1
|
Niu Z, Wang M, Yan Y, Jin X, Ning L, Xu B, Wang Y, Hao Y, Luo Z, Guo C, Zhi L, Zhu W. Challenges in the Development of NK-92 Cells as an Effective Universal Off-the-Shelf Cellular Therapeutic. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1318-1328. [PMID: 39291926 DOI: 10.4049/jimmunol.2400173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
The human-derived NK-92 cell-based CAR-NK therapy exhibits inconsistency with overall suboptimal efficacy and rapid in vivo clearance of CAR-NK92 cells in cancer patients. Analysis indicates that although pre-existing IgM in healthy individuals (n = 10) strongly recognizes both NK-92 and CAR-NK92 cells, IgG and IgE do not. However, only a subset of cancer patients (3/8) exhibit strong IgM recognition of these cells, with some (2/8) showing pre-existing IgG recognition. These results suggest a natural immunoreactivity between NK-92 and CAR-NK92 cells and pre-existing human Abs. Furthermore, the therapy's immunogenicity is evidenced by enhanced IgG and IgM recognition postinfusion of CAR-NK92 cells. We also confirmed that healthy plasma's cytotoxicity toward these cells is reduced by complement inhibitors, suggesting that Abs may facilitate the rapid clearance of CAR-NK92 cells through complement-dependent cytotoxicity. Given that NK-92 cells lack known receptors for IgG and IgM, identifying and modifying the recognition targets for these Abs on NK-92 and CAR-NK92 cells may improve clinical outcomes. Moreover, we discovered that the 72nd amino acid of the NKG2D receptor on NK-92 cells is alanine. Previous studies have demonstrated polymorphism at the 72nd amino acid of the NKG2D on human NK cells, with NKG2D72Thr exhibiting a superior activation effect on NK cells compared with NKG2D72Ala. We confirmed this conclusion also applies to NK-92 cells by in vitro cytotoxicity experiments. Therefore, reducing the immunoreactivity and immunogenicity of CAR-NK92 and directly switching NK-92 bearing NKG2D72Ala to NKG2D72Thr represent pressing challenges in realizing NK-92 cells as qualified universal off-the-shelf cellular therapeutics.
Collapse
Affiliation(s)
- Zhiyuan Niu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mengjun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yangchun Yan
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinru Jin
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Linwei Ning
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bingqian Xu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanfeng Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuekai Hao
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhixia Luo
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Changjiang Guo
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lingtong Zhi
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wuling Zhu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Wang Q, Chen S, Guo Z, Xia S, Zhang M. NK-like CD8 T cell: one potential evolutionary continuum between adaptive memory and innate immunity. Clin Exp Immunol 2024; 217:136-150. [PMID: 38651831 PMCID: PMC11239564 DOI: 10.1093/cei/uxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
CD8 T cells are crucial adaptive immune cells with cytotoxicity to fight against pathogens or abnormal self-cells via major histocompatibility complex class I-dependent priming pathways. The composition of the memory CD8 T-cell pool is influenced by various factors. Physiological aging, chronic viral infection, and autoimmune diseases promote the accumulation of CD8 T cells with highly differentiated memory phenotypes. Accumulating studies have shown that some of these memory CD8 T cells also exhibit innate-like cytotoxicity and upregulate the expression of receptors associated with natural killer (NK) cells. Further analysis shows that these NK-like CD8 T cells have transcriptional profiles of both NK and CD8 T cells, suggesting the transformation of CD8 T cells into NK cells. However, the specific induction mechanism underlying NK-like transformation and the implications of this process for CD8 T cells are still unclear. This review aimed to deduce the possible differentiation model of NK-like CD8 T cells, summarize the functions of major NK-cell receptors expressed on these cells, and provide a new perspective for exploring the role of these CD8 T cells in health and disease.
Collapse
Affiliation(s)
- Qiulei Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Hu B, Xin Y, Hu G, Li K, Tan Y. Fluid shear stress enhances natural killer cell's cytotoxicity toward circulating tumor cells through NKG2D-mediated mechanosensing. APL Bioeng 2023; 7:036108. [PMID: 37575881 PMCID: PMC10423075 DOI: 10.1063/5.0156628] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Tumor cells metastasize to distant organs mainly via hematogenous dissemination, in which circulating tumor cells (CTCs) are relatively vulnerable, and eliminating these cells has great potential to prevent metastasis. In vasculature, natural killer (NK) cells are the major effector lymphocytes for efficient killing of CTCs under fluid shear stress (FSS), which is an important mechanical cue in tumor metastasis. However, the influence of FSS on the cytotoxicity of NK cells against CTCs remains elusive. We report that the death rate of CTCs under both NK cells and FSS is much higher than the combined death induced by either NK cells or FSS, suggesting that FSS may enhance NK cell's cytotoxicity. This death increment is elicited by shear-induced NK activation and granzyme B entry into target cells rather than the death ligand TRAIL or secreted cytokines TNF-α and IFN-γ. When NK cells form conjugates with CTCs or adhere to MICA-coated substrates, NK cell activating receptor NKG2D can directly sense FSS to induce NK activation and degranulation. These findings reveal the promotive effect of FSS on NK cell's cytotoxicity toward CTCs, thus providing new insight into immune surveillance of CTCs within circulation.
Collapse
Affiliation(s)
| | | | | | | | - Youhua Tan
- Author to whom correspondence should be addressed:
| |
Collapse
|
4
|
Barmada A, Klein J, Ramaswamy A, Brodsky NN, Jaycox JR, Sheikha H, Jones KM, Habet V, Campbell M, Sumida TS, Kontorovich A, Bogunovic D, Oliveira CR, Steele J, Hall EK, Pena-Hernandez M, Monteiro V, Lucas C, Ring AM, Omer SB, Iwasaki A, Yildirim I, Lucas CL. Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine-associated myocarditis. Sci Immunol 2023; 8:eadh3455. [PMID: 37146127 PMCID: PMC10468758 DOI: 10.1126/sciimmunol.adh3455] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Rare immune-mediated cardiac tissue inflammation can occur after vaccination, including after SARS-CoV-2 mRNA vaccines. However, the underlying immune cellular and molecular mechanisms driving this pathology remain poorly understood. Here, we investigated a cohort of patients who developed myocarditis and/or pericarditis with elevated troponin, B-type natriuretic peptide, and C-reactive protein levels as well as cardiac imaging abnormalities shortly after SARS-CoV-2 mRNA vaccination. Contrary to early hypotheses, patients did not demonstrate features of hypersensitivity myocarditis, nor did they have exaggerated SARS-CoV-2-specific or neutralizing antibody responses consistent with a hyperimmune humoral mechanism. We additionally found no evidence of cardiac-targeted autoantibodies. Instead, unbiased systematic immune serum profiling revealed elevations in circulating interleukins (IL-1β, IL-1RA, and IL-15), chemokines (CCL4, CXCL1, and CXCL10), and matrix metalloproteases (MMP1, MMP8, MMP9, and TIMP1). Subsequent deep immune profiling using single-cell RNA and repertoire sequencing of peripheral blood mononuclear cells during acute disease revealed expansion of activated CXCR3+ cytotoxic T cells and NK cells, both phenotypically resembling cytokine-driven killer cells. In addition, patients displayed signatures of inflammatory and profibrotic CCR2+ CD163+ monocytes, coupled with elevated serum-soluble CD163, that may be linked to the late gadolinium enhancement on cardiac MRI, which can persist for months after vaccination. Together, our results demonstrate up-regulation in inflammatory cytokines and corresponding lymphocytes with tissue-damaging capabilities, suggesting a cytokine-dependent pathology, which may further be accompanied by myeloid cell-associated cardiac fibrosis. These findings likely rule out some previously proposed mechanisms of mRNA vaccine--associated myopericarditis and point to new ones with relevance to vaccine development and clinical care.
Collapse
Affiliation(s)
- Anis Barmada
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali Ramaswamy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nina N. Brodsky
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Jillian R. Jaycox
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Hassan Sheikha
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Kate M. Jones
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Victoria Habet
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Melissa Campbell
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Tomokazu S. Sumida
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Amy Kontorovich
- The Zena and Michael A. Wiener Cardiovascular Institute; Mindich Child Health and Development Institute; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- The Zena and Michael A. Wiener Cardiovascular Institute; Mindich Child Health and Development Institute; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Inborn Errors of Immunity; Precision Immunology Institute; Mindich Child Health and Development Institute; Department of Pediatrics; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos R. Oliveira
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Jeremy Steele
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - E. Kevin Hall
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Mario Pena-Hernandez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Valter Monteiro
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Infection and Immunity, Yale University, New Haven, CT, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Saad B. Omer
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Yale Center for Infection and Immunity, Yale University, New Haven, CT, USA
| | - Inci Yildirim
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Yale Center for Infection and Immunity, Yale University, New Haven, CT, USA
| | - Carrie L. Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Wong JKM, Dolcetti R, Rhee H, Simpson F, Souza-Fonseca-Guimaraes F. Weaponizing natural killer cells for solid cancer immunotherapy. Trends Cancer 2023; 9:111-121. [PMID: 36379852 DOI: 10.1016/j.trecan.2022.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Abstract
Enhancing natural killer (NK) cell-based innate immunity has become a promising strategy for immunotherapy against hard-to-cure solid cancers. Monoclonal antibody (mAb) therapy has been used to activate NK-cell-mediated antibody-dependent cellular cytotoxicity (ADCC) towards solid cancers. Cancer cells, however, can subvert immunosurveillance using multiple immunosuppressive mechanisms, which may hamper NK cell ADCC. Mechanisms to safely enhance ADCC by NK cells, such as utilizing temporary inhibition of receptor endocytosis to increase antibody presentation from target to effector cells can now be used to enhance NK-cell-mediated ADCC against solid tumors. This review summarizes and discusses the recent advances in the field and highlights current and potential future use of immunotherapies to maximize the therapeutic efficacy of innate anticancer immunity.
Collapse
Affiliation(s)
- Joshua K M Wong
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Riccardo Dolcetti
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia; Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Handoo Rhee
- Princess Alexandra Hospital and Queen Elizabeth Jubilee II Hospital, Woolloongabba, QLD 4102, Australia; The School of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Fiona Simpson
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | | |
Collapse
|
6
|
Yang CK, Huang CH, Hu CH, Fang JH, Chen TC, Lin YC, Lin CY. Immunophenotype and antitumor activity of cytokine-induced killer cells from patients with hepatocellular carcinoma. PLoS One 2023; 18:e0280023. [PMID: 36598909 PMCID: PMC9812323 DOI: 10.1371/journal.pone.0280023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cytokine-induced killer (CIK) cells are heterogeneous lymphocytes from human peripheral blood mononucleated cells (PBMCs) co-cultured with several cytokines. The main purpose of this study is to evaluate the functional characteristics and anticancer ability of CIK cells from hepatocarcinoma (HCC) patients. METHODS CIK cells were activated ex-vivo and expanded from PBMCs from HCC patients. The immunophenotype and the ex-vivo killing ability of CIK cells were evaluated. Human CIK cells were intravenously injected into NOD/SCID mice to evaluate the in vivo anticancer ability. RESULTS More than 70% of CIK cells were CD3+CD8+, and 15%-30% were CD3+CD56+. These cells expressed an increased number of activated natural killer (NK) receptors, such as DNAM1 and NKG2D, and expressed low-immune checkpoint molecules, including PD-1, CTLA-4, and LAG-3. Among the chemokine receptors expressed by CIKs, CXCR3 and CD62L were elevated in CD8+ T cells, representing the trafficking ability to inflamed tumor sites. CIK cells possess the ex-vivo anticancer activity to different cell lines. To demonstrate in vivo antitumor ability, human CIK cells could significantly suppress the tumor of J7 bearing NOD/SCID mice. Furthermore, human immune cells could be detected in the peripheral blood and on the tumors after CIK injection. CONCLUSIONS This study revealed that CIK cells from HCC patients possess cytotoxic properties, and express increased levels of effector NK receptors and chemokine molecules and lower levels of suppressive checkpoint receptors. CIK cells can suppress human HCC ex-vivo and in vivo. Future clinical trials of human CIK cell therapy for HCC are warranted.
