1
|
Cui X, Xu L, Shan Y, Li J, Ji J, Wang E, Zhang B, Wen X, Bai Y, Luo D, Chen C, Li Z. Piezocatalytically-induced controllable mineralization scaffold with bone-like microenvironment to achieve endogenous bone regeneration. Sci Bull (Beijing) 2024; 69:1895-1908. [PMID: 38637224 DOI: 10.1016/j.scib.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Orderly hierarchical structure with balanced mechanical, chemical, and electrical properties is the basis of the natural bone microenvironment. Inspired by nature, we developed a piezocatalytically-induced controlled mineralization strategy using piezoelectric polymer poly-L-lactic acid (PLLA) fibers with ordered micro-nano structures to prepare biomimetic tissue engineering scaffolds with a bone-like microenvironment (pcm-PLLA), in which PLLA-mediated piezoelectric catalysis promoted the in-situ polymerization of dopamine and subsequently regulated the controllable growth of hydroxyapatite crystals on the fiber surface. PLLA fibers, as analogs of mineralized collagen fibers, were arranged in an oriented manner, and ultimately formed a bone-like interconnected pore structure; in addition, they also provided bone-like piezoelectric properties. The uniformly sized HA nanocrystals formed by controlled mineralization provided a bone-like mechanical strength and chemical environment. The pcm-PLLA scaffold could rapidly recruit endogenous stem cells, and promote their osteogenic differentiation by activating cell membrane calcium channels and PI3K signaling pathways through ultrasound-responsive piezoelectric signals. In addition, the scaffold also provided a suitable microenvironment to promote macrophage M2 polarization and angiogenesis, thereby enhancing bone regeneration in skull defects of rats. The proposed piezocatalytically-induced controllable mineralization strategy provides a new idea for the development of tissue engineering scaffolds that can be implemented for multimodal physical stimulation therapy.
Collapse
Affiliation(s)
- Xi Cui
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Xu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yizhu Shan
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxuan Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianying Ji
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Engui Wang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Baokun Zhang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Xiaozhou Wen
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Bai
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Dan Luo
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Abstract
Although there is little direct evidence supporting that stress affects cancer incidence, it does influence the evolution, dissemination and therapeutic outcomes of neoplasia, as shown in human epidemiological analyses and mouse models. The experience of and response to physiological and psychological stressors can trigger neurological and endocrine alterations, which subsequently influence malignant (stem) cells, stromal cells and immune cells in the tumour microenvironment, as well as systemic factors in the tumour macroenvironment. Importantly, stress-induced neuroendocrine changes that can regulate immune responses have been gradually uncovered. Numerous stress-associated immunomodulatory molecules (SAIMs) can reshape natural or therapy-induced antitumour responses by engaging their corresponding receptors on immune cells. Moreover, stress can cause systemic or local metabolic reprogramming and change the composition of the gastrointestinal microbiota which can indirectly modulate antitumour immunity. Here, we explore the complex circuitries that link stress to perturbations in the cancer-immune dialogue and their implications for therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Guido Kroemer
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Petakh P, Oksenych V, Kamyshna I, Boisak I, Lyubomirskaya K, Kamyshnyi O. Exploring the complex interplay: gut microbiome, stress, and leptospirosis. Front Microbiol 2024; 15:1345684. [PMID: 38476949 PMCID: PMC10927737 DOI: 10.3389/fmicb.2024.1345684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Leptospirosis, a re-emerging zoonotic disease, remains a significant global health concern, especially amid floods and disasters such as the Kakhovka Dam destruction. As is known, the stress that occurs in the conditions of military conflicts among civilian and military personnel significantly affects susceptibility to infectious diseases and possibly even influences their course. This review aims to explore how the gut microbiome and stress mediators (such as catecholamines and corticosteroids) might impact the leptospirosis disease course. The review opens new horizons for research by elucidating the connections between the gut microbiome, stress, and leptospirosis.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Boisak
- Department of Childhood Diseases, Uzhhorod National University, Uzhhorod, Ukraine
| | - Katerina Lyubomirskaya
- Department of Obstetrics and Gynecology, Zaporizhzhia State Medical and Pharmaceuticals University, Zaporizhzhia, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
4
|
Wang T, Ouyang H, Luo Y, Xue J, Wang E, Zhang L, Zhou Z, Liu Z, Li X, Tan S, Chen Y, Nan L, Cao W, Li Z, Chen F, Zheng L. Rehabilitation exercise-driven symbiotic electrical stimulation system accelerating bone regeneration. SCIENCE ADVANCES 2024; 10:eadi6799. [PMID: 38181077 PMCID: PMC10776020 DOI: 10.1126/sciadv.adi6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
Electrical stimulation can effectively accelerate bone healing. However, the substantial size and weight of electrical stimulation devices result in reduced patient benefits and compliance. It remains a challenge to establish a flexible and lightweight implantable microelectronic stimulator for bone regeneration. Here, we use self-powered technology to develop an electric pulse stimulator without circuits and batteries, which removes the problems of weight, volume, and necessary rigid packaging. The fully implantable bone defect electrical stimulation (BD-ES) system combines a hybrid tribo/piezoelectric nanogenerator to provide biphasic electric pulses in response to rehabilitation exercise with a conductive bioactive hydrogel. BD-ES can enhance multiple osteogenesis-related biological processes, including calcium ion import and osteogenic differentiation. In a rat model of critical-sized femoral defects, the bone defect was reversed by electrical stimulation therapy with BD-ES and subsequent bone mineralization, and the femur completely healed within 6 weeks. This work is expected to advance the development of symbiotic electrical stimulation therapy devices without batteries and circuits.
Collapse
Affiliation(s)
- Tianlong Wang
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Han Ouyang
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiping Luo
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiangtao Xue
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Engui Wang
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhang
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zifei Zhou
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhiqing Liu
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xifan Li
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shuo Tan
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yixing Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Liping Nan
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wentao Cao
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 201102, China
| | - Zhou Li
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Feng Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 201102, China
| | - Longpo Zheng
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis and Treatment Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
5
|
Furgiuele A, Pereira FC, Martini S, Marino F, Cosentino M. Dopaminergic regulation of inflammation and immunity in Parkinson's disease: friend or foe? Clin Transl Immunology 2023; 12:e1469. [PMID: 37781343 PMCID: PMC10540835 DOI: 10.1002/cti2.1469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/11/2022] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting 7-10 million people worldwide. Currently, there is no treatment available to prevent or delay PD progression, partially due to the limited understanding of the pathological events which lead to the death of dopaminergic neurons in the substantia nigra in the brain, which is known to be the cause of PD symptoms. The current available treatments aim at compensating dopamine (DA) deficiency in the brain using its precursor levodopa, dopaminergic agonists and some indirect dopaminergic agents. The immune system is emerging as a critical player in PD. Therefore, immune-based approaches have recently been proposed to be used as potential antiparkinsonian agents. It has been well-known that dopaminergic pathways play a significant role in regulating immune responses in the brain. Although dopaminergic agents are the primary antiparkinsonian treatments, their immune regulatory effect has yet to be fully understood. The present review summarises the current available evidence of the immune regulatory effects of DA and its mimics and discusses dopaminergic agents as antiparkinsonian drugs. Based on the current understanding of their involvement in the regulation of neuroinflammation in PD, we propose that targeting immune pathways involved in PD pathology could offer a better treatment outcome for PD patients.
