1
|
Vogel M, Engeroff P. A Comparison of Natural and Therapeutic Anti-IgE Antibodies. Antibodies (Basel) 2024; 13:58. [PMID: 39051334 PMCID: PMC11270207 DOI: 10.3390/antib13030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Immunoglobulin E (IgE) plays a critical role for the immune system, fighting against parasites, toxins, and cancer. However, when it reacts to allergens without proper regulation, it can cause allergic reactions, including anaphylaxis, through a process initiated by effector cells such as basophils and mast cells. These cells display IgE on their surface, bound to the high-affinity IgE receptor FcεRI. A cross-linking antigen then triggers degranulation and the release of inflammatory mediators from the cells. Therapeutic monoclonal anti-IgE antibodies such as omalizumab, disrupt this process and are used to manage IgE-related conditions such as severe allergic asthma and chronic spontaneous urticaria. Interestingly, naturally occurring anti-IgE autoantibodies circulate at surprisingly high levels in healthy humans and mice and may thus be instrumental in regulating IgE activity. Although many open questions remain, recent studies have shed new light on their role as IgE regulators and their mechanism of action. Here, we summarize the latest insights on natural anti-IgE autoantibodies, and we compare their functional features to therapeutic monoclonal anti-IgE autoantibodies.
Collapse
Affiliation(s)
- Monique Vogel
- Department of Rheumatology and Immunology, University Hosptial of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
| | - Paul Engeroff
- Department of Rheumatology and Immunology, University Hosptial of Bern, 3010 Bern, Switzerland;
- Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Bhowmik R, Shaharyar MA, Sarkar A, Mandal A, Anand K, Shabana H, Mitra A, Karmakar S. Immunopathogenesis of urticaria: a clinical perspective on histamine and cytokine involvement. Inflamm Res 2024; 73:877-896. [PMID: 38555555 DOI: 10.1007/s00011-024-01869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Urticaria is a clinical condition characterized by the appearance of wheals (hives), angioedema, or both. Over the last several decades, a better understanding of the mechanisms at play in the immunopathogenesis of urticaria has underscored the existence of numerous urticaria subtypes. Separating the different kinds of urticaria explicitly helps find the best detection method for the management of this skin disorder. Subtypes of urticaria also include both spontaneous and physical types. The conventional ones include spontaneous urticaria, constituting both acute and chronic urticaria. Therefore, a broad and effective therapy is essential for the diagnosis and treatment of urticaria. METHODS To understand the immunopathogenesis of urticaria, various databases, including PubMed, Scopus, and Web of Science, were used to retrieve original articles and reviews related to urticaria. While information on several clinical trials were obtained from clinicaltrials.gov database. RESULTS This article highlights the immunopathogenesis involved in the intricate interaction between cellular infiltration, immune reactions, coagulation cascades, and autoantibodies that underlie urticaria's pathophysiology. CONCLUSION The recent progress in understanding urticaria can help to understand the intricate characteristics in the immunopathogenesis of urticaria and could play a beneficial role in the management of urticaria.
Collapse
Affiliation(s)
- Rudranil Bhowmik
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Md Adil Shaharyar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Arnab Sarkar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Avishek Mandal
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Kumar Anand
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Humira Shabana
- Chaudhary Charan Singh University, Formerly, Meerut University, Meerut, Uttar Pradesh, India
| | - Achintya Mitra
- Regional Ayurveda Research Institute (RARI) CCRAS Under Ministry of AYUSH, Thapla, Ganiyadeoli, Ranikhet Almora, Uttarakhand, India
| | - Sanmoy Karmakar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
3
|
Kannen V, Grant DM, Matthews J. The mast cell-T lymphocyte axis impacts cancer: Friend or foe? Cancer Lett 2024; 588:216805. [PMID: 38462035 DOI: 10.1016/j.canlet.2024.216805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Crosstalk between mast cells (MCs) and T lymphocytes (TLs) releases specific signals that create an environment conducive to tumor development. Conversely, they can protect against cancer by targeting tumor cells for destruction. Although their role in immunity and cancer is complex, their potential in anticancer strategies is often underestimated. When peripheral MCs are activated, they can affect cancer development. Tumor-infiltrating TLs may malfunction and contribute to aggressive cancer and poor prognoses. One promising approach for cancer patients is TL-based immunotherapies. Recent reports suggest that MCs modulate TL activity in solid tumors and may be a potential therapeutic layer in multitargeting anticancer strategies. Pharmacologically modulating MC activity can enhance the anticancer cytotoxic TL response in tumors. By identifying tumor-specific targets, it has been possible to genetically alter patients' cells into fully humanized anticancer cellular therapies for autologous transplantation, including the engineering of TLs and MCs to target and kill cancer cells. Hence, recent scientific evidence provides a broader understanding of MC-TL activity in cancer.
Collapse
Affiliation(s)
- Vinicius Kannen
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Denis M Grant
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Matthews
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Zelante T, Paolicelli G, Fallarino F, Gargaro M, Vascelli G, De Zuani M, Fric J, Laznickova P, Kohoutkova MH, Macchiarulo A, Dolciami D, Pieraccini G, Gaetani L, Scalisi G, Trevisan C, Frossi B, Pucillo C, De Luca A, Nunzi E, Spaccapelo R, Pariano M, Borghi M, Boscaro F, Romoli R, Mancini A, Gentili L, Renga G, Costantini C, Puccetti M, Giovagnoli S, Ricci M, Antonini M, Calabresi P, Puccetti P, Di Filippo M, Romani L. A microbially produced AhR ligand promotes a Tph1-driven tolerogenic program in multiple sclerosis. Sci Rep 2024; 14:6651. [PMID: 38509264 PMCID: PMC10954611 DOI: 10.1038/s41598-024-57400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple sclerosis is a debilitating autoimmune disease, characterized by chronic inflammation of the central nervous system. While the significance of the gut microbiome on multiple sclerosis pathogenesis is established, the underlining mechanisms are unknown. We found that serum levels of the microbial postbiotic tryptophan metabolite indole-3-carboxaldehyde (3-IAld) inversely correlated with disease duration in multiple sclerosis patients. Much like the host-derived tryptophan derivative L-Kynurenine, 3-IAld would bind and activate the Aryl hydrocarbon Receptor (AhR), which, in turn, controls endogenous tryptophan catabolic pathways. As a result, in peripheral lymph nodes, microbial 3-IAld, affected mast-cell tryptophan metabolism, forcing mast cells to produce serotonin via Tph1. We thus propose a protective role for AhR-mast-cell activation driven by the microbiome, whereby natural metabolites or postbiotics will have a physiological role in immune homeostasis and may act as therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy.
- Interuniversity Consortium for Biotechnology, (CIB), 34149, Trieste, Italy.
| | - Giuseppe Paolicelli
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Gianluca Vascelli
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Marco De Zuani
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Fric
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 20, Prague, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petra Laznickova
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Marcela Hortova Kohoutkova
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Antonio Macchiarulo
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Daniela Dolciami
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Lorenzo Gaetani
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Giulia Scalisi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Caterina Trevisan
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Barbara Frossi
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Carlo Pucillo
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Antonella De Luca
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
- Interuniversity Consortium for Biotechnology, (CIB), 34149, Trieste, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Francesca Boscaro
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Riccardo Romoli
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Andrea Mancini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Lucia Gentili
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Martina Antonini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Paolo Calabresi
- Unità di Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| | - Massimiliano Di Filippo
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| |
Collapse
|
5
|
Sabato V, Beyens M, Toscano A, Van Gasse A, Ebo DG. Mast Cell-Targeting Therapies in Mast Cell Activation Syndromes. Curr Allergy Asthma Rep 2024; 24:63-71. [PMID: 38217824 DOI: 10.1007/s11882-023-01123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
PURPOSE OF REVIEW Provide an overview of the expanding landscape of mast cell (MC)-targeting treatments in mast cell activation syndromes (MCAS). RECENT FINDINGS Tyrosine-kinase inhibitors (TKIs) targeting wild-type and mutated KIT can efficiently induce MC depletion. Avapritinib and midostaurin can also temper IgE-mediated degranulation. Avapritinib has been recently approved by the FDA for the treatment of indolent systemic mastocytosis (ISM). Targeting activation pathways and inhibitory receptors is a promising therapeutic frontier. Recently, the anti Siglec-8 antibody lirentelimab showed promising results in ISM. MCAS is a heterogeneous disorder demanding a personalized therapeutic approach and, especially when presenting as anaphylaxis, has not been formally captured as outcome in prospective clinical trials with TKI. Long-term safety of TKI needs to be addressed. New drugs under investigation in diseases in which non-neoplastic MCs play a pivotal role can provide important inputs to identify new efficient and safe treatments for MCAS.
Collapse
Affiliation(s)
- Vito Sabato
- Department of Immunology, Allergology, Rheumatology, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken T5.9582 Universiteitsplein 1, 2610, Antwerp, Belgium
- Antwerp University Hospital, Edegem, Belgium
| | - Michiel Beyens
- Department of Immunology, Allergology, Rheumatology, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken T5.9582 Universiteitsplein 1, 2610, Antwerp, Belgium
- Antwerp University Hospital, Edegem, Belgium
| | - Alessandro Toscano
- Department of Immunology, Allergology, Rheumatology, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken T5.9582 Universiteitsplein 1, 2610, Antwerp, Belgium
- Antwerp University Hospital, Edegem, Belgium
| | - Athina Van Gasse
- Department of Paediatrics, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Didier G Ebo
- Department of Immunology, Allergology, Rheumatology, The Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken T5.9582 Universiteitsplein 1, 2610, Antwerp, Belgium.
- Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
6
|
Abbasi F, Shawrang P, Motamedi-Sedeh F, Sadeghi M. Effect of gamma-irradiated honey bee venom on gene expression of inflammatory and anti-inflammatory cytokines in mice. Int Immunopharmacol 2023; 118:110084. [PMID: 36996740 DOI: 10.1016/j.intimp.2023.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
In this study, the effect of gamma-irradiated honey bee venom (doses of 0, 2, 4, 6, and 8 kGy, volume of 0.1 ml and concentration of 0.2 mg/ml) was evaluated on the reduction of allergen compounds and the gene expression of inflammatory and anti-inflammatory cytokines in mice. Hence, edema activity induced by the bee venom irradiated at 4, 6, and 8 kGy was reduced, compared with the control group and that irradiated at 2 kGy. In contrast, the paw edema induced by the bee venom irradiated at 8 kGy increased, compared with 4 and 6 kGy. At all the time periods, there was a significant decrease in the gene expression of interferon gamma (IFN-γ), interleukin 6 (IL-6), and interleukin 10 (IL-10) in the bee venoms irradiated at 4, 6, and 8 kGy, compared with the control group and that irradiated at 2 kGy. In contrast, there was an increase in the gene expression of IFN-γ and IL-6 in the bee venom irradiated at 8 kGy, compared with those irradiated at 4 and 6 kGy. Therefore, gamma irradiation at 4 and 6 kGy reduced the gene expression of cytokines at each time period by decreasing the allergen compounds of honey bee venom.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran.
| | - Parvin Shawrang
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran.
| | - Farahnaz Motamedi-Sedeh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran.
| | - Maryam Sadeghi
- University of Tehran, College of Agriculture & Natural Resources, Karaj, Iran
| |
Collapse
|
7
|
Carpio-Escalona LV, González-de-Olano D. Immunological and Non-Immunological Risk Factors in Anaphylaxis. CURRENT TREATMENT OPTIONS IN ALLERGY 2022. [DOI: 10.1007/s40521-022-00319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Shi L, Liu C, Xiong H, Shi D. Elevation of IgE in patients with psoriasis: Is it a paradoxical phenomenon? Front Med (Lausanne) 2022; 9:1007892. [PMID: 36314037 PMCID: PMC9606585 DOI: 10.3389/fmed.2022.1007892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin E (IgE) elevation is a hallmark of allergic conditions such as atopic dermatitis (AD). The pathogenesis of AD is typically associated with high levels of IL-4 and IL-13 produced by activated T helper 2 (Th2) cells. Psoriasis, on the other hand, is an inflammatory skin disease mainly driven by Th17 cells and their related cytokines. Although the immunopathologic reactions and clinical manifestations are often easily distinguished in the two skin conditions, patients with psoriasis may sometimes exhibit AD-like manifestations, such as elevated IgE and persistent pruritic lesions. Given the fact that the effective T cells have great plasticity to re-differentiate in response to innate and environmental factors, this unusual skin condition could be a consequence of a cross-reaction between distinct arms of T-cell and humoral immunity. Here we review the literature concerning the roles of IgE in the development of AD and psoriasis, showing that elevated IgE seems to be an important indicator for this non-typical psoriasis.
Collapse
Affiliation(s)
- Leyao Shi
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China,The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Chen Liu
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Huabao Xiong
- Basic Medical School, Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China,Huabao Xiong
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China,Department of Dermatology, Jining No.1 People's Hospital, Jining, China,*Correspondence: Dongmei Shi
| |
Collapse
|
9
|
Combined IgE neutralization and Bifidobacterium longum supplementation reduces the allergic response in models of food allergy. Nat Commun 2022; 13:5669. [PMID: 36167830 PMCID: PMC9515155 DOI: 10.1038/s41467-022-33176-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
IgE is central to the development of allergic diseases, and its neutralization alleviates allergic symptoms. However, most of these antibodies are based on IgG1, which is associated with an increased risk of fragment crystallizable-mediated side effects. Moreover, omalizumab, an anti-IgE antibody approved for therapeutic use, has limited benefits for patients with high IgE levels. Here, we assess a fusion protein with extracellular domain of high affinity IgE receptor, FcεRIα, linked to a IgD/IgG4 hybrid Fc domain we term IgETRAP, to reduce the risk of IgG1 Fc-mediated side effects. IgETRAP shows enhanced IgE binding affinity compared to omalizumab. We also see an enhanced therapeutic effect of IgETRAP in food allergy models when combined with Bifidobacterium longum, which results in mast cell number and free IgE levels. The combination of IgETRAP and B. longum may therefore represent a potent treatment for allergic patients with high IgE levels. IgE is a critical component of the allergic response and therapeutic targeting can alleviate symptomology. Here the authors propose the combined use of Bifidobacterium longum and a FcεRIα extracellular domain linked to a IgD/IgG4 hybrid Fc domain fusion protein called IgETRAP and show reduction of mast cell and IgE levels in models of food allergy.
Collapse
|
10
|
Abstract
Urticaria is an inflammatory skin disorder that affects up to 20% of the world population at some point during their life. It presents with wheals, angioedema or both due to activation and degranulation of skin mast cells and the release of histamine and other mediators. Most cases of urticaria are acute urticaria, which lasts ≤6 weeks and can be associated with infections or intake of drugs or foods. Chronic urticaria (CU) is either spontaneous or inducible, lasts >6 weeks and persists for >1 year in most patients. CU greatly affects patient quality of life, and is linked to psychiatric comorbidities and high healthcare costs. In contrast to chronic spontaneous urticaria (CSU), chronic inducible urticaria (CIndU) has definite and subtype-specific triggers that induce signs and symptoms. The pathogenesis of CSU consists of several interlinked events involving autoantibodies, complement and coagulation. The diagnosis of urticaria is clinical, but several tests can be performed to exclude differential diagnoses and identify underlying causes in CSU or triggers in CIndU. Current urticaria treatment aims at complete response, with a stepwise approach using second-generation H1 antihistamines, omalizumab and cyclosporine. Novel treatment approaches centre on targeting mediators, signalling pathways and receptors of mast cells and other immune cells. Further research should focus on defining disease endotypes and their biomarkers, identifying new treatment targets and developing improved therapies.
Collapse
Affiliation(s)
- Pavel Kolkhir
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany.
| | - Ana M Giménez-Arnau
- Urticaria Center of Reference and Excellence (UCARE), Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Mediques, Universitat Autònoma, Barcelona, Spain
| | - Kanokvalai Kulthanan
- Urticaria Center of Reference and Excellence (UCARE), Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jonny Peter
- Urticaria Center of Reference and Excellence (UCARE), Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Urticaria Center of Reference and Excellence (UCARE), Allergy and Immunology Unit, University of Cape Town, Lung Institute, Cape Town, South Africa
| | - Martin Metz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Marcus Maurer
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany.
| |
Collapse
|
11
|
Semaphorin-3 Promotes Specific Immunotherapy Effects on Experimental Food Allergy. J Immunol Res 2022; 2022:5414993. [PMID: 35769512 PMCID: PMC9234049 DOI: 10.1155/2022/5414993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/30/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Sustaining higher frequency of mast cells in the allergic lesion site has been recognized. Factors causing high numbers of mast cells in the local tissues are not fully understood yet. RAS signaling plays a role in sustaining certain cell activities. This study is aimed at elucidating the role of RAS activation in the apoptosis resistance induction in mast cells and at employing semaphorin 3A to regulate RAS activities in sensitized mast cells and alleviating the allergic response in the intestine. A food allergy (FA) mouse model was developed. Mast cells were isolated from FA mouse intestinal tissues by flow cytometry. Mast cell apoptosis was assessed by staining with annexin V and propidium iodide. We found that aberrantly higher p21-activated kinase-1 (Pak1) expression in FA mast cells was associated with mast cell aggregation in the intestine. Sensitization increased Pak1 expression and apoptosis resistance in intestinal mast cells. RAS and Pak1 mutually potentiated each other in sensitized mast cells. Semaphorin 3A (sema3A) suppressed the Pak1 expression and RAS activation in mast cells. sema3A restored the apoptosis sensitivity in sensitized mast cells. Administration of sema3A potentiated allergen-specific immunotherapy in experimental FA. In conclusion, mast cells of FA mice showed higher Pak1 expression and high RAS activation status that contributed to apoptosis resistance in mast cells. Administration of sema3A restored the sensitivity to apoptosis inducers and promoted the therapeutic effects of specific immunotherapy on experimental FA.
Collapse
|
12
|
The Critical Role Played by Mitochondrial MITF Serine 73 Phosphorylation in Immunologically Activated Mast Cells. Cells 2022; 11:cells11030589. [PMID: 35159398 PMCID: PMC8834024 DOI: 10.3390/cells11030589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, growing evidence has indicated the pivotal role of mitochondria in mast cell immunological activation. We have previously reported a decrease in degranulation and cytokine secretion following the inhibition of pyruvate dehydrogenase (PDH) either by CPI-613 (PDH inhibitor/anti-cancer drug) or through its interaction with mitochondrial microphthalmia-associated transcription factor (MITF). In the present study, we further explored the role played by mitochondrial MITF in mast cell exocytosis using rat basophil leukemia cells [RBL], as well as mouse bone marrow-derived mast cells (BMMCs). Here, we report that mast cell degranulation, cytokine secretion and oxidative phosphorylation (OXPHOS) activities were associated with phosphorylation of Serine 73 of mitochondrial MITF, controlled by extracellular signals regulated by protein kinase (ERK1/2) activity. Also, we report here that decreased OXPHOS activity following ERK1/2 inhibition (U0126 treatment) during IgE-Ag activation was mediated by the dephosphorylation of Serine 73 mitochondrial MITF, which inhibited its association with PDH. This led to a reduction in mast cell reactivity. In addition, a phosphorylation-mimicking mitochondrial MITF-S73D positively regulated the mitochondrial activity, thereby supporting mast cell degranulation. Thus, the present research findings highlight the prominence of mitochondrial MITF Serine 73 phosphorylation in immunologically activated mast cells.