Collapse
Affiliation(s)
- Chan-Keng Yang
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Medical Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chien-Hao Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Linkou Medical Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Ching-Hsun Hu
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Medical Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Jian-He Fang
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Linkou Medical Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Tse-Ching Chen
- Department of Pathology, Linkou Medical Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yung-Chang Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Medical Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- * E-mail:
| | - Chun-Yen Lin
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Linkou Medical Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
7
|
Harris R, Mammadli M, Hiner S, Suo L, Yang Q, Sen JM, Karimi M. TCF-1 regulates NKG2D expression on CD8 T cells during anti-tumor responses. Cancer Immunol Immunother 2022; 72:1581-1601. [PMID: 36562825 DOI: 10.1007/s00262-022-03323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy relies on improving T cell effector functions against malignancies, but despite the identification of several key transcription factors (TFs), the biological functions of these TFs are not entirely understood. We developed and utilized a novel, clinically relevant murine model to dissect the functional properties of crucial T cell transcription factors during anti-tumor responses. Our data showed that the loss of TCF-1 in CD8 T cells also leads to loss of key stimulatory molecules such as CD28. Our data showed that TCF-1 suppresses surface NKG2D expression on naïve and activated CD8 T cells via key transcriptional factors Eomes and T-bet. Using both in vitro and in vivo models, we uncovered how TCF-1 regulates critical molecules responsible for peripheral CD8 T cell effector functions. Finally, our unique genetic and molecular approaches suggested that TCF-1 also differentially regulates essential kinases. These kinases, including LCK, LAT, ITK, PLC-γ1, P65, ERKI/II, and JAK/STATs, are required for peripheral CD8 T cell persistent function during alloimmunity. Overall, our molecular and bioinformatics data demonstrate the mechanism by which TCF-1 modulated several critical aspects of T cell function during CD8 T cell response to cancer. Summary Figure: TCF-1 is required for persistent function of CD8 T cells but dispensable for anti-tumor response. Here, we have utilized a novel mouse model that lacks TCF-1 specifically on CD8 T cells for an allogeneic transplant model. We uncovered a molecular mechanism of how TCF-1 regulates key signaling pathways at both transcriptomic and protein levels. These key molecules included LCK, LAT, ITK, PLC-γ1, p65, ERK I/II, and JAK/STAT signaling. Next, we showed that the lack of TCF-1 impacted phenotype, proinflammatory cytokine production, chemokine expression, and T cell activation. We provided clinical evidence for how these changes impact GVHD target organs (skin, small intestine, and liver). Finally, we provided evidence that TCF-1 regulates NKG2D expression on mouse naïve and activated CD8 T cells. We have shown that CD8 T cells from TCF-1 cKO mice mediate cytolytic functions via NKG2D.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA
| | - Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA
| | - Shannon Hiner
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA
| | - Liye Suo
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Qi Yang
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School Rutgers Child Health Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Jyoti Misra Sen
- National Institute On Aging-National Institutes of Health, BRC Building, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA.,Center On Aging and Immune Remodeling and Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21224, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA.
| |
Collapse
|
8
|
Masle-Farquhar E, Jackson KJL, Peters TJ, Al-Eryani G, Singh M, Payne KJ, Rao G, Avery DT, Apps G, Kingham J, Jara CJ, Skvortsova K, Swarbrick A, Ma CS, Suan D, Uzel G, Chua I, Leiding JW, Heiskanen K, Preece K, Kainulainen L, O'Sullivan M, Cooper MA, Seppänen MRJ, Mustjoki S, Brothers S, Vogel TP, Brink R, Tangye SG, Reed JH, Goodnow CC. STAT3 gain-of-function mutations connect leukemia with autoimmune disease by pathological NKG2D hi CD8 + T cell dysregulation and accumulation. Immunity 2022; 55:2386-2404.e8. [PMID: 36446385 DOI: 10.1016/j.immuni.2022.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022]
Abstract
The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-γ, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumulation. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumulation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia.
| | | | - Timothy J Peters
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ghamdan Al-Eryani
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mandeep Singh
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kathryn J Payne
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Geetha Rao
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Danielle T Avery
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Gabrielle Apps
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Australian BioResources, Moss Vale, NSW 2577, Australia
| | - Jennifer Kingham
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Australian BioResources, Moss Vale, NSW 2577, Australia
| | - Christopher J Jara
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ksenia Skvortsova
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Alexander Swarbrick
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Cindy S Ma
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Daniel Suan
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Ignatius Chua
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, FL, USA; Division of Allergy and Immunology, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Kaarina Heiskanen
- Children's Immunodeficiency Unit, Hospital for Children and Adolescents, and Pediatric Research Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kahn Preece
- Department of Immunology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Leena Kainulainen
- Department of Pediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Megan A Cooper
- Department of Pedatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mikko R J Seppänen
- Rare Disease and Pediatric Research Centers, Hospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | | | - Tiphanie P Vogel
- Department of Pedatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Brink
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Stuart G Tangye
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Joanne H Reed
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Christopher C Goodnow
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Wiarda JE, Loving CL. Intraepithelial lymphocytes in the pig intestine: T cell and innate lymphoid cell contributions to intestinal barrier immunity. Front Immunol 2022; 13:1048708. [PMID: 36569897 PMCID: PMC9772029 DOI: 10.3389/fimmu.2022.1048708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Intraepithelial lymphocytes (IELs) include T cells and innate lymphoid cells that are important mediators of intestinal immunity and barrier defense, yet most knowledge of IELs is derived from the study of humans and rodent models. Pigs are an important global food source and promising biomedical model, yet relatively little is known about IELs in the porcine intestine, especially during formative ages of intestinal development. Due to the biological significance of IELs, global importance of pig health, and potential of early life events to influence IELs, we collate current knowledge of porcine IEL functional and phenotypic maturation in the context of the developing intestinal tract and outline areas where further research is needed. Based on available findings, we formulate probable implications of IELs on intestinal and overall health outcomes and highlight key findings in relation to human IELs to emphasize potential applicability of pigs as a biomedical model for intestinal IEL research. Review of current literature suggests the study of porcine intestinal IELs as an exciting research frontier with dual application for betterment of animal and human health.
Collapse
Affiliation(s)
- Jayne E. Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States,Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States,*Correspondence: Crystal L. Loving,
| |
Collapse
|
10
|
Jones AB, Rocco A, Lamb LS, Friedman GK, Hjelmeland AB. Regulation of NKG2D Stress Ligands and Its Relevance in Cancer Progression. Cancers (Basel) 2022; 14:2339. [PMID: 35565467 PMCID: PMC9105350 DOI: 10.3390/cancers14092339] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Under cellular distress, multiple facets of normal homeostatic signaling are altered or disrupted. In the context of the immune landscape, external and internal stressors normally promote the expression of natural killer group 2 member D (NKG2D) ligands that allow for the targeted recognition and killing of cells by NKG2D receptor-bearing effector populations. The presence or absence of NKG2D ligands can heavily influence disease progression and impact the accessibility of immunotherapy options. In cancer, tumor cells are known to have distinct regulatory mechanisms for NKG2D ligands that are directly associated with tumor progression and maintenance. Therefore, understanding the regulation of NKG2D ligands in cancer will allow for targeted therapeutic endeavors aimed at exploiting the stress response pathway. In this review, we summarize the current understanding of regulatory mechanisms controlling the induction and repression of NKG2D ligands in cancer. Additionally, we highlight current therapeutic endeavors targeting NKG2D ligand expression and offer our perspective on considerations to further enhance the field of NKG2D ligand biology.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Abbey Rocco
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | | | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
11
|
The Implementation of TNFRSF Co-Stimulatory Domains in CAR-T Cells for Optimal Functional Activity. Cancers (Basel) 2022; 14:cancers14020299. [PMID: 35053463 PMCID: PMC8773791 DOI: 10.3390/cancers14020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/31/2023] Open
Abstract
The Tumor Necrosis Factor Receptor Superfamily (TNFRSF) is a large and important immunoregulatory family that provides crucial co-stimulatory signals to many if not all immune effector cells. Each co-stimulatory TNFRSF member has a distinct expression profile and a unique functional impact on various types of cells and at different stages of the immune response. Correspondingly, exploiting TNFRSF-mediated signaling for cancer immunotherapy has been a major field of interest, with various therapeutic TNFRSF-exploiting anti-cancer approaches such as 4-1BB and CD27 agonistic antibodies being evaluated (pre)clinically. A further application of TNFRSF signaling is the incorporation of the intracellular co-stimulatory domain of a TNFRSF into so-called Chimeric Antigen Receptor (CAR) constructs for CAR-T cell therapy, the most prominent example of which is the 4-1BB co-stimulatory domain included in the clinically approved product Kymriah. In fact, CAR-T cell function can be clearly influenced by the unique co-stimulatory features of members of the TNFRSF. Here, we review a select group of TNFRSF members (4-1BB, OX40, CD27, CD40, HVEM, and GITR) that have gained prominence as co-stimulatory domains in CAR-T cell therapy and illustrate the unique features that each confers to CAR-T cells.
Collapse
|
12
|
Clinical Studies on Cytokine-Induced Killer Cells: Lessons from Lymphoma Trials. Cancers (Basel) 2021; 13:cancers13236007. [PMID: 34885117 PMCID: PMC8656601 DOI: 10.3390/cancers13236007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Lymphoma is a heterogeneous group of neoplasms including over 70 different subtypes. Its biological characteristic of deriving from lymphoid tissues makes it ideal for immunotherapy. In this paper, we provide insights into lymphoma-specific clinical trials based on cytokine-induced killer (CIK) cell therapy. We also reviewed pre-clinical lymphoma models where CIK cells have been used along with other synergetic tumor-targeting immune modules to improve their therapeutic potential. From a broader perspective, we will highlight that CIK cell therapy has potential, and in this rapidly evolving landscape of cancer therapies its optimization (as a personalized therapeutic approach) will be beneficial in lymphomas. Abstract Cancer is a complex disease where resistance to therapies and relapses often pose a serious clinical challenge. The scenario is even more complicated when the cancer type itself is heterogeneous in nature, e.g., lymphoma, a cancer of the lymphocytes which constitutes more than 70 different subtypes. Indeed, the treatment options continue to expand in lymphomas. Herein, we provide insights into lymphoma-specific clinical trials based on cytokine-induced killer (CIK) cell therapy and other pre-clinical lymphoma models where CIK cells have been used along with other synergetic tumor-targeting immune modules to improve their therapeutic potential. From a broader perspective, we will highlight that CIK cell therapy has potential, and in this rapidly evolving landscape of cancer therapies its optimization (as a personalized therapeutic approach) will be beneficial in lymphomas.
