1
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Jensen KJ, Biering-Sørensen S, Ursing J, Kofoed PEL, Aaby P, Benn CS. Seasonal variation in the non-specific effects of BCG vaccination on neonatal mortality: three randomised controlled trials in Guinea-Bissau. BMJ Glob Health 2020; 5:e001873. [PMID: 32201619 PMCID: PMC7059430 DOI: 10.1136/bmjgh-2019-001873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 11/23/2022] Open
Abstract
The BCG vaccine protects non-specifically against other diseases than tuberculosis. Three randomised controlled trials of early BCG in Guinea-Bissau found a 38% reduction in all-cause neonatal mortality. Little is known about the underlying mechanisms. In Guinea-Bissau, prevalent infectious diseases display distinct seasonality. Revisiting the three trials (>6500 infants) comparing early BCG versus no early BCG in low weight infants on all-cause neonatal mortality over 12 consecutive years, we explored the seasonal variation in BCG’s effect on mortality. In a subgroup of participants, adaptive and innate cytokine responses were measured 4 weeks after randomisation. Consistently over the course of the three trials and 12 years, the effect of BCG on all-cause neonatal mortality was particularly beneficial when administered in November to January, coincident with peaking malaria infections. During these months, BCG was also associated with stronger proinflammatory responses to heterologous challenge. Recent studies have suggested a protective effect of BCG against malaria. BCG may also ameliorate immune-compromising fatal effects of placental malaria in the newborn.
Collapse
Affiliation(s)
- Kristoffer Jarlov Jensen
- Bandim Health Project, University of Southern Denmark, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Johan Ursing
- Department of Infectious Diseases, Danderyd University Hospital, Stockholm, Sweden.,Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | - Poul-Erik Lund Kofoed
- Department of Pediatrics, Kolding Hospital, Kolding, Denmark.,Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Peter Aaby
- Bandim Health Project, University of Southern Denmark, Copenhagen, Denmark.,Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Christine Stabell Benn
- Bandim Health Project, University of Southern Denmark, Copenhagen, Denmark.,OPEN, Institute of Clinical Research, University of Southern Denmark, Odense, Syddanmark, Denmark
| |
Collapse
|
3
|
Gbedande K, Carpio VH, Stephens R. Using two phases of the CD4 T cell response to blood-stage murine malaria to understand regulation of systemic immunity and placental pathology in Plasmodium falciparum infection. Immunol Rev 2020; 293:88-114. [PMID: 31903675 PMCID: PMC7540220 DOI: 10.1111/imr.12835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum infection and malaria remain a risk for millions of children and pregnant women. Here, we seek to integrate knowledge of mouse and human T helper cell (Th) responses to blood-stage Plasmodium infection to understand their contribution to protection and pathology. Although there is no complete Th subset differentiation, the adaptive response occurs in two phases in non-lethal rodent Plasmodium infection, coordinated by Th cells. In short, cellular immune responses limit the peak of parasitemia during the first phase; in the second phase, humoral immunity from T cell-dependent germinal centers is critical for complete clearance of rapidly changing parasite. A strong IFN-γ response kills parasite, but an excess of TNF compared with regulatory cytokines (IL-10, TGF-β) can cause immunopathology. This common pathway for pathology is associated with anemia, cerebral malaria, and placental malaria. These two phases can be used to both understand how the host responds to rapidly growing parasite and how it attempts to control immunopathology and variation. This dual nature of T cell immunity to Plasmodium is discussed, with particular reference to the protective nature of the continuous generation of effector T cells, and the unique contribution of effector memory T cells.
Collapse
Affiliation(s)
- Komi Gbedande
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
4
|
Kumar R, Loughland JR, Ng SS, Boyle MJ, Engwerda CR. The regulation of CD4
+
T cells during malaria. Immunol Rev 2019; 293:70-87. [DOI: 10.1111/imr.12804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Rajiv Kumar
- Centre of Experimental Medicine and Surgery Institute of Medical Sciences Banaras Hindu University Varanasi UP India
- Department of Medicine Institute of Medical Sciences Banaras Hindu University Varanasi UP India
| | - Jessica R. Loughland
- Human Malaria Immunology Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Susanna S. Ng
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Michelle J. Boyle
- Human Malaria Immunology Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Christian R. Engwerda
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| |
Collapse
|
5
|
Odorizzi PM, Jagannathan P, McIntyre TI, Budker R, Prahl M, Auma A, Burt TD, Nankya F, Nalubega M, Sikyomu E, Musinguzi K, Naluwu K, Kakuru A, Dorsey G, Kamya MR, Feeney ME. In utero priming of highly functional effector T cell responses to human malaria. Sci Transl Med 2019; 10:10/463/eaat6176. [PMID: 30333241 DOI: 10.1126/scitranslmed.aat6176] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/10/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
Malaria remains a significant cause of morbidity and mortality worldwide, particularly in infants and children. Some studies have reported that exposure to malaria antigens in utero results in the development of tolerance, which could contribute to poor immunity to malaria in early life. However, the effector T cell response to pathogen-derived antigens encountered in utero, including malaria, has not been well characterized. Here, we assessed the frequency, phenotype, and function of cord blood T cells from Ugandan infants born to mothers with and without placental malaria. We found that infants born to mothers with active placental malaria had elevated frequencies of proliferating effector memory fetal CD4+ T cells and higher frequencies of CD4+ and CD8+ T cells that produced inflammatory cytokines. Fetal CD4+ and CD8+ T cells from placental malaria-exposed infants exhibited greater in vitro proliferation to malaria antigens. Malaria-specific CD4+ T cell proliferation correlated with prospective protection from malaria during childhood. These data demonstrate that placental malaria is associated with the generation of proinflammatory malaria-responsive fetal T cells. These findings add to our current understanding of fetal immunity and indicate that a functional and protective pathogen-specific T cell response can be generated in utero.
Collapse
Affiliation(s)
- Pamela M Odorizzi
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA 94110 USA
| | | | - Tara I McIntyre
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA 94110 USA
| | - Rachel Budker
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA 94110 USA
| | - Mary Prahl
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Ann Auma
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Trevor D Burt
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94110, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Esther Sikyomu
- Infectious Disease Research Collaboration, Kampala, Uganda
| | | | - Kate Naluwu
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Abel Kakuru
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA 94110 USA
| | - Moses R Kamya
- School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Margaret E Feeney
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA 94110 USA. .,Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
6
|
Feeney ME. The immune response to malaria in utero. Immunol Rev 2019; 293:216-229. [PMID: 31553066 DOI: 10.1111/imr.12806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Malaria causes tremendous early childhood morbidity and mortality, providing an urgent impetus for the development of a vaccine that is effective in neonates. However, the infant immune response to malaria may be influenced by events that occur well before birth. Placental malaria infection complicates one quarter of all pregnancies in Africa and frequently results in exposure of the fetus to malaria antigens in utero, while the immune system is still developing. Some data suggest that in utero exposure to malaria may induce immunologic tolerance that interferes with the development of protective immunity during childhood. More recently, however, a growing body of evidence suggests that fetal malaria exposure can prime highly functional malaria-specific T- and B-cells, which may contribute to postnatal protection from malaria. In utero exposure to malaria also impacts the activation and maturation of fetal antigen presenting cells and innate lymphocytes, which could have implications for global immunity in the infant. Here, we review recent advances in our understanding of how various components of the fetal immune system are altered by in utero exposure to malaria, discuss factors that may tilt the critical balance between tolerance and adaptive immunity, and consider the implications of these findings for malaria prevention strategies.
Collapse
Affiliation(s)
- Margaret E Feeney
- Departments of Pediatrics and Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Kakuru A, Staedke SG, Dorsey G, Rogerson S, Chandramohan D. Impact of Plasmodium falciparum malaria and intermittent preventive treatment of malaria in pregnancy on the risk of malaria in infants: a systematic review. Malar J 2019; 18:304. [PMID: 31481075 PMCID: PMC6724246 DOI: 10.1186/s12936-019-2943-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/28/2019] [Indexed: 09/16/2023] Open
Abstract
Background Studies of the association between malaria in pregnancy (MiP) and malaria during infancy have provided mixed results. A systematic review was conducted to evaluate available evidence on the impact of Plasmodium falciparum malaria infection during pregnancy, and intermittent preventive treatment of malaria during pregnancy (IPTp), on the risk of clinical malaria or parasitaemia during infancy. Methods MEDLINE, EMBASE, Global Health, and Malaria in Pregnancy Library databases were searched from inception to 22 May 2018 for articles published in English that reported on associations between MiP and malaria risk in infancy. Search terms included malaria, Plasmodium falciparum, pregnancy, placenta, maternal, prenatal, foetal, newborn, infant, child or offspring or preschool. Randomized controlled trials and prospective cohort studies, which followed infants for at least 6 months, were included if any of the following outcomes were reported: incidence of clinical malaria, prevalence of parasitaemia, and time to first episode of parasitaemia or clinical malaria. Substantial heterogeneity between studies precluded meta-analysis. Thus, a narrative synthesis of included studies was conducted. Results The search yielded 14 published studies, 10 prospective cohort studies and four randomized trials; all were conducted in sub-Saharan Africa. Infants born to mothers with parasitaemia during pregnancy were at higher risk of malaria in three of four studies that assessed this association. Placental malaria detected by microscopy or histology was associated with a higher risk of malaria during infancy in nine of 12 studies, but only one study adjusted for malaria transmission intensity. No statistically significant associations between the use of IPTp or different IPTp regimens and the risk of malaria during infancy were identified. Conclusion Evidence of an association between MiP and IPTp and risk of malaria in infancy is limited and of variable quality. Most studies did not adequately adjust for malaria transmission intensity shared by mothers and their infants. Further research is needed to confirm or exclude an association between MiP and malaria in infancy. Randomized trials evaluating highly effective interventions aimed at preventing MiP, such as IPTp with dihydroartemisinin–piperaquine, may help to establish a causal association between MiP and malaria in infancy.