Collapse
|
13
|
Wang CJ, Cheng SL, Kuo SH. Asthma and COVID-19 Associations: Focus on IgE-Related Immune Pathology. Life (Basel) 2022; 12:life12020153. [PMID: 35207441 PMCID: PMC8874771 DOI: 10.3390/life12020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Management of patients with asthma during the coronavirus disease 2019 (COVID-19) pandemic is a concern, especially since asthma predisposes patients to respiratory problems. Interestingly, asthma characterized by type 2 inflammation, also known as T-helper type 2-high endotype, displays a cellular and molecular profile that may confer protective effects against COVID-19. The results of experimental and clinical studies have established the actions of immunoglobulin E (IgE) in inducing airway hyperreactivity and weakening an interferon-mediated antiviral response following respiratory viral infection. Robust evidence supports the beneficial effect of the anti-IgE biologic treatment omalizumab on reducing respiratory virus-induced asthma exacerbations and reducing the frequency, duration, and severity of respiratory viral illness in patients with asthma. Indeed, accumulating reports of patients with severe asthma treated with omalizumab during the pandemic have reassuringly shown that continuing omalizumab treatment during COVID-19 is safe, and in fact may help prevent the severe course of COVID-19. Accordingly, guidance issued by the Global Initiative for Asthma recommends that all patients with asthma continue taking their prescribed asthma medications, including biologic therapy, during the COVID-19 pandemic. The impact of biologic treatments on patients with asthma and COVID-19 will be better understood as more evidence emerges.
Collapse
Affiliation(s)
- Chung-Jen Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
| | - Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
- Department of Chemical Engineering and Materials Science, Yuab Ze University, Taoyuan City 32003, Taiwan
| | - Sow-Hsong Kuo
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 22056, Taiwan; (C.-J.W.); (S.-L.C.)
- Correspondence:
| |
Collapse
|
14
|
Ozpinar EW, Frey AL, Cruse G, Freytes DO. Mast Cell-Biomaterial Interactions and Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:590-603. [PMID: 33164714 PMCID: PMC8739845 DOI: 10.1089/ten.teb.2020.0275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Tissue engineers often use biomaterials to provide structural support along with mechanical and chemical signals to modulate the wound healing process. Biomaterials that are implanted into the body interact with a heterogeneous and dynamic inflammatory environment that is present at the site of injury. Whether synthetically derived, naturally derived, or a combination of both, it is important to assess biomaterials for their ability to modulate inflammation to understand their potential clinical use. One important, but underexplored cell in the context of biomaterials is the mast cell (MC). MCs are granulocytic leukocytes that engage in a variety of events in both the innate and adaptive immune systems. Although highly recognized for their roles in allergic reactions, MCs play an important role in wound healing by recognizing antigens through pattern recognition receptors and the high-affinity immunoglobulin E receptor (FceRI) and releasing granules that affect cell recruitment, fibrosis, extracellular matrix deposition, angiogenesis, and vasculogenesis. MCs also mediate the foreign body response, contributing to the incorporation or rejection of implants. Studies of MC-biomaterial interactions can aid in the elucidation of MC roles during the host tissue response and tissue repair. This review is designed for those in the tissue engineering and biomaterial fields who are interested in exploring the role MCs may play in wound-biomaterial interactions and wound healing. With this review, we hope to inspire more research in the MC-biomaterial space to accelerate the design and construction of optimized implants. Impact statement Mast cells (MCs) are highly specialized inflammatory cells that have crucial, but not fully understood, roles in wound healing and tissue repair. Upon stimulation, they recognize foreign antigens and release granules that help orchestrate the inflammatory response after tissue damage or biomaterial implantation. This review summarizes the current use of MCs in biomaterial research along with literature from the past decade focusing on MC interactions with materials used for tissue repair and regeneration. Studying MC-biomaterial interactions will help (i) further understand the process of inflammation and (ii) design biomaterials and tissue-engineered constructs for optimal repair and regeneration.
Collapse
Affiliation(s)
- Emily W Ozpinar
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Ariana L Frey
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
| | - Glenn Cruse
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Donald O Freytes
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
15
|
Ogi K, Takabayashi T, Tomita K, Sakashita M, Morikawa T, Ninomiya T, Okamoto M, Narita N, Fujieda S. ORMDL3 overexpression facilitates FcεRI-mediated transcription of proinflammatory cytokines and thapsigargin-mediated PERK phosphorylation in RBL-2H3 cells. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1394-1405. [PMID: 34288557 PMCID: PMC8589398 DOI: 10.1002/iid3.489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022]
Abstract
Introduction The chromosomal region 17q21 harbors the human orosomucoid‐like 3 (ORMDL3) gene and has been linked to asthma and other inflammatory diseases. ORMDL3 is involved in the unfolded protein response (UPR), lipid metabolism, and inflammatory reactions. We investigated the effects of ORMDL3 overexpression in RBL‐2H3 cells to determine the contribution of ORMDL3 to inflammatory disease development. Methods We generated ORMDL3 stably overexpressing RBL‐2H3 cells to assess degranulation, transcriptional upregulation of interleukin‐4 (IL‐4), tumor necrosis factor‐α (TNF‐α), monocyte chemoattractant protein‐1 (MCP‐1), and mitogen‐activated protein kinase (MAPK) phosphorylation via FcεRI. In addition, we examined the effects of ORMDL3 overexpression on thapsigargin (TG)‐mediated proinflammatory cytokine transcription and UPR by monitoring MAPK, protein kinase‐like endoplasmic reticulum kinase (PERK), and inositol‐requiring enzyme 1 (IRE1) phosphorylation. Results Overexpression of ORMDL3 enhanced IL‐4, TNF‐α, and MCP‐1 expression after FcεRI cross‐linking, whereas the sphingosine‐1‐phosphate (S1P) agonist FTY720 suppressed this enhancement. There was no significant difference in degranulation and MAPK phosphorylation via FcεRI‐mediated activation between vector‐transfected and ORMDL3‐overexpressing cells. ORMDL3 overexpression accelerated TG‐mediated PERK phosphorylation, while MAPK phosphorylation and proinflammatory cytokine expression showed no significant changes in ORMDL3‐overexpressing cells. Conclusions Our findings suggest that ORMDL3 plays an important role in regulating proinflammatory cytokine expression via the S1P pathway and selectively affects the UPR pathway in mast cells.
Collapse
Affiliation(s)
- Kazuhiro Ogi
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuji Takabayashi
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kaori Tomita
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Taiyo Morikawa
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takahiro Ninomiya
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masayuki Okamoto
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Norihiko Narita
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
16
|
Proteins Derived from Cnidium officinale Makino React with Serum IgE of Allergic Patients and Stimulate ERK/NF-kB Activation in Human Mast Cell Line HMC-1 Cells. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC. IgE and IgG Antibodies as Regulators of Mast Cell and Basophil Functions in Food Allergy. Front Immunol 2020; 11:603050. [PMID: 33362785 PMCID: PMC7759531 DOI: 10.3389/fimmu.2020.603050] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Food allergy is a major health issue, affecting the lives of 8% of U.S. children and their families. There is an urgent need to identify the environmental and endogenous signals that induce and sustain allergic responses to ingested allergens. Acute reactions to foods are triggered by the activation of mast cells and basophils, both of which release inflammatory mediators that lead to a range of clinical manifestations, including gastrointestinal, cutaneous, and respiratory reactions as well as systemic anaphylaxis. Both of these innate effector cell types express the high affinity IgE receptor, FcϵRI, on their surface and are armed for adaptive antigen recognition by very-tightly bound IgE antibodies which, when cross-linked by polyvalent allergen, trigger degranulation. These cells also express inhibitory receptors, including the IgG Fc receptor, FcγRIIb, that suppress their IgE-mediated activation. Recent studies have shown that natural resolution of food allergies is associated with increasing food-specific IgG levels. Furthermore, oral immunotherapy, the sequential administration of incrementally increasing doses of food allergen, is accompanied by the strong induction of allergen-specific IgG antibodies in both human subjects and murine models. These can deliver inhibitory signals via FcγRIIb that block IgE-induced immediate food reactions. In addition to their role in mediating immediate hypersensitivity reactions, mast cells and basophils serve separate but critical functions as adjuvants for type 2 immunity in food allergy. Mast cells and basophils, activated by IgE, are key sources of IL-4 that tilts the immune balance away from tolerance and towards type 2 immunity by promoting the induction of Th2 cells along with the innate effectors of type 2 immunity, ILC2s, while suppressing the development of regulatory T cells and driving their subversion to a pathogenic pro-Th2 phenotype. This adjuvant effect of mast cells and basophils is suppressed when inhibitory signals are delivered by IgG antibodies signaling via FcγRIIb. This review summarizes current understanding of the immunoregulatory effects of mast cells and basophils and how these functions are modulated by IgE and IgG antibodies. Understanding these pathways could provide important insights into innovative strategies for preventing and/or reversing food allergy in patients.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Owen L. Lewis
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
El Ansari YS, Kanagaratham C, Lewis OL, Oettgen HC. IgE and mast cells: The endogenous adjuvant. Adv Immunol 2020; 148:93-153. [PMID: 33190734 DOI: 10.1016/bs.ai.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods. Suppression of IgE-mediated mast cell activation can be exerted by molecules targeting IgE, FcɛRI or signaling kinases including Syk, or by IgG antibodies acting via inhibitory Fcγ receptors. In 2015 we reviewed the evidence for the adjuvant functions of mast cells. This update includes the original text, incorporates some important developments in the field over the past five years and discusses how interventions targeting these pathways might have promise in the development of strategies to treat allergic disease.