Collapse
|
13
|
Wu X, Sharma A, Oldenburg J, Weiher H, Essler M, Skowasch D, Schmidt-Wolf IGH. NKG2D Engagement Alone Is Sufficient to Activate Cytokine-Induced Killer Cells While 2B4 Only Provides Limited Coactivation. Front Immunol 2021; 12:731767. [PMID: 34691037 PMCID: PMC8529192 DOI: 10.3389/fimmu.2021.731767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are an ex vivo expanded heterogeneous cell population with an enriched NK-T phenotype (CD3+CD56+). Due to the convenient and relatively inexpensive expansion capability, together with low incidence of graft versus host disease (GVHD) in allogeneic cancer patients, CIK cells are a promising candidate for immunotherapy. It is well known that natural killer group 2D (NKG2D) plays an important role in CIK cell-mediated antitumor activity; however, it remains unclear whether its engagement alone is sufficient or if it requires additional co-stimulatory signals to activate the CIK cells. Likewise, the role of 2B4 has not yet been identified in CIK cells. Herein, we investigated the individual and cumulative contribution of NKG2D and 2B4 in the activation of CIK cells. Our analysis suggests that (a) NKG2D (not 2B4) is implicated in CIK cell (especially CD3+CD56+ subset)-mediated cytotoxicity, IFN-γ secretion, E/T conjugate formation, and degranulation; (b) NKG2D alone is adequate enough to induce degranulation, IFN-γ secretion, and LFA-1 activation in CIK cells, while 2B4 only provides limited synergy with NKG2D (e.g., in LFA-1 activation); and (c) NKG2D was unable to costimulate CD3. Collectively, we conclude that NKG2D engagement alone suffices to activate CIK cells, thereby strengthening the idea that targeting the NKG2D axis is a promising approach to improve CIK cell therapy for cancer patients. Furthermore, CIK cells exhibit similarities to classical invariant natural killer (iNKT) cells with deficiencies in 2B4 stimulation and in the costimulation of CD3 with NKG2D. In addition, based on the current data, the divergence in receptor function between CIK cells and NK (or T) cells can be assumed, pointing to the possibility that molecular modifications (e.g., using chimeric antigen receptor technology) on CIK cells may need to be customized and optimized to maximize their functional potential.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Integrated Oncology, Center of Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center of Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany.,Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Hans Weiher
- Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Dirk Skowasch
- Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center of Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
14
|
Lino CNR, Ghosh S. Epstein-Barr Virus in Inborn Immunodeficiency-More Than Infection. Cancers (Basel) 2021; 13:cancers13194752. [PMID: 34638238 PMCID: PMC8507541 DOI: 10.3390/cancers13194752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Epstein–Barr Virus (EBV) is a common virus that is readily controlled by a healthy immune system and rarely causes serious problems in infected people. However, patients with certain genetic defects of their immune system might have difficulties controlling EBV and often develop severe and life-threatening conditions, such as severe inflammation and malignancies. In this review, we provide a summary of inherited immune diseases that lead to a high susceptibility to EBV infection and discuss how this infection is associated with cancer development. Abstract Epstein–Barr Virus (EBV) is a ubiquitous virus affecting more than 90% of the world’s population. Upon infection, it establishes latency in B cells. It is a rather benign virus for immune-competent individuals, in whom infections usually go unnoticed. Nevertheless, EBV has been extensively associated with tumorigenesis. Patients suffering from certain inborn errors of immunity are at high risk of developing malignancies, while infection in the majority of immune-competent individuals does not seem to lead to immune dysregulation. Herein, we discuss how inborn mutations in TNFRSF9, CD27, CD70, CORO1A, CTPS1, ITK, MAGT1, RASGRP1, STK4, CARMIL2, SH2D1A, and XIAP affect the development, differentiation, and function of key factors involved in the immunity against EBV, leading to increased susceptibility to lymphoproliferative disease and lymphoma.
Collapse
Affiliation(s)
| | - Sujal Ghosh
- Correspondence: ; Tel.: +49-211-811-6224; Fax: +49-211-811-6191
| |
Collapse
|
15
|
Guo J, Kent A, Davila E. Chimeric non-antigen receptors in T cell-based cancer therapy. J Immunother Cancer 2021; 9:jitc-2021-002628. [PMID: 34344725 PMCID: PMC8336119 DOI: 10.1136/jitc-2021-002628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2021] [Indexed: 01/04/2023] Open
Abstract
Adoptively transferred T cell-based cancer therapies have shown incredible promise in treatment of various cancers. So far therapeutic strategies using T cells have focused on manipulation of the antigen-recognition machinery itself, such as through selective expression of tumor-antigen specific T cell receptors or engineered antigen-recognition chimeric antigen receptors (CARs). While several CARs have been approved for treatment of hematopoietic malignancies, this kind of therapy has been less successful in the treatment of solid tumors, in part due to lack of suitable tumor-specific targets, the immunosuppressive tumor microenvironment, and the inability of adoptively transferred cells to maintain their therapeutic potentials. It is critical for therapeutic T cells to overcome immunosuppressive environmental triggers, mediating balanced antitumor immunity without causing unwanted inflammation or autoimmunity. To address these hurdles, chimeric receptors with distinct signaling properties are being engineered to function as allies of tumor antigen-specific receptors, modulating unique aspects of T cell function without directly binding to antigen themselves. In this review, we focus on the design and function of these chimeric non-antigen receptors, which fall into three broad categories: ‘inhibitory-to-stimulatory’ switch receptors that bind natural ligands, enhanced stimulatory receptors that interact with natural ligands, and synthetic receptor-ligand pairs. Our intent is to offer detailed descriptions that will help readers to understand the structure and function of these receptors, as well as inspire development of additional novel synthetic receptors to improve T cell-based cancer therapy.
Collapse
Affiliation(s)
- Jitao Guo
- Division of Medical Oncology, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew Kent
- Division of Medical Oncology, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA .,Human Immunology and Immunotherapy Initiative, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.,University of Colorado Comprehensive Cancer Center, Aurora, Colorado, USA.,Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
16
|
Wong YC, Liu W, Yim LY, Li X, Wang H, Yue M, Niu M, Cheng L, Ling L, Du Y, Chen SMY, Cheung KW, Wang H, Tang X, Tang J, Zhang H, Song Y, Chakrabarti LA, Chen Z. Sustained viremia suppression by SHIVSF162P3CN-recalled effector-memory CD8+ T cells after PD1-based vaccination. PLoS Pathog 2021; 17:e1009647. [PMID: 34125864 PMCID: PMC8202916 DOI: 10.1371/journal.ppat.1009647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
HIV-1 functional cure requires sustained viral suppression without antiretroviral therapy. While effector-memory CD8+ T lymphocytes are essential for viremia control, few vaccines elicit such cellular immunity that could be potently recalled upon viral infection. Here, we investigated a program death-1 (PD1)-based vaccine by fusion of simian immunodeficiency virus capsid antigen to soluble PD1. Homologous vaccinations suppressed setpoint viremia to undetectable levels in vaccinated macaques following a high-dose intravenous challenge by the pathogenic SHIVSF162P3CN. Poly-functional effector-memory CD8+ T cells were not only induced after vaccination, but were also recalled upon viral challenge for viremia control as determined by CD8 depletion. Vaccine-induced effector memory CD8+ subsets displayed high cytotoxicity-related genes by single-cell analysis. Vaccinees with sustained viremia suppression for over two years responded to boost vaccination without viral rebound. These results demonstrated that PD1-based vaccine-induced effector-memory CD8+ T cells were recalled by AIDS virus infection, providing a potential immunotherapy for functional cure. HIV-1/AIDS remains a major global pandemic although treatment regimen has improved. Identifying efficacious vaccines and therapeutics to achieve long-term viral control with very low/undetectable plasma viral loads in the absence of antiretroviral therapy, a status known as functional cure, would be highly beneficial. We previously demonstrated that antigens fused to a soluble program death-1 (PD1) domain could effectively bind and be cross-presented by dendritic cells that constitutively expressed PD1 ligands. When applied in the form of DNA vaccination, this antigen-targeting strategy was highly immunogenic in mice. Here, we investigated the efficacy of the PD1-based DNA vaccine approach against pathogenic simian-human immunodeficiency virus challenge in rhesus monkeys. Our results showed that homologous PD1-based DNA vaccinations induced highly functional effector-memory CD8+ T cells carrying a unique cytotoxicity gene expression profile. These T cells actively supressed viremia in monkeys and were re-activated via boost vaccination at 2 years after viral challenge without viral rebound. In summary, our study demonstrates the potential application of PD1-based DNA vaccination to control AIDS virus infection.
Collapse
Affiliation(s)
- Yik Chun Wong
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Wan Liu
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Lok Yan Yim
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Xin Li
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- Department of Veterinary Medicine, Foshan University, Foshan, China
| | - Hui Wang
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Ming Yue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Mengyue Niu
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Lin Cheng
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Lijun Ling
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Yanhua Du
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Samantha M. Y. Chen
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Ka-Wai Cheung
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Haibo Wang
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Xian Tang
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
- Virus and Immunity Unit, Pasteur Institute, Paris, France; INSERM U1108, Paris, France
| | - Jiansong Tang
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Haoji Zhang
- Department of Veterinary Medicine, Foshan University, Foshan, China
| | - Youqiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Lisa A. Chakrabarti
- Virus and Immunity Unit, Pasteur Institute, Paris, France; INSERM U1108, Paris, France
| | - Zhiwei Chen
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
- * E-mail:
| |
Collapse
|
17
|
Identification of two immune subtypes in osteosarcoma based on immune gene sets. Int Immunopharmacol 2021; 96:107799. [PMID: 34162161 DOI: 10.1016/j.intimp.2021.107799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 01/06/2023]
Abstract
Osteosarcoma (OS) is a highly aggressive cancer with poor prognosis, which mainly occurs in teenagers. Recent studies have shown that tumor-infiltrating immune cells play an important role in the progression of OS. In the present study, we identified two immune subtypes of OS (referred to as high and low immune cell infiltration subtypes, respectively) based on immune-related gene sets using TARGET and GEO cohort datasets. Elevated immune scores, increased stromal scores, decreased tumor purities, and higher infiltration of CD8 + T cells and M1 macrophages were observed for the high immune cell infiltration subtype. Moreover, the high immune cell infiltration subtype was characterized by high expression of immune checkpoint molecules. Gene set enrichment analysis showed that "B cell receptor signaling pathway" and "T cell receptor signaling pathway" gene sets were enriched in the high immune cell infiltration subtype. In addition, patients in the high immune cell infiltration subtype had better prognosis than patients in the low immune cell infiltration subtype. Furthermore, differentially expressed genes were screened according to the two OS subtypes and a risk model was generated by multivariate Cox regression analysis to predict the prognosis of OS patients. These results in this study showed that OS patients could be divided into two immune subtypes and offered a novel two-gene risk signature to predict the prognosis of patients with OS.
Collapse
|
18
|
Mammadli M, Huang W, Harris R, Xiong H, Weeks S, May A, Gentile T, Henty-Ridilla J, Waickman AT, August A, Bah A, Karimi M. Targeting SLP76:ITK interaction separates GVHD from GVL in allo-HSCT. iScience 2021; 24:102286. [PMID: 33851101 PMCID: PMC8024657 DOI: 10.1016/j.isci.2021.102286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/27/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for hematological malignancies, due to graft-versus-leukemia (GVL) activity mediated by alloreactive donor T cells. However, graft-versus-host disease (GVHD) is also mediated by these cells. Here, we assessed the effect of attenuating TCR-mediated SLP76:ITK interaction in GVL vs. GVHD effects after allo-HSCT. CD8+ and CD4+ donor T cells from mice expressing a Y145F mutation in SLP-76 did not cause GVHD but preserved GVL effects against B-ALL cells. SLP76Y145FKI CD8+ and CD4+ donor T cells also showed less inflammatory cytokine production and migration to GVHD target organs. We developed a novel peptide to specifically inhibit SLP76:ITK interactions, resulting in decreased phosphorylation of PLCγ1 and ERK, decreased cytokine production in human T cells, and separation of GVHD from GVL effects. Altogether, our data suggest that inhibiting SLP76:ITK interaction could be a therapeutic strategy to separate GVHD from GVL effects after allo-HSCT treatment.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Hui Xiong
- Department of Radiology, Jiangxi Health Vocational College, Nanchang, 330052, China
| | - Samuel Weeks
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Adriana May
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Teresa Gentile
- Division of Hematology, translational research, SUNY Upstate Medical University, Syracuse NY 13210, USA
| | - Jessica Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Adam T. Waickman
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue, Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| |
Collapse
|
19
|
Liang S, Sun M, Lu Y, Shi S, Yang Y, Lin Y, Feng C, Liu J, Dong C. Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. J Mater Chem B 2021; 8:8368-8382. [PMID: 32966532 DOI: 10.1039/d0tb01391a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maximizing the accumulation of anticancer medicine in the tumor is the priority to achieve minimal invasive cancer therapy, which raises high demands on tumor-targeting ability of drug delivery systems. Herein, we adopted an emerging "cell-drug" strategy via the nanoplatform construction to achieve high aggregation and intratumoral distribution. We fabricated gold nanostars (GNSs) with HER-2 monoclonal antibody (trastuzumab) and near-infrared region (NIR) photosensitizer indocyanine green (ICG) to obtain GNS@ICG-Ab, which combined the photothermal therapy with photodynamic therapy (PTT/PDT) that rely on enhanced photothermal conversion efficiency of GNS and 1O2 generator ICG under the exposure of a NIR laser. Tumor-tropism CIK cells loaded with GNS@ICG-Ab were able to migrate into tumors and make a difference in efficient accumulation and uniform distribution of the GNS@ICG-Ab-CIK nanoplatform inside tumors based on fluorescence, photoacoustic (PA), and computed tomography (CT) imaging observations. Encouraged by the improvements in tumor targeting and retention presented by real-time imaging, we employed the novel nanoplatform to synergistically inhibit the progression of tumors in SK-BR-3 tumor-bearing mice via PTT/PDT and immunotherapy-implemented by CIK cells for activating the immune response, and with the specific linkage between trastuzumab and SK-BR-3 tumor cells, our platform could exert a precise strike of PDT/PTT. Taken together, the integrating tri-modal imaging with tri-modal therapy endows CIK-GNS@ICG-Ab with promising potential in cancer theranostics and lays a solid foundation for the development of immune cell application in nanomedicine delivery.