Collapse
Affiliation(s)
- Alessia Furgiuele
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Frederico C Pereira
- Faculty of Medicine, Institute of Pharmacology and Experimental TherapeuticsUniversity of CoimbraCoimbraPortugal
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Center of Coimbra (CACC)CoimbraPortugal
| | - Stefano Martini
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Franca Marino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Marco Cosentino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| |
Collapse
|
6
|
Wu F, Xiang Z, He Z, Yi P, Yang M, Wu H, Hu M. Abnormally high expression of D1-like dopamine receptors on lupus CD4 + T cells promotes Tfh cell differentiation. Lupus Sci Med 2023; 10:e000943. [PMID: 37586763 PMCID: PMC10432681 DOI: 10.1136/lupus-2023-000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE SLE is a chronic autoimmune disease that places a great burden on human society. T follicular helper (Tfh) cells play a critical role in the pathological process of SLE. Therefore, elucidating the mechanism of Tfh cell differentiation will contribute to SLE treatment. Dopamine receptors (DRDs) are members of the family of G protein-coupled receptors and are primarily divided into D1-like and D2-like receptors. Previous studies have found that DRDs can regulate differentiation of immune cells. However, there is currently a lack of research on DRDs and Tfh cells. We here explore the relationship between DRDs and Tfh cells, and analyse the relationship between DRD expression on Tfh cells and the course of SLE. METHODS We first detected plasma catecholamine concentrations in patients with SLE and healthy controls by mass spectrometry, followed by reverse transcription-quantitative PCR (RT-qPCR) to detect DRD messenger RNA (mRNA) expression in peripheral blood mononuclear cells (PBMCs) and CD4+ T cells, and flow cytometry to detect DRD expression in Tfh cells. Finally, in vitro experiments and RNA sequencing (RNA-seq) were used to explore the possible pathway by which DRDs regulate Tfh cell differentiation. RESULTS The plasma dopamine concentration in patients with SLE was significantly increased, and abnormal mRNA expression of DRDs was observed in both PBMCs and CD4+ T cells. The results of flow cytometry showed that D1-like receptors were highly expressed in Tfh cells of patients with SLE and associated with disease activity. In vitro induction experiments showed that differentiation of naïve T cells into Tfh cells was accompanied by an increase in D1-like receptor expression. RNA-seq and RT-qPCR results indicate that D1-like receptors might promote Tfh cell differentiation through the Phosphatidylinositol3-kinase (PI3K)/protein kinase B (AKT)/Forkhead box protein O1 (FOXO1)/Kruppel-like factor 2 (Klf2) pathway. CONCLUSION Tfh cells in patients with SLE highly express D1-like receptors, which correlate with disease activity. D1-like receptors may promote Tfh cell differentiation through the PI3K/AKT/FOXO1/Klf2 pathway.
Collapse
Affiliation(s)
- Fengxi Wu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhongyuan Xiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenghao He
- Department of Plastic Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Ping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Wang XQ, Cai HH, Deng QW, Chang YZ, Peng YP, Qiu YH. Dopamine D2 receptor on CD4 + T cells is protective against inflammatory responses and signs in a mouse model of rheumatoid arthritis. Arthritis Res Ther 2023; 25:87. [PMID: 37237413 DOI: 10.1186/s13075-023-03071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Dopamine is a neurotransmitter and has been found to regulate lymphocytes by acting on dopamine receptors (DRs). CD4+ T cells express all the five subtypes of DRs, D1R to D5R. Although CD4+ T cells have been involved in pathogenesis of rheumatoid arthritis (RA), roles of DRs expressed on these cells in RA are poorly understood. This study determined whether D2R expressed on CD4+ T cells regulates inflammatory responses and signs in collagen type II (CII)-induced arthritis (CIA), a mouse model of RA. METHODS DBA/1 mice and C57BL/6 mice with global D1r or D2r deficiency (D1r-/- or D2r-/-) or CD4+ T cell-specific D2r deletion (D2rfl/fl/CD4Cre) were used to prepare CIA model by intradermal injection of CII. D2R agonist sumanirole was intraperitoneally administered in CIA mice. CD4+ T cells obtained from CIA mice were exposed to sumanirole or/and D2R antagonist L-741,626 in vitro. Arthritic symptoms were assessed by clinical arthritis scores. Flow cytometric assay measured frequencies of CD4+ T cell subsets (Th1, Th2, Th17 and Treg cells). Expression of specific transcription factors for the CD4+ T cell subsets was tested by Western blot. Cytokine production was estimated by quantitative PCR and ELISA. RESULTS CIA mice manifested a bias of CD4+ T cells towards Th1 and Th17 cells. D2r-/- CIA mice showed a stronger bias towards Th1 and Th17 phenotypes than CIA mice, while D1r-/- CIA mice did not show the changes. CD4+ T cell-specific D2r deletion exacerbated both the polarization towards Th1 and Th17 cells and the symptoms of arthritis. Sumanirole administration in CIA mice ameliorated the bias of CD4+ T cells towards Th1 and Th17 phenotypes as well as arthritic symptoms. Sumanirole treatment of in vitro CD4+ T cells obtained from CIA mice promoted the shift to Treg cells, and the effect of sumanirole was blocked by L-741,626. CONCLUSIONS D2R expressed on CD4+ T cells is protective against imbalance between pro-inflammatory and anti-inflammatory T cells and arthritic symptoms in CIA.
Collapse
Affiliation(s)
- Xiao-Qin Wang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Huan-Huan Cai
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Qiao-Wen Deng
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Ya-Zhou Chang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, China.
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, China.
| |
Collapse
|
8
|
Wenk D, Khan S, Ignatchenko V, Hübner H, Gmeiner P, Weikert D, Pischetsrieder M, Kislinger T. Phosphoproteomic Analysis of Dopamine D2 Receptor Signaling Reveals Interplay of G Protein- and β-Arrestin-Mediated Effects. J Proteome Res 2023; 22:259-271. [PMID: 36508580 PMCID: PMC9831068 DOI: 10.1021/acs.jproteome.2c00707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leveraging biased signaling of G protein-coupled receptors has been proposed as a promising strategy for the development of drugs with higher specificity. However, the consequences of selectively targeting G protein- or β-arrestin-mediated signaling on cellular functions are not comprehensively understood. In this study, we utilized phosphoproteomics to gain a systematic overview of signaling induced by the four biased and balanced dopamine D2 receptor (D2R) ligands MS308, BM138, quinpirole, and sulpiride in an in vitro D2R transfection model. Quantification of 14,160 phosphosites revealed a low impact of the partial G protein agonist MS308 on cellular protein phosphorylation, as well as surprising similarities between the balanced agonist quinpirole and the inverse agonist sulpiride. Analysis of the temporal profiles of ligand-induced phosphorylation events showed a transient impact of the G protein-selective agonist MS308, whereas the β-arrestin-preferring agonist BM138 elicited a delayed, but more pronounced response. Functional enrichment analysis of ligand-impacted phosphoproteins and treatment-linked kinases confirmed multiple known functions of D2R signaling while also revealing novel effects, for example of MS308 on sterol regulatory element-binding protein-related gene expression. All raw data were deposited in MassIVE (MSV000089457).
Collapse
Affiliation(s)
- Deborah Wenk
- Princess
Margaret Cancer Centre, University Health
Network, 101 College
Street, Toronto, Ontario M5G 1L7, Canada
| | - Shahbaz Khan
- Princess
Margaret Cancer Centre, University Health
Network, 101 College
Street, Toronto, Ontario M5G 1L7, Canada
| | - Vladimir Ignatchenko
- Princess
Margaret Cancer Centre, University Health
Network, 101 College
Street, Toronto, Ontario M5G 1L7, Canada
| | - Harald Hübner
- Medicinal
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Dorothee Weikert
- Medicinal
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Monika Pischetsrieder
- Food
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Thomas Kislinger
- Princess
Margaret Cancer Centre, University Health
Network, 101 College
Street, Toronto, Ontario M5G 1L7, Canada,Department
of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada,
| |
Collapse
|
9
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
10
|
Stone TW, Clanchy FIL, Huang YS, Chiang NY, Darlington LG, Williams RO. An integrated cytokine and kynurenine network as the basis of neuroimmune communication. Front Neurosci 2022; 16:1002004. [PMID: 36507331 PMCID: PMC9729788 DOI: 10.3389/fnins.2022.1002004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Two of the molecular families closely associated with mediating communication between the brain and immune system are cytokines and the kynurenine metabolites of tryptophan. Both groups regulate neuron and glial activity in the central nervous system (CNS) and leukocyte function in the immune system, although neither group alone completely explains neuroimmune function, disease occurrence or severity. This essay suggests that the two families perform complementary functions generating an integrated network. The kynurenine pathway determines overall neuronal excitability and plasticity by modulating glutamate receptors and GPR35 activity across the CNS, and regulates general features of immune cell status, surveillance and tolerance which often involves the Aryl Hydrocarbon Receptor (AHR). Equally, cytokines and chemokines define and regulate specific populations of neurons, glia or immune system leukocytes, generating more specific responses within restricted CNS regions or leukocyte populations. In addition, as there is a much larger variety of these compounds, their homing properties enable the superimposition of dynamic variations of cell activity upon local, spatially limited, cell populations. This would in principle allow the targeting of potential treatments to restricted regions of the CNS. The proposed synergistic interface of 'tonic' kynurenine pathway affecting baseline activity and the superimposed 'phasic' cytokine system would constitute an integrated network explaining some features of neuroimmune communication. The concept would broaden the scope for the development of new treatments for disorders involving both the CNS and immune systems, with safer and more effective agents targeted to specific CNS regions.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom,*Correspondence: Trevor W. Stone,
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Nien-Yi Chiang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Dopaminergic Signalling Enhances IL-2 Production and Strengthens Anti-Tumour Response Exerted by Cytotoxic T Lymphocytes in a Melanoma Mouse Model. Cells 2022; 11:cells11223536. [PMID: 36428964 PMCID: PMC9688276 DOI: 10.3390/cells11223536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Dopamine has emerged as an important regulator of immunity. Recent evidence has shown that signalling through low-affinity dopamine receptors exerts anti-inflammatory effects, whilst stimulation of high-affinity dopamine receptors potentiates immunity in different models. However, the dopaminergic regulation of CD8+ T-cells in anti-tumour immunity remains poorly explored. Here, we studied the role of dopamine receptor D3 (DRD3), which displays the highest affinity for dopamine, in the function of CD8+ T-cells and its consequences in the anti-tumour immune response. We observed that the deficiency of Drd3 (the gene encoding DRD3) in CD8+ T-cells limits their in vivo expansion, leading to an impaired anti-tumour response in a mouse melanoma model. Mechanistic analyses suggest that DRD3 stimulation favours the production of interleukin 2 (IL-2) and the surface expression of CD25, the α-chain IL-2 receptor, which are required for expansion and effector differentiation of CD8+ T-cells. Thus, our results provide genetic and pharmacologic evidence indicating that DRD3 favours the production of IL-2 by CD8+ T-cells, which is associated with higher expansion and acquisition of effector function of these cells, promoting a more potent anti-tumour response in a melanoma mouse model. These findings contribute to understanding how dopaminergic signalling affects the cellular immune response and represent an opportunity to improve melanoma therapy.
Collapse
|
12
|
Al Abadey A, Connor B, Flamme ACL, Robichon K. Clozapine reduces chemokine-mediated migration of lymphocytes by targeting NF-κB and AKT phosphorylation. Cell Signal 2022; 99:110449. [PMID: 36031090 DOI: 10.1016/j.cellsig.2022.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
Multiple sclerosis is a disease characterised by demyelination of axons in the central nervous system. The atypical antipsychotic drug clozapine has been shown to attenuate disease severity in experimental autoimmune encephalomyelitis (EAE), a mouse model that is useful for the study of multiple sclerosis. However, the mechanism of action by which clozapine reduces disease in EAE is poorly understood. To better understand how clozapine exerts its protective effects, we investigated the underlying signalling pathways by which clozapine may reduce immune cell migration by evaluating chemokine and dopamine receptor-associated signalling pathways. We found that clozapine inhibits migration of immune cells by reducing chemokine production in microglia cells by targeting NF-κB phosphorylation and promoting an anti-inflammatory milieu. Furthermore, clozapine directly targets immune cell migration by changing Ca2+ levels within immune cells and reduces the phosphorylation of signalling protein AKT. Linking these pathways to the antagonising effect of clozapine on dopamine and serotonin receptors, we provide insight into how clozapine alters immune cells migration by directly targeting the underlying migration-associated pathways.
Collapse
Affiliation(s)
- Afnan Al Abadey
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Anne Camille La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand; Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Katharina Robichon
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
13
|
Chen Y, Yan SM, Pu Z, Feng J, Tan L, Li Y, Hu H, Huang W, Lin Y, Peng Z, He X, Huang F, Zhang H, Zhang Y. Dopamine signaling promotes tissue-resident memory differentiation of CD8+ T cells and antitumor immunity. Cancer Res 2022; 82:3130-3142. [PMID: 35802647 DOI: 10.1158/0008-5472.can-21-4084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Tissue-resident memory CD8+ T (TRM)-cells have been associated with robust protective anti-tumor immune responses and improved prognosis of cancer patients. Therefore, therapeutic strategies that modulate either the production or activity of TRM cells could be effective for treating cancer. Using a high-throughput drug screen, we showed that the neurotransmitter dopamine drives differentiation of CD8+ T cells into CD103+ TRM cells. In murine syngeneic tumor xenograft models and clinical human colon cancer samples, DRD5 served as the major functional dopamine receptor on CD8+ T cells and positively correlated with TRM cell density. DRD5 deficiency led to a failure of CD8+ T cells to accumulate in tissues, resulting in impaired TRM cell formation, reduced effector function, and uncontrolled disease progression. Moreover, dopamine treatment promoted the antitumor activity of CD8+ T cells and suppressed colorectal cancer growth in immunocompentent mouse models, and ex-vivo pre-conditioning with dopamine enhanced the in vivo efficacy of CAR-T cells. Finally, in a colorectal cancer patient cohort, dopamine expression was positively associated with patient survival and CD8+ T cell infiltration. These findings suggest that dopaminergic immunoregulation plays an important role in the differentiation of CD8+ cells into CD103+ TRM cells and thereby modulates TRM-elicited antitumor immunity in colorectal cancer.
Collapse
Affiliation(s)
- Yingshi Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shu-Mei Yan
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zeyu Pu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinzhu Feng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Likai Tan
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yuzhuang Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongrong Hu
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Yingtong Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhilin Peng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xin He
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Feng Huang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), China
| | - Hui Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Shao Y, Dong Y, Wang W, Chen Z, Hao C, Yang Y, Zhang J. The Function and Mechanism of Dopamine in the Activation of CD4 + T Cell. Immunopharmacol Immunotoxicol 2022; 44:410-420. [PMID: 35285388 DOI: 10.1080/08923973.2022.2052894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yu Shao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| | - Yongli Dong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| | - Wenwen Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| |
Collapse
|
15
|
Sato D, Hamada Y, Narita M, Mori T, Tezuka H, Suda Y, Tanaka K, Yoshida S, Tamura H, Yamanaka A, Senba E, Kuzumaki N, Narita M. Tumor suppression and improvement in immune systems by specific activation of dopamine D1-receptor-expressing neurons in the nucleus accumbens. Mol Brain 2022; 15:17. [PMID: 35172858 PMCID: PMC8848802 DOI: 10.1186/s13041-022-00902-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/06/2022] [Indexed: 01/23/2023] Open
Abstract
Recent research has suggested that the mesolimbic dopamine network that mainly terminates in the nucleus accumbens may positively control the peripheral immune system. The activation of dopamine receptors in neurons in the nucleus accumbens by the release of endogenous dopamine is thus expected to contribute to efferent immune regulation. As in the stimulation of Gs-coupled dopamine D1-receptors or Gi-coupled D2-receptors by endogenous dopamine, we investigated whether specific stimulation of dopamine D1-receptor-expressing neurons or inhibition of dopamine D2-receptor-expressing neurons in the nucleus accumbens could produce anti-tumor effects and improve the immune system in transgenic mice using pharmacogenetic techniques. Repeated stimulation of D1-receptor-expressing neurons in either the medial shell, lateral shell or core regions of the nucleus accumbens significantly decreased tumor volume under a state of tumor transplantation, whereas repeated suppression of D2-receptor-expressing neurons in these areas had no effect on this event. The number of splenic CD8+ T cells was significantly increased following repeated stimulation of D1-receptor-expressing neurons in the nucleus accumbens of mice with tumor transplantation. Furthermore, this stimulation produced a significant reduction in the population of splenic CD8+ T cells that expressed immune checkpoint-related inhibitory receptors, PD-1, TIM-3 and LAG-3. These findings suggest that repeated stimulation of D1-receptor-expressing neurons (probably D1-receptor-expressing medium spiny neurons) in the nucleus accumbens suppressed tumor progression and improved the immune system by suppressing the exhaustion of splenic CD8+ T cells.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Michiko Narita
- Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan
| | - Hiroyuki Tezuka
- Department of Cellular Function Analysis, Research Promotion and Support Headquarters, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Sara Yoshida
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hideki Tamura
- Institute for Advanced Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-0063, Japan.,Laboratory of Biofunctional Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-0063, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Emiko Senba
- Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki, Osaka, 567-0801, Japan.,Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
16
|
Schizophrenia Outside the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:53-63. [DOI: 10.1007/978-3-030-97182-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Prado C, Osorio-Barrios F, Falcón P, Espinoza A, Saez JJ, Yuseff MI, Pacheco R. Dopaminergic stimulation leads B-cell infiltration into the central nervous system upon autoimmunity. J Neuroinflammation 2021; 18:292. [PMID: 34920747 PMCID: PMC8680379 DOI: 10.1186/s12974-021-02338-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent evidence has shown dopamine as a major regulator of inflammation. Accordingly, dopaminergic regulation of immune cells plays an important role in the physiopathology of inflammatory disorders. Multiple sclerosis (MS) is an inflammatory disease involving a CD4+ T-cell-driven autoimmune response to central nervous system (CNS) derived antigens. Evidence from animal models has suggested that B cells play a fundamental role as antigen-presenting cells (APC) re-stimulating CD4+ T cells in the CNS as well as regulating T-cell response by mean of inflammatory or anti-inflammatory cytokines. Here, we addressed the role of the dopamine receptor D3 (DRD3), which displays the highest affinity for dopamine, in B cells in animal models of MS. METHODS Mice harbouring Drd3-deficient or Drd3-sufficient B cells were generated by bone marrow transplantation into recipient mice devoid of B cells. In these mice, we compared the development of experimental autoimmune encephalomyelitis (EAE) induced by immunization with a myelin oligodendrocyte glycoprotein (MOG)-derived peptide (pMOG), a model that leads to CNS-autoimmunity irrespective of the APC-function of B cells, or by immunization with full-length human MOG protein (huMOG), a model in which antigen-specific activated B cells display a fundamental APC-function in the CNS. APC-function was assessed in vitro by pulsing B cells with huMOG-coated beads and then co-culturing with MOG-specific T cells. RESULTS Our data show that the selective Drd3 deficiency in B cells abolishes the disease development in the huMOG-induced EAE model. Mechanistic analysis indicates that although DRD3-signalling did not affect the APC-function of B cells, DRD3 favours the CNS-tropism in a subset of pro-inflammatory B cells in the huMOG-induced EAE model, an effect that was associated with higher CXCR3 expression. Conversely, the results show that the selective Drd3 deficiency in B cells exacerbates the disease severity in the pMOG-induced EAE model. Further analysis shows that DRD3-stimulation increased the expression of the CNS-homing molecule CD49d in a B-cell subset with anti-inflammatory features, thus attenuating EAE manifestation in the pMOG-induced EAE model. CONCLUSIONS Our findings demonstrate that DRD3 in B cells exerts a dual role in CNS-autoimmunity, favouring CNS-tropism of pro-inflammatory B cells with APC-function and promoting CNS-homing of B cells with anti-inflammatory features. Thus, these results show DRD3-signalling in B cells as a critical regulator of CNS-autoimmunity.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, 7510156, Santiago, Chile
| | - Francisco Osorio-Barrios
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile
| | - Paulina Falcón
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile
| | - Alexandra Espinoza
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile
| | - Juan José Saez
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | - María Isabel Yuseff
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile. .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, 7510156, Santiago, Chile.
| |
Collapse
|
18
|
Liu Z, Zhai XR, Du ZS, Xu FF, Huang Y, Wang XQ, Qiu YH, Peng YP. Dopamine receptor D2 on CD4 + T cells is protective against neuroinflammation and neurodegeneration in a mouse model of Parkinson's disease. Brain Behav Immun 2021; 98:110-121. [PMID: 34403737 DOI: 10.1016/j.bbi.2021.08.220] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease. Recently, neuroinflammation driven by CD4+ T cells has been involved in PD pathophysiology. Human and murine lymphocytes express all the five subtypes of dopamine receptors (DRs), DRD1 to DRD5. However, roles of DRs particularly DRD2 expressed on CD4+ T cells in PD remain elucidated. Global Drd1- or Drd2-knockout (Drd1-/- or Drd2-/-) mice or CD4+ T cell-specific Drd2-knockout (Drd2fl/fl/CD4Cre) mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD with the different mutants. On the 7th day following MPTP injection, mice were assessed for dopaminergic neurodegeneration, locomotor impairments, microglial activation, as well as CD4+ T-cell differentiation and function. Furthermore, in vitro CD4+ T cells were exposed to DRD2 agonist and antagonist and then differentiation and function of the cells were determined. MPTP induced dopaminergic neuronal loss in the nigrostriatal system, motor coordinative and behavioral impairments, microglial activation, and CD4+ T-cell polarization to pro-inflammatory T-helper (Th)1 and Th17 phenotypes. Importantly, either Drd2-/- or Drd2fl/fl/CD4Cre mice manifested more severe dopaminergic neurodegeneration, motor deficits, microglial activation, and CD4+ T-cell bias towards Th1 and Th17 phenotypes in response to MPTP, but Drd1-/- did not further alter MPTP intoxication. DRD2 agonist sumanirole inhibited shift of CD4+ T cells obtained from MPTP-intoxicated mice to Th1 and Th17 phenotypes and DRD2 antagonist L-741,626 reversed sumanirole effects. These findings suggest that DRD2 expressed on CD4+ T cells is protective against neuroinflammation and neurodegeneration in PD. Thus, developing a therapeutic strategy of stimulating DRD2 may be promising for mitigation of PD.
Collapse
Affiliation(s)
- Zhan Liu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Xiao-Run Zhai
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Zhong-Shuai Du
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Fen-Fen Xu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yan Huang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Xiao-Qin Wang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| |
Collapse
|
19
|
The role of dopamine receptors in lymphocytes and their changes in schizophrenia. Brain Behav Immun Health 2021; 12:100199. [PMID: 34589732 PMCID: PMC8474470 DOI: 10.1016/j.bbih.2021.100199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022] Open
Abstract
Dopamine and its 5 receptors, which are grouped into two families (D1-like and D2-like), modulate functions at a systemic level in both the central nervous system and periphery. The central nervous system and the immune system are the main adaptive systems, which participate in a continuous and functional crosstalk to guarantee homeostasis. On binding to its 5 dopamine receptors, dopamine acts as a co-regulator of the immune system, contributing to the interaction of the central nervous system and inflammatory events and as a source of communication between the different immune cells. Dopaminergic perturbations in the central nervous system are observed in several neurological and psychiatric disorders. Schizophrenia is one of the most common mental disorders with a poorly understood pathoaetiology that includes genetic and environmental components that promote alterations in the dopaminergic system. Interestingly, abnormalities in dopamine receptors expression in lymphocytes of schizophrenia patients have been reported, often significantly correlating with the severity of the psychotic illness. Here, we review the current literature regarding the dopaminergic system in human lymphocytes and its alterations in schizophrenia. The existence of DA in the bloodstream suggests the presence of dopaminergic components that modulate functions at a systemic level; therefore, its effects are not limited to the CNS and the signalling in the neuronal dopaminergic system should be independent from that of the peripheral systems. The effects by DA-mediated activation of different DRs on immune cells show different sensitivities to DA, but binding profiles of DA on T cells are similar to those in neuronal membranes, suggesting receptors act similarly to those found in neurons. All DRs are expressed on the LYM membrane. However, more detailed information is required on the expression patterns of DR in immune cells in healthy conditions and in pathologies. DA has been observed to influence LYM functions acting in a variety of important processes, like cytokine secretion, cell adhesion, chemotaxis, and cytotoxicity. In human LYM, DA on D1-like receptors decreases oxidative metabolism and apoptosis, activates the selective secretion of IL-10 and TNFα, and facilitates NK cells. In contrast, most of the immunostimulatory DA effects on LYM depend on stimulation of D2-like receptors including activation, proliferation, differentiation, and suppression of NK cells. To date, an altered expression or signalling of neurotransmitter receptors is observed in immune cells during psychiatric disorders and, consequently, these cells also markedly respond to antipsychotics. Numerous technologies have been used in search of biomarkers for SCZ. However, after a century of studying SCZ their application in psychiatry remains rare and there are currently no validated biomarkers for the diagnosis and prognosis of patients with SCZ or the prediction of treatment efficacy.
Collapse
|
20
|
Bandala C, Ávila-Luna A, Gómez-López M, Estrada-Villaseñor E, Montes S, Alfaro-Rodríguez A, Miliar-García Á, Cortés-Altamirano JL, Peralta R, Ibáñez-Cervantes G, Gómez-Manzo S, Cárdenas-Rodríguez N, Lara-Padilla E. Catecholamine levels and gene expression of their receptors in tissues of adults with osteosarcoma. Arch Physiol Biochem 2021; 127:337-343. [PMID: 31291139 DOI: 10.1080/13813455.2019.1638942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIM The purpose of this work was to identify and measure catecholamines, their metabolites, and the gene expression of catecholamine receptors in osteosarcoma tissue. MATERIALS AND METHODS The levels of 3,4-dihydroxyphenylacetic acid, norepinephrine, serotonin, and 5-hydroxyindoleacetic acid in cancer tissue and in adjacent and non-oncological bone tissue were analysed by high-performance liquid chromatography, and the gene expression of catecholamine receptors and of dopamine β-hydroxylase, monoaminoxidase, ki67, and Runx2 in the osteosarcoma tissue, tissue adjacent to the tumour, non-oncological bone, and human brain tissue was analysed by RT-PCR. RESULTS We found significantly higher levels of 3,4-dihydroxyphenylacetic acid and norepinephrine in the cancer sample than in adjacent and non-oncological bone. We found that β-adrenergic receptors and dopaminergic receptors, dopamine β-hydroxylase, ki67, Runx2, and serotonergic receptor gene expression were significantly higher in tumour tissue than in adjacent and non-oncological bone. CONCLUSION Catecholamines and their receptors could be potential molecular markers for osteosarcoma progression.
Collapse
Affiliation(s)
- Cindy Bandala
- Division of Neurosciences, National Institute of Rehabilitation, Mexico City, Mexico
- Superior School of Medicine, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alberto Ávila-Luna
- Division of Neurosciences, National Institute of Rehabilitation, Mexico City, Mexico
| | - Modesto Gómez-López
- Superior School of Medicine, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Sergio Montes
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery MVS, Mexico City, Mexico
| | | | - Ángel Miliar-García
- Superior School of Medicine, Instituto Politécnico Nacional, Mexico City, Mexico
| | - José L Cortés-Altamirano
- Division of Neurosciences, National Institute of Rehabilitation, Mexico City, Mexico
- Superior School of Medicine, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Raúl Peralta
- Center for Research in Cell Dynamics, Autonomous University of the State of Morelos, Cuernavaca, Mexico
| | | | - Saúl Gómez-Manzo
- Laboratory of Genetic Biochemistry, National Institute of Pediatrics, Mexico City, Mexico
| | | | - Eleazar Lara-Padilla
- Superior School of Medicine, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
21
|
Liang Y, Li H, Gan Y, Tu H. Shedding Light on the Role of Neurotransmitters in the Microenvironment of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:688953. [PMID: 34395421 PMCID: PMC8363299 DOI: 10.3389/fcell.2021.688953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of less than 8%. The fate of PC is determined not only by the malignant behavior of the cancer cells, but also by the surrounding tumor microenvironment (TME), consisting of various cellular (cancer cells, immune cells, stromal cells, endothelial cells, and neurons) and non-cellular (cytokines, neurotransmitters, and extracellular matrix) components. The pancreatic TME has the unique characteristic of exhibiting increased neural density and altered microenvironmental concentration of neurotransmitters. The neurotransmitters, produced by both neuron and non-neuronal cells, can directly regulate the biological behavior of PC cells via binding to their corresponding receptors on tumor cells and activating the intracellular downstream signals. On the other hand, the neurotransmitters can also communicate with other cellular components such as the immune cells in the TME to promote cancer growth. In this review, we will summarize the pleiotropic effects of neurotransmitters on the initiation and progression of PC, and particularly discuss the emerging mechanisms of how neurotransmitters influence the innate and adaptive immune responses in the TME in an autocrine or paracrine manner. A better understanding of the interplay between neurotransmitters and the immune cells in the TME might facilitate the development of new effective therapies for PC.
Collapse
Affiliation(s)
| | | | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Dopaminergic signalling limits suppressive activity and gut homing of regulatory T cells upon intestinal inflammation. Mucosal Immunol 2021; 14:652-666. [PMID: 33184477 DOI: 10.1038/s41385-020-00354-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023]
Abstract
Evidence from inflammatory bowel diseases (IBD) patients and animal models has indicated that gut inflammation is driven by effector CD4+ T-cell, including Th1 and Th17. Conversely, Treg seem to be dysfunctional in IBD. Importantly, dopamine, which is abundant in the gut mucosa under homoeostasis, undergoes a sharp reduction upon intestinal inflammation. Here we analysed the role of the high-affinity dopamine receptor D3 (DRD3) in gut inflammation. Our results show that Drd3 deficiency confers a stronger immunosuppressive potency to Treg, attenuating inflammatory colitis manifestation in mice. Mechanistic analyses indicated that DRD3-signalling attenuates IL-10 production and limits the acquisition of gut-tropism. Accordingly, the ex vivo transduction of wild-type Treg with a siRNA for Drd3 induced a potent therapeutic effect abolishing gut inflammation. Thus, our findings show DRD3-signalling as a major regulator of Treg upon gut inflammation.
Collapse
|
23
|
Campos J, Pacheco R. Involvement of dopaminergic signaling in the cross talk between the renin-angiotensin system and inflammation. Semin Immunopathol 2020; 42:681-696. [PMID: 32997225 PMCID: PMC7526080 DOI: 10.1007/s00281-020-00819-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) is a fundamental regulator of blood pressure and has emerged as an important player in the control of inflammatory processes. Accordingly, imbalance on RAS components either systemically or locally might trigger the development of inflammatory disorders by affecting immune cells. At the same time, alterations in the dopaminergic system have been consistently involved in the physiopathology of inflammatory disorders. Accordingly, the interaction between the RAS and the dopaminergic system has been studied in the context of inflammation of the central nervous system (CNS), kidney, and intestine, where they exert antagonistic actions in the regulation of the immune system. In this review, we summarized, integrated, and discussed the cross talk of the dopaminergic system and the RAS in the regulation of inflammatory pathologies, including neurodegenerative disorders, such as Parkinson’s disease. We analyzed the molecular mechanisms underlying the interaction between both systems in the CNS and in systemic pathologies. Moreover, we also analyzed the impact of the commensal microbiota in the regulation of RAS and dopaminergic system and how it is involved in inflammatory disorders. Furthermore, we summarized the therapeutic approaches that have yielded positive results in preclinical or clinical studies regarding the use of drugs targeting the RAS and dopaminergic system for the treatment of inflammatory conditions. Further understanding of the molecular and cellular regulation of the RAS-dopaminergic cross talk should allow the formulation of new therapies consisting of novel drugs and/or repurposing already existing drugs, alone or in combination, for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Javier Campos
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Ñuñoa, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Ñuñoa, Santiago, Chile. .,Universidad San Sebastián, 7510156 Providencia, Santiago, Chile.
| |
Collapse
|
24
|
Vidal PM, Pacheco R. The Cross-Talk Between the Dopaminergic and the Immune System Involved in Schizophrenia. Front Pharmacol 2020; 11:394. [PMID: 32296337 PMCID: PMC7137825 DOI: 10.3389/fphar.2020.00394] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine is one of the neurotransmitters whose transmission is altered in a number of neural pathways in the brain of schizophrenic patients. Current evidence indicates that these alterations involve hyperactive dopaminergic transmission in mesolimbic areas, striatum, and hippocampus, whereas hypoactive dopaminergic transmission has been reported in the prefrontal cortex of schizophrenic patients. Consequently, schizophrenia is associated with several cognitive and behavioral alterations. Of note, the immune system has been found to collaborate with the central nervous system in a number of cognitive and behavioral functions, which are dysregulated in schizophrenia. Moreover, emerging evidence has associated schizophrenia and inflammation. Importantly, different lines of evidence have shown dopamine as a major regulator of inflammation. In this regard, dopamine might exert strong regulation in the activity, migration, differentiation, and proliferation of immune cells that have been shown to contribute to cognitive functions, including T-cells, microglial cells, and peripheral monocytes. Thereby, alterations in dopamine levels associated to schizophrenia might affect inflammatory response of immune cells and consequently some behavioral functions, including reference memory, learning, social behavior, and stress resilience. Altogether these findings support the involvement of an active cross-talk between the dopaminergic and immune systems in the physiopathology of schizophrenia. In this review we summarize, integrate, and discuss the current evidence indicating the involvement of an altered dopaminergic regulation of immunity in schizophrenia.
Collapse
Affiliation(s)
- Pia M Vidal
- Department of Basic Science, Biomedical Science Research Lab, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile.,Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
25
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
26
|
Keren A, Gilhar A, Ullmann Y, Zlotkin-Frušić M, Soroka Y, Domb AJ, Levite M. Instantaneous depolarization of T cells via dopamine receptors, and inhibition of activated T cells of Psoriasis patients and inflamed human skin, by D1-like receptor agonist: Fenoldopam. Immunology 2020; 158:171-193. [PMID: 31424569 DOI: 10.1111/imm.13109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Activated T cells are pathological in various autoimmune and inflammatory diseases including Psoriasis, and also in graft rejection and graft-versus-host-disease. In these pathological conditions, selective silencing of activated T cells through physiological receptors they express remains a clinical challenge. In our previous studies we found that activation of dopamine receptors (DRs) in resting human T cells activates these cells, and induces by itself many beneficial T cell functions. In this study, we found that normal human T cells express all types of DRs, and that expression of D1R, D4R and D5R increases profoundly after T cell receptor (TCR) activation. Interestingly, DR agonists shift the membrane potential (Vm ) of both resting and activated human T cells, and induces instantaneous T cell depolarization within 15 seconds only. Thus, activation of DRs in T cells depolarize these immune cells, alike activation of DRs in neural cells. The skin of Psoriasis patients contains 20-fold more D1R+ T cells than healthy human skin. In line with that, 25-fold more D1R+ T cells are present in Psoriasis humanized mouse model. Highly selective D1-like receptor agonists, primarily Fenoldopam (Corlopam) - a D1-like receptor agonist and a drug used in hypertension, induced the following suppressive effects on activated T cells of Psoriasis patients: reduced chemotactic migration towards the chemokine SDF-1/CXCL12; reduced dramatically the secretion of eight cytokines: tumor necrosis factor-α, interferon-γ, interleukin-1β (IL-1β), IL-2, IL-4, IL-6, IL-8 and IL-10; and reduced three T cell activation proteins/markers: CD69, CD28 and IL-2. Next, we invented a novel topical/dermal Fenoldopam formulation, allowing it to be spread on, and providing prolonged and regulated release in, diseased skin. Our novel topical/dermal Fenoldopam: reduced secretion of the eight cytokines by activated human T cells; reduced IL-1β and IL-6 secretion by human lipopolysaccharide-inflamed skin; eliminated preferentially >90% of live and large/proliferating human T cells. Together, our findings show for the first time that both resting and activated T cells are depolarized instantaneously via DRs, and that targeting D1-like receptors in activated T cells and inflamed human skin by Fenoldopam, in Psoriasis, and potentially in other T cell-mediated diseases, could be therapeutic. Validation in vivo is required.
Collapse
Affiliation(s)
- Aviad Keren
- Skin Research Laboratory, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Amos Gilhar
- Skin Research Laboratory, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yehuda Ullmann
- Skin Research Laboratory, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Yoram Soroka
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abraham J Domb
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mia Levite
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Gene Therapy, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
27
|
Hodo TW, de Aquino MTP, Shimamoto A, Shanker A. Critical Neurotransmitters in the Neuroimmune Network. Front Immunol 2020; 11:1869. [PMID: 32973771 PMCID: PMC7472989 DOI: 10.3389/fimmu.2020.01869] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells rely on cell-cell communication to specify and fine-tune their responses. They express an extensive network of cell communication modes, including a vast repertoire of cell surface and transmembrane receptors and ligands, membrane vesicles, junctions, ligand and voltage-gated ion channels, and transporters. During a crosstalk between the nervous system and the immune system these modes of cellular communication and the downstream signal transduction events are influenced by neurotransmitters present in the local tissue environments in an autocrine or paracrine fashion. Neurotransmitters thus influence innate and adaptive immune responses. In addition, immune cells send signals to the brain through cytokines, and are present in the brain to influence neural responses. Altered communication between the nervous and immune systems is emerging as a common feature in neurodegenerative and immunopathological diseases. Here, we present the mechanistic frameworks of immunostimulatory and immunosuppressive effects critical neurotransmitters - dopamine (3,4-dihydroxyphenethylamine), serotonin (5-hydroxytryptamine), substance P (trifluoroacetate salt powder), and L-glutamate - exert on lymphocytes and non-lymphoid immune cells. Furthermore, we discuss the possible roles neurotransmitter-driven neuroimmune networks play in the pathogenesis of neurodegenerative disorders, autoimmune diseases, cancer, and outline potential clinical implications of balancing neuroimmune crosstalk by therapeutic modulation.
Collapse
Affiliation(s)
- Thomas Wesley Hodo
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Maria Teresa Prudente de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
28
|
Yoshioka Y, Sugino Y, Shibagaki F, Yamamuro A, Ishimaru Y, Maeda S. Dopamine attenuates lipopolysaccharide-induced expression of proinflammatory cytokines by inhibiting the nuclear translocation of NF-κB p65 through the formation of dopamine quinone in microglia. Eur J Pharmacol 2019; 866:172826. [PMID: 31790652 DOI: 10.1016/j.ejphar.2019.172826] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 01/14/2023]
Abstract
Many reports have indicated that dopamine has immunomodulatory effects on peripheral immune cells. The purpose of this study was to reveal the immunomodulatory effect of dopamine on the expression of proinflammatory cytokines in microglial cells, which are the immune cells of the central nervous system. In murine microglial cell line BV-2 cells, pretreatment with dopamine for 24 h attenuated the lipopolysaccharide (LPS)-induced expression of proinflammatory cytokines such as tumor-necrosis factor-α, interleukin-1β, and interleukin-6. Neither (5R)-8-chloro-3-methyl-5-phenyl-1,2,4,5-tetrahydro-3-benzazepin-7-ol; hydrochloride (SCH-23390) nor sulpiride, which are dopamine D1-like and D2-like receptor antagonists, respectively, affected the attenuation of LPS-induced expression of cytokines by dopamine. In addition, pretreatment with neither (-)-(6aR,12bR)-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY208-243) nor bromocriptine, dopamine D1-like and D2-like receptor agonists, respectively, was effective in doing so. However, N-acetylcysteine (NAC), which inhibits dopamine oxidation to dopamine quinone, did inhibit this attenuated expression. Dopamine increased the level of quinoproteins, and this increase was inhibited by NAC. Western blot and immunocytochemical analyses revealed that dopamine inhibited LPS-induced nuclear translocation of nuclear factor-kappa B (NF-κB) p65. Dopamine also attenuated the expression of cytokines and the nuclear translocation of NF-κB p65 induced by LPS in mouse microglial cells in primary culture. These results suggest that dopamine attenuated LPS-induced expression of cytokines by inhibiting the nuclear translocation of NF-κB p65 through the formation of dopamine quinone in microglial cells.
Collapse
Affiliation(s)
- Yasuhiro Yoshioka
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Yuta Sugino
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Fumiya Shibagaki
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Akiko Yamamuro
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Yuki Ishimaru
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| | - Sadaaki Maeda
- Laboratory of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan.
| |
Collapse
|
29
|
Xia QP, Cheng ZY, He L. The modulatory role of dopamine receptors in brain neuroinflammation. Int Immunopharmacol 2019; 76:105908. [PMID: 31622861 DOI: 10.1016/j.intimp.2019.105908] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 01/11/2023]
Abstract
Neuroinflammation is a general pathological feature of central nervous system (CNS) diseases, primarily caused by activation of astrocytes and microglia, as well as the infiltration of peripheral immune cells. Inhibition of neuroinflammation is an important strategy in the treatment of brain disorders. Dopamine (DA) receptor, a significant G protein-coupled receptor (GPCR), is classified into two families: D1-like (D1 and D5) and D2-like (D2, D3 and D4) receptor families, according to their downstream signaling pathways. Traditionally, DA receptor forms a wide variety of psychological activities and motor functions, such as voluntary movement, working memory and learning. Recently, the role of DA receptor in neuroinflammation has been investigated widely, mainly focusing on nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, renin-angiotensin system, αB-crystallin, as well as invading peripheral immune cells, including T cells, dendritic cells, macrophages and monocytes. This review briefly outlined the functions and signaling pathways of DA receptor subtypes as well as its role in inflammation-related glial cells, and subsequently summarized the mechanisms of DA receptors affecting neuroinflammation. Meaningfully, this article provided a theoretical basis for drug development targeting DA receptors in inflammation-related brain diseases.
Collapse
Affiliation(s)
- Qing-Peng Xia
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhao-Yan Cheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
30
|
Elkhatib SK, Case AJ. Autonomic regulation of T-lymphocytes: Implications in cardiovascular disease. Pharmacol Res 2019; 146:104293. [PMID: 31176794 DOI: 10.1016/j.phrs.2019.104293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/22/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
Abstract
The nervous and immune systems both serve as essential assessors and regulators of physiological function. Recently, there has been a great interest in how the nervous and immune systems interact to modulate both physiological and pathological states. In particular, the autonomic nervous system has a direct line of communication with immune cells anatomically, and moreover, immune cells possess receptors for autonomic neurotransmitters. This circumstantial evidence is suggestive of a functional interplay between the two systems, and extensive research over the past few decades has demonstrated neurotransmitters such as the catecholamines (i.e. dopamine, norepinephrine, and epinephrine) and acetylcholine have potent immunomodulating properties. Furthermore, immune cells, particularly T-lymphocytes, have now been found to express the cellular machinery for both the synthesis and degradation of neurotransmitters, which suggests the ability for both autocrine and paracrine signaling from these cells independent of the nervous system. The details underlying the functional interplay of this complex network of neuroimmune communication are still unclear, but this crosstalk is suggestive of significant implications on the pathogenesis of a number of autonomic-dysregulated and inflammation-mediated diseases. In particular, it is widely accepted that numerous forms of cardiovascular diseases possess imbalanced autonomic tone as well as altered T-lymphocyte function, but a paucity of literature exists discussing the direct role of neurotransmitters in shaping the inflammatory microenvironment during the progression or therapeutic management of these diseases. This review seeks to provide a fundamental framework for this autonomic neuroimmune interaction within T-lymphocytes, as well as the implications this may have in cardiovascular diseases.
Collapse
Affiliation(s)
- Safwan K Elkhatib
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
31
|
Kerage D, Sloan EK, Mattarollo SR, McCombe PA. Interaction of neurotransmitters and neurochemicals with lymphocytes. J Neuroimmunol 2019; 332:99-111. [PMID: 30999218 DOI: 10.1016/j.jneuroim.2019.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Neurotransmitters and neurochemicals can act on lymphocytes by binding to receptors expressed by lymphocytes. This review describes lymphocyte expression of receptors for a selection of neurotransmitters and neurochemicals, the anatomical locations where lymphocytes can interact with neurotransmitters, and the effects of the neurotransmitters on lymphocyte function. Implications for health and disease are also discussed.
Collapse
Affiliation(s)
- Daniel Kerage
- The University of Queensland Diamantina Institute, Brisbane, Australia; Transplant Research Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Cousins Center for Neuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA
| | | | - Pamela A McCombe
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Australia; Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia.
| |
Collapse
|
32
|
Abstract
Cell surface transmembrane receptors often form nanometer- to micrometer-scale clusters to initiate signal transduction in response to environmental cues. Extracellular ligand oligomerization, domain-domain interactions, and binding to multivalent proteins all contribute to cluster formation. Here we review the current understanding of mechanisms driving cluster formation in a series of representative receptor systems: glycosylated receptors, immune receptors, cell adhesion receptors, Wnt receptors, and receptor tyrosine kinases. We suggest that these clusters share properties of systems that undergo liquid-liquid phase separation and could be investigated in this light.
Collapse
Affiliation(s)
- Lindsay B Case
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Jonathon A Ditlev
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| |
Collapse
|
33
|
Nasi G, Ahmed T, Rasini E, Fenoglio D, Marino F, Filaci G, Cosentino M. Dopamine inhibits human CD8+ Treg function through D 1-like dopaminergic receptors. J Neuroimmunol 2019; 332:233-241. [PMID: 30954278 DOI: 10.1016/j.jneuroim.2019.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023]
Abstract
CD8+ T regulatory/suppressor cells (Treg) affect peripheral tolerance and may be involved in autoimmune diseases as well as in cancer. In view of our previous data showing the ability of DA to affect adaptive immune responses, we investigated the dopaminergic phenotype of human CD8+ Treg as well as the ability of DA to affect their generation and activity. Results show that CD8+ T cells express both D1-like and D2-like dopaminergic receptors (DR), tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of DA, and vesicular monoamine transporter (VMAT) 2 and contain high levels of intracellular DA. Preferential upregulation of DR mRNA levels in the CD8+CD28- T cell compartment occurs during generation of CD8+ Treg, which is reduced by DA and by the D1-like DR agonist SKF-38393. DA and SKF-38393 also reduce the suppressive activity of CD8+ Treg on human peripheral blood mononuclear cells. Treg are crucial for tumor escape from the host immune system, thus the ability of DA to inhibits Treg function supports dopaminergic pathways as a druggable targets to develop original and innovative antitumor strategies.
Collapse
Affiliation(s)
- Giorgia Nasi
- Center of Excellence for Biomedical Research/Department of Internal Medicine, Clinical Immunology Unit, Clinical Immunology Unit, University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Tanzeel Ahmed
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Emanuela Rasini
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Daniela Fenoglio
- Center of Excellence for Biomedical Research/Department of Internal Medicine, Clinical Immunology Unit, Clinical Immunology Unit, University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research/Department of Internal Medicine, Clinical Immunology Unit, Clinical Immunology Unit, University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.
| |
Collapse
|
34
|
Wang X, Wang ZB, Luo C, Mao XY, Li X, Yin JY, Zhang W, Zhou HH, Liu ZQ. The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor. J Cancer 2019; 10:1622-1632. [PMID: 31205518 PMCID: PMC6548012 DOI: 10.7150/jca.27780] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022] Open
Abstract
Dopamine receptors are belong to the family of G protein-coupled receptor. There are five types of dopamine receptor (DR), including DRD1, DRD2, DRD3, DRD4, and DRD5, which are divided into two major groups: the D1-like receptors (DRD1 and DRD5), and the D2-like receptors (DRD2, DRD3, and DRD4). Dopamine receptors are involved in all of the physiological functions of dopamine, including the autonomic movement, emotion, hormonal regulation, dopamine-induced immune effects, and tumor behavior, and so on. Increasing evidence shows that dopamine receptors are associated with the regulation of tumor behavior, such as tumor cell death, proliferation, invasion, and migration. Recently, some studies showed that dopamine receptors could regulate several ways of death of the tumor cell, including apoptosis, autophagy-induced death, and ferroptosis, which cannot only directly affect tumor behavior, but also limit tumor progress via activating tumor immunity. In this review, we focus mainly on the function of the dopamine receptor on Bio-behavior of tumor as a potential therapeutic target.
Collapse
Affiliation(s)
- Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,School of Life Sciences, Central South University, Changsha, Hunan 410078
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| |
Collapse
|
35
|
Arce-Sillas A, Sevilla-Reyes E, Álvarez-Luquín DD, Guevara-Salinas A, Boll MC, Pérez-Correa CA, Vivas-Almazan AV, Rodríguez-Ortiz U, Castellanos Barba C, Hernandez M, Fragoso G, Sciutto E, Cárdenas G, Adalid-Peralta LV. Expression of Dopamine Receptors in Immune Regulatory Cells. Neuroimmunomodulation 2019; 26:159-166. [PMID: 31311029 DOI: 10.1159/000501187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/28/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Parkinson's disease (PD) patients are usually treated with L-dopa and/or dopaminergic agonists, which act by binding five types of dopaminergic receptors (DRD1-DRD5). Peripheral immune cells are known to express dopamine receptors on their membrane surface, and therefore they could be directly affected by the treatment. Regulatory cells are the main modulators of inflammation, but it is not clear whether dopaminergic treatment could affect their functions. While only regulatory T cells (Tregs) have been proved to express dopamine receptors, it is not known whether other regulatory cells such as CD8regs, regulatory B cells (Bregs), tolerogenic dendritic cells, and intermediate monocytes also express them. METHODS The expression of dopamine receptors in Tregs, CD8regs, Bregs, tolerogenic dendritic cells, and intermediate monocytes was herein evaluated. cDNA from 11 PD patients and 9 control subjects was obtained and analyzed. RESULTS All regulatory cell populations expressed the genes coding for dopamine receptors, and this expression was further corroborated by flow cytometry. These findings may allow us to propose regulatory populations as possible targets for PD