Collapse
Affiliation(s)
- Yasmeen S El Ansari
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Cynthia Kanagaratham
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Owen L Lewis
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
19
|
Jendoubi F, Gaudenzio N, Gallini A, Negretto M, Paul C, Bulai Livideanu C. Omalizumab in the treatment of adult patients with mastocytosis: A systematic review. Clin Exp Allergy 2020; 50:654-661. [PMID: 32107810 DOI: 10.1111/cea.13592] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND: Mastocytosis is associated with mast cell (MC) mediator-related symptoms for which limited therapies are available. OBJECTIVE: Our aim was to assess the efficacy and safety of omalizumab in the treatment of MC mediator-related symptoms in adult patients with mastocytosis. RESULTS: We identified one multi-centre retrospective cohort study (39 patients), one retrospective cohort study (13 patients), 4 case series and 10 case reports. No published controlled randomized study was identified. We included 69 patients (13 patients with cutaneous mastocytosis and 56 with systemic mastocytosis). The mean age was 48 years. Omalizumab maintenance dose was 300 mg for the majority of patients. The mean duration of treatment was 17 months. Treatment led to a tolerability of venom immunotherapy and to a complete resolution of severe reactions in all patients with post-honeybee sting anaphylaxis. Complete resolution of idiopathic anaphylaxis episodes was noted in 84% of the patients. Complete resolution of palpitations, gastrointestinal, cutaneous, neuropsychiatric, respiratory and musculoskeletal symptoms was observed at a rate of 43%, 29%, 27%, 11%, 9% and 0%, respectively. Efficacy was maintained for the entire duration of the treatment in all but four responders. Adverse events were reported for 13 patients. CONCLUSIONS AND CLINICAL RELEVANCE: Omalizumab appears to prevent some life-threatening reactions associated with mastocytosis and may be a good option to treat the associated symptoms. However, the evidence relied upon is observational, uncontrolled and from a small number of patients. A randomized controlled trial is needed to better understand the place of omalizumab in mastocytosis treatment.
Collapse
Affiliation(s)
- Fatma Jendoubi
- Department of Dermatology, Mastocytosis National Reference Center (CEREMAST), Toulouse University Hospital, Toulouse, France
| | - Nicolas Gaudenzio
- UDEAR - Hôpital Purpan, UMR 1056 INSERM - University of Toulouse, Toulouse, France
| | - Adeline Gallini
- Department of Epidemiology and Public Health, UMR1027, INSERM-University of Toulouse, Toulouse, France
| | - Mathilde Negretto
- Department of Dermatology, Mastocytosis National Reference Center (CEREMAST), Toulouse University Hospital, Toulouse, France
| | - Carle Paul
- Department of Dermatology, Mastocytosis National Reference Center (CEREMAST), Toulouse University Hospital, Toulouse, France
| | - Cristina Bulai Livideanu
- Department of Dermatology, Mastocytosis National Reference Center (CEREMAST), Toulouse University Hospital, Toulouse, France
| |
Collapse
|
20
|
Galli SJ, Metz M, Starkl P, Marichal T, Tsai M. Mast cells and IgE in defense against lethality of venoms: Possible "benefit" of allergy[]. ALLERGO JOURNAL INTERNATIONAL 2020; 29:46-62. [PMID: 33224714 PMCID: PMC7673288 DOI: 10.1007/s40629-020-00118-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/20/2019] [Indexed: 01/15/2023]
Abstract
Physicians think of mast cells and IgE primarily in the context of allergic disorders, including fatal anaphylaxis. This 'bad side' of mast cells and IgE is so well accepted that it can be difficult to think of them in other contexts, particularly those in which they may have beneficial functions. However, there is evidence that mast cells and IgE, as well as basophils (circulating granulocytes whose functions partially overlap with those of mast cells), can contribute to host defense as components of adaptive type 2 immune responses to helminths, ticks and certain other parasites. Accordingly, allergies often are conceptualized as "misdirected" type 2 immune responses, in which IgE antibodies are produced against any of a diverse group of apparently harmless antigens, and against components of animal venoms. Indeed, certain unfortunate patients who have become sensitized to venoms develop severe IgE-associated allergic reactions, including fatal anaphylaxis, upon subsequent venom exposure. In this review, we will describe evidence that mast cells can enhance innate resistance, and survival, to challenge with reptile or arthropod venoms during a first exposure to such venoms. We also will discuss findings indicating that, in mice surviving an initial encounter with venom, acquired type 2 immune responses, IgE antibodies, the high affinity IgE receptor (FcεRI), and mast cells can contribute to acquired resistance to the lethal effects of both honeybee venom and Russell's viper venom. These findings support the hypothesis that mast cells and IgE can help protect the host against venoms and perhaps other noxious substances.
Collapse
Affiliation(s)
- Stephen J. Galli
- Department of Pathology and the Sean N. Parker Center for Allergy Research, Stanford University School of Medicine, Stanford, California, 94305; USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, 94305; USA
| | - Martin Metz
- Department of Dermatology and Allergy, Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Philipp Starkl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Department of Medicine 1, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Marichal
- GIGA-Research and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Mindy Tsai
- Department of Pathology and the Sean N. Parker Center for Allergy Research, Stanford University School of Medicine, Stanford, California, 94305; USA
| |
Collapse
|
21
|
Galli SJ, Metz M, Starkl P, Marichal T, Tsai M. Mast cells and IgE in defense against lethality of venoms: Possible "benefit" of allergy*. ALLERGO JOURNAL 2020. [DOI: 10.1007/s15007-020-0746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Mast Cells as Potential Accelerators of Human Atherosclerosis-From Early to Late Lesions. Int J Mol Sci 2019; 20:ijms20184479. [PMID: 31514285 PMCID: PMC6770933 DOI: 10.3390/ijms20184479] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mast cells are present in atherosclerotic lesions throughout their development. The process of atherogenesis itself is characterized by infiltration and retention of cholesterol-containing blood-derived low-density lipoprotein (LDL) particles in the intimal layer of the arterial wall, where the particles become modified and ingested by macrophages, resulting in the formation of cholesterol-filled foam cells. Provided the blood-derived high-density lipoproteins (HDL) particles are able to efficiently carry cholesterol from the foam cells back to the circulation, the early lesions may stay stable or even disappear. However, the modified LDL particles also trigger a permanent local inflammatory reaction characterized by the presence of activated macrophages, T cells, and mast cells, which drive lesion progression. Then, the HDL particles become modified and unable to remove cholesterol from the foam cells. Ultimately, the aging foam cells die and form a necrotic lipid core. In such advanced lesions, the lipid core is separated from the circulating blood by a collagenous cap, which may become thin and fragile and susceptible to rupture, so causing an acute atherothrombotic event. Regarding the potential contribution of mast cells in the initiation and progression of atherosclerotic lesions, immunohistochemical studies in autopsied human subjects and studies in cell culture systems and in atherosclerotic mouse models have collectively provided evidence that the compounds released by activated mast cells may promote atherogenesis at various steps along the path of lesion development. This review focuses on the presence of activated mast cells in human atherosclerotic lesions. Moreover, some of the molecular mechanisms potentially governing activation and effector functions of mast cells in such lesions are presented and discussed.
Collapse
|
23
|
Lua WH, Su CTT, Yeo JY, Poh JJ, Ling WL, Phua SX, Gan SKE. Role of the IgE variable heavy chain in FcεRIα and superantigen binding in allergy and immunotherapy. J Allergy Clin Immunol 2019; 144:514-523.e5. [DOI: 10.1016/j.jaci.2019.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 01/17/2023]
|
24
|
Hong SW, O E, Lee JY, Lee M, Han D, Ko HJ, Sprent J, Surh CD, Kim KS. Food antigens drive spontaneous IgE elevation in the absence of commensal microbiota. SCIENCE ADVANCES 2019; 5:eaaw1507. [PMID: 31131325 PMCID: PMC6531000 DOI: 10.1126/sciadv.aaw1507] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/12/2019] [Indexed: 05/31/2023]
Abstract
Immunoglobulin E (IgE), a key mediator in allergic diseases, is spontaneously elevated in mice with disrupted commensal microbiota such as germ-free (GF) and antibiotics-treated mice. However, the underlying mechanisms for aberrant IgE elevation are still unclear. Here, we demonstrate that food antigens drive spontaneous IgE elevation in GF and antibiotics-treated mice by generating T helper 2 (TH2)-skewed T follicular helper (TFH) cells in gut-associated lymphoid tissues (GALTs). In these mice, depriving contact with food antigens results in defective IgE elevation as well as impaired generation of TFH cells and IgE-producing cells in GALT. Food antigen-driven TFH cells in GF mice are mostly generated in early life, especially during the weaning period. We also reveal that food antigen-driven TFH cells in GF mice are actively depleted by colonization with commensal microbiota. Thus, our findings provide a possible explanation for why the perturbation of commensal microbiota in early life increases the occurrence of allergic diseases.