Collapse
Affiliation(s)
- Shujing Liang
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Menglin Sun
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Yonglin Lu
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Shuo Shi
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yiting Yang
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Yun Lin
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Chan Feng
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Jie Liu
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| | - Chunyan Dong
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, P. R. China.
| |
Collapse
|
20
|
Freeze HH. XMEN: welcome to the glycosphere. J Clin Invest 2020; 130:80-82. [PMID: 31815737 DOI: 10.1172/jci134240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
XMEN (X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia) is a complex primary immunological deficiency caused by mutations in MAGT1, a putative magnesium transporter. In this issue of the JCI, Ravell et al. greatly expand the clinical picture. The authors investigated patients' mutations and symptoms and reported distinguishing immunophenotypes. They also showed that MAGT1 is required for N-glycosylation of key T cell and NK cell receptors that can account for some of the clinical features. Notably, transfection of the affected lymphocytes with MAGT1 mRNA restored both N-glycosylation and receptor function. Now we can add XMEN to the ever-growing family of congenital disorders of glycosylation (CDG).
Collapse
|
21
|
Effects of Gnathostoma spinigerum infective stage larva excretory-secretory products on NK cells in peripheral blood mononuclear cell culture: focused on expressions of IFN-γ and killer cell lectin-like receptors. Parasitol Res 2020; 119:1011-1021. [PMID: 31932913 DOI: 10.1007/s00436-019-06593-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/29/2019] [Indexed: 12/24/2022]
Abstract
Human gnathostomiasis is mainly caused by third-stage larvae of Gnathostoma spinigerum (G. spinigerum L3). Excretory-secretory products (ES) released from infective helminthic larvae are associated with larval migration and host immunity modulation. Natural killer (NK) cells have important immune functions against helminth infection. Currently, the effects of ES from G. spinigerum L3 (G. spinigerum ES) on NK cell activity are unclear. This study investigated whether G. spinigerum ES affected human NK cells. Human normal peripheral blood mononuclear cell (PBMC) cultures were used to mimic immune cells within the circulation. PBMC were co-cultured with G. spinigerum ES (0.01-0.05 μg/ml) for 5 or 7 days. Levels of IFN-γ in cultured supernatants were measured by enzyme-linked immunosorbent assay. The expressions of mRNA encoding NK cell receptors, especially the C type killer cell lectin-like family (KLR; NKG2A, NKG2C, and NKG2D) and IFN-γ in ES induced PBMC were determined by quantitative reverse transcription-polymerase chain reaction (RT-qPCR). ES induced PBMC markedly decreased the levels of IFN-γ and increased the expressions of NKG2A and NKG2D on NK cells. In conclusion, low amounts of G. spinigerum ES modulated NK cells by downregulating the transcription of IFN-γ and upregulating the expressions of KLR (NKG2A and NKG2D receptors) during the 7-day observation period. These findings indicate more in-depth studies of NK cell function are required to better understand the mechanism involved in immune evasive strategies of human gnathostomiasis.
Collapse
|
22
|
Ravell JC, Matsuda-Lennikov M, Chauvin SD, Zou J, Biancalana M, Deeb SJ, Price S, Su HC, Notarangelo G, Jiang P, Morawski A, Kanellopoulou C, Binder K, Mukherjee R, Anibal JT, Sellers B, Zheng L, He T, George AB, Pittaluga S, Powers A, Kleiner DE, Kapuria D, Ghany M, Hunsberger S, Cohen JI, Uzel G, Bergerson J, Wolfe L, Toro C, Gahl W, Folio LR, Matthews H, Angelus P, Chinn IK, Orange JS, Trujillo-Vargas CM, Franco JL, Orrego-Arango J, Gutiérrez-Hincapié S, Patel NC, Raymond K, Patiroglu T, Unal E, Karakukcu M, Day AG, Mehta P, Masutani E, De Ravin SS, Malech HL, Altan-Bonnet G, Rao VK, Mann M, Lenardo MJ. Defective glycosylation and multisystem abnormalities characterize the primary immunodeficiency XMEN disease. J Clin Invest 2020; 130:507-522. [PMID: 31714901 PMCID: PMC6934229 DOI: 10.1172/jci131116] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/18/2019] [Indexed: 01/01/2023] Open
Abstract
X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia (XMEN) disease are caused by deficiency of the magnesium transporter 1 (MAGT1) gene. We studied 23 patients with XMEN, 8 of whom were EBV naive. We observed lymphadenopathy (LAD), cytopenias, liver disease, cavum septum pellucidum (CSP), and increased CD4-CD8-B220-TCRαβ+ T cells (αβDNTs), in addition to the previously described features of an inverted CD4/CD8 ratio, CD4+ T lymphocytopenia, increased B cells, dysgammaglobulinemia, and decreased expression of the natural killer group 2, member D (NKG2D) receptor. EBV-associated B cell malignancies occurred frequently in EBV-infected patients. We studied patients with XMEN and patients with autoimmune lymphoproliferative syndrome (ALPS) by deep immunophenotyping (32 immune markers) using time-of-flight mass cytometry (CyTOF). Our analysis revealed that the abundance of 2 populations of naive B cells (CD20+CD27-CD22+IgM+HLA-DR+CXCR5+CXCR4++CD10+CD38+ and CD20+CD27-CD22+IgM+HLA-DR+CXCR5+CXCR4+CD10-CD38-) could differentially classify XMEN, ALPS, and healthy individuals. We also performed glycoproteomics analysis on T lymphocytes and show that XMEN disease is a congenital disorder of glycosylation that affects a restricted subset of glycoproteins. Transfection of MAGT1 mRNA enabled us to rescue proteins with defective glycosylation. Together, these data provide new clinical and pathophysiological foundations with important ramifications for the diagnosis and treatment of XMEN disease.
Collapse
Affiliation(s)
- Juan C. Ravell
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Mami Matsuda-Lennikov
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Samuel D. Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Juan Zou
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Matthew Biancalana
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Sally J. Deeb
- Proteomics and Signal Transduction Group and Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susan Price
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Giulia Notarangelo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Ping Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Aaron Morawski
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Chrysi Kanellopoulou
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Kyle Binder
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, Maryland, USA
| | - Ratnadeep Mukherjee
- Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - James T. Anibal
- Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Brian Sellers
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Tingyan He
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
- Department of Rheumatology and Immunology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Alex B. George
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, NCI, Bethesda, Maryland, USA
| | - Astin Powers
- Laboratory of Pathology, NCI, Bethesda, Maryland, USA
| | | | - Devika Kapuria
- Liver Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Marc Ghany
- Liver Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | | | - Jeffrey I. Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, NIAID
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Jenna Bergerson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Lynne Wolfe
- National Human Genome Research Institute, and
| | - Camilo Toro
- National Human Genome Research Institute, and
| | | | - Les R. Folio
- Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Helen Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Pam Angelus
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Ivan K. Chinn
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Jordan S. Orange
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Claudia M. Trujillo-Vargas
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Julio Orrego-Arango
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | | | - Niraj Chandrakant Patel
- Section of Infectious Disease and Immunology, Department of Pediatrics, Carolinas Medical Center, and
- Levine Children’s Hospital Atrium Health, Charlotte, North Carolina, USA
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Turkan Patiroglu
- Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ekrem Unal
- Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Musa Karakukcu
- Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Pankaj Mehta
- Department of Physics, Boston University, Boston, Massachusetts, USA
| | - Evan Masutani
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Suk S. De Ravin
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Harry L. Malech
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Grégoire Altan-Bonnet
- Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - V. Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, Maryland, USA
| | - Matthias Mann
- Proteomics and Signal Transduction Group and Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael J. Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| |
Collapse
|
23
|
Hansrivijit P, Gale RP, Barrett J, Ciurea SO. Cellular therapy for acute myeloid Leukemia – Current status and future prospects. Blood Rev 2019; 37:100578. [DOI: 10.1016/j.blre.2019.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
|
24
|
Persistent Replication of HIV, Hepatitis C Virus (HCV), and HBV Results in Distinct Gene Expression Profiles by Human NK Cells. J Virol 2019; 93:JVI.00575-18. [PMID: 30185599 DOI: 10.1128/jvi.00575-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/20/2018] [Indexed: 01/14/2023] Open
Abstract
Natural killer (NK) cells during chronic viral infection have been well studied in the past. We performed an unbiased next-generation RNA-sequencing approach to identify commonalities or differences of the effect of HIV, HCV, and HBV viremia on NK cell transcriptomes. Using cell sorting, we obtained CD3- CD56+ NK cells from blood of 6 HIV-, 8 HCV-, and 32 HBV-infected patients without treatment. After library preparation and sequencing, we used an in-house analytic pipeline to compare expression levels with matched healthy controls. In NK cells from HIV-, HCV-, and HBV-infected patients, transcriptome analysis identified 272, 53, and 56 differentially expressed genes, respectively (fold change, >1.5; q-value, 0.2). Interferon-stimulated genes were induced in NK cells from HIV/HCV patients, but not during HBV infection. HIV viremia downregulated ribosome assembly genes in NK cells. In HBV-infected patients, viral load and alanine aminotransferase (ALT) variation had little effect on genes related to NK effector function. In conclusion, we compare, for the first time, NK cell transcripts of viremic HIV, HCV, and HBV patients. We clearly demonstrate distinctive NK cell gene signatures in three different populations, suggestive for a different degree of functional alterations of the NK cell compartment compared to healthy individuals.IMPORTANCE Three viruses exist that can result in persistently high viral loads in immunocompetent humans: human immunodeficiency virus (HIV), hepatitis C virus, and hepatitis B virus. In the last decades, by using flow cytometry and in vitro assays on NK cells from patients with these types of infections, several impairments have been established, particularly during and possibly contributing to HIV viremia. However, the background of NK cell impairments in viremic patients is not well understood. In this study, we describe the NK cell transcriptomes of patients with high viral loads of different etiologies. We clearly demonstrate distinctive NK cell gene signatures with regard to interferon-stimulated gene induction and the expression of genes coding for activation markers or proteins involved in cytotoxic action, as well immunological genes. This study provides important details necessary to uncover the origin of functional and phenotypical differences between viremic patients and healthy subjects and provides many leads that can be confirmed using future in vitro manipulation experiments.
Collapse
|
25
|
Zhao R, Cheng L, Jiang Z, Wei X, Li B, Wu Q, Wang S, Lin S, Long Y, Zhang X, Wu Y, Du X, Pei D, Liu P, Li Y, Cui S, Yao Y, Li P. DNAX-activating protein 10 co-stimulation enhances the anti-tumor efficacy of chimeric antigen receptor T cells. Oncoimmunology 2018; 8:e1509173. [PMID: 30546945 PMCID: PMC6287795 DOI: 10.1080/2162402x.2018.1509173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/19/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapies have shown remarkable efficacy in treating multiple types of hematological malignancies but are not sufficiently effective at treating solid tumors. NKG2D is a strong activating receptor for NK cells and a co-stimulatory receptor for T cells. NKG2D signal transduction depends on DNAX-activating protein 10 (DAP10). Here, we introduced the cytoplasmic domain of DAP10 into the second-generation CARs M28z and G28z to generate M28z10 and G28z10, which target mesothelin (MSLN) and glypican 3 (GPC3), respectively. T cells expressing M28z10 or G28z10 showed enhanced and prolonged effector function against MSLN+ lung cancer or GPC3+ hepatocellular carcinoma cell lines in culture and secreted elevated levels of cytokines, including IL-2, IFN-γ, granzyme B, and GM-CSF. In addition, M28z10 CAR-T cells showed greater anti-tumor activity than those expressing M28z in both A549 cell line xenografts and human lung cancer patient-derived xenografts (PDX). Similarly, G28z10 exhibited higher efficacy in causing tumor regression than did G28z in hepatocellular carcinoma PDX. Therefore, our results show that DAP10 signaling contributes to the function of CAR-T cells in both lung cancer and hepatocellular carcinoma and can enhance the efficacy of CAR-T cells.