Collapse
Affiliation(s)
- Abel Kakuru
- Infectious Diseases Research Collaboration, P.O Box 7475, Kampala, Uganda. .,London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Sarah G Staedke
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Grant Dorsey
- University of California San Francisco, San Francisco, CA, USA
| | - Stephen Rogerson
- Department of Medicine at the Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia
| | - Daniel Chandramohan
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
8
|
Kumar R, Ng S, Engwerda C. The Role of IL-10 in Malaria: A Double Edged Sword. Front Immunol 2019; 10:229. [PMID: 30809232 PMCID: PMC6379449 DOI: 10.3389/fimmu.2019.00229] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
IL-10 produced by CD4+ T cells suppresses inflammation by inhibiting T cell functions and the upstream activities of antigen presenting cells (APCs). IL-10 was first identified in Th2 cells, but has since been described in IFNγ-producing Tbet+ Th1, FoxP3+ CD4+ regulatory T (Treg) and IL-17-producing CD4+ T (Th17) cells, as well as many innate and innate-like immune cell populations. IL-10 production by Th1 cells has emerged as an important mechanism to dampen inflammation in the face of intractable infection, including in African children with malaria. However, although these type I regulatory T (Tr1) cells protect tissue from inflammation, they may also promote disease by suppressing Th1 cell-mediated immunity, thereby allowing infection to persist. IL-10 produced by other immune cells during malaria can also influence disease outcome, but the full impact of this IL-10 production is still unclear. Together, the actions of this potent anti-inflammatory cytokine along with other immunoregulatory mechanisms that emerge following Plasmodium infection represent a potential hurdle for the development of immunity against malaria, whether naturally acquired or vaccine-induced. Recent advances in understanding how IL-10 production is initiated and regulated have revealed new opportunities for manipulating IL-10 for therapeutic advantage. In this review, we will summarize our current knowledge about IL-10 production during malaria and discuss its impact on disease outcome. We will highlight recent advances in our understanding about how IL-10 production by specific immune cell subsets is regulated and consider how this knowledge may be used in drug delivery and vaccination strategies to help eliminate malaria.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India.,Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Susanna Ng
- Immunology and Infection Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christian Engwerda
- Immunology and Infection Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Lacorcia M, Prazeres da Costa CU. Maternal Schistosomiasis: Immunomodulatory Effects With Lasting Impact on Allergy and Vaccine Responses. Front Immunol 2018; 9:2960. [PMID: 30619318 PMCID: PMC6305477 DOI: 10.3389/fimmu.2018.02960] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Early exposure to immune stimuli, including maternal infection during the perinatal period, is increasingly recognized to affect immune predisposition during later life. This includes exposure to not only viral and bacterial infection but also parasitic helminths which remain widespread. Noted effects of helminth infection, including altered incidence of atopic inflammation and vaccine responsiveness, support further research into the impact these infections have for skewing immune responses. At the same time, despite a sea of recommendations, clear phenotypic and mechanistic understandings of how environmental perturbations in pregnancy and nursing modify immune predisposition and allergy in offspring remain unrefined. Schistosomes, as strong inducers of type 2 immunity embedded in a rich network of regulatory processes, possess strong abilities to shift inflammatory and allergic diseases in infected hosts, for example by generating feedback loops that impair T cell responses to heterologous antigens. Based on the current literature on schistosomiasis, we explore in this review how maternal schistosome infection could drive changes in immune system development of offspring and how this may lead to identifying factors involved in altering responses to vaccination as well as manifestations of immune disorders including allergy.
Collapse
Affiliation(s)
- Matthew Lacorcia
- Department of Medicine, Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
| | - Clarissa U Prazeres da Costa
- Department of Medicine, Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Natama HM, Moncunill G, Rovira-Vallbona E, Sanz H, Sorgho H, Aguilar R, Coulibaly-Traoré M, Somé MA, Scott S, Valéa I, Mens PF, Schallig HDFH, Kestens L, Tinto H, Dobaño C, Rosanas-Urgell A. Modulation of innate immune responses at birth by prenatal malaria exposure and association with malaria risk during the first year of life. BMC Med 2018; 16:198. [PMID: 30384846 PMCID: PMC6214168 DOI: 10.1186/s12916-018-1187-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/05/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. METHODS We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. RESULTS Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. CONCLUSIONS These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of life.
Collapse
Affiliation(s)
- Hamtandi Magloire Natama
- Department of Biomedical Sciences, Institute of Tropical Medicine, B 2000, Antwerp, Belgium.,Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso.,Department of Biomedical Sciences, University of Antwerp, B 2610, Antwerp, Belgium
| | - Gemma Moncunill
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - Universitat de Barcelona, Carrer Rossello 132, E-08036, Barcelona, Catalonia, Spain
| | - Eduard Rovira-Vallbona
- Department of Biomedical Sciences, Institute of Tropical Medicine, B 2000, Antwerp, Belgium
| | - Héctor Sanz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - Universitat de Barcelona, Carrer Rossello 132, E-08036, Barcelona, Catalonia, Spain
| | - Hermann Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso
| | - Ruth Aguilar
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - Universitat de Barcelona, Carrer Rossello 132, E-08036, Barcelona, Catalonia, Spain
| | - Maminata Coulibaly-Traoré
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso
| | - M Athanase Somé
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso
| | - Susana Scott
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, WC1E7HT, UK
| | - Innocent Valéa
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso
| | - Petra F Mens
- Department of Medical Microbiology - Parasitology Unit, Academic Medical Centre, Amsterdam, 1105, AZ, The Netherlands
| | - Henk D F H Schallig
- Department of Medical Microbiology - Parasitology Unit, Academic Medical Centre, Amsterdam, 1105, AZ, The Netherlands
| | - Luc Kestens
- Department of Biomedical Sciences, Institute of Tropical Medicine, B 2000, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, B 2610, Antwerp, Belgium
| | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, BP218, Nanoro, Burkina Faso.,Centre Muraz, BP390, Bobo Dioulasso, Burkina Faso
| | - Carlota Dobaño
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - Universitat de Barcelona, Carrer Rossello 132, E-08036, Barcelona, Catalonia, Spain
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, B 2000, Antwerp, Belgium.
| |
Collapse
|
11
|
Harrington WE, Kakuru A, Jagannathan P. Malaria in pregnancy shapes the development of foetal and infant immunity. Parasite Immunol 2018; 41:e12573. [PMID: 30019470 DOI: 10.1111/pim.12573] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/21/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Malaria, particularly Plasmodium falciparum, continues to disproportionately affect pregnant women. In addition to the profoundly deleterious impact of maternal malaria on the health of the mother and foetus, malaria infection in pregnancy has been shown to affect the development of the foetal and infant immune system and may alter the risk of malaria and nonmalarial outcomes during infancy. This review summarizes our current understanding of how malaria infection in pregnancy shapes the protective components of the maternal immune system transferred to the foetus and how foetal exposure to parasite antigens impacts the development of foetal and infant immunity. It also reviews existing evidence linking malaria infection in pregnancy to malaria and nonmalarial outcomes in infancy and how preventing malaria in pregnancy may alter these outcomes. A better understanding of the consequences of malaria infection in pregnancy on the development of foetal and infant immunity will inform control strategies, including intermittent preventive treatment in pregnancy and vaccine development.
Collapse
Affiliation(s)
- Whitney E Harrington
- Department of Pediatrics, University of Washington/Seattle Children's Hospital, Seattle, Washington
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | |
Collapse
|
12
|
Interferon- γ and Interleukin-10 Responses during Clinical Malaria Episodes in Infants Aged 0-2 Years Prenatally Exposed to Plasmodium falciparum: Tanzanian Birth Cohort. J Trop Med 2018; 2018:6847498. [PMID: 30154871 PMCID: PMC6091450 DOI: 10.1155/2018/6847498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/21/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022] Open
Abstract
Background Infants born to mothers with placental malaria are prenatally exposed to Plasmodium falciparum antigens. However, the effect of that exposure to subsequent immune responses has not been fully elucidated. This study aimed at determining the effect of prenatal exposure to P. falciparum on Interleukin-10 and Interferon-γ responses during clinical malaria episodes in the first 24 months of life. Methods This prospective cohort study involved 215 infants aged 0-2 years born to mothers with or without placental malaria. Enzyme-linked immunosorbent assay (ELISA) was used to determine levels of IL-10 and IFN-γ in infants and detect IgM in cord blood. Data were analyzed using SPSS version 20. Findings Geometric mean for IFN-γ in exposed infants was 557.9 pg/ml (95% CI: 511.6-604.1) and in unexposed infants it was 634.4 pg/ml (95% CI: 618.2-668.5) (P=0.02). Mean IL-10 was 22.4 pg/ml (95% CI: 19.4-28.4) and 15.1 pg/ml (95%CI: 12.4-17.6), respectively (P=0.01). Conclusions Prenatal exposure to P. falciparum antigens significantly affects IL-10 and IFN-γ responses during clinical malaria episodes in the first two years of life.
Collapse
|
13
|
Dobaño C, Berthoud T, Manaca MN, Nhabomba A, Guinovart C, Aguilar R, Barbosa A, Groves P, Rodríguez MH, Jimenez A, Quimice LM, Aponte JJ, Ordi J, Doolan DL, Mayor A, Alonso PL. High production of pro-inflammatory cytokines by maternal blood mononuclear cells is associated with reduced maternal malaria but increased cord blood infection. Malar J 2018; 17:177. [PMID: 29743113 PMCID: PMC5944101 DOI: 10.1186/s12936-018-2317-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022] Open
Abstract
Background Increased susceptibility to malaria during pregnancy is not completely understood. Cellular immune responses mediate both pathology and immunity but the effector responses involved in these processes have not been fully characterized. Maternal and fetal cytokine and chemokine responses to malaria at delivery, and their association with pregnancy and childhood outcomes, were investigated in 174 samples from a mother and child cohort from Mozambique. Peripheral and cord mononuclear cells were stimulated with Plasmodium falciparum lysate and secretion of IL-12p70, IFN-γ, IL-2, IL-10, IL-8, IL-6, IL-4, IL-5, IL-1β, TNF, TNF-β was quantified in culture supernatants by multiplex flow cytometry while cellular mRNA expression of IFN-γ, TNF, IL-2, IL-4, IL-6, IL-10 and IL-13 was measured by quantitative PCR. Results Higher concentrations of IL-6 and IL-1β were associated with a reduced risk of P. falciparum infection in pregnant women (p < 0.049). Pro-inflammatory cytokines IL-6, IL-1β and TNF strongly correlated among themselves (ρ > 0.5, p < 0.001). Higher production of IL-1β was significantly associated with congenital malaria (p < 0.046) and excessive TNF was associated with peripheral infection and placental lesions (p < 0.044). Conclusions Complex network of immuno-pathological cytokine mechanisms in the placental and utero environments showed a potential trade-off between positive and negative effects on mother and newborn susceptibility to infection. Electronic supplementary material The online version of this article (10.1186/s12936-018-2317-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
| | - Tamara Berthoud
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | | | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Caterina Guinovart
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Arnoldo Barbosa
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Penny Groves
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Mauricio H Rodríguez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Alfons Jimenez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Lazaro M Quimice
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - John J Aponte
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Jaume Ordi
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Denise L Doolan
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pedro L Alonso
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|
14
|
Harrington WE, Kanaan SB, Muehlenbachs A, Morrison R, Stevenson P, Fried M, Duffy PE, Nelson JL. Maternal Microchimerism Predicts Increased Infection but Decreased Disease due to Plasmodium falciparum During Early Childhood. J Infect Dis 2017; 215:1445-1451. [PMID: 28329160 DOI: 10.1093/infdis/jix129] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
Background A mother's infection with placental malaria (PM) can affect her child's susceptibility to malaria, although the mechanism remains unclear. The fetus acquires a small amount of maternal cells and DNA known as maternal microchimerism (MMc), and we hypothesized that PM increases MMc and that MMc alters risk of Plasmodium falciparum malaria during infancy. Methods In a nested cohort from Muheza, Tanzania, we evaluated the presence and level of cord blood MMc in offspring of women with and without PM. A maternal-specific polymorphism was identified for each maternal-infant pair, and MMc was assayed by quantitative polymerase chain reaction. The ability of MMc to predict malaria outcomes during early childhood was evaluated in longitudinal models. Results Inflammatory PM increased the detection rate of MMc among offspring of primigravidae and secundigravidae, and both noninflammatory and inflammatory PM increased the level of MMc. Detectable MMc predicted increased risk of positive blood smear but, interestingly, decreased risk of symptomatic malaria and malaria hospitalization. Conclusions The acquisition of MMc may result in increased malaria infection but protection from malaria disease. Future studies should be directed at the cellular component of MMc, with attention to its ability to directly or indirectly coordinate anti-malarial immune responses in the offspring.
Collapse
Affiliation(s)
- Whitney E Harrington
- Department of Pediatrics, University of Washington School of Medicine/Seattle Children's Hospital, Washington
| | - Sami B Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Atis Muehlenbachs
- Department of Pathology, University of Washington, Seattle, Washington
| | - Robert Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Philip Stevenson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - J Lee Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Rheumatology, University of Washington, Seattle
| |
Collapse
|
15
|
Francis JP, Richmond PC, Strickland D, Prescott SL, Pomat WS, Michael A, Nadal-Sims MA, Edwards-Devitt CJ, Holt PG, Lehmann D, van den Biggelaar AHJ. Cord blood Streptococcus pneumoniae-specific cellular immune responses predict early pneumococcal carriage in high-risk infants in Papua New Guinea. Clin Exp Immunol 2016; 187:408-417. [PMID: 27859014 PMCID: PMC5290304 DOI: 10.1111/cei.12902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/03/2016] [Accepted: 10/27/2016] [Indexed: 12/01/2022] Open
Abstract
In areas where Streptococcus pneumoniae is highly endemic, infants experience very early pneumococcal colonization of the upper respiratory tract, with carriage often persisting into adulthood. We aimed to explore whether newborns in high‐risk areas have pre‐existing pneumococcal‐specific cellular immune responses that may affect early pneumococcal acquisition. Cord blood mononuclear cells (CBMC) of 84 Papua New Guinean (PNG; high endemic) and 33 Australian (AUS; low endemic) newborns were stimulated in vitro with detoxified pneumolysin (dPly) or pneumococcal surface protein A (PspA; families 1 and 2) and compared for cytokine responses. Within the PNG cohort, associations between CBMC dPly and PspA‐induced responses and pneumococcal colonization within the first month of life were studied. Significantly higher PspA‐specific interferon (IFN)‐γ, tumour necrosis factor (TNF)‐α, interleukin (IL)‐5, IL‐6, IL‐10 and IL‐13 responses, and lower dPly‐IL‐6 responses were produced in CBMC cultures of PNG compared to AUS newborns. Higher CBMC PspA‐IL‐5 and PspA‐IL‐13 responses correlated with a higher proportion of cord CD4 T cells, and higher dPly‐IL‐6 responses with a higher frequency of cord antigen‐presenting cells. In the PNG cohort, higher PspA‐specific IL‐5 and IL‐6 CBMC responses were associated independently and significantly with increased risk of earlier pneumococcal colonization, while a significant protective effect was found for higher PspA‐IL‐10 CBMC responses. Pneumococcus‐specific cellular immune responses differ between children born in pneumococcal high versus low endemic settings, which may contribute to the higher risk of infants in high endemic settings for early pneumococcal colonization, and hence disease.
Collapse
Affiliation(s)
- J P Francis
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - P C Richmond
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - D Strickland
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - S L Prescott
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - W S Pomat
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - A Michael
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - M A Nadal-Sims
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - C J Edwards-Devitt
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - P G Holt
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - D Lehmann
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | | |
Collapse
|
16
|
Odorizzi PM, Feeney ME. Impact of In Utero Exposure to Malaria on Fetal T Cell Immunity. Trends Mol Med 2016; 22:877-888. [PMID: 27614925 DOI: 10.1016/j.molmed.2016.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 01/10/2023]
Abstract
Pregnancy-associated malaria, including placental malaria, causes significant morbidity and mortality worldwide. Recently, it has been suggested that in utero exposure of the fetus to malaria antigens may negatively impact the developing immune system and result in tolerance to malaria. Here, we review our current knowledge of fetal immunity to malaria, focusing on the dynamic interactions between maternal malaria infection, placental development, and the fetal immune system. A better understanding of the long-term impact of in utero malaria exposure on the development of natural immunity to malaria, immune responses to other childhood pathogens, and vaccine immunogenicity is urgently needed. This may guide the implementation of novel chemoprevention strategies during pregnancy and facilitate the push toward malaria vaccines.
Collapse
Affiliation(s)
- Pamela M Odorizzi
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret E Feeney
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Plasmodium falciparum infection is associated with Epstein-Barr virus reactivation in pregnant women living in malaria holoendemic area of Western Kenya. Matern Child Health J 2016; 19:606-14. [PMID: 24951129 DOI: 10.1007/s10995-014-1546-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The role of Plasmodium falciparum malaria in Epstein-Barr virus (EBV) transmission among infants early in life remain elusive. We hypothesized that infection with malaria during pregnancy could cause EBV reactivation leading to high EBV load in circulation, which could subsequently enhance early age of EBV infection. Pregnant women in Kisumu, where P. falciparum malaria is holoendemic, were actively followed monthly through antenatal visits (up to 4 per mother) and delivery. Using real-time quantitative (Q)-PCR, we quantified and compared EBV and P. falciparum DNA levels in the blood of pregnant women with and without P. falciparum malaria. Pregnant women that had malaria detected during pregnancy were more likely to have detectable EBV DNA than pregnant women who had no evidence of malaria infection during pregnancy (64 vs. 36 %, p = 0.01). EBV load as analyzed by quantifying area under the longitudinal observation curve (AUC) was significantly higher in pregnant women with P. falciparum malaria than in women without evidence of malaria infection (p = 0.01) regardless of gestational age of pregnancy. Increase in malaria load correlated with increase in EBV load (p < 0.0001). EBV load was higher in third trimester (p = 0.04) than first and second trimester of pregnancy independent of known infections. Significantly higher frequency and elevated EBV loads were found in pregnant women with malaria than in women without evidence of P. falciparum infection during pregnancy. The loss of control of EBV latency following P. falciparum infection during pregnancy and subsequent increase in EBV load in circulation could contribute to enhanced shedding of EBV in maternal saliva and breast milk postpartum, but further studies are needed.
Collapse
|
18
|
Awine T, Belko MM, Oduro AR, Oyakhirome S, Tagbor H, Chandramohan D, Milligan P, Cairns M, Greenwood B, Williams JE. The risk of malaria in Ghanaian infants born to women managed in pregnancy with intermittent screening and treatment for malaria or intermittent preventive treatment with sulfadoxine/pyrimethamine. Malar J 2016; 15:46. [PMID: 26821532 PMCID: PMC4730594 DOI: 10.1186/s12936-016-1094-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/10/2016] [Indexed: 01/02/2023] Open
Abstract
Background Several studies have reported an association between malaria infection of the placenta and the risk of malaria in young children in the first year of life, but it is not known if this is causal, or influenced by malaria control measures during pregnancy. This paper compares the incidence of malaria in infants born to mothers who received either intermittent preventive treatment with sulfadoxine/pyrimethamine (IPTp-SP) or screening with a rapid diagnostic test and treatment with artemether–lumefantrine (ISTp-AL) during their pregnancy. Methods From July 2011 to April 2013, 988 infants of women enrolled in a trial of IPTp-SP versus ISTp-AL in the Kassena-Nankana districts of northern Ghana were followed to determine the risk of clinical malaria during early life, and their risk of parasitaemia and anaemia at 6 and 12 months of age. In addition, the incidence of clinical malaria in infants whose mothers had malaria infection of the placenta was compared with that in infants born to women free of placental malaria. Results The incidence of clinical malaria was 0.237 and 0.211 episodes per child year in infants whose mothers had received ISTp-AL or IPTp-SP, respectively. The adjusted incidence rate ratio and the adjusted rate difference were 0.94 (95 % CI 0.68, 1.33) and 0.029 (95 % CI −0.053, 0.110) cases per child year at risk respectively. The incidence of clinical malaria was similar in infants born to women with placental malaria (0.195 episodes per child year) and in infants of women without placental malaria (0.224 episodes per child year) (rate ratio = 0.86 [95 % CI 0.54, 1.37]). Conclusion Infants born to women managed with ISTp-AL during pregnancy were not at greatly increased risk of malaria compared with infants born to women who had received IPTp-SP. The incidence of malaria in infants was similar whether or not their mother had had placental malaria. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1094-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timothy Awine
- Navrongo Health Research Centre, PO Box 114, Navrongo, Ghana.
| | - Mark M Belko
- Navrongo Health Research Centre, PO Box 114, Navrongo, Ghana.
| | - Abraham R Oduro
- Navrongo Health Research Centre, PO Box 114, Navrongo, Ghana.
| | - Sunny Oyakhirome
- Navrongo Health Research Centre, PO Box 114, Navrongo, Ghana. .,Novartis Pharma Services, Lagos, Nigeria.
| | - Harry Tagbor
- Department of Community Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Daniel Chandramohan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Paul Milligan
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
| | - Matthew Cairns
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
| | - Brian Greenwood
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - John E Williams
- Navrongo Health Research Centre, PO Box 114, Navrongo, Ghana.
| |
Collapse
|
19
|
Nouatin O, Gbédandé K, Ibitokou S, Vianou B, Houngbegnon P, Ezinmegnon S, Borgella S, Akplogan C, Cottrell G, Varani S, Massougbodji A, Moutairou K, Troye-Blomberg M, Deloron P, Luty AJF, Fievet N. Infants' Peripheral Blood Lymphocyte Composition Reflects Both Maternal and Post-Natal Infection with Plasmodium falciparum. PLoS One 2015; 10:e0139606. [PMID: 26580401 PMCID: PMC4651557 DOI: 10.1371/journal.pone.0139606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/14/2015] [Indexed: 11/19/2022] Open
Abstract
Maternal parasitoses modulate fetal immune development, manifesting as altered cellular immunological activity in cord blood that may be linked to enhanced susceptibility to infections in early life. Plasmodium falciparum typifies such infections, with distinct placental infection-related changes in cord blood exemplified by expanded populations of parasite antigen-specific regulatory T cells. Here we addressed whether such early-onset cellular immunological alterations persist through infancy. Specifically, in order to assess the potential impacts of P. falciparum infections either during pregnancy or during infancy, we quantified lymphocyte subsets in cord blood and in infants' peripheral blood during the first year of life. The principal age-related changes observed, independent of infection status, concerned decreases in the frequencies of CD4+, NKdim and NKT cells, whilst CD8+, Treg and Teff cells' frequencies increased from birth to 12 months of age. P. falciparum infections present at delivery, but not those earlier in gestation, were associated with increased frequencies of Treg and CD8+ T cells but fewer CD4+ and NKT cells during infancy, thus accentuating the observed age-related patterns. Overall, P. falciparum infections arising during infancy were associated with a reversal of the trends associated with maternal infection i.e. with more CD4+ cells, with fewer Treg and CD8+ cells. We conclude that maternal P. falciparum infection at delivery has significant and, in some cases, year-long effects on the composition of infants' peripheral blood lymphocyte populations. Those effects are superimposed on separate and independent age- as well as infant infection-related alterations that, respectively, either match or run counter to them.
Collapse
MESH Headings
- Adult
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Benin
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Female
- Fetal Blood/immunology
- Fetal Blood/parasitology
- Humans
- Immunophenotyping
- Infant
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lymphocyte Count
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/pathology
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/pathology
- Placenta/immunology
- Placenta/parasitology
- Placenta/pathology
- Plasmodium falciparum/immunology
- Pregnancy
- Pregnancy Complications, Parasitic/immunology
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Complications, Parasitic/pathology
- Retrospective Studies
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Odilon Nouatin
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Komi Gbédandé
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Samad Ibitokou
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Bertin Vianou
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Parfait Houngbegnon
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Sem Ezinmegnon
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Sophie Borgella
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Institut de Recherche pour le Développement, MERIT UMR D216 Mère et enfant face aux infections tropicales, Paris, France
| | - Carine Akplogan
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Gilles Cottrell
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Institut de Recherche pour le Développement, MERIT UMR D216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Stefania Varani
- Unit of Microbiology, Department of Diagnostic, Experimental and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Achille Massougbodji
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
| | - Kabirou Moutairou
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Marita Troye-Blomberg
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Philippe Deloron
- Institut de Recherche pour le Développement, MERIT UMR D216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Adrian J. F. Luty
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Nadine Fievet
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Institut de Recherche pour le Développement, MERIT UMR D216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Babadjanova Z, Wiedinger K, Gosselin EJ, Bitsaktsis C. Targeting of a Fixed Bacterial Immunogen to Fc Receptors Reverses the Anti-Inflammatory Properties of the Gram-Negative Bacterium, Francisella tularensis, during the Early Stages of Infection. PLoS One 2015; 10:e0129981. [PMID: 26114641 PMCID: PMC4482730 DOI: 10.1371/journal.pone.0129981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/13/2015] [Indexed: 02/02/2023] Open
Abstract
Production of pro-inflammatory cytokines by innate immune cells at the early stages of bacterial infection is important for host protection against the pathogen. Many intracellular bacteria, including Francisella tularensis, the agent of tularemia, utilize the anti-inflammatory cytokine IL-10, to evade the host immune response. It is well established that IL-10 has the ability to inhibit robust antigen presentation by dendritic cells and macrophages, thus suppressing the generation of protective immunity. The pathogenesis of F. tularensis is not fully understood, and research has failed to develop an effective vaccine to this date. In the current study, we hypothesized that F. tularensis polarizes antigen presenting cells during the early stages of infection towards an anti-inflammatory status characterized by increased synthesis of IL-10 and decreased production of IL-12p70 and TNF-α in an IFN-ɣ-dependent fashion. In addition, F. tularensis drives an alternative activation of alveolar macrophages within the first 48 hours post-infection, thus allowing the bacterium to avoid protective immunity. Furthermore, we demonstrate that targeting inactivated F. tularensis (iFt) to Fcγ receptors (FcɣRs) via intranasal immunization with mAb-iFt complexes, a proven vaccine strategy in our laboratories, reverses the anti-inflammatory effects of the bacterium on macrophages by down-regulating production of IL-10. More specifically, we observed that targeting of iFt to FcγRs enhances the classical activation of macrophages not only within the respiratory mucosa, but also systemically, at the early stages of infection. These results provide important insight for further understanding the protective immune mechanisms generated when targeting immunogens to Fc receptors.
Collapse
Affiliation(s)
- Zulfia Babadjanova
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
| | - Kari Wiedinger
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
| | - Edmund J. Gosselin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Constantine Bitsaktsis
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
21
|
Engwerda CR, Ng SS, Bunn PT. The Regulation of CD4(+) T Cell Responses during Protozoan Infections. Front Immunol 2014; 5:498. [PMID: 25352846 PMCID: PMC4195384 DOI: 10.3389/fimmu.2014.00498] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/25/2014] [Indexed: 12/20/2022] Open
Abstract
CD4(+) T cells are critical for defense against protozoan parasites. Intracellular protozoan parasite infections generally require the development of a Th1 cell response, characterized by the production of IFNγ and TNF that are critical for the generation of microbicidal molecules by phagocytes, as well as the expression of cytokines and cell surface molecules needed to generate cytolytic CD8(+) T cells that can recognize and kill infected host cells. Over the past 25 years, much has been learnt about the molecular and cellular components necessary for the generation of Th1 cell responses, and it has become clear that these responses need to be tightly controlled to prevent disease. However, our understanding of the immunoregulatory mechanisms activated during infection is still not complete. Furthermore, it is apparent that although these mechanisms are critical to prevent inflammation, they can also promote parasite persistence and development of disease. Here, we review how CD4(+) T cells are controlled during protozoan infections and how these regulatory mechanisms can influence parasite growth and disease outcome.
Collapse
Affiliation(s)
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Natural Sciences, Griffith University, Nathan, QLD, Australia
| | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Institute of Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
22
|
Jagannathan P, Eccles-James I, Bowen K, Nankya F, Auma A, Wamala S, Ebusu C, Muhindo MK, Arinaitwe E, Briggs J, Greenhouse B, Tappero JW, Kamya MR, Dorsey G, Feeney ME. IFNγ/IL-10 co-producing cells dominate the CD4 response to malaria in highly exposed children. PLoS Pathog 2014; 10:e1003864. [PMID: 24415936 PMCID: PMC3887092 DOI: 10.1371/journal.ppat.1003864] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/19/2013] [Indexed: 01/08/2023] Open
Abstract
Although evidence suggests that T cells are critical for immunity to malaria, reliable T cell correlates of exposure to and protection from malaria among children living in endemic areas are lacking. We used multiparameter flow cytometry to perform a detailed functional characterization of malaria-specific T cells in 78 four-year-old children enrolled in a longitudinal cohort study in Tororo, Uganda, a highly malaria-endemic region. More than 1800 episodes of malaria were observed in this cohort, with no cases of severe malaria. We quantified production of IFNγ, TNFα, and IL-10 (alone or in combination) by malaria-specific T cells, and analyzed the relationship of this response to past and future malaria incidence. CD4+ T cell responses were measurable in nearly all children, with the majority of children having CD4+ T cells producing both IFNγ and IL-10 in response to malaria-infected red blood cells. Frequencies of IFNγ/IL10 co-producing CD4+ T cells, which express the Th1 transcription factor T-bet, were significantly higher in children with ≥2 prior episodes/year compared to children with <2 episodes/year (P<0.001) and inversely correlated with duration since malaria (Rho = −0.39, P<0.001). Notably, frequencies of IFNγ/IL10 co-producing cells were not associated with protection from future malaria after controlling for prior malaria incidence. In contrast, children with <2 prior episodes/year were significantly more likely to exhibit antigen-specific production of TNFα without IL-10 (P = 0.003). While TNFα-producing CD4+ T cells were not independently associated with future protection, the absence of cells producing this inflammatory cytokine was associated with the phenotype of asymptomatic infection. Together these data indicate that the functional phenotype of the malaria-specific T cell response is heavily influenced by malaria exposure intensity, with IFNγ/IL10 co-producing CD4+ T cells dominating this response among highly exposed children. These CD4+ T cells may play important modulatory roles in the development of antimalarial immunity. Despite reports of decreasing malaria morbidity across many parts of Africa, the incidence of malaria among children continues to be very high in Uganda, even in the setting of insecticide-treated bednets and artemisinin-based combination therapy. Additional control measures, including a vaccine, are sorely needed in these settings, but progress has been limited by our lack of understanding of immunologic correlates of exposure and protection. T cell responses to malaria are thought to be important for protection in experimental models, but their role in protecting against naturally acquired infection is not clear. In this study, we performed detailed assessments of the malaria-specific T cell response among 4-year-old children living in Tororo, Uganda, an area of high malaria transmission. We found that recent malaria infection induces a malaria-specific immune response dominated by Th1 T cells co-producing IFNγ and IL-10, and that these cells are not associated with protection from future infection. IFNγ/IL-10 co-producing cells have been described in several parasitic infections and are hypothesized to be important in limiting CD4-mediated pathology, but they may also prevent the development of sterilizing immunity. These observations have important implications for understanding the pathophysiology of malaria in humans and for malaria vaccine development.
Collapse
Affiliation(s)
- Prasanna Jagannathan
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Ijeoma Eccles-James
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Katherine Bowen
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | | | - Ann Auma
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Samuel Wamala
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Charles Ebusu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Jessica Briggs
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Bryan Greenhouse
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Jordan W. Tappero
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Moses R. Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Margaret E. Feeney
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Mayer JP, Biancardi M, Altcheh J, Freilij H, Weinke T, Liesenfeld O. Congenital infections withTrypanosomacruziorToxoplasmagondiiare associated with decreased serum concentrations of interferon-cand interleukin-18 but increased concentrations of interleukin-10. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2013; 104:485-92. [DOI: 10.1179/136485910x12786389891362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Malaria modifies neonatal and early-life toll-like receptor cytokine responses. Infect Immun 2013; 81:2686-96. [PMID: 23690399 DOI: 10.1128/iai.00237-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protection from infections in early life relies extensively on innate immunity, but it is unknown whether and how maternal infections modulate infants' innate immune responses, thereby altering susceptibility to infections. Plasmodium falciparum causes pregnancy-associated malaria (PAM), and epidemiological studies have shown that PAM enhances infants' susceptibility to infection with P. falciparum. We investigated how PAM-mediated exposures in utero affect innate immune responses and their relationship with infection in infancy. In a prospective study of mothers and their babies in Benin, we investigated changes in Toll-like receptor (TLR)-mediated cytokine responses related to P. falciparum infections. Whole-blood samples from 134 infants at birth and at 3, 6, and 12 months of age were stimulated with agonists specific for TLR3, TLR4, TLR7/8, and TLR9. TLR-mediated interleukin 6 (IL-6) and IL-10 production was robust at birth and then stabilized, whereas tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) responses were weak at birth and then increased. In multivariate analyses, maternal P. falciparum infections at delivery were associated with significantly higher TLR3-mediated IL-6 and IL-10 responses in the first 3 months of life (P < 0.05) and with significantly higher TLR3-, TLR7/8-, and TLR9-mediated TNF-α responses between 6 and 12 months of age (P < 0.05). Prospective analyses showed that higher TLR3- and TLR7/8-mediated IL-10 responses at birth were associated with a significantly higher risk of P. falciparum infection in infancy (P < 0.05). Neonatal and infant intracellular TLR-mediated cytokine responses are conditioned by in utero exposure through PAM late in pregnancy. Enhanced TLR-mediated IL-10 responses at birth are associated with an increased risk of P. falciparum infection, suggesting a compromised ability to combat infection in early life.
Collapse
|
25
|
Quelhas D, Puyol L, Quintó L, Nhampossa T, Serra-Casas E, Macete E, Aide P, Sanz S, Aponte JJ, Doolan DL, Alonso PL, Menéndez C, Dobaño C. Intermittent preventive treatment with sulfadoxine-pyrimethamine does not modify plasma cytokines and chemokines or intracellular cytokine responses to Plasmodium falciparum in Mozambican children. BMC Immunol 2012; 13:5. [PMID: 22280502 PMCID: PMC3398260 DOI: 10.1186/1471-2172-13-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytokines and chemokines are key mediators of anti-malarial immunity. We evaluated whether Intermittent Preventive Treatment in infants with Sulfadoxine-Pyrimethamine (IPTi-SP) had an effect on the acquisition of these cellular immune responses in Mozambican children. Multiple cytokines and chemokines were quantified in plasma by luminex, and antigen-specific cytokine production in whole blood was determined by intracellular cytokine staining and flow cytometry, at ages 5, 9, 12 and 24 months. RESULTS IPTi-SP did not significantly affect the proportion of CD3+ cells producing IFN-γ, IL-4 or IL-10. Overall, plasma cytokine or chemokine concentrations did not differ between treatment groups. Th1 and pro-inflammatory responses were higher than Th2 and anti-inflammatory responses, respectively, and IFN-γ:IL-4 ratios were higher for placebo than for SP recipients. Levels of cytokines and chemokines varied according to age, declining from 5 to 9 months. Plasma concentrations of IL-10, IL-12 and IL-13 were associated with current infection or prior malaria episodes. Higher frequencies of IFN-γ and IL-10 producing CD3+ cells and elevated IL-10, IFN-γ, MCP-1 and IL-13 in plasma were individually associated with increased malaria incidence, at different time points. When all markers were analyzed together, only higher IL-17 at 12 months was associated with lower incidence of malaria up to 24 months. CONCLUSIONS Our work has confirmed that IPTi-SP does not negatively affect the development of cellular immune response during early childhood. This study has also provided new insights as to how these cytokine responses are acquired upon age and exposure to P. falciparum, as well as their associations with malaria susceptibility. TRIAL REGISTRATION ClinicalTrials.gov: NCT00209795.
Collapse
Affiliation(s)
- Diana Quelhas
- Centro de Investigação em Saúde da Manhiça, Manhiça, Mozambique
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ayimba E, Hegewald J, Ségbéna AY, Gantin RG, Lechner CJ, Agosssou A, Banla M, Soboslay PT. Proinflammatory and regulatory cytokines and chemokines in infants with uncomplicated and severe Plasmodium falciparum malaria. Clin Exp Immunol 2011; 166:218-26. [PMID: 21985368 DOI: 10.1111/j.1365-2249.2011.04474.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytokine and chemokine levels were studied in infants (<5 years) with uncomplicated (MM) and severe malaria tropica (SM), and in Plasmodium falciparum infection-free controls (NEG). Cytokine plasma levels of interleukin (IL)-10, IL-13, IL-31 and IL-33 were strongly elevated in MM and SM compared to NEG (P<0·0001). Inversely, plasma concentrations of IL-27 were highest in NEG infants, lower in MM cases and lowest in those with SM (P<0·0001, NEG compared to MM and SM). The levels of the chemokines macrophage inflammatory protein (MIP3)-α/C-C ligand 20 (CCL20), monokine induced by gamma interferon (MIG)/CXCL9 and CXCL16 were enhanced in those with MM and SM (P<0·0001 compared to NEG), and MIP3-α/CCL20 and MIG/CXCL9 were correlated positively with parasite density, while that of IL-27 were correlated negatively. The levels of 6Ckine/CCL21 were similar in NEG, MM and SM. At 48-60 h post-anti-malaria treatment, the plasma concentrations of IL-10, IL-13, MIG/CXCL9, CXCL16 and MIP3-α/CCL20 were clearly diminished compared to before treatment, while IL-17F, IL-27, IL-31 and IL-33 remained unchanged. In summary, elevated levels of proinflammatory and regulatory cytokines and chemokines were generated in infants during and after acute malaria tropica. The proinflammatory type cytokines IL-31 and IL-33 were enhanced strongly while regulatory IL-27 was diminished in those with severe malaria. Similarly, MIP3-α/CCL20 and CXCL16, which may promote leucocyte migration into brain parenchyma, displayed increased levels, while CCL21, which mediates immune surveillance in central nervous system tissues, remained unchanged. The observed cytokine and chemokine production profiles and their dynamics may prove useful in evaluating either the progression or the regression of malarial disease.
Collapse
Affiliation(s)
- E Ayimba
- Centre National de Transfusion Sanguine, Section Immunologie et Hématologie, Université de Lomé, Lomé, Togo
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Malaria parasite tyrosyl-tRNA synthetase secretion triggers pro-inflammatory responses. Nat Commun 2011; 2:530. [DOI: 10.1038/ncomms1522] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/29/2011] [Indexed: 11/08/2022] Open
|
28
|
Increased interleukin-10 and interferon-γ levels in Plasmodium vivax malaria suggest a reciprocal regulation which is not altered by IL-10 gene promoter polymorphism. Malar J 2011; 10:264. [PMID: 21917128 PMCID: PMC3196927 DOI: 10.1186/1475-2875-10-264] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/14/2011] [Indexed: 01/01/2023] Open
Abstract
Background In human malaria, the naturally-acquired immune response can result in either the elimination of the parasite or a persistent response mediated by cytokines that leads to immunopathology. The cytokines are responsible for all the symptoms, pathological alterations and the outcome of the infection depends on the reciprocal regulation of the pro and anti-inflammatory cytokines. IL-10 and IFN-gamma are able to mediate this process and their production can be affected by single nucleotide polymorphisms (SNPs) on gene of these cytokines. In this study, the relationship between cytokine IL-10/IFN-gamma levels, parasitaemia, and their gene polymorphisms was examined and the participation of pro-inflammatory and regulatory balance during a natural immune response in Plasmodium vivax-infected individuals was observed. Methods The serum levels of the cytokines IL-4, IL-12, IFN-gamma and IL-10 from 132 patients were evaluated by indirect enzyme-linked immunosorbent assays (ELISA). The polymorphism at position +874 of the IFN-gamma gene was identified by allele-specific polymerase chain reaction (ASO-PCR) method, and the polymorphism at position -1082 of the IL-10 gene was analysed by PCR-RFLP (PCR-Restriction Fragment Length Polymorphism). Results The levels of a pro- (IFN-gamma) and an anti-inflammatory cytokine (IL-10) were significantly higher in P. vivax-infected individuals as compared to healthy controls. The IFN-gamma levels in primoinfected patients were significantly higher than in patients who had suffered only one and more than one previous episode. The mutant alleles of both IFN-gamma and IL-10 genes were more frequent than the wild allele. In the case of the IFNG+874 polymorphism (IFN-gamma) the frequencies of the mutant (A) and wild (T) alleles were 70.13% and 29.87%, respectively. Similar frequencies were recorded in IL-10-1082, with the mutant (A) allele returning a frequency of 70.78%, and the wild (G) allele a frequency of 29.22%. The frequencies of the alleles associated with reduced production of both IFN-gamma and IL-10 were high, but this effect was only observed in the production of IFN-gamma. Conclusions This study has shown evidence of reciprocal regulation of the levels of IL-10 and IFN-gamma cytokines in P. vivax malaria, which is not altered by the presence of polymorphism in the IL-10 gene.
Collapse
|
29
|
Immunological footprint: the development of a child's immune system in environments rich in microorganisms and parasites. Parasitology 2011; 138:1508-18. [PMID: 21767432 DOI: 10.1017/s0031182011000588] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The shaping of a child's immune system starts in utero, with possible long-term consequences in later life. This review highlights the studies conducted on the development of the immune system in early childhood up to school-age, discussing the impact that environmental factors may have. Emphasis has been put on studies conducted in geographical regions where exposure to micro-organisms and parasites are particularly high, and the effect that maternal exposures to these may have on an infant's immune responses to third-party antigens. In this respect we discuss the effect on responses to vaccines, co-infections and on the development of allergic disorders. In addition, studies of the impact that such environmental factors may have on slightly older (school) children are highlighted emphasizing the need for large studies in low to middle income countries, that are sufficiently powered and have longitudinal follow-up components to understand the immunological footprint of a child and the consequences throughout life.
Collapse
|
30
|
Placental malaria-associated suppression of parasite-specific immune response in neonates has no major impact on systemic CD4 T cell homeostasis. Infect Immun 2011; 79:2801-9. [PMID: 21518782 DOI: 10.1128/iai.00203-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In areas where Plasmodium falciparum is endemic, pregnancy is associated with accumulation of infected red blood cells (RBCs) in the placenta, a condition referred to as placental malaria (PM). Infants born to PM-positive mothers are at an increased risk of malaria, which is putatively related to the transplacental passage of parasite-derived antigens, with consequent tolerization of the fetal immune system. Here we addressed the impact of PM on the regulation of neonatal T cell responses. We found that the frequency of regulatory CD25(+) CD127(-/low) Foxp3(+) CD4(+) T cells was significantly decreased in neonates born to mothers with high levels of P. falciparum-induced placental inflammation, consisting mainly of primigravid mothers. However, at the individual level, the ratio between regulatory and effector (CD25(+) CD127(+) Foxp3(-)) CD4(+) T cells was unaffected by PM. In addition, parasite-induced CD4(+) T cell activation and production of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-10 were strongly reduced in neonates born to PM-positive mothers. Thus, our results show that active PM at delivery is associated with a marked suppression of P. falciparum-specific cellular neonatal immune responses, affecting secretion of both pro- and anti-inflammatory cytokines. Additionally, our results suggest that, as in adults, effector and regulatory CD4(+) T cell populations are tightly coregulated in all neonates, irrespective of the maternal infection status.
Collapse
|
31
|
Mackroth MS, Malhotra I, Mungai P, Koech D, Muchiri E, King CL. Human cord blood CD4+CD25hi regulatory T cells suppress prenatally acquired T cell responses to Plasmodium falciparum antigens. THE JOURNAL OF IMMUNOLOGY 2011; 186:2780-91. [PMID: 21278348 DOI: 10.4049/jimmunol.1001188] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In malaria endemic regions, a fetus is often exposed in utero to Plasmodium falciparum blood-stage Ags. In some newborns, this can result in the induction of immune suppression. We have previously shown these modulated immune responses to persist postnatally, with a subsequent increase in a child's susceptibility to infection. To test the hypothesis that this immune suppression is partially mediated by malaria-specific regulatory T cells (T(regs)) in utero, cord blood mononuclear cells (CBMC) were obtained from 44 Kenyan newborns of women with and without malaria at delivery. CD4(+)CD25(lo) T cells and CD4(+)CD25(hi) FOXP3(+) cells (T(regs)) were enriched from CBMC. T(reg) frequency and HLA-DR expression on T(regs) were significantly greater for Kenyan as compared with North American CBMC (p < 0.01). CBMC/CD4(+) T cells cultured with P. falciparum blood-stage Ags induced production of IFN-γ, IL-13, IL-10, and/or IL-5 in 50% of samples. Partial depletion of CD25(hi) cells augmented the Ag-driven IFN-γ production in 69% of subjects with malaria-specific responses and revealed additional Ag-reactive lymphocytes in previously unresponsive individuals (n = 3). Addition of T(regs) to CD4(+)CD25(lo) cells suppressed spontaneous and malaria Ag-driven production of IFN-γ in a dose-dependent fashion, until production was completely inhibited in most subjects. In contrast, T(regs) only partially suppressed malaria-induced Th2 cytokines. IL-10 or TGF-β did not mediate this suppression. Thus, prenatal exposure to malaria blood-stage Ags induces T(regs) that primarily suppress Th1-type recall responses to P. falciparum blood-stage Ags. Persistence of these T(regs) postnatally could modify a child's susceptibility to malaria infection and disease.
Collapse
Affiliation(s)
- Maria S Mackroth
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Nmorsi OPG, Isaac C, Ohaneme BA, Obiazi HAK. Pro–inflammatory cytokines profiles in Nigerian pregnant women infected with Plasmodium falciparum malaria. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60175-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
McCall MBB, Sauerwein RW. Interferon-γ--central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. J Leukoc Biol 2010; 88:1131-43. [PMID: 20610802 DOI: 10.1189/jlb.0310137] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Immune responses against Plasmodium parasites, the causative organisms of malaria, are traditionally dichotomized into pre-erythrocytic and blood-stage components. Whereas the central role of cellular responses in pre-erythrocytic immunity is well established, protection against blood-stage parasites has generally been ascribed to humoral responses. A number of recent studies, however, have highlighted the existence of cellular immunity against blood-stage parasites, in particular, the prominence of IFN-γ production. Here, we have undertaken to chart the contribution of this prototypical cellular cytokine to immunity against pre-erythrocytic and blood-stage parasites. We summarize the various antiparasitic effector functions that IFN-γ serves to induce, review an array of data about its protective effects, and scrutinize evidence for any deleterious, immunopathological outcome in malaria patients. We discuss the activation and contribution of different cellular sources of IFN-γ production during malaria infection and its regulation in relation to exposure. We conclude that IFN-γ forms a central mediator of protective immune responses against pre-erythrocytic and blood-stage malaria parasites and identify a number of implications for rational malaria vaccine development.
Collapse
Affiliation(s)
- Matthew B B McCall
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
34
|
Flanagan KL, Halliday A, Burl S, Landgraf K, Jagne YJ, Noho-Konteh F, Townend J, Miles DJC, van der Sande M, Whittle H, Rowland-Jones S. The effect of placental malaria infection on cord blood and maternal immunoregulatory responses at birth. Eur J Immunol 2010; 40:1062-72. [PMID: 20039298 DOI: 10.1002/eji.200939638] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Placental malaria (PM), a frequent infection of pregnancy, provides an ideal opportunity to investigate the impact on immune development of exposure of the foetal immune system to foreign Ag. We investigated the effect of PM on the regulatory phenotype and function of cord blood cells from healthy Gambian newborns and peripheral blood cells from their mothers, and analyzed for effects on the balance between regulatory and effector responses. Using the gold standard for classifying PM we further distinguished between resolved infection and acute or chronic PM active at the time of delivery. We show that exposure to malarial Ag in utero results in the expansion of malaria-specific FOXP3(+) Treg and more generalized FOXP3(+) CD4(+) Treg in chronic and resolved PM, alongside increased Th1 pro-inflammatory responses (IFN-gamma, TNF-alpha, IFN-gamma:IL-10) in resolved PM infection only. These observations demonstrate a clear effect of exposure to malarial Ag in foetal life on the immune environment at birth, with a regulatory response dominating in the newborns with ongoing chronic PM, while those with resolved infection produce both regulatory and inflammatory responses. The findings might explain some of the adverse effects on the health of babies born to women with PM.
Collapse
|
35
|
van den Biggelaar AHJ, Holt PG. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: neonatal immune function and vaccine responses in children born in low-income versus high-income countries. Clin Exp Immunol 2010; 160:42-7. [PMID: 20415850 DOI: 10.1111/j.1365-2249.2010.04137.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is increasing evidence that the functional state of the immune system at birth is predictive of the kinetics of immune maturation in early infancy. Moreover, this maturation process can have a major impact on early vaccine responses and can be a key determinant of risk for communicable and non-communicable diseases in later life. We hypothesize that environmental and genetic factors that are often typical for poor-resource countries may have an important impact on prenatal immune development and predispose populations in low-income settings to different vaccine responses and disease risks, compared to those living in high-income countries. In this paper we aimed to summarize the major differences between neonatal and adult immune function and describe what is known so far about discrepancies in immune function between newborns in high- and low-income settings. Further, we discuss the need to test the immunological feasibility of accelerated vaccination schedules in high-risk populations and the potential of variation in disease specific and non-specific vaccine effects.
Collapse
Affiliation(s)
- A H J van den Biggelaar
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Australia.
| | | |
Collapse
|
36
|
Santos PDA, Sales IRF, Schirato GV, Costa VMA, Albuquerque MCPA, Souza VMO, Malagueño E. Influence of maternal schistosomiasis on the immunity of adult offspring mice. Parasitol Res 2010; 107:95-102. [DOI: 10.1007/s00436-010-1839-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 03/07/2010] [Indexed: 11/25/2022]
|
37
|
Zheng W, Wang QH, Feng H, Liu J, Meng HR, Cao YM. CD4+CD25+Foxp3+ regulatory T cells prevent the development of Th1 immune response by inhibition of dendritic cell function during the early stage of Plasmodium yoelii infection in susceptible BALB/c mice. Folia Parasitol (Praha) 2010; 56:242-50. [PMID: 20128236 DOI: 10.14411/fp.2009.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protective immunity against murine malaria infection depends largely on the establishment of effective Th1 immune response during the early stages of infection. Experimental data suggest that the death of Plasmodium yoelii 17XL (Py 17XL) susceptible BALB/c mice results from the suppression of Th1 immune response mediated by CD4+CD25+Foxp3+ regulatory T cells (Tregs). However, the mechanism by which Tregs regulate Th1 immune response is poorly understood. Since immunity is initiated by dendritic cells (DCs), we analysed DC responses to Py 17XL in control and Treg-depleted BALB/c mice. Myeloid DC proliferation, phenotypic maturation and interleukin-12 (IL-12) production were strongly inhibited in control BALB/c mice. In contrast, plasmacytoid DC proliferation and IL-10 production were strongly enhanced in control BALB/c mice. In-vivo depletion of Tregs resulted in significantly reversed inhibition of DC response, which may contribute to the establishment of Th1 immune response, indicating that Tregs contribute to the suppression of Th1 immune response during malaria. These findings suggest Tregs contribute to prevent Th1 immune response establishment during the early stage of Py 17XL infection by inhibiting DC response.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
38
|
Fievet N, Varani S, Ibitokou S, Briand V, Louis S, Perrin RX, Massougbogji A, Hosmalin A, Troye-Blomberg M, Deloron P. Plasmodium falciparum exposure in utero, maternal age and parity influence the innate activation of foetal antigen presenting cells. Malar J 2009; 8:251. [PMID: 19889240 PMCID: PMC2780449 DOI: 10.1186/1475-2875-8-251] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 11/05/2009] [Indexed: 12/14/2022] Open
Abstract
Background Malaria in pregnancy is associated with immunological abnormalities in the newborns, such as hampered T-helper 1 responses and increased T-regulatory responses, while the effect of maternal Plasmodium falciparum infection on foetal innate immunity is still controversial. Materials and methods The immunophenotype and cytokine release by dendritic cells (DC) and monocytes were evaluated in cord blood from 59 Beninese women with or without malaria infection by using flow cytometry. Results Accumulation of malaria pigment in placenta was associated with a partial maturation of cord blood myeloid and plasmacytoid DC, as reflected by an up-regulated expression of the major histocompatibility complex class II molecules, but not CD86 molecules. Cells of newborns of mothers with malaria pigment in their placenta also exhibited significantly increased cytokine responses upon TLR9 stimulation. In addition, maternal age and parity influenced the absolute numbers and activation status of cord blood antigen-presenting cells. Lastly, maternal age, but not parity, influenced TLR3, 4 and 9 responses in cord blood cells. Discussion Our findings support the view that placental parasitization, as indicated by the presence of malaria pigment in placental leukocytes, is significantly associated with partial maturation of different DC subsets and also to slightly increased responses to TLR9 ligand in cord blood. Additionally, other factors, such as maternal age and parity should be taken into consideration when analysing foetal/neonatal innate immune responses. Conclusion These data advocate a possible mechanism by which PAM may modulate foetal/neonatal innate immunity.
Collapse
Affiliation(s)
- Nadine Fievet
- UR010, Mother and Child Health in the Tropics, Institut de Recherche pour le Développement (IRD), Cotonou, Benin
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Malhotra I, Dent A, Mungai P, Wamachi A, Ouma JH, Narum DL, Muchiri E, Tisch DJ, King CL. Can prenatal malaria exposure produce an immune tolerant phenotype? A prospective birth cohort study in Kenya. PLoS Med 2009; 6:e1000116. [PMID: 19636353 PMCID: PMC2707618 DOI: 10.1371/journal.pmed.1000116] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 06/17/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Malaria in pregnancy can expose the fetus to malaria-infected erythrocytes or their soluble products, thereby stimulating T and B cell immune responses to malaria blood stage antigens. We hypothesized that fetal immune priming, or malaria exposure in the absence of priming (putative tolerance), affects the child's susceptibility to subsequent malaria infections. METHODS AND FINDINGS We conducted a prospective birth cohort study of 586 newborns residing in a malaria-holoendemic area of Kenya who were examined biannually to age 3 years for malaria infection, and whose malaria-specific cellular and humoral immune responses were assessed. Newborns were classified as (i) sensitized (and thus exposed), as demonstrated by IFNgamma, IL-2, IL-13, and/or IL-5 production by cord blood mononuclear cells (CBMCs) to malaria blood stage antigens, indicative of in utero priming (n = 246), (ii) exposed not sensitized (mother Plasmodium falciparum [Pf]+ and no CBMC production of IFNgamma, IL-2, IL-13, and/or IL-5, n = 120), or (iii) not exposed (mother Pf-, no CBMC reactivity, n = 220). Exposed not sensitized children had evidence for prenatal immune experience demonstrated by increased IL-10 production and partial reversal of malaria antigen-specific hyporesponsiveness with IL-2+IL-15, indicative of immune tolerance. Relative risk data showed that the putatively tolerant children had a 1.61 (95% confidence interval [CI] 1.10-2.43; p = 0.024) and 1.34 (95% CI 0.95-1.87; p = 0.097) greater risk for malaria infection based on light microscopy (LM) or PCR diagnosis, respectively, compared to the not-exposed group, and a 1.41 (95%CI 0.97-2.07, p = 0.074) and 1.39 (95%CI 0.99-2.07, p = 0.053) greater risk of infection based on LM or PCR diagnosis, respectively, compared to the sensitized group. Putatively tolerant children had an average of 0.5 g/dl lower hemoglobin levels (p = 0.01) compared to the other two groups. Exposed not sensitized children also had 2- to 3-fold lower frequency of malaria antigen-driven IFNgamma and/or IL-2 production (p<0.001) and higher IL-10 release (p<0.001) at 6-month follow-ups, when compared to sensitized and not-exposed children. Malaria blood stage-specific IgG antibody levels were similar among the three groups. CONCLUSIONS These results show that a subset of children exposed to malaria in utero acquire a tolerant phenotype to blood-stage antigens that persists into childhood and is associated with an increased susceptibility to malaria infection and anemia. This finding could have important implications for malaria vaccination of children residing in endemic areas.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/blood
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Cells, Cultured
- Cytokines/immunology
- Cytokines/metabolism
- Female
- Fetal Blood/immunology
- Humans
- Immune Tolerance
- Infant, Newborn
- Kenya/epidemiology
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/immunology
- Male
- Maternal-Fetal Exchange/immunology
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Merozoite Surface Protein 1/immunology
- Merozoite Surface Protein 1/metabolism
- Plasmodium falciparum
- Pregnancy
- Pregnancy Complications, Parasitic/epidemiology
- Pregnancy Complications, Parasitic/immunology
- Prospective Studies
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/parasitology
Collapse
Affiliation(s)
- Indu Malhotra
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Arlene Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Peter Mungai
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Vector Borne Diseases, Nairobi, Kenya
| | - Alex Wamachi
- Kenya Medical Research Institute, Nairobi, Kenya
| | - John H. Ouma
- Division of Vector Borne Diseases, Nairobi, Kenya
| | - David L. Narum
- Malaria Vaccine Development Unit, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Eric Muchiri
- Division of Vector Borne Diseases, Nairobi, Kenya
| | - Daniel J. Tisch
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Christopher L. King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
40
|
van den Biggelaar AHJ, Richmond PC, Pomat WS, Phuanukoonnon S, Nadal-Sims MA, Devitt CJ, Siba PM, Lehmann D, Holt PG. Neonatal pneumococcal conjugate vaccine immunization primes T cells for preferential Th2 cytokine expression: a randomized controlled trial in Papua New Guinea. Vaccine 2009; 27:1340-7. [PMID: 19150378 PMCID: PMC2697326 DOI: 10.1016/j.vaccine.2008.12.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 12/18/2008] [Accepted: 12/23/2008] [Indexed: 11/30/2022]
Abstract
The effects of neonatal immunization with 7-valent pneumococcal conjugate vaccine (7vPCV) on development of T-cell memory and general immune maturation were studied in a cohort of Papua New Guinean newborns. Neonatal 7vPCV priming (followed by a dose at 1 and 2 months of age) was associated with enhanced Th2, but not Th1, cytokine responses to CRM197 compared to 7vPCV at 1 and 2 months of age only. T cell responses to non-7vPCV vaccine antigens were similar in all groups, but TLR-mediated IL-6 and IL-10 responses were enhanced in 7vPCV vaccinated compared to controls. Neonatal 7vPCV vaccination primes T cell responses with a polarization towards Th2 with no bystander effects on other T cell responses.
Collapse
Affiliation(s)
- Anita H J van den Biggelaar
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, PO Box 855, West Perth, WA 6872, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Adegnika AA, Köhler C, Agnandji ST, Chai SK, Labuda L, Breitling LP, Schonkeren D, Weerdenburg E, Issifou S, Luty AJF, Kremsner PG, Yazdanbakhsh M. Pregnancy-associated malaria affects toll-like receptor ligand-induced cytokine responses in cord blood. J Infect Dis 2008; 198:928-36. [PMID: 18684097 DOI: 10.1086/591057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Pregnancy-associated malaria is known to modify fetal immunity. Most previous studies have been cross-sectional in nature and have focused on the priming of acquired immune responses in utero. In this context, the influence of the timing and/or duration of placental infection with Plasmodium falciparum are unknown, and changes to innate immune responses have not been studied extensively. METHODS Pregnant women in Gabon, where P. falciparum infection is endemic, were followed up through monthly clinical and parasitological examinations from the second trimester to delivery. Cells of neonates born to mothers who had acquired P. falciparum infection <or=1 month before delivery had significantly altered interferon-gamma and tumor necrosis factor-alpha responses after stimulation with the Toll-like receptor (TLR) ligands lipopolysaccharide and polyinosine-polycytidylic acid, compared with cells of neonates born either to mothers free of P. falciparum infection or to mothers who were successfully treated for malaria during pregnancy. An independent association between parity and neonatal TLR responsiveness was also discerned in our study. CONCLUSION P. falciparum infection history during pregnancy appears to have a pronounced effect on neonatal innate immune responses. The observed effects may have profound implications for the outcome of newly encountered infections in early life.
Collapse
Affiliation(s)
- Ayôla A Adegnika
- Medical Research Unit, Albert Schweitzer Hospital, Lambaréné, Gabon.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schwarz NG, Adegnika AA, Breitling LP, Gabor J, Agnandji ST, Newman RD, Lell B, Issifou S, Yazdanbakhsh M, Luty AJF, Kremsner PG, Grobusch MP. Placental malaria increases malaria risk in the first 30 months of life. Clin Infect Dis 2008; 47:1017-25. [PMID: 18781874 DOI: 10.1086/591968] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Plasmodium falciparum infection during pregnancy is associated with stillbirth, fetal growth restriction, and low birth weight. An additional consequence may be increased risk of malaria in early life, although the epidemiological evidence of this consequence is limited. METHODS A cohort of 527 children were observed actively every month for 30 months after delivery. Offspring of mothers with microscopically detectable placental P. falciparum infection at the time of delivery were defined as exposed. The outcome measure was malaria (parasitemia and fever). Analyses were performed using Cox proportional hazard models and were stratified by gravidity. RESULTS Overall, offspring of mothers with placental P. falciparum infection had a significantly higher risk of clinical malaria during the first 30 months of life (adjusted hazard ratio, 2.1; 95% confidence interval [CI], 1.2-3.7). The adjusted hazard ratio for offspring of multigravidae was 2.6 (95% CI, 1.3-5.3), and that for primigravidae was 1.5 (95% CI, 0.6-3.8). The offspring of placenta-infected primigravidae had no episodes of malaria during the first year of life. CONCLUSIONS Our findings show that active placental P. falciparum infection detected at delivery is associated with an approximately 2-fold greater risk of malaria during early life, compared with noninfection. The fact that persons born to infected multigravidae rather than primigravidae appear to be at greater risk emphasizes the importance of preventing malaria in mothers of all gravidities.
Collapse
Affiliation(s)
- Norbert G Schwarz
- Medical Research Unit, Albert Schweitzer Hospital, Lambaréné, Gabon, South Africa
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Protozoan and helminth infections in pregnancy. Short-term and long-term implications of transmission of infection from mother to foetus. Parasitology 2008; 134:1855-62. [PMID: 17958920 DOI: 10.1017/s0031182007000182] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review of protozoan and helminth infections in pregnancy focuses on the impact on the immune response in the newborn infant to maternal infection. Studies of protozoan and helminth infections in pregnant women and in their offspring have shown that children exposed to antigens or microorganisms during pregnancy often have a reduced immune response to these infections. The most common finding is a reduced IFN gamma response to specific antigens regardless of specific infection studied. In some studies the impaired immune response disappeared before the age of one year, while in other studies the impaired immune response was present as much as two decades after birth. Data from chronic viral infections like Rubella, cytomegalovirus and hepatitis B also show that congenital or perinatal infections may result in a life-long inability to control the infections. Studies of both helminth and protozoan infections show that children exposed to antigens during gestation have a microorganism-specific impaired immune response which is characterized by reduced IFN-gamma and stimulation of responses to specific antigens.
Collapse
|
44
|
Costa FTM, Avril M, Nogueira PA, Gysin J. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway. Braz J Med Biol Res 2007; 39:1525-36. [PMID: 17160261 DOI: 10.1590/s0100-879x2006001200003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 08/18/2006] [Indexed: 11/21/2022] Open
Abstract
Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM). This specific maternal-fetal syndrome causes maternal anemia, low birth weight and the death of 62,000 to 363,000 infants per year in sub-Saharan Africa, and thus has a poor outcome for both mother and fetus. However, PAM and non-PAM parasites have been shown to differ antigenically and genetically. After multiple pregnancies, women from different geographical areas develop adhesion-blocking antibodies that protect against placental parasitemia and clinical symptoms of PAM. The recent description of a new parasite ligand encoded by the var2CSA gene as the only gene up-regulated in PAM parasites renders the development of an anti-PAM vaccine more feasible. The search for a vaccine to prevent P. falciparum sequestration in the placenta by eliciting adhesion-blocking antibodies and a cellular immune response, and the development of new methods for evaluating such antibodies should be key priorities in mother-child health programs in areas of endemic malaria. This review summarizes the main molecular, immunological and physiopathological aspects of PAM, including findings related to new targets in the P. falciparum var gene family. Finally, we focus on a new methodology for mimicking cytoadhesion under blood flow conditions in human placental tissue.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/blood
- Antigens, Protozoan/drug effects
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Cell Adhesion/physiology
- Erythrocytes/immunology
- Erythrocytes/parasitology
- Female
- Humans
- Malaria Vaccines
- Malaria, Falciparum/blood
- Malaria, Falciparum/immunology
- Placenta/parasitology
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Plasmodium falciparum/physiology
- Pregnancy
- Pregnancy Complications, Parasitic/blood
- Pregnancy Complications, Parasitic/immunology
- Protozoan Proteins/blood
- Protozoan Proteins/drug effects
- Protozoan Proteins/immunology
Collapse
Affiliation(s)
- F T M Costa
- Departamento de Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil.
| | | | | | | |
Collapse
|
45
|
Metenou S, Suguitan AL, Long C, Leke RGF, Taylor DW. Fetal immune responses to Plasmodium falciparum antigens in a malaria-endemic region of Cameroon. THE JOURNAL OF IMMUNOLOGY 2007; 178:2770-7. [PMID: 17312120 DOI: 10.4049/jimmunol.178.5.2770] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasmodium falciparum infection during pregnancy can lead to the transplacental passage of malarial Ags that are capable of inducing acquired immune responses in the fetus. Studies have identified cytokines produced by malaria-specific cord blood (CB) T cells, but information on fetal B cells is limited. Thus, CB mononuclear cells from 120 Cameroonian newborns were cultured for 7 days in vitro and supernatants were assessed by ELISA for Abs to an extract of malarial schizonts (MA), recombinant apical merozoite Ag 1 (AMA-1), the 42-kDa C-terminal region of merozoite surface protein 1 (MSP-1(42)), a B epitope of ring-infected erythrocyte surface Ag (RESA), and the dominant B epitope of the circumsporozoite protein (CSP). Only 12% of supernatants contained IgM to MA but 78% had IgG to one or more malarial Ags, with 53% having IgG to AMA-1, 38% to MSP-1(42), 3% to RESA, and 0% to CSP. The Abs to AMA-1 and MSP-1(42) were predominantly IgG1 and IgG3. CB mononuclear cells were also tested for the ability to secrete cytokines in response to MA and a pool of conserved MSP-1 T cell epitopes. Among the Ag-reactive samples, 39.3% produced only Th2-type cytokines, whereas 60.6% produced a combination of Th1- and Th2-type cytokines. Although a Th2 bias was observed, the in utero cytokine environment was adequate to support isotype switching to cytophilic IgGs, the isotypes that are protective in adults. Because many infants living in a low transmission area are born with malaria-specific B and T cells, the influence of in utero priming on neonatal immunity merits further investigation.
Collapse
Affiliation(s)
- Simon Metenou
- Department of Biology, Georgetown University, Washington, D. C. 20057, USA
| | | | | | | | | |
Collapse
|
46
|
Theus SA, Theus JW, Cottler-Fox M. UC blood infection with clinical strains of Mycobacterium tuberculosis: a novel model. Cytotherapy 2007; 9:647-53. [PMID: 17852201 DOI: 10.1080/14653240701389960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Use of unrelated cord blood transplantation (UCBT) is increasing, yet high rates of mortality secondary to infection remain a problem. We investigated the utility of using umbilical cord blood (UCB) as a model to study a naive cell population challenged by Mycobacterium tuberculosis. METHODS Mononuclear cells were isolated from nine UCB samples and infected with each of four distinct strains of M. tuberculosis. The isolates used were two highly transmissible clinical strains, the virulent laboratory strain H37Rv and a unique strain isolated from only one case (i.e. non-virulent). CFU were assessed at 3 h post-infection (day 0) and at day 7 to generate growth curves. Viability of the mononuclear cells was assessed prior to infection, 3 h post-infection and at days 3, 5 and 7 post-infection. IFN-gamma and TNF-alpha levels were determined at 24 h post-infection. RESULTS All three of the virulent strains demonstrated rapid growth in UCB cells that was significantly faster than the growth rate observed for the non-virulent unique isolate. There was no significant decrease in UCB cell viability after the 7-day incubation period regardless of infecting isolate. UCB cells secreted IFN-gamma in response to infection, with no significant difference related to infection with different isolates. However, there was a significant increase in the amount of TNF-alpha elicited following infection with the non-virulent isolate compared with the virulent isolates. DISCUSSION These results show that UCB can be used as a model to study infection, hopefully leading to new therapies for neonates and UCBT recipients.
Collapse
Affiliation(s)
- S A Theus
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | | | | |
Collapse
|
47
|
Cohen G, Carter SL, Weinberg KI, Masinsin B, Guinan E, Kurtzberg J, Wagner JE, Kernan NA, Parkman R. Antigen-specific T-lymphocyte function after cord blood transplantation. Biol Blood Marrow Transplant 2006; 12:1335-42. [PMID: 17162216 PMCID: PMC1794680 DOI: 10.1016/j.bbmt.2006.08.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 08/18/2006] [Indexed: 11/19/2022]
Abstract
It has not been possible to determine the singular contribution of naive T lymphocytes to antigen-specific immunity after hematopoietic stem cell transplantation (HSCT), because of the confounding effects of donor-derived antigen-specific T lymphocytes present in most hematopoietic stem cell (HSC) products. Because umbilical cord blood contains only naive T lymphocytes, we longitudinally evaluated the recipients of unrelated cord blood transplantation (UCBT) for the presence of T lymphocytes with specificity for herpesviruses, to determine the contribution of the naive T lymphocytes to antigen-specific immune reconstitution after HSCT. Antigen-specific T lymphocytes were detected early after UCBT (herpes simplex virus on day 29; cytomegalovirus on day 44; varicella zoster virus on day 94). Overall, 66 of 153 UCBT recipients developed antigen-specific T lymphocytes to 1 or more herpesviruses during the evaluation period. The likelihood of developing antigen-specific T lymphocyte function was not associated with immunophenotypic T lymphocyte reconstitution, transplant cell dose, primary disease, or acute and chronic graft-versus-host disease. These results indicate that naive T lymphocytes present in the HSC inoculum can contribute to the generation of antigen-specific T-lymphocyte immunity early after transplantation.
Collapse
Affiliation(s)
| | | | | | | | - Eva Guinan
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Nancy A Kernan
- Memorial Sloan-Kettering Cancer Center, New York, NY,
USA
| | | |
Collapse
|
48
|
Breitling LP, Fendel R, Mordmueller B, Adegnika AA, Kremsner PG, Luty AJF. Cord blood dendritic cell subsets in African newborns exposed to Plasmodium falciparum in utero. Infect Immun 2006; 74:5725-9. [PMID: 16988249 PMCID: PMC1594912 DOI: 10.1128/iai.00682-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Placental Plasmodium falciparum infection affects birth outcomes and sensitizes fetal lymphocytes to parasite antigens. We assessed the influence of maternal P. falciparum infection on fetal myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), analyzing the cord blood of offspring of Gabonese mothers with different infection histories. Cord blood from newborns of mothers with malarial infection at delivery had significantly more mDC than that from nonexposed newborns (P = 0.028) but mDC and pDC HLA-DR expression was unrelated to maternal infection history. Independently of these findings, cord blood mDC and pDC numbers declined significantly as a function of increasing maternal age (P = 0.029 and P = 0.033, respectively). The inducible antigen-specific interleukin-10-producing regulatory-type T-cell population that we have previously detected in cord blood of newborns with prolonged in utero exposure to P. falciparum may directly reflect the altered DC numbers in such neonates, while the maintenance of cord blood DC HLA-DR expression contrasts with that of DC from P. falciparum malaria patients.
Collapse
Affiliation(s)
- Lutz P Breitling
- Medical Parasitology-268, Department of Medical Microbiology, MMB-NCMLS, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Broen K, Brustoski K, Engelmann I, Luty AJF. Placental Plasmodium falciparum infection: causes and consequences of in utero sensitization to parasite antigens. Mol Biochem Parasitol 2006; 151:1-8. [PMID: 17081634 DOI: 10.1016/j.molbiopara.2006.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 10/02/2006] [Indexed: 11/26/2022]
Abstract
Available evidence suggests that, in African populations, systemic blood-dwelling parasitoses of mothers are associated with enhanced susceptibility to infection of their offspring. Thus, children born to mothers with filariasis or schistosomiasis are infected earlier, and offspring of mothers with placental Plasmodium falciparum at delivery, commonly referred to as pregnancy-associated malaria or PAM, are themselves at higher risk of developing parasitaemia during infancy. Since foetal/neonatal antigen-presenting cells (APC) are either immature or provide insufficient costimulatory signals to T cells, thus favouring tolerance induction, it is commonly assumed that soluble parasite components [protein antigens], transferred transplacentally and inducing foetal immune tolerance, are largely, if not exclusively, responsible for these outcomes. Plasmodial asexual blood stage antigen-specific T cells are detectable in as many as two-thirds of all cord blood samples in malaria-endemic countries of sub-Saharan Africa, indicating that in utero sensitization may be a common phenomenon during pregnancy in these populations. Parasite antigen-specific T cell responses of neonates born to helminth-infected mothers display a highly skewed Th2-type cytokine pattern, with a prominent role for the regulatory cytokine interleukin (IL)-10. Similarly, the cord blood immune response of those born to mothers identified with on-going PAM is characterised by inducible parasite antigen-specific IL-10-producing regulatory T cells that can inhibit both APC HLA expression and Th1-type T cell responses. In contrast, plasmodial antigen-specific Th1-type responses, characterised by IFN-gamma production, predominate in cord blood of those born to mothers successfully treated for Pf malaria during gestation, suggesting that the duration and/or the nature of antigen exposure in utero governs the outcome with respect to neonatal immune responses. Aspects of APC function in the context of these differentially modulated responses, whether and how the latter translate into altered susceptibility to Pf infection during infancy, as well as the possible implications for vaccination in early life, are aspects that are discussed in this review.
Collapse
Affiliation(s)
- Kelly Broen
- Department of Medical Microbiology 268, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
50
|
Engelmann I, Moeller U, Santamaria A, Kremsner PG, Luty AJF. Differing activation status and immune effector molecule expression profiles of neonatal and maternal lymphocytes in an African population. Immunology 2006; 119:515-21. [PMID: 16987297 PMCID: PMC2265817 DOI: 10.1111/j.1365-2567.2006.02466.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Higher susceptibility of newborns to infections has been attributed to the hypo-responsiveness of their cellular immune system. Here we compared the activation status and expression of cytokines and cytotoxic molecules of cord versus maternal peripheral blood mononuclear cells in an African population. Human leucocyte antigen-DR was expressed on a lower percentage of cord compared to maternal gammadelta and CD3(+) T cells. Similarly, a lower proportion of cord versus maternal gammadelta and CD3(+) T cells displayed perforin, granzyme B and cytokine activity either ex vivo or following non-specific stimulation in vitro. In contrast, comparable proportions of cord and maternal CD94(+) CD3(-) natural killer (NK) cells showed perforin and granzyme B expression ex vivo. We conclude that cord blood gammadelta and CD3(+) T cells are functionally hypo-responsive as reflected by reduced numbers of such cells expressing either an activation marker, T helper 1 (Th1) and Th2 cytokines or cytotoxic effector molecules. The similarity in numbers of cord and maternal CD94(+) CD3(-) cells expressing cytotoxic effector molecules suggests that neonatal Africans' NK cells may be functionally mature.
Collapse
Affiliation(s)
- Ilka Engelmann
- Department of Parasitology, Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| | | | | | | | | |
Collapse
|