Collapse
Affiliation(s)
- Sung-Wook Hong
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - Eunju O
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jun Young Lee
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Minji Lee
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Daehee Han
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - Hyun-Ja Ko
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - Jonathan Sprent
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Charles D. Surh
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Kwang Soon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
25
|
Abstract
Degranulation of mast cells and basophils, with release of agents of the allergic response, ensues when multivalent antigens bind to and cross-link the cells' receptor-bound IgE antibodies. A widely used commercial monoclonal IgE antibody, SPE-7 IgE from Sigma, was found to possess the radically anomalous property, termed "cytokinergic", of inducing basophil degranulation without the intervention of an antigen. We show here that the IgE monomer, freed of protein contaminants, is devoid of this activity, and that the source of the anomaly is a trace impurity, identified as a dissociation-resistant IgE trimer. Possible models for the formation of IgE trimers and the manner in which they cross-link cell surface receptors are suggested herein.
Collapse
|
26
|
MacGlashan D. FceRI density and spontaneous secretion from human basophils. PLoS One 2017; 12:e0179734. [PMID: 28671980 PMCID: PMC5495218 DOI: 10.1371/journal.pone.0179734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/02/2017] [Indexed: 01/25/2023] Open
Abstract
Mast cells and basophils depend on aggregation of the high-affinity IgE receptor, FceRI, to initiate secretion. A variety of studies have shown that FceRI densities vary 100 fold among subjects' basophils and it has been speculated that high densities might be responsible for unusual behaviors of the cells, notably sensitivity to certain monomeric IgE antibodies or spontaneous release. These studies experimentally examined the density dependence of spontaneous release and signaling element expression in subjects' basophils with FceRI densities ranging from approximately 6000 to 600,000 per cell. Through the use of numerical simulation, this study examined the expectations for spontaneous receptor aggregation and aggregate persistence at densities of FceRI ranging from 5000 to 500,000. Experimentally, FceRI density was not associated with greater spontaneous histamine release even when secretion was enhanced by the inclusion of deuterium oxide in the buffers. There was also no association of 15 activating or de-activating signaling elements with FceRI density. The numerical simulations demonstrated that at densities of ≈500,000 receptors, 13% of receptors were involved in transient aggregates at any given moment but that these aggregates rarely persisted for greater than 10 milliseconds. In contrast, a weak linear antigen aggregator, with ligand affinities known to induce secretion, would generate aggregates persisting for an average of ≈60 milliseconds. These results suggest that although a high density of FceRI likely produces a large number of transient aggregates, these aggregates do not persist long enough to induce signaling that results in secretion and do not induce the cells to alter their expression of several signaling elements known to be important in regulating secretion from human basophils. The results set some boundaries on the aggregation requirements for inducing histamine release from human basophils.
Collapse
|
27
|
Oettgen HC. Fifty years later: Emerging functions of IgE antibodies in host defense, immune regulation, and allergic diseases. J Allergy Clin Immunol 2017; 137:1631-1645. [PMID: 27263999 DOI: 10.1016/j.jaci.2016.04.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 01/15/2023]
Abstract
Fifty years ago, after a long search, IgE emerged as the circulating factor responsible for triggering allergic reactions. Its extremely low concentration in plasma created significant hurdles for scientists working to reveal its identity. We now know that IgE levels are invariably increased in patients affected by atopic conditions and that IgE provides the critical link between the antigen recognition role of the adaptive immune system and the effector functions of mast cells and basophils at mucosal and cutaneous sites of environmental exposure. This review discusses the established mechanisms of action of IgE in pathologic immediate hypersensitivity, as well as its multifaceted roles in protective immunity, control of mast cell homeostasis, and its more recently revealed immunomodulatory functions.
Collapse
Affiliation(s)
- Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
28
|
GALLI STEPHENJ, STARKL PHILIPP, MARICHAL THOMAS, TSAI MINDY. Mast Cells and IgE can Enhance Survival During Innate and Acquired Host Responses to Venoms. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2017; 128:193-221. [PMID: 28790503 PMCID: PMC5525434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mast cells and immunoglobulin E (IgE) antibodies are thought to promote health by contributing to host responses to certain parasites, but other beneficial functions have remained obscure. Venoms provoke innate inflammatory responses and pathology reflecting the activities of the contained toxins. Venoms also can induce allergic sensitization and development of venom-specific IgE antibodies, which can predispose some subjects to exhibit anaphylaxis upon subsequent exposure to the relevant venom. We found that innate functions of mast cells, including degradation of venom toxins by mast cell-derived proteases, enhanced survival in mice injected with venoms from the honeybee, two species of scorpion, three species of poisonous snakes, or the Gila monster. We also found that mice injected with sub-lethal amounts of honeybee or Russell's viper venom exhibited enhanced survival after subsequent challenge with potentially lethal amounts of that venom, and that IgE antibodies, FcεRI, and probably mast cells contributed to such acquired resistance.
Collapse
|
29
|
Chelombitko MA, Fedorov AV, Ilyinskaya OP, Zinovkin RA, Chernyak BV. Role of Reactive Oxygen Species in Mast Cell Degranulation. BIOCHEMISTRY. BIOKHIMIIA 2016; 81:1564-1577. [PMID: 28259134 DOI: 10.1134/s000629791612018x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Mast cells are a heterogeneous multifunctional cellular population that promotes connective tissue homeostasis by slow release of biologically active substances, affecting primarily the permeability of vessels and vascular tone, maintenance of electrolyte and water balance, and composition of the extracellular matrix. Along with this, they can rapidly release inflammatory mediators and chemotactic factors that ensure the mobilization of effector innate immune cells to fight against a variety of pathogens. Furthermore, they play a key role in initiation of allergic reactions. Aggregation of high affinity receptors to IgE (FcεRI) results in rapid degranulation and release of inflammatory mediators. It is known that reactive oxygen species (ROS) participate in intracellular signaling and, in particular, stimulate production of several proinflammatory cytokines that regulate the innate immune response. In this review, we focus on known molecular mechanisms of FcεRI-dependent activation of mast cells and discuss the role of ROS in the regulation of this pathway.
Collapse
Affiliation(s)
- M A Chelombitko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
30
|
Kawakami T, Blank U. From IgE to Omalizumab. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4187-4192. [PMID: 27864548 PMCID: PMC5123831 DOI: 10.4049/jimmunol.1601476] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022]
Abstract
IgE is the least abundant Ig isotype, yet it plays a critical role in allergic reactions and host protection from helminth infection. Although IgE was discovered 50 years ago, the ultimate evidence for its role in human allergic diseases was obtained by the efficacy of anti-IgE therapy in many clinical trials on asthma and other allergic diseases. Beginning from the discovery of IgE 50 y ago, followed by studies of IgE receptors and activation mechanisms, this review provides a historic perspective of allergy research that has led to the development of anti-IgE therapy and other strategies targeting IgE and its receptors. Current IgE studies toward future precision medicine are also reviewed.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037;
- Department of Dermatology, University of California San Diego School of Medicine, La Jolla, CA 92093
| | - Ulrich Blank
- INSERM Unité 1149, Centre de Recherche sur I'Inflammation, 75018 Paris, France
- CNRS Equipe de Recherche Labellisée 8252, 75018 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, 75018 Paris, France; and
- Inflamex Laboratory of Excellence, Xavier Bichat Site, 75018 Paris, France
| |
Collapse
|
31
|
Church MK. Does Antihistamine Up-dosing Solve Chronic Spontaneous Urticaria? CURRENT TREATMENT OPTIONS IN ALLERGY 2016. [DOI: 10.1007/s40521-016-0098-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Magen E, Chikovani T. Possible therapeutic role of IgE blockade in irritable bowel syndrome. World J Gastroenterol 2016; 22:9451-9456. [PMID: 27920467 PMCID: PMC5116590 DOI: 10.3748/wjg.v22.i43.9451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/23/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023] Open
Abstract
Omalizumab is a humanized monoclonal antibody that binds to the high-affinity type-I IgE Fc receptors on mast cells (MCs) and basophils, inhibiting the IgE immune pathway. Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder, and dysregulation of the immune system likely contributes to its etiology and/or symptomatology. Colonic biopsies from patients with IBS demonstrate considerable increase in the number of degranulating MCs releasing histamine in proximity to nerves, and this event may underlie the common IBS symptom of abdominal pain. Pharmacologic control of MC activation and mediator release is a current area of active interest in the field of IBS research. Recently, we and Pearson et al described 2 cases of patients with IBS with diarrhea (IBS-D) showing positive clinical response to omalizumab. In both cases, the female patients had severe, long-lasting IBS-D and achieved an almost complete resolution of IBS symptoms. Both patients were also able to discontinue all IBS medications after commencing the anti-IgE therapy. For both patients, the omalizumab treatment showed a relatively rapid onset of action, resembling the efficacy observed in and previously reported for patients with chronic spontaneous urticaria. In this Editorial, we discuss the possible biological mechanisms that may underlie the clinical efficacy of omalizumab in IBS. We suggest that there is a need for a well-designed prospective study to investigate the therapeutic effects of anti-IgE in IBS.