Collapse
Affiliation(s)
- Ruocong Zhao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lin Cheng
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiwu Jiang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinru Wei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Baiheng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiting Wu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Suna Wang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Simiao Lin
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Youguo Long
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xuchao Zhang
- Guangdong Lung Cancer Institute, Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yilong Wu
- Guangdong Lung Cancer Institute, Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Centre, University of Hong Kong, Hong Kong, China
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China
| | - Shuzhong Cui
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yao Yao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Stojanovic A, Correia MP, Cerwenka A. The NKG2D/NKG2DL Axis in the Crosstalk Between Lymphoid and Myeloid Cells in Health and Disease. Front Immunol 2018; 9:827. [PMID: 29740438 PMCID: PMC5924773 DOI: 10.3389/fimmu.2018.00827] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) receptor is a type II transmembrane protein expressed by both innate and adaptive immune cells, including natural killer (NK) cells, CD8+ T cells, invariant NKT cells, γδ T cells, and some CD4+ T cells under certain pathological conditions. NKG2D is an activating NK receptor that induces cytotoxicity and production of cytokines by effector cells and supports their proliferation and survival upon engagement with its ligands. In both innate and T cell populations, NKG2D can costimulate responses induced by other receptors, such as TCR in T cells or NKp46 in NK cells. NKG2D ligands (NKG2DLs) are remarkably diverse. Initially, NKG2DL expression was typically attributed to stressed, infected, or transformed cells, thus signaling “dysregulated-self.” However, many reports indicated their expression under homeostatic conditions, usually in the context of cell activation and/or proliferation. Myeloid cells, including macrophages and dendritic cells (DCs), are among the first cells sensing and responding to pathogens and tissue damage. By secreting a plethora of soluble mediators, by presenting antigens to T cells and by expressing costimulatory molecules, myeloid cells play vital roles in inducing and supporting responses of other immune cells in lymphoid organs and tissues. When activated, both macrophages and DCs upregulate NKG2DLs, thereby enabling them with additional mechanisms for regulating lymphocyte responses. In this review, we will focus on the expression of NKG2D by innate and adaptive lymphocytes, the regulation of NKG2DL expression on myeloid cells, and the contribution of the NKG2D/NKG2DL axis to the crosstalk of myeloid cells with NKG2D-expressing lymphocytes. In addition, we will highlight pathophysiological conditions associated with NKG2D/NKG2DL dysregulation and discuss the putative involvement of the NKG2D/NKG2DL axis in the lymphocyte/myeloid cell crosstalk in these diseases.
Collapse
Affiliation(s)
- Ana Stojanovic
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Margareta P Correia
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Adelheid Cerwenka
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
27
|
Sun Q, Miao B, Lao X, Yuan P, Cai J, Zhan H. Primitive neuroectodermal tumor of the kidney at the advanced stage: A case series of eight Chinese patients. Mol Clin Oncol 2018; 8:743-748. [PMID: 29805790 DOI: 10.3892/mco.2018.1611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
Primitive neuroectodermal tumor (PNET) rarely occurs as a primary renal neoplasm. Renal (r)PNET is a rare but aggressive neoplasm with poor prognosis; the majority of patients are diagnosed as advanced stage at presentation and face a worse prognosis than patients with localized disease. The present study describes the diagnosis and management of eight cases of rPNET at an advanced stage, who were treated at two institutions [Lingnan Hospital (branch of The Third Affiliated Hospital) and the Cancer Center of Sun Yat-sen University, Guangzhou], from December 2004 to January 2013. The clinical and pathological results of all patients were retrospectively obtained. Kaplan-Meier analysis was performed to estimate patient survival. The study cohort comprised five males and three females. Radical nephrectomy was performed in seven cases, while the remaining case only received needle biopsy of the tumor. Five cases received adjuvant chemotherapy, while three received no further treatment after surgery. Of note, one case received cytokine-induced killer (CIK) cell immunotherapy combined with surgery and chemotherapy. The overall median survival was 20 months with a 3-year survival rate of 25%. The overall survival of the four patients who received adjuvant chemotherapy following surgery was 36 months, compared with 10 months in the three patients without further treatment. The patient who received CIK cell immunotherapy survived for 20 months. Based on the observations of the present and previous studies, surgical excision and chemotherapy are recommended for treating rPNET at advanced stage. Furthermore, the present study was the first to report on CIK cell immunotherapy for a patient with rPNET, indicating that it may be a promising optional treatment. However, further studies are required to validate the benefit of CIK cells and to establish an appropriate immunotherapy protocol.
Collapse
Affiliation(s)
- Qipeng Sun
- Department of Urology, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510530, P.R. China
| | - Bin Miao
- Department of Renal Transplantation, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510530, P.R. China
| | - Xiangming Lao
- Department of Hepatobiliary Surgery, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Ping Yuan
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jiarong Cai
- Department of Urology, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510530, P.R. China
| | - Hailun Zhan
- Department of Urology, Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510530, P.R. China
| |
Collapse
|
28
|
Abstract
Cytokine-induced killer (CIK) cells form under certain stimulation conditions in cultures of peripheral blood mononuclear cells (PBMCs). They are a heterogeneous immune cell population and contain a high percentage of cells with a mixed T-NK phenotype (CD3+CD56+). The ready availability of a lymphocyte source, together with the high proliferative rate and potent anti-tumor activity of CIK cells, has allowed their use as immunotherapy in a wide variety of neoplasms. Cytotoxicity mediated by CD3+CD56+ T cells depends on the major histocompatibility antigen (MHC)-independent recognition of tumor cells and the activation of signaling pathways through the natural killer group 2 member D (NKG2D) cell-surface receptor. Clinical trials have demonstrated the feasibility and efficacy of CIK cell immunotherapy even in advanced stage cancer patients or those that have not responded to first-line treatment. This review summarizes biological and technical aspects of CIK cells, as well as past and current clinical trials and future trends in this form of immunotherapy.
Collapse
|
29
|
Introna M, Correnti F. Innovative Clinical Perspectives for CIK Cells in Cancer Patients. Int J Mol Sci 2018; 19:ijms19020358. [PMID: 29370095 PMCID: PMC5855580 DOI: 10.3390/ijms19020358] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are T lymphocytes that have acquired, in vitro, following extensive manipulation by Interferon gamma (IFN-γ), OKT3 and Interleukin 2 (IL-2) addition, the expression of several Natural Killer (NK) cell-surface markers. CIK cells have a dual "nature", due to the presence of functional TCR as well as NK molecules, even if the antitumoral activity can be traced back only to the NK-like structures (DNAM-1, NKG2D, NKp30 and CD56). In addition to antineoplastic activity in vitro and in several in-vivo models, CIK cells show very limited, if any, GvHD toxicity as well as a strong intratumoral homing. For all such reasons, CIK cells have been proposed and tested in many clinical trials in cancer patients both in autologous and allogeneic combinations, up to haploidentical mismatching. Indeed, genetic modification of CIK cells as well as the possibility of combining them with specific monoclonal antibodies will further expand the possibility of their clinical utilization.
Collapse
Affiliation(s)
- Martino Introna
- USS Center of Cell Therapy "G. Lanzani", USC Ematologia, ASST Papa Giovanni XXIII Bergamo, 24124 Bergamo, Italy.
| | - Fabio Correnti
- USS Center of Cell Therapy "G. Lanzani", USC Ematologia, ASST Papa Giovanni XXIII Bergamo, 24124 Bergamo, Italy.
| |
Collapse
|
30
|
Introna M. CIK as therapeutic agents against tumors. J Autoimmun 2017; 85:32-44. [DOI: 10.1016/j.jaut.2017.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 01/26/2023]
|
31
|
Balassa K, Rocha V. Anticancer cellular immunotherapies derived from umbilical cord blood. Expert Opin Biol Ther 2017; 18:121-134. [PMID: 29103317 DOI: 10.1080/14712598.2018.1402002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The lack of highly effective drugs in many malignancies has prompted scientific interest in the development of alternative treatment strategies. Cellular immunotherapy involving the adoptive transfer of immune cells that potently recognize and eliminate malignantly transformed cells has become a promising new tool in the anticancer armory. Studies suggest that the unique biological properties of umbilical cord blood (UCB) cells could precipitate enhanced anticancer activity; hence, UCB could be an optimal source for immunotherapy with the potential to provide products with 'off-the-shelf' availability. AREAS COVERED In this review, the authors summarize data on the transfer of naturally occurring or genetically modified UCB cells to treat cancer. The focus within is on the phenotypic and functional differences compared to other sources, the alloreactive and anticancer properties, and manufacturing of these products. Therapies utilizing cytokine-induced killer (CIK) cells, natural killer (NK) cells and chimeric antigen receptor (CAR) T-cells, are discussed. EXPERT OPINION The cellular immunotherapy field has become a growing, exciting area that has generated much enthusiasm. There is evidence that anticancer immunotherapy with UCB-derived products is feasible and safe; however, considering the limited number of clinical trials using UCB-derived products, further studies are warranted to facilitate translation into clinical practice.
Collapse
Affiliation(s)
- Katalin Balassa
- a Department of Clinical Haematology, Cancer and Haematology Centre , Oxford University Hospitals NHS Foundation Trust, Churchill Hospital , Oxford , UK.,b NHS Blood and Transplant , John Radcliffe Hospital , Oxford , UK
| | - Vanderson Rocha
- a Department of Clinical Haematology, Cancer and Haematology Centre , Oxford University Hospitals NHS Foundation Trust, Churchill Hospital , Oxford , UK.,b NHS Blood and Transplant , John Radcliffe Hospital , Oxford , UK.,c Department of Haematology , University of Sao Paulo , Sao Paulo , Brazil
| |
Collapse
|
32
|
Zhang Y, Qi Y, Wang A, Ma B, Fu X, Zhao L, Gao Q. Clinical effects of autologous cytokine-induced killer cell-based immunotherapy in the treatment of endometrial cancer: a case report and literature review. Onco Targets Ther 2017; 10:4687-4690. [PMID: 29026316 PMCID: PMC5626382 DOI: 10.2147/ott.s147714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endometrial cancer is the most prevalent gynecological malignancy in the USA, and its treatment involves surgery, chemotherapy, and radiotherapy. Cytokine-induced killer (CIK) cell-based treatments have shown antitumor activity against several solid tumors. However, to the best of our knowledge, there are no reports yet of CIK immunotherapy in the treatment of endometrial cancer, and consequently, little is known about its efficacy and safety. Here, we report a case of an endometrial cancer patient receiving a combination treatment with CIK cells immunotherapy and chemotherapy. Assessment for clinical features was carried out after every two cycles of CIK immunotherapy and chemotherapy. No severe toxicity was observed after infusion of CIK cells. After 4 cycles of treatment, the patient achieved complete response and showed elevated Karnofsky Performance Status scores with an overall survival time of 13.6 months. The combination therapy improved the quality of life and prolonged patient survival time, which suggested that CIK cell therapy might be a potentially beneficial option for endometrial cancer.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Biotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| | - Yalong Qi
- Department of Biotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| | - Axiang Wang
- Department of Biotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| | - Baozhen Ma
- Department of Biotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| | - Xiaomin Fu
- Department of Biotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| | - Lingdi Zhao
- Department of Biotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| | - Quanli Gao
- Department of Biotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
33
|
Xie X, Zhou Y, Wang X, Guo J, Li J, Fan H, Dou J, Shen B, Zhou C. Enhanced antitumor activity of gemcitabine by polysaccharide-induced NK cell activation and immune cytotoxicity reduction in vitro/vivo. Carbohydr Polym 2017; 173:360-371. [PMID: 28732877 DOI: 10.1016/j.carbpol.2017.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/15/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022]
Abstract
The polysaccharide SEP has been reported to activate NK and T cells via TLR2/4. Here, the combination of gemcitabine (GEM) and SEP against HepG-2 was investigated. SEP apparently enhanced antitumor activity of gemcitabine against liver cancer through stimulating NKG2D and DAP10/Akt pathway to activate NK cells. The NKG2D upregulation could improve the sensitivity of NK-92 cells targeting to its ligand MICA expressed on HepG-2 cells. Meanwhile, GEM up-regulated MICA expression and attenuated soluble MICA secretion through inhibiting ADAM10 expression, which in turn enhanced the cytotoxicity of NK-92 cells against cancer cells. SEP remarkably enhanced GEM antitumor activity with an inhibitory rate of 79.1% in an H22-bearing mouse model. Moreover, SEP reversed atrophy and apoptosis caused by GEM in both spleen and bone marrow through suppressing ROS secretion in vivo. The data indicated that the combination of SEP and GEM is a potential chemo-immunotherapy strategy for liver cancer treatment clinically.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Yiran Zhou
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China
| | - Xue Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Jian Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Jingwen Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Hongye Fan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China
| | - Baiyong Shen
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China.
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
34
|
Cappuzzello E, Sommaggio R, Zanovello P, Rosato A. Cytokines for the induction of antitumor effectors: The paradigm of Cytokine-Induced Killer (CIK) cells. Cytokine Growth Factor Rev 2017. [PMID: 28629761 DOI: 10.1016/j.cytogfr.2017.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cytokine-Induced killer (CIK) cells are raising growing interest in cellular antitumor therapy, as they can be easily expanded with a straightforward and inexpensive protocol, and are safe requiring only GMP-grade cytokines to obtain very high amounts of cytotoxic cells. CIK cells do not need antigen-specific stimuli to be activated and proliferate, as they recognize and destroy tumor cells in an HLA-independent fashion through the engagement of NKG2D. In several preclinical studies and clinical trials, CIK cells showed a reduced alloreactivity compared to conventional T cells, even when challenged across HLA-barriers; only in a few patients, a mild GVHD occurred after treatment with allogeneic CIK cells. Additionally, their antitumor activity can be redirected and further improved with chimeric antigen receptors, clinical-grade monoclonal antibodies or immune checkpoint inhibitors. The evidence obtained from a growing body of literature support CIK cells as a very promising cell population for adoptive immunotherapy. In this review, all these aspects will be addressed with a particular emphasis on the role of the cytokines involved in CIK cell generation, expansion and functionalization.
Collapse
Affiliation(s)
- Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy
| | - Roberta Sommaggio
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy
| | - Paola Zanovello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy; Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, Padua, Italy; Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
35
|
Liu J, Wang L, Wang Y, Zhang W, Cao Y. Phenotypic characterization and anticancer capacity of CD8+ cytokine-induced killer cells after antigen-induced expansion. PLoS One 2017; 12:e0175704. [PMID: 28426690 PMCID: PMC5398541 DOI: 10.1371/journal.pone.0175704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/30/2017] [Indexed: 01/12/2023] Open
Abstract
Cytokine-induced killer cells (CIK) have been used in clinic for adoptive immunotherapy in a variety of malignant tumors and have improved the prognosis of cancer patients. However, there are individual differences in the CIK cell preparations including the obvious differences in the ratio of effector CIK cells among different cancer patients. Infusion of such heterogeneous immune cell preparation is an important factor that would affect the therapeutic efficacy. We report here the enrichment and expansion of CD8+ cells from CIK cells cultured for one week using magnetic activated cell sorting (MACS). These enriched CD8+ CIK cells expressed T cell marker CD3 and antigen recognition receptor NKG2D. Phenotypic analysis showed that CD8+ CIK cells contained 32.4% of CD3+ CD56+ natural killer (NK)-like T cells, 23.6% of CD45RO+ CD28+, and 50.5% of CD45RA+ CD27+ memory T cells. In vitro cytotoxic activity assay demonstrated that the enriched CD8+ CIK cells had significant cytotoxic activity against K562 cells and five ovarian cancer cell lines. Intriguingly, CD8+ CIK cells had strong cytotoxic activity against OVCAR3 cells that has weak binding capability to NKG2D. Flow cytometry and quantitative RT-PCR analysis revealed that OVCAR3 cells expressed HLA-I and OCT4 and Sox2, suggesting that CD8+ CIK cells recognize surface antigen via specific T cell receptor and effectively kill the target cells. The results suggest that transplantation of such in vitro enriched and expanded OCT4-specific CD8+ CIK cells may improve the specific immune defense mechanism against cancer stem cells, providing a novel avenue of cancer stem cell targeted immunotherapy for clinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jianhua Liu
- Department of Plastic Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu Wang
- Department of Plastic Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaoling Wang
- Department of Plastic Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjie Zhang
- Department of Plastic Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail: (YC); (WZ)
| | - Yilin Cao
- Department of Plastic Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail: (YC); (WZ)
| |
Collapse
|
36
|
Jelenčić V, Lenartić M, Wensveen FM, Polić B. NKG2D: A versatile player in the immune system. Immunol Lett 2017; 189:48-53. [PMID: 28414183 DOI: 10.1016/j.imlet.2017.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
NKG2D is known as a potent activating receptor of the immune system. It is expressed on a multitude of immune cells, including NK cells and different subsets of T cells. NKG2D recognizes various MHC I-like ligands that are induced on target cells exposed to stressors such as viral infection, DNA damage and oncological transformation. NKG2D drives or facilitates cytotoxic and cytokine responses towards cells expressing its ligands to eliminate the threat. Therefore, NKG2D is usually classified as a sensor that translates cellular stress into activation signals for immune cells. However, more recently it has become evident that NKG2D plays a role beyond direct killing of target cells. Lack of NKG2D affects development of NK cells in the bone marrow, resulting in hyperreactive NK cells. NKG2D deficiency on CD8 T cells affects the ability of effector cells to produce cytokines in response to T cell receptor engagement and reduces their capacity to establish immunological memory. Although NKG2D is not expressed on B cells subsets, lack of this receptor in hematopoietic precursors affects B cell development. Homing of mature B2 cells is altered in NKG2D-deficient mice and they have a strong reduction in peripheral B1a cell numbers, resulting in increased susceptibility to bacterial infections. The exact molecular mechanisms via which NKG2D mediates these versatile functions is still being explored, but appears to depend on the control of activation thresholds, either in hematopoietic precursors or mature immune cell subsets. In this review, we will elaborate on the underappreciated developmental and regulatory roles of NKG2D.
Collapse
Affiliation(s)
- Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Department of Experimental Immunology, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
37
|
Guo Q, Zhu D, Bu X, Wei X, Li C, Gao D, Wei X, Ma X, Zhao P. Efficient killing of radioresistant breast cancer cells by cytokine-induced killer cells. Tumour Biol 2017; 39:1010428317695961. [PMID: 28349820 DOI: 10.1177/1010428317695961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recurrence of breast cancer after radiotherapy may be partly explained by the presence of radioresistant cells. Thus, it would be desirable to develop an effective therapy against radioresistant cells. In this study, we demonstrated the intense antitumor activity of cytokine-induced killer cells against MCF-7 and radioresistant MCF-7 cells, as revealed by cytokine-induced killer-mediated cytotoxicity, tumor cell proliferation, and tumor invasion. Radioresistant MCF-7 cells were more susceptible to cytokine-induced killer cell killing. The stronger cytotoxicity of cytokine-induced killer cells against radioresistant MCF-7 cells was dependent on the expression of major histocompatibility complex class I polypeptide-related sequence A/B on radioresistant MCF-7 cells after exposure of cytokine-induced killer cells to sensitized targets. In addition, we demonstrated that cytokine-induced killer cell treatment sensitized breast cancer cells to chemotherapy via the downregulation of TK1, TYMS, and MDR1. These results indicate that cytokine-induced killer cell treatment in combination with radiotherapy and/or chemotherapy may induce synergistic antitumor activities and represent a novel strategy for breast cancer.
Collapse
Affiliation(s)
- Qingming Guo
- 1 Biotherapy Center, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Danni Zhu
- 1 Biotherapy Center, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Xiaocui Bu
- 2 The Affiliated Cardiovascular Hospital of Qingdao University Medical College, Qingdao, China
| | - Xiaofang Wei
- 1 Biotherapy Center, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Changyou Li
- 1 Biotherapy Center, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Daiqing Gao
- 1 Biotherapy Center, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Xiaoqiang Wei
- 3 Department of Gynaecology, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Xuezhen Ma
- 4 Department of Oncology, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Peng Zhao
- 1 Biotherapy Center, Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| |
Collapse
|
38
|
Kieckens E, Rybarczyk J, Li RW, Vanrompay D, Cox E. Potential immunosuppressive effects of Escherichia coli O157:H7 experimental infection on the bovine host. BMC Genomics 2016; 17:1049. [PMID: 28003017 PMCID: PMC5178093 DOI: 10.1186/s12864-016-3374-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Enterohaemorrhagic Escherichia coli (EHEC), like E. coli O157:H7 are frequently detected in bovine faecal samples at slaughter. Cattle do not show clinical symptoms upon infection, but for humans the consequences after consuming contaminated beef can be severe. The immune response against EHEC in cattle cannot always clear the infection as persistent colonization and shedding in infected animals over a period of months often occurs. In previous infection trials, we observed a primary immune response after infection which was unable to protect cattle from re-infection. These results may reflect a suppression of certain immune pathways, making cattle more prone to persistent colonization after re-infection. To test this, RNA-Seq was used for transcriptome analysis of recto-anal junction tissue and ileal Peyer's patches in nine Holstein-Friesian calves in response to a primary and secondary Escherichia coli O157:H7 infection with the Shiga toxin (Stx) negative NCTC12900 strain. Non-infected calves served as controls. RESULTS In tissue of the recto-anal junction, only 15 genes were found to be significantly affected by a first infection compared to 1159 genes in the ileal Peyer's patches. Whereas, re-infection significantly changed the expression of 10 and 17 genes in the recto-anal junction tissue and the Peyer's patches, respectively. A significant downregulation of 69 immunostimulatory genes and a significant upregulation of seven immune suppressing genes was observed. CONCLUSIONS Although the recto-anal junction is a major site of colonization, this area does not seem to be modulated upon infection to the same extent as ileal Peyer's patches as the changes in gene expression were remarkably higher in the ileal Peyer's patches than in the recto-anal junction during a primary but not a secondary infection. We can conclude that the main effect on the transcriptome was immunosuppression by E. coli O157:H7 (Stx-) due to an upregulation of immune suppressive effects (7/12 genes) or a downregulation of immunostimulatory effects (69/94 genes) in the ileal Peyer's patches. These data might indicate that a primary infection promotes a re-infection with EHEC by suppressing the immune function.
Collapse
Affiliation(s)
- E. Kieckens
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - J. Rybarczyk
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - R. W. Li
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, MD USA
| | - D. Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - E. Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
39
|
Maeda T, Nagano S, Ichise H, Kataoka K, Yamada D, Ogawa S, Koseki H, Kitawaki T, Kadowaki N, Takaori-Kondo A, Masuda K, Kawamoto H. Regeneration of CD8αβ T Cells from T-cell-Derived iPSC Imparts Potent Tumor Antigen-Specific Cytotoxicity. Cancer Res 2016; 76:6839-6850. [PMID: 27872100 DOI: 10.1158/0008-5472.can-16-1149] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/30/2016] [Accepted: 09/17/2016] [Indexed: 11/16/2022]
Abstract
Although adoptive transfer of cytotoxic T lymphocytes (CTL) offer a promising cancer therapeutic direction, the generation of antigen-specific CTL from patients has faced difficulty in efficient expansion in ex vivo culture. To resolve this issue, several groups have proposed that induced pluripotent stem cell technology be applied for the expansion of antigen-specific CTL, which retain expression of the same T-cell receptor as original CTL. However, in these previous studies, the regenerated CTL are mostly of the CD8αα+ innate type and have less antigen-specific cytotoxic activity than primary CTL. Here we report that, by stimulating purified iPSC-derived CD4/CD8 double-positive cells with anti-CD3 antibody, T cells expressing CD8αβ were generated and exhibited improved antigen-specific cytotoxicity compared with CD8αα+ CTL. Failure of CD8αβ T-cell production using the previous method was found to be due to killing of double-positive cells by the double-negative cells in the mixed cultures. We found that WT1 tumor antigen-specific CTL regenerated by this method prolonged the survival of mice bearing WT1-expressing leukemic cells. Implementation of our methods may offer a useful clinical tool. Cancer Res; 76(23); 6839-50. ©2016 AACR.
Collapse
Affiliation(s)
- Takuya Maeda
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiji Nagano
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Ichise
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Yamada
- Laboratory for Developmental Genetics, Riken Center for Integrative Medical Science (IMS), Yokohama, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, Riken Center for Integrative Medical Science (IMS), Yokohama, Japan
| | - Toshio Kitawaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norimitsu Kadowaki
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculity of Medicine, Kagawa University, Kagawa, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kyoko Masuda
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
40
|
Tumor MICA status predicts the efficacy of immunotherapy with cytokine-induced killer cells for patients with gastric cancer. Immunol Res 2016; 64:251-9. [PMID: 26607264 DOI: 10.1007/s12026-015-8743-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this study, we determine the relationship between the expression of major histocompatibility complex class I chain-related gene A (MICA) in gastric cancer tumors after D2 gastrectomy and the clinical outcome of a CIK-containing adjuvant therapy. Ninety-five consecutive patients with gastric cancer after D2 gastrectomy who received adjuvant chemotherapy combined with CIK cell therapy were enrolled. The MICA expression of their tumors was determined by immunohistochemistry (IHC). High expression of MICA protein was documented by IHC in 38 of 95 tumor samples (40.0 %). The MICA status was significantly associated with the age and stage, p = 0.008 and 0.023, respectively. Analysis of NKG2D on in vitro expanded CIK cells showed that the percentages of NKG2D+ in CD3+/CD56+, CD3-/CD56+, and CD3+/CD8+ cells populations were 97.2 ± 1.4, 97.9 ± 1.8, and 95.6 ± 2.1 %, respectively. For patient with high MICA-expressing tumors, the median DFS and OS were longer than for the patients with tumors with low expression of MICA; 46.0 versus 41.0 months (p = 0.027), and 48.0 versus 42.0 months (p = 0.031), respectively. In a multivariate analysis, stage and MICA expression were independent prognostic factors for DFS and OS. Our findings show that adjuvant chemotherapy plus CIK therapy treatment is a promising modality for treating gastric cancer patients after D2 gastrectomy. Especially, those who have tumors with high expression of MICA were more likely to benefit from such a treatment strategy. Subsequent studies in clinical trial cohorts will be required to confirm the clinical utility of these markers.
Collapse
|
41
|
Wei F, Rong XX, Xie RY, Jia LT, Wang HY, Qin YJ, Chen L, Shen HF, Lin XL, Yang J, Yang S, Hao WC, Chen Y, Xiao SJ, Zhou HR, Lin TY, Chen YS, Sun Y, Yao KT, Xiao D. Cytokine-induced killer cells efficiently kill stem-like cancer cells of nasopharyngeal carcinoma via the NKG2D-ligands recognition. Oncotarget 2016; 6:35023-39. [PMID: 26418951 PMCID: PMC4741506 DOI: 10.18632/oncotarget.5280] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be the root cause for cancer treatment failure. Thus, there remains an urgent need for more potent and safer therapies against CSCs for curing cancer. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against putative CSCs of nasopharyngeal carcinoma (NPC) was fully evaluated in vitro and in vivo. To visualize putative CSCs in vitro by fluorescence imaging, and image and quantify putative CSCs in tumor xenograft-bearing mice by in vivo bioluminescence imaging, NPC cells were engineered with CSC detector vector encoding GFP and luciferase (Luc) under control of Nanog promoter. Our study reported in vitro intense tumor-killing activity of CIK cells against putative CSCs of NPC, as revealed by percentage analysis of side population cells, tumorsphere formation assay and Nanog-promoter-GFP-Luc reporter gene strategy plus time-lapse recording. Additionally, time-lapse imaging firstly illustrated that GFP-labeled or PKH26-labeled putative CSCs or tumorspheres were usually attacked simultaneously by many CIK cells and finally killed by CIK cells, suggesting the necessity of achieving sufficient effector-to-target ratios. We firstly confirmed that NKG2D blockade by anti-NKG2D antibody significantly but partially abrogated CIK cell-mediated cytolysis against putative CSCs. More importantly, intravenous infusion of CIK cells significantly delayed tumor growth in NOD/SCID mice, accompanied by a remarkable reduction in putative CSC number monitored by whole-body bioluminescence imaging. Taken together, our findings suggest that CIK cells demonstrate the intense tumor-killing activity against putative CSCs of NPC, at least in part, by NKG2D-ligands recognition. These results indicate that CIK cell-based therapeutic strategy against CSCs presents a promising and safe approach for cancer treatment.
Collapse
Affiliation(s)
- Fang Wei
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiao-Xiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Li-Ting Jia
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Hui-Yan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Chao Hao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Hui-Rong Zhou
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Tao-Yan Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Shuang Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kai-Tai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
42
|
Isernhagen A, Malzahn D, Viktorova E, Elsner L, Monecke S, von Bonin F, Kilisch M, Wermuth JM, Walther N, Balavarca Y, Stahl-Hennig C, Engelke M, Walter L, Bickeböller H, Kube D, Wulf G, Dressel R. The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation. EMBO Mol Med 2016; 7:1480-502. [PMID: 26483398 PMCID: PMC4644379 DOI: 10.15252/emmm.201505246] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The MHC class I chain-related molecule A (MICA) is a highly polymorphic ligand for the activating natural killer (NK)-cell receptor NKG2D. A single nucleotide polymorphism causes a valine to methionine exchange at position 129. Presence of a MICA-129Met allele in patients (n = 452) undergoing hematopoietic stem cell transplantation (HSCT) increased the chance of overall survival (hazard ratio [HR] = 0.77, P = 0.0445) and reduced the risk to die due to acute graft-versus-host disease (aGVHD) (odds ratio [OR] = 0.57, P = 0.0400) although homozygous carriers had an increased risk to experience this complication (OR = 1.92, P = 0.0371). Overall survival of MICA-129Val/Val genotype carriers was improved when treated with anti-thymocyte globulin (HR = 0.54, P = 0.0166). Functionally, the MICA-129Met isoform was characterized by stronger NKG2D signaling, triggering more NK-cell cytotoxicity and interferon-γ release, and faster co-stimulation of CD8+ T cells. The MICA-129Met variant also induced a faster and stronger down-regulation of NKG2D on NK and CD8+ T cells than the MICA-129Val isoform. The reduced cell surface expression of NKG2D in response to engagement by MICA-129Met variants appeared to reduce the severity of aGVHD.
Collapse
Affiliation(s)
- Antje Isernhagen
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Dörthe Malzahn
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Elena Viktorova
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Leslie Elsner
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Monecke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Frederike von Bonin
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Kilisch
- Institute of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Janne Marieke Wermuth
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Neele Walther
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Yesilda Balavarca
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Michael Engelke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Heike Bickeböller
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dieter Kube
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerald Wulf
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
43
|
Chan WC, Linn YC. A comparison between cytokine- and bead-stimulated polyclonal T cells: the superiority of each and their possible complementary role. Cytotechnology 2016; 68:735-48. [PMID: 25481728 PMCID: PMC4960124 DOI: 10.1007/s10616-014-9825-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/17/2014] [Indexed: 01/13/2023] Open
Abstract
Cytokine-induced killer (CIK) cells and T cells expanded by co-stimulation with beads presenting anti-CD3 and -CD28 antibodies are both polyclonal T cells under intensive laboratory and clinical studies, but there has not been any direct comparison between both. We compared the expansion, memory T cell subsets and cytotoxicity for T cells expanded in parallel by the two methods. Bead-stimulated T cells showed superior expansion as compared to CIK cells on D14 of culture. Bead-stimulated T cells consisted of a significantly higher CD4(+) subset and significantly lower CD8(+) subset as compared to CIK cells, as well as a higher proportion of less terminally differentiated T cells and a higher proportion of homing molecules. On the other hand, CIK cells exhibited significantly superior cytotoxicity against two myelomonocytic leukemia cell lines (THP-1 and U937) and two RCC cell lines (786.0 and CaKi-2). The cytotoxicity on D14 against THP-1 was 58.1 % for CIK cells and 8.3 % for bead-stimulated T cells at E:T of 10:1 (p < 0.01). Cytotoxicity correlated positively with the proportion of the CD8 subset in the culture and was independent of NKG2D recognition of susceptible targets. Polyclonal T cells expanded by different methods exhibit different characteristics which may define the specific role of each in different clinical scenario. We postulate that the more potent CIK cells may offer short term benefit while bead-stimulated T cells may offer a more sustained immune response.
Collapse
Affiliation(s)
- Weng-Chee Chan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yeh-Ching Linn
- Department of Haematology, Singapore General Hospital, Academia, Level 3, 20, College Road, Singapore, 169856, Singapore.
| |
Collapse
|
44
|
Cappuzzello E, Tosi A, Zanovello P, Sommaggio R, Rosato A. Retargeting cytokine-induced killer cell activity by CD16 engagement with clinical-grade antibodies. Oncoimmunology 2016; 5:e1199311. [PMID: 27622068 PMCID: PMC5007963 DOI: 10.1080/2162402x.2016.1199311] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 02/09/2023] Open
Abstract
Cytokine-induced Killer (CIK) cells are a heterogeneous population of ex vivo expanded T lymphocytes capable of MHC-unrestricted antitumor activity, which share phenotypic and functional features with both NK and T cells. Preclinical data and initial clinical studies demonstrated their high tolerability in vivo, supporting CIK cells as a promising cell population for adoptive cell immunotherapy. In this study, we report for the first time that CIK cells display a donor-dependent expression of CD16, which can be engaged by trastuzumab or cetuximab to exert a potent antibody-dependent cell-mediated cytotoxicity (ADCC) against ovarian and breast cancer cell lines, leading to an increased lytic activity in vitro, and an enhanced therapeutic efficacy in vivo. Thus, an efficient tumor antigen-specific retargeting can be achieved by a combination therapy with clinical-grade monoclonal antibodies already widely used in cancer therapy, and CIK cell populations that are easily expandable in very large numbers, inexpensive, safe and do not require genetic manipulations. Overall, these data provide a new therapeutic strategy for the treatment of Her2 and EGFR expressing tumors by adoptive cell therapy, which could find wide implementation and application, and could also be expanded to the use of additional therapeutic antibodies.
Collapse
Affiliation(s)
- Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova , Padua, Italy
| | - Anna Tosi
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova , Padua, Italy
| | - Paola Zanovello
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padua, Italy; Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roberta Sommaggio
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova , Padua, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padua, Italy; Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
45
|
Richard A, Corvol JC, Debs R, Reach P, Tahiri K, Carpentier W, Gueguen J, Guillemot V, Labeyrie C, Adams D, Viala K, Cohen Aubart F. Transcriptome Analysis of Peripheral Blood in Chronic Inflammatory Demyelinating Polyradiculoneuropathy Patients Identifies TNFR1 and TLR Pathways in the IVIg Response. Medicine (Baltimore) 2016; 95:e3370. [PMID: 27175635 PMCID: PMC4902477 DOI: 10.1097/md.0000000000003370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We have studied the response to intravenous immunoglobulins (IVIg) by a transcriptomic approach in 11 chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) patients (CIDP duration = 6 [0.83-6.5] years). RNA was extracted from cells in whole blood collected before and 3 weeks after IVIg treatment, and hybridized on Illumina chips. After RNA quality controls, gene expression was analyzed using statistical tests fitted for microarrays (R software, limma package), and a pathway analysis was performed using DAVID software. We identified 52 genes with expression that varied significantly after IVIg (fold change [FC] > 1.2, P < 0.001, false discovery rate [FDR] <0.05). Among these 52 genes, 7 were related to immunity, 3 were related to the tumor necrosis factor (TNF)-α receptor 1 (TNFR1) pathway (inhibitor of caspase-activated DNase (ICAD): FC = 1.8, P = 1.7E-7, FDR = 0.004; p21 protein-activated kinase 2 [PAK2]: FC = 1.66, P = 2.6E-5, FDR = 0.03; TNF-α-induced protein 8-like protein 1 [TNFAIP8L1]: P = 1.00E-05, FDR = 0.026), and 2 were related to Toll-like receptors (TLRs), especially TLRs 7 and 9, and were implicated in autoimmunity. These genes were UNC93B1 (FC = 1.6, P = 2E-5, FDR = 0.03), which transports TLRs 7 and 9 to the endolysosomes, and RNF216 (FC = 1.5, P = 1E-05, FDR = 0.03), which promotes TLR 9 degradation. Pathway analysis showed that the TNFR1 pathway was significantly lessened by IVIg (enrichment score = 24, Fischer exact test = 0.003). TNF-α gene expression was higher in responder patients than in nonresponders; however, it decreased after IVIg in responders (P = 0.04), but remained stable in nonresponders. Our data suggest the actions of IVIg on the TNFR1 pathway and an original mechanism involving innate immunity through TLRs in CIDP pathophysiology and the response to IVIg. We conclude that responder patients have stronger inflammatory activity that is lessened by IVIg.
Collapse
Affiliation(s)
- Alexandra Richard
- From the Sorbonne Universités (AR, J-CC, KT), UPMC Univ Paris 06, INSERM UMRS_1127, CIC_1422, CNRS UMR_7225, AP-HP, and ICM, Hôpital Pitié-Salpêtrière, Département des maladies du système nerveux; Hôpital Pitié Salpêtrière (RD, PR, KV), Département de Neurophysiologie Clinique; Plateforme Post-génomique P3S (WC), UPMC, Site Pitié Salpêtrière; IHU-A-ICM Bioinformatics/Biostatistics Core Facility (JG, VG), Paris; Hôpital de Bicêtre (CL, DA), Centre de Référence des Neuropathies Amyloïdes et autres Neuropathies Périphériques Rares, Le Kremlin-Bicêtre; and AP-HP, Hôpital Pitié Salpêtrière, Service de Médecine Interne, Institut E3M, Centre National de Référence Maladies auto-immunes Systémiques Rares, et Université Paris VI Pierre et Marie Curie, Sorbonnes Université, Paris, France (FCA)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhao D, Han X, Zheng X, Wang H, Yang Z, Liu D, Han K, Liu J, Wang X, Yang W, Dong Q, Yang S, Xia X, Tang L, He F. The Myeloid LSECtin Is a DAP12-Coupled Receptor That Is Crucial for Inflammatory Response Induced by Ebola Virus Glycoprotein. PLoS Pathog 2016; 12:e1005487. [PMID: 26943817 PMCID: PMC4778874 DOI: 10.1371/journal.ppat.1005487] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/11/2016] [Indexed: 01/06/2023] Open
Abstract
Fatal Ebola virus infection is characterized by a systemic inflammatory response similar to septic shock. Ebola glycoprotein (GP) is involved in this process through activating dendritic cells (DCs) and macrophages. However, the mechanism is unclear. Here, we showed that LSECtin (also known as CLEC4G) plays an important role in GP-mediated inflammatory responses in human DCs. Anti-LSECtin mAb engagement induced TNF-α and IL-6 production in DCs, whereas silencing of LSECtin abrogated this effect. Intriguingly, as a pathogen-derived ligand, Ebola GP could trigger TNF-α and IL-6 release by DCs through LSECtin. Mechanistic investigations revealed that LSECtin initiated signaling via association with a 12-kDa DNAX-activating protein (DAP12) and induced Syk activation. Mutation of key tyrosines in the DAP12 immunoreceptor tyrosine-based activation motif abrogated LSECtin-mediated signaling. Furthermore, Syk inhibitors significantly reduced the GP-triggered cytokine production in DCs. Therefore, our results demonstrate that LSECtin is required for the GP-induced inflammatory response, providing new insights into the EBOV-mediated inflammatory response.
Collapse
Affiliation(s)
- Dianyuan Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xintao Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui Province, China
| | - Xuexing Zheng
- Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, China
| | - Hualei Wang
- Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, China
| | - Zaopeng Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Di Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ke Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jing Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaowen Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenting Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qingyang Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Songtao Yang
- Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, China
| | - Xianzhu Xia
- Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, China
| | - Li Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui Province, China
- * E-mail: (LT); (FH)
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- College of Life Sciences, Peking University, Beijing, China
- Department of Biology Sciences and Biotechnology, Tsinghua University, Beijing, China
- * E-mail: (LT); (FH)
| |
Collapse
|
47
|
Rong XX, Wei F, Lin XL, Qin YJ, Chen L, Wang HY, Shen HF, Jia LT, Xie RY, Lin TY, Hao WC, Yang J, Yang S, Cheng YS, Huang WH, Li AM, Sun Y, Luo RC, Xiao D. Recognition and killing of cancer stem-like cell population in hepatocellular carcinoma cells by cytokine-induced killer cells via NKG2d-ligands recognition. Oncoimmunology 2015; 5:e1086060. [PMID: 27141341 PMCID: PMC4839362 DOI: 10.1080/2162402x.2015.1086060] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/16/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for more potent and safer approaches to eradicate cancer stem cells (CSCs) for curing cancer. In this study, we investigate cancer-killing activity (CKA) of cytokine-induced killer (CIK) cells against CSCs of hepatocellular carcinoma (HCC). To visualize CSCs in vitro by fluorescence imaging, and image and quantify CSCs in tumor xenograft-bearing mice by bioluminescence imaging, HCC cells were engineered with CSC detector vector encoding GFP and luciferase controlled by Nanog promoter. We found that CIK cells have a strong CKA in vitro against putative CSCs of HCC, as shown by tumorsphere formation and time-lapse imaging. Additionally, time-lapse recording firstly revealed that putative CSCs were attacked simultaneously by many CIK cells and finally eradicated by CIK cells, indicating the necessity of achieving sufficient effector-to-target ratios. We firstly illustrated that anti-NKG2D antibody blocking partially but significantly inhibited CKA of CIK cells against putative CSCs. More importantly, intravenous infusion of CIK cells remarkably delayed tumor growth in mice with a significant decrease in putative CSC number monitored by bioluminescence imaging. Taken together, these findings demonstrate CKA of CIK cells against putative CSCs of HCC, at least in part, by NKG2D-ligands recognition.
Collapse
Affiliation(s)
- Xiao-Xiang Rong
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, China; Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Wei
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Xiao-Lin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Yu-Juan Qin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Hui-Yan Wang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Hong-Fen Shen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Li-Ting Jia
- Department of Pathology, Guilin Medical College , Guilin, China
| | - Rao-Ying Xie
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Tao-Yan Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Wei-Chao Hao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Sheng Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Yu-Shuang Cheng
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Wen-Hua Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering , School of Basic Medical Science, Southern Medical University , Guangzhou, China
| | - Ai-Min Li
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital , Southern Medical University , Guangzhou, China
| | - Yan Sun
- Children's Hospital Boston, Harvard Medical School , Boston, MA, USA
| | - Rong-Cheng Luo
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital , Southern Medical University , Guangzhou, China
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China; Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Giraudo L, Gammaitoni L, Cangemi M, Rotolo R, Aglietta M, Sangiolo D. Cytokine-induced killer cells as immunotherapy for solid tumors: current evidence and perspectives. Immunotherapy 2015; 7:999-1010. [PMID: 26310715 DOI: 10.2217/imt.15.61] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are ex vivo expanded T lymphocytes endowed with potent MHC-independent antitumor activity. CIK cells are emerging as promising therapeutic approach in the field of cancer adoptive immunotherapy, with biologic features favoring their transferability into clinical applications. Aim of this review is to present the biologic characteristic of CIK cells, discussing the main preclinical findings and initial clinical applications in the field of solid tumors.
Collapse
Affiliation(s)
- Lidia Giraudo
- Department of Oncology, University of Torino, Turin, Italy.,Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Loretta Gammaitoni
- Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Michela Cangemi
- Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Ramona Rotolo
- Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Massimo Aglietta
- Department of Oncology, University of Torino, Turin, Italy.,Division & Laboratory of Medical Oncology, Candiolo Cancer Institute FPO- IRCCS, Candiolo, Turin, Italy
| | - Dario Sangiolo
- Department of Oncology, University of Torino, Turin, Italy.,Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| |
Collapse
|
49
|
Collery P, Mohsen A, Kermagoret A, Corre S, Bastian G, Tomas A, Wei M, Santoni F, Guerra N, Desmaële D, d’Angelo J. Antitumor activity of a rhenium (I)-diselenoether complex in experimental models of human breast cancer. Invest New Drugs 2015; 33:848-60. [PMID: 26108551 PMCID: PMC4491361 DOI: 10.1007/s10637-015-0265-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/17/2015] [Indexed: 12/24/2022]
Abstract
Rhenium (I)-diselenother (Re-diselenoether) is a water soluble metal-based compound, combining one atom of rhenium and two atoms of selenium. This compound has been reported to exhibit marked activities against several solid tumor cell lines. We now disclose an improved synthesis of this complex. The Re-diselenoether showed a potent inhibitory effect on MDA-MB231 cell division in vitro, which lasted when the complex was no longer present in the culture. Re-diselenoether induced a remarkable reduction of the volume of the primitive breast tumors and of the pulmonary metastases without clinical signs of toxicity, in mice-bearing a MDA-MB231 Luc+ tumor, orthotopically transplanted, after a daily oral administration at the dose of 10 mg/kg/d. Interestingly, an antagonism was observed when cisplatin was administered as a single i.p. injection 1 week after the end of the Re-diselenoether administration. In an effort to gain insight of the mechanisms of action of Re-diselenoether complex, interaction with 9-methylguanine as a nucleic acid base model was studied. We have shown that Re-diselenoether gave both mono- and bis-guanine Re adducts, the species assumed to be responsible for the DNA intrastrand lesions.
Collapse
Affiliation(s)
- Philippe Collery
- />Société de Coordination de Recherches Thérapeutiques, Algajola, France
| | - Ahmed Mohsen
- />Faculté de Pharmacie, Université Paris-Sud, Institut Galien, UMR CNRS 8612, Chatenay-Malabry, France
| | - Anthony Kermagoret
- />Faculté de Pharmacie, Université Paris-Sud, UMR CNRS 8076 BIOCIS, Chatenay-Malabry, France
| | - Samantha Corre
- />Department of Life Science, Imperial College of London, London, UK
| | - Gérard Bastian
- />Département de Pharmacologie, Centre Hospitalier Universitaire Pitié-Salpêtrière, Paris, France
| | - Alain Tomas
- />Laboratoire de Cristallographie et RMN, Faculté de Pharmacie, UMR CNRS 8015, Université Paris Descartes, Paris, France
| | - Ming Wei
- />Laboratoire Cellvax, Ecole Vétérinaire Nationale d’Alfort, Maisons Alfort, France
| | - François Santoni
- />Laboratoire de l’Office d’Equipement Hydraulique de Corse, Bastia, France
| | - Nadia Guerra
- />Department of Life Science, Imperial College of London, London, UK
| | - Didier Desmaële
- />Faculté de Pharmacie, Université Paris-Sud, Institut Galien, UMR CNRS 8612, Chatenay-Malabry, France
| | - Jean d’Angelo
- />Faculté de Pharmacie, Université Paris-Sud, UMR CNRS 8076 BIOCIS, Chatenay-Malabry, France
| |
Collapse
|
50
|
Zhang Y, Song Y, Gao Q. Increased survival time of a patient with metastatic malignant melanoma following immunotherapy: A case report and literature review. Oncol Lett 2015; 10:883-886. [PMID: 26622588 DOI: 10.3892/ol.2015.3296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 04/13/2015] [Indexed: 01/02/2023] Open
Abstract
Metastatic malignant melanoma is treated with chemotherapy and radiotherapy. A number of previous studies have indicated that cytokine-induced killer cells (CIK cells) are a heterogeneous cell population that express cluster of differentiation (CD)3 and CD56, in addition to the natural killer cell NKG2D activating receptor. CIK cells possess major histocompatibility complex-unrestricted cytotoxicity towards cancer, but not towards normal targets. The present study investigated whether the addition of CIK cells resulted in an improved therapeutic response in a patient with metastatic malignant melanoma. In the current case, a patient with metastatic malignant melanoma received CIK therapy, which resulted in a relatively long survival time of 28 months. To the best of our knowledge, there have been no previous studies reporting such positive effects in a patient who received CIK cell immunotherapy. Based on the findings of the present study, CIK cell therapy may be an option that results in a good prognosis in certain patients with metastatic malignant melanoma.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yongping Song
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Quanli Gao
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|