, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Princey Antola
- Autoimmunity Unit, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Domenico F. Merlo
- Epidemiology, Biostatistics and Clinical Trials, IRCCS AOU San Martino, IST – Istituto Nazionale per le Ricerca sul Cancro, Genova, Italy
| | - Marcello Bagnasco
- Autoimmunity Unit, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Daniele Saverino
- Department of Experimental Medicine – Section of Human Anatomy, University of Genova, Genova, Italy
- * E-mail:
| |
Collapse
|
49
|
Liu LN, Wang G, Hendricks K, Lee K, Bohnlein E, Junker U, Mosca JD. Comparison of drug and cell-based delivery: engineered adult mesenchymal stem cells expressing soluble tumor necrosis factor receptor II prevent arthritis in mouse and rat animal models. Stem Cells Transl Med 2013; 2:362-75. [PMID: 23592838 DOI: 10.5966/sctm.2012-0135] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease with unknown etiology where tumor necrosis factor-α (TNFα) plays a critical role. Etanercept, a recombinant fusion protein of human soluble tumor necrosis factor receptor II (hsTNFR) linked to the Fc portion of human IgG1, is used to treat RA based on the rationale that sTNFR binds TNFα and blocks TNFα-mediated inflammation. We compared hsTNFR protein delivery from genetically engineered human mesenchymal stem cells (hMSCs) with etanercept. Blocking TNFα-dependent intercellular adhesion molecule-1 expression on transduced hMSCs and inhibition of nitric oxide production from TNFα-treated bovine chondrocytes by conditioned culture media from transduced hMSCs demonstrated the functionality of the hsTNFR construction. Implanted hsTNFR-transduced mesenchymal stem cells (MSCs) reduced mouse serum circulating TNFα generated from either implanted TNFα-expressing cells or lipopolysaccharide induction more effectively than etanercept (TNFα, 100%; interleukin [IL]-1α, 90%; and IL-6, 60% within 6 hours), suggesting faster clearance of the soluble tumor necrosis factor receptor (sTNFR)-TNFα complex from the animals. In vivo efficacy of sTNFR-transduced MSCs was illustrated in two (immune-deficient and immune-competent) arthritic rodent models. In the antibody-induced arthritis BalbC/SCID mouse model, intramuscular injection of hsTNFR-transduced hMSCs reduced joint inflammation by 90% compared with untransduced hMSCs; in the collagen-induced arthritis Fischer rat model, both sTNFR-transduced rat MSCs and etanercept inhibited joint inflammation by 30%. In vitro chondrogenesis assays showed the ability of TNFα and IL1α, but not interferon γ, to inhibit hMSC differentiation to chondrocytes, illustrating an additional negative role for inflammatory cytokines in joint repair. The data support the utility of hMSCs as therapeutic gene delivery vehicles and their potential to be used in alleviating inflammation within the arthritic joint.
Collapse
Affiliation(s)
- Linda N Liu
- Osiris Therapeutics, Inc., Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Kawayama T, Okamoto M, Imaoka H, Kato S, Young HA, Hoshino T. Interleukin-18 in pulmonary inflammatory diseases. J Interferon Cytokine Res 2012; 32:443-9. [PMID: 22900713 DOI: 10.1089/jir.2012.0029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The proinflammatory cytokine interleukin (IL)-18 was originally discovered as an interferon-γ-inducing factor in 1995. IL-18 is known to play an important role in Th1/Tc1 polarization and promoting the production of Th2 cytokines (e.g., IL-4, IL-5, IL-9, and IL-13) by T cells, NK cells, basophils, and mast cells. IL-18 can act as a cofactor for Th2 cell development and IgE production, and also plays an important role in the differentiation of Th17 cells. IL-18 is a key player in the pathogenesis of inflammatory diseases such as atopic dermatitis, rheumatoid arthritis, adult-onset Still's disease, Sjögren's syndrome, and inflammatory bowel diseases. Furthermore, many lines of evidence suggest that IL-18 plays a key role in the pathogenesis of pulmonary inflammatory diseases, including bronchial asthma and chronic obstructive pulmonary disease. Here, we review the pathological roles of IL-18 in pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine 1, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|