Collapse
|
33
|
Sugitharini V, Shahana P, Prema A, Berla Thangam E. TLR2 and TLR4 co-activation utilizes distinct signaling pathways for the production of Th1/Th2/Th17 cytokines in neonatal immune cells. Cytokine 2016; 85:191-200. [DOI: 10.1016/j.cyto.2016.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022]
|
34
|
Galli SJ. The Mast Cell-IgE Paradox: From Homeostasis to Anaphylaxis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:212-24. [PMID: 26776074 DOI: 10.1016/j.ajpath.2015.07.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/23/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022]
Abstract
Mast cells and IgE are so inextricably linked to the pathology of allergic disorders, including fatal anaphylaxis, that it can be difficult to think of them in other contexts. Surely, we do not have mast cells and IgE so that we can eat a peanut and die! It is thought that mast cells and IgE and basophils (circulating granulocytes, whose functions partially overlap with those of mast cells) can contribute to host defense as components of adaptive T helper cell type 2 immune responses to helminths, ticks, and certain other parasites. Accordingly, it was suggested that allergies are misdirected type 2 immune responses in which IgE antibodies are produced against any of a broad variety of apparently harmless antigens. However, components of animal venoms also can sensitize individuals to develop severe IgE-associated allergic reactions, including fatal anaphylaxis, on subsequent venom exposure. Here, I describe evidence that mast cells can enhance innate host resistance to reptile or arthropod venoms during responses to an initial exposure to such venoms and that acquired type 2 immune responses, IgE antibodies, the high-affinity IgE receptor FcεRI, and mast cells can contribute toward acquired resistance in mice to the lethal effects of honeybee or Russell's viper venom. These findings support the hypothesis that mast cells and IgE can help protect the host against noxious substances.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California; Sean N. Parker Center for Allergy Research, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
35
|
Sakanaka M, Kurimune Y, Yamada K, Hyodo N, Natsuhara M, Ichikawa A, Furuta K, Tanaka S. Down-modulation of antigen-induced activation of murine cultured mast cells sensitized with a highly cytokinergic IgE clone. Immunol Lett 2016; 174:1-8. [PMID: 27060497 DOI: 10.1016/j.imlet.2016.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/18/2023]
Abstract
Accumulating evidence suggests that several IgE clones can activate mast cells during the sensitization phase even in the absence of antigen. They were found to induce pro-inflammatory cytokine release, histamine synthesis, chemotaxis, adhesion, and accelerated maturation of mast cells, although it remains unknown whether antigen-induced responses can be affected by differences of IgE clones. We compared two IgE clones, which were different in the capacity to activate mast cells during sensitization, in terms of potentials to affect antigen-induced degranulation and cytokine releases using IL-3-dependent murine bone marrow-derived cultured mast cells (BMMCs). Antigen-induced degranulation and pro-inflammatory cytokine release were augmented, when BMMCs were sensitized with elevated concentrations of a clone IgE-3, which did not induce phosphorylation of JNK and cytokine release in the absence of antigen, whereas those were significantly rather decreased, when BMMCs were sensitized with elevated concentrations of a clone SPE-7, one of the most potent cytokinergic IgE clones, which intensively induced phosphorylation of JNK. This attenuated response with SPE-7 was accompanied by decreased tyrosine phosphorylation of the cellular proteins including Syk upon antigen stimulation. SP600125, which is known to inhibit JNK, restored the levels of antigen-induced degranulation and phosphorylation of Syk in BMMCs sensitized with higher concentrations of a clone SPE-7 when it was added before sensitization. Treatment with anisomycin, a potent activator of JNK, before IgE sensitization significantly suppressed antigen-induced degranulation. These findings suggest that differences of sensitizing IgE clones can affect antigen-induced responses and activation of JNK during sensitization might suppress antigen-induced activation of mast cells.
Collapse
Affiliation(s)
- Mariko Sakanaka
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Yuki Kurimune
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Keiko Yamada
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Nao Hyodo
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Mayuko Natsuhara
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Atsushi Ichikawa
- Institute for Biosciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Satoshi Tanaka
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
36
|
Hadzhieva M, Vassilev T, Bayry J, Kaveri S, Lacroix-Desmazes S, Dimitrov JD. Relationship between natural and heme-mediated antibody polyreactivity. Biochem Biophys Res Commun 2016; 472:281-6. [PMID: 26926563 DOI: 10.1016/j.bbrc.2016.02.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/25/2016] [Indexed: 11/28/2022]
Abstract
Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivity of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies.
Collapse
Affiliation(s)
- Maya Hadzhieva
- Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Tchavdar Vassilev
- Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Jagadeesh Bayry
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; INSERM, UMR_S 1138, F-75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, F-75006 Paris, France
| | - Srinivas Kaveri
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; INSERM, UMR_S 1138, F-75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, F-75006 Paris, France
| | - Sébastien Lacroix-Desmazes
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; INSERM, UMR_S 1138, F-75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, F-75006 Paris, France
| | - Jordan D Dimitrov
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; INSERM, UMR_S 1138, F-75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, F-75006 Paris, France.
| |
Collapse
|
37
|
Galli SJ, Starkl P, Marichal T, Tsai M. Mast cells and IgE in defense against venoms: Possible "good side" of allergy? Allergol Int 2016; 65:3-15. [PMID: 26666482 DOI: 10.1016/j.alit.2015.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/03/2015] [Indexed: 01/05/2023] Open
Abstract
Physicians think of mast cells and IgE primarily in the context of allergic disorders, including fatal anaphylaxis. This 'bad side' of mast cells and IgE is so well accepted that it can be difficult to think of them in other contexts, particularly those in which they may have beneficial functions. However, there is evidence that mast cells and IgE, as well as basophils (circulating granulocytes whose functions partially overlap with those of mast cells), can contribute to host defense as components of adaptive type 2 immune responses to helminths, ticks and certain other parasites. Accordingly, allergies often are conceptualized as "misdirected" type 2 immune responses, in which IgE antibodies are produced against any of a diverse group of apparently harmless antigens, as well as against components of animal venoms. Indeed, certain unfortunate patients who have become sensitized to venoms develop severe IgE-associated allergic reactions, including fatal anaphylaxis, upon subsequent venom exposure. In this review, we will describe evidence that mast cells can enhance innate resistance to reptile or arthropod venoms during a first exposure to such venoms. We also will discuss findings indicating that, in mice which survive an initial encounter with venom, acquired type 2 immune responses, IgE antibodies, the high affinity IgE receptor (FcɛRI), and mast cells can contribute to acquired resistance to the lethal effects of both honeybee venom and Russell's viper venom. These findings support the hypothesis that mast cells and IgE can help protect the host against venoms and perhaps other noxious substances.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy Research, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Philipp Starkl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Medicine 1, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Thomas Marichal
- GIGA-Research and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Mindy Tsai
- Department of Pathology and the Sean N. Parker Center for Allergy Research, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
38
|
Magen E, Mishal J, Vardy D. Selective IgE deficiency and cardiovascular diseases. Allergy Asthma Proc 2015; 36:225-9. [PMID: 25976439 DOI: 10.2500/aap.2015.36.3825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Selective immunoglobulin E (IgE) deficiency (IgED) is defined as serum levels of IgE more than or equal to 2 kIU/L and is associated with immune dysregulation and autoimmunity. This study aimed to investigate a prevalence of atherosclerotic cardiovascular disease (ASCVD) in population with IgED. Within the electronic patient record (EPR) database of Leumit Health Care Services (LHS) in Israel, data capture was performed using IBM Cognos 10.1.1 BI Report Studio software. The case samples were drawn from the full study population (n = 18,487), having any allergy-related symptoms and/or those requesting antiallergy medications and performed serum total IgE measurement during 2012 at LHS. All subjects aged more than or equal to 40 years old, with serum total IgE less than 2 kIU/L were included in case group. Control group was randomly sampled from the remained subjects, with a case-control ratio of 10 controls for each case (1:10). The comorbid cardiovascular diseases during less than or equal to 10 years before serum total IgE testing were identified and retrieved using specific International Classification of Diseases, 9th Revision, Clinical Modification diagnostic codes. There were 103 in case and 1030 subjects in control group. Compared with control group patients, the case group had significantly more arterial hypertension [34 (37.7%) versus 187 (18.2%), p < 0.001], ischemic heart disease (IHD) [26 (25.2%) versus 87 (8.4%), p < 0.001], carotid stenosis [5 (4.9%) versus 7 (0.7%), p = 0.003], cerebrovascular disease (CVD) [3 (2.9%) versus 5 (0.5%), p = 0.029], and peripheral vascular disease (PVD) [4 (3.9%) versus 9 (0.9%), p = 0.024]. IgED is associated with higher prevalence of arterial hypertension and ASCVD.
Collapse
Affiliation(s)
- Eli Magen
- Leumit Health Services, Barzilai Medical Center, Ben-Gurion University of Negev, Ashkelon, Israel
| | | | | |
Collapse
|
39
|
Mechanism of the antigen-independent cytokinergic SPE-7 IgE activation of human mast cells in vitro. Sci Rep 2015; 5:9538. [PMID: 25892150 PMCID: PMC4402612 DOI: 10.1038/srep09538] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022] Open
Abstract
Release of pro-inflammatory mediators by mast cells is a key feature of allergic disease. The ‘dogma’ is that IgE molecules merely sensitise mast cells by binding FcεRI prior to cross-linking by multivalent allergen, receptor aggregation and mast cell activation. However, certain monoclonal IgE antibodies have been shown to elicit mast cell activation in an antigen-independent cytokinergic manner, and DNP-specific murine SPE-7 IgE is the most highly cytokinergic antibody known. We show that both monovalent hapten and recombinant SPE-7 IgE Fab inhibit its cytokinergic activity as measured by mast cell degranulation and TNF-α release. Using SPE-7 IgE, a non-cytokinergic human IgE and a poorly cytokinergic murine IgE, we reveal that interaction of the Fab region of ‘free’ SPE-7 IgE with the Fab of FcεRI-bound SPE-7 IgE is the basis of its cytokinergic activity. We rule out involvement of IgE Fc, Cε1 and Cλ/κ domains, and propose that ‘free’ SPE-7 IgE binds to FcεRI-bound SPE-7 IgE by an Fv-Fv interaction. Initial formation of a tri-molecular complex (one ‘free’ IgE molecule cross-linking two receptor-bound IgE molecules) leads to capture of further ‘free’ and receptor-bound IgEs to form larger clusters that trigger mast cell activation.
Collapse
|
40
|
Hadzhieva M, Vassilev TL, Roumenina LT, Bayry J, Kaveri SV, Lacroix-Desmazes S, Dimitrov JD. Mechanism and Functional Implications of the Heme-Induced Binding Promiscuity of IgE. Biochemistry 2015; 54:2061-72. [DOI: 10.1021/bi501507m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maya Hadzhieva
- Institute
of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | - Lubka T. Roumenina
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Jagadeesh Bayry
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Srinivas V. Kaveri
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Sébastien Lacroix-Desmazes
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Jordan D. Dimitrov
- Sorbonne Universités, UPMC Univ Paris 06,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
- INSERM, UMR_S 1138, Centre
de Recherche des Cordeliers, F-75006 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité,
UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| |
Collapse
|
41
|
Schwartz SL, Yan Q, Telmer CA, Lidke KA, Bruchez MP, Lidke DS. Fluorogen-activating proteins provide tunable labeling densities for tracking FcεRI independent of IgE. ACS Chem Biol 2015; 10:539-46. [PMID: 25343439 PMCID: PMC4340345 DOI: 10.1021/cb5005146] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Crosslinking of IgE bound FcεRI on mast cells and basophils by multivalent antigen leads to degranulation and the release of key inflammatory mediators that stimulate the allergic response. Here, we present and characterize the use of fluorogen-activating proteins (FAPs) for single particle tracking of FcεRI to investigate how receptor mobility is influenced after IgE-induced changes in mast cell behavior. FAPs are genetically encoded tags that bind a fluorogen dye and increase its brightness upon binding up to 20,000-fold. We demonstrate that, by titrating fluorogen concentration, labeling densities from ensemble to single particle can be achieved, independent of expression level and without the need for wash steps or photobleaching. The FcεRI γ-subunit fused to a FAP (FAP-γ) provides, for the first time, an IgE-independent probe for tracking this signaling subunit of FcεRI at the single molecule level. We show that the FcεRI γ-subunit dynamics are controlled by the IgE-binding α-subunit and that the cytokinergic IgE, SPE-7, induces mast cell activation without altering FcεRI mobility or promoting internalization. We take advantage of the far-red emission of the malachite green (MG) fluorogen to track FcεRI relative to dynamin-GFP and find that immobilized receptors readily correlate with locations of dynamin recruitment only under conditions that promote rapid endocytosis. These studies demonstrate the usefulness of the FAP system for single molecule studies and have provided new insights into the relationship among FcεRI structure, activity, and mobility.
Collapse
Affiliation(s)
- Samantha L. Schwartz
- Department of Pathology and Cancer
Research and Treatment Center, ‡Department of Physics
and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Molecular Biosensor and Imaging Center, ∥Department of Biological
Sciences, ⊥Lane Center for
Computational Biology, #Department of Chemistry, Carnegie Mellon University, Pittsburgh Pennsylvania 15213, United States
| | - Qi Yan
- Department of Pathology and Cancer
Research and Treatment Center, ‡Department of Physics
and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Molecular Biosensor and Imaging Center, ∥Department of Biological
Sciences, ⊥Lane Center for
Computational Biology, #Department of Chemistry, Carnegie Mellon University, Pittsburgh Pennsylvania 15213, United States
| | - Cheryl A. Telmer
- Department of Pathology and Cancer
Research and Treatment Center, ‡Department of Physics
and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Molecular Biosensor and Imaging Center, ∥Department of Biological
Sciences, ⊥Lane Center for
Computational Biology, #Department of Chemistry, Carnegie Mellon University, Pittsburgh Pennsylvania 15213, United States
| | - Keith A. Lidke
- Department of Pathology and Cancer
Research and Treatment Center, ‡Department of Physics
and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Molecular Biosensor and Imaging Center, ∥Department of Biological
Sciences, ⊥Lane Center for
Computational Biology, #Department of Chemistry, Carnegie Mellon University, Pittsburgh Pennsylvania 15213, United States
| | - Marcel P. Bruchez
- Department of Pathology and Cancer
Research and Treatment Center, ‡Department of Physics
and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Molecular Biosensor and Imaging Center, ∥Department of Biological
Sciences, ⊥Lane Center for
Computational Biology, #Department of Chemistry, Carnegie Mellon University, Pittsburgh Pennsylvania 15213, United States
| | - Diane S. Lidke
- Department of Pathology and Cancer
Research and Treatment Center, ‡Department of Physics
and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Molecular Biosensor and Imaging Center, ∥Department of Biological
Sciences, ⊥Lane Center for
Computational Biology, #Department of Chemistry, Carnegie Mellon University, Pittsburgh Pennsylvania 15213, United States
| |
Collapse
|
42
|
Omalizumab (Xolair) in Children above 12 Years With Chronic Urticaria: A Review of Literature. JOURNAL OF PEDIATRICS REVIEW 2015. [DOI: 10.5812/jpr.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Nunomura S, Okayama Y, Terui T, Ra C. Treatment of murine mast cells with IgEκ and protein L enhances apoptotic cell death induced by IL-3 withdrawal. Biochem Biophys Res Commun 2015; 456:700-5. [PMID: 25522877 DOI: 10.1016/j.bbrc.2014.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Engagement of the high-affinity IgE receptor (FcεRI) can be either protective or non-protective against apoptotic cell death (ACD) in bone marrow-derived murine mast cells (BMMCs) after IL-3 withdrawal, depending on the avidity between IgE and its antigen. We recently reported that protein L (PpL), a bacterial Igκ-binding soluble protein, is able to stimulate intracellular signaling to induce activation of BMMCs by interacting with the IgEκ-FcεRI complex. However, it is unclear if cross-linking of FcεRI with IgEκ and PpL prevents or enhances IL-3-dependent ACD in BMMCs. In the present study, we found that IL-3-dependent ACD of BMMCs is accelerated by loading soluble PpL in the presence of IgEκ-occupied FcεRIα. For this purpose, soluble PpL was incorporated into the BMMCs. Unlike soluble PpL, immobilized PpL failed to enhance ACD, although both forms of PpL induced IL-6 production equally in BMMCs. In addition, we observed that DNS5-BSA protected anti-DNS IgE-sensitized BMMCs from IL-3 depletion-mediated ACD by inducing the production of autocrine IL-3. In contrast, DNS5-PpL enhanced IL-3 withdrawal-induced ACD of anti-DNS IgE-sensitized BMMCs and reduced the production of autocrine IL-3. These findings suggest that PpL increases IL-3 withdrawal-induced ACD of IgEκ-sensitized BMMCs by incorporating PpL into the BMMCs and that this internalized PpL may interfere with survival signals via FcεRI.
Collapse
Affiliation(s)
- Satoshi Nunomura
- Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan; Allergy and Immunology Group, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan.
| | - Yoshimichi Okayama
- Allergy and Immunology Group, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan
| | - Tadashi Terui
- Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Chisei Ra
- Allergy and Immunology Group, Research Institute of Medical Science, Nihon University School of Medicine, Tokyo, Japan; Department of Microbiology, Nihon University School of Medicine, Tokyo, Japan; Asahi Hospital, Chiba, Japan
| |
Collapse
|
44
|
Magen E, Schlesinger M, Ben-Zion I, Vardy D. Helicobacter pylori infection in patients with selective immunoglobulin E deficiency. World J Gastroenterol 2015; 21:240-245. [PMID: 25574097 PMCID: PMC4284341 DOI: 10.3748/wjg.v21.i1.240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/10/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the prevalence and clinical characteristics of Helicobacter pylori (H. pylori)-infected dyspeptic patients with selective immunoglobulin E deficiency (IgEd).
METHODS: All individuals who underwent serum total immunoglobulin E (IgE) measurement at the Leumit Healthcare Services (Israel) in 2012 were identified in an electronic database search (n = 18487). From these, selected case group subjects were ≥ 12 years of age and had serum total IgE < 2 kIU/L (n = 158). The control group was selected from a random sampling of the remaining subjects ≥ 12 years of age to obtain a case-control ratio of 1:20 (n = 3160). Dyspeptic diseases, diagnosed no more than 5 years before serum total IgE testing, were identified and retrieved from the electronic database using specific International Classification of Diseases diagnostic codes. Results of C13-urea breath tests were used to identify subjects infected with H. pylori. Categorical variables between case and control subjects were analyzed using Fisher’s exact tests, whereas continuous variables were analyzed using χ2 tests.
RESULTS: Dyspepsia was present in 27.2% (43/158) of case subjects and 22.7% (718/3160) of controls. Of these, significantly more case subjects (32/43, 74.4%) than controls (223/718, 31.1%) were positive for H. pylori (P < 0.01). Esophagogastroduodenoscopy was performed in 19 case and 94 control subjects, revealing that gastritis was more prevalent in IgEd case subjects than in controls (57.9% vs 29.8%, P < 0.05). Furthermore, a significantly greater proportion of case subjects presented with peptic duodenal ulcers (63.2% vs 15.9%, P < 0.01). Histopathologic examination showed marked chronic inflammation, lymphoid follicle formation and prominent germinal centers, with polymorphonuclear cell infiltration of gastric glands, that was similar in case and control biopsy tissues. Finally, IgEd case subjects that underwent esophagogastroduodenoscopy were more likely to exhibit treatment-refractory H. pylori infections that require second-line triple antibiotic therapy (47.4% vs 11.7%, P < 0.01).
CONCLUSION: IgEd is associated with higher rates of H. pylori-associated gastritis and peptic duodenal ulcers.
Collapse
|
45
|
|
46
|
Ahn KB, Jeon JH, Kang SS, Chung DK, Yun CH, Han SH. IgE in the absence of allergen induces the expression of monocyte chemoattractant protein-1 in the rat basophilic cell-line RBL-2H3. Mol Immunol 2014; 62:114-21. [DOI: 10.1016/j.molimm.2014.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/28/2014] [Accepted: 06/08/2014] [Indexed: 11/27/2022]
|
47
|
Gericke J, Ohanyan T, Church M, Maurer M, Metz M. Omalizumab may not inhibit mast cell and basophil activation in vitro. J Eur Acad Dermatol Venereol 2014; 29:1832-6. [DOI: 10.1111/jdv.12693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/16/2014] [Indexed: 02/02/2023]
Affiliation(s)
- J. Gericke
- Department of Dermatology, Venerology and Allergology; Allergie-Centrum-Charité; Charité-Universitätsmedizin; Berlin Germany
| | - T. Ohanyan
- Department of Dermatology, Venerology and Allergology; Allergie-Centrum-Charité; Charité-Universitätsmedizin; Berlin Germany
| | - M.K. Church
- Department of Dermatology, Venerology and Allergology; Allergie-Centrum-Charité; Charité-Universitätsmedizin; Berlin Germany
| | - M. Maurer
- Department of Dermatology, Venerology and Allergology; Allergie-Centrum-Charité; Charité-Universitätsmedizin; Berlin Germany
| | - M. Metz
- Department of Dermatology, Venerology and Allergology; Allergie-Centrum-Charité; Charité-Universitätsmedizin; Berlin Germany
| |
Collapse
|
48
|
Jung KH, Choi HL, Park S, Lee G, Kim M, Min JK, Min BI, Bae H. The effects of the standardized herbal formula PM014 on pulmonary inflammation and airway responsiveness in a murine model of cockroach allergen-induced asthma. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:113-122. [PMID: 24879958 DOI: 10.1016/j.jep.2014.04.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/24/2014] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE PM014 is a modified form of the Chung-Sang-Bo-Ha-Tang (CSBHT) herbal formula that has been used to treat chronic pulmonary diseases in Korea for centuries. Previously, we developed a formulation of PM014 based on a series of in vitro and in vivo screening efforts that comprises seven herbal extracts. The PM014 formula includes the root of Rehmannia glutinosa, the cortex of Paeonia suffruticosa, the fruit of Schizandra chinensis, the root of Asparagus cochinchinensis, seeds of Prunus armeniaca, the root of Scutellaria baicalensis and the root of Stemona sessilifolia. Asthma is a chronic inflammatory disease of the lungs that is characterized by wheezing, bronchial contraction, and chest tightness. In addition, the airway becomes hypersensitive and narrows through an inflammatory reaction mediated by Th2 cells. The present study was conducted to evaluate the ability of PM014 to prevent allergic airway inflammation and to attenuate airway responses in a cockroach allergen-induced mouse model. MATERIALS AND METHODS Mice sensitized to and challenged with cockroach allergen were treated with oral administration of PM014. Airway resistance was determined by whole body plethysmography. In addition, Th2 cytokines and immune cell profiles of bronchoalveolar lavage (BAL) fluid and inflammatory mediators in serum were analyzed by ELISA. A series of histological examinations were also conducted to demonstrate the effects of PM014 on airway remodeling, goblet cell hyperplasia and inflammatory responses in the lung. RESULTS PM014 significantly inhibited the number of total cells, eosinophils, neutrophils, macrophages and lymphocytes in the BAL fluid of mice that were challenged with cockroach allergen. In addition, PM014 reduced the levels of Th2 cytokines (IL-4, IL-5 and IL-13) in the BAL fluid and inflammatory mediators such as IgE in the serum, as measured by enzyme-linked immunosorbent assay (ELISA). Histopathological analysis also showed that PM014 substantially inhibited eosinophil infiltration into the airway, goblet cell hyperplasia and smooth muscle hypertrophy. CONCLUSIONS In this study, our results indicate that PM014 has significant effects on allergic airway inflammation upon exposure to cockroach allergen in a mouse model. According to these outcomes, PM014 may have therapeutic potential as a treatment for allergic asthma.
Collapse
Affiliation(s)
- Kyung-Hwa Jung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea.
| | - Hei-Lim Choi
- Department of East-West Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea.
| | - Soojin Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea.
| | - Geunhyeog Lee
- Central Research Institute, Hanlim Pharm. Co. Ltd., 1007 Yoobang Dong, Yongin, Kyounggi Do, Republic of Korea.
| | - Miran Kim
- Central Research Institute, Hanlim Pharm. Co. Ltd., 1007 Yoobang Dong, Yongin, Kyounggi Do, Republic of Korea.
| | - Joon-Ki Min
- Department of East-West Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea.
| | - Byung-Il Min
- Department of East-West Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea; Institute of Korean Medicine, Kyung Hee University, #1 Hoekidong, Dongdaemoon-ku, Seoul 130-701, Republic of Korea.
| |
Collapse
|
49
|
Burton OT, Noval Rivas M, Zhou JS, Logsdon SL, Darling AR, Koleoglou KJ, Roers A, Houshyar H, Crackower MA, Chatila TA, Oettgen HC. Immunoglobulin E signal inhibition during allergen ingestion leads to reversal of established food allergy and induction of regulatory T cells. Immunity 2014; 41:141-51. [PMID: 25017467 DOI: 10.1016/j.immuni.2014.05.017] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022]
Abstract
Immunoglobulin E (IgE) antibodies are known for triggering immediate hypersensitivity reactions such as food anaphylaxis. In this study, we tested whether they might additionally function to amplify nascent antibody and T helper 2 (Th2) cell-mediated responses to ingested proteins and whether blocking IgE would modify sensitization. By using mice harboring a disinhibited form of the IL-4 receptor, we developed an adjuvant-free model of peanut allergy. Mast cells and IgE were required for induction of antibody and Th2-cell-mediated responses to peanut ingestion and they impaired regulatory T (Treg) cell induction. Mast-cell-targeted genetic deletion of the FcεRI signaling kinase Syk or Syk blockade also prevented peanut sensitization. In mice with established allergy, Syk blockade facilitated desensitization and induction of Treg cells, which suppressed allergy when transferred to naive recipients. Our study suggests a key role for IgE in driving Th2 cell and IgE responses while suppressing Treg cells in food allergy.
Collapse
Affiliation(s)
- Oliver T Burton
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Magali Noval Rivas
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph S Zhou
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie L Logsdon
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Alanna R Darling
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kyle J Koleoglou
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Axel Roers
- Institut für Immunologie, Technische Universität Dresden, 01307 Dresden, Germany
| | - Hani Houshyar
- Respiratory and Immunology, Merck Research Laboratories, Boston, MA 02115, USA
| | - Michael A Crackower
- Respiratory and Immunology, Merck Research Laboratories, Boston, MA 02115, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Chang TW, Chen C, Lin CJ, Metz M, Church MK, Maurer M. The potential pharmacologic mechanisms of omalizumab in patients with chronic spontaneous urticaria. J Allergy Clin Immunol 2014; 135:337-42. [PMID: 24948369 DOI: 10.1016/j.jaci.2014.04.036] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/26/2014] [Accepted: 04/30/2014] [Indexed: 01/22/2023]
Abstract
In patients given a diagnosis of chronic spontaneous urticaria (CSU), there are no obvious external triggers, and the factors that initiate the clinical symptoms of wheal, flare, and itch arise from within the patient. Most patients with CSU have an autoimmune cause: some patients produce IgE autoantibodies against autoantigens, such as thyroperoxidase or double-stranded DNA, whereas other patients make IgG autoantibodies against FcεRI, IgE, or both, which might chronically activate mast cells and basophils. In the remainder of patients with CSU, the nature of the abnormalities has not yet been identified. Accumulating evidence has shown that IgE, by binding to FcεRI on mast cells without FcεRI cross-linking, can promote the proliferation and survival of mast cells and thus maintain and expand the pool of mast cells. IgE and FcεRI engagement can also decrease the release threshold of mast cells and increase their sensitivity to various stimuli through either FcεRI or other receptors for the degranulation process. Furthermore, IgE-FcεRI engagement potentiates the ability of mast cells to store and synthesize de novo inflammatory mediators and cytokines. Administration of omalizumab, by virtue of its ability to deplete IgE, attenuates the multiple effects of IgE to maintain and enhance mast cell activities and hence reduces the ability of mast cells to manifest inflammatory mechanisms in patients with CSU.
Collapse
Affiliation(s)
- Tse Wen Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Christina Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chien-Jen Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Martin Metz
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martin K Church
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Marcus Maurer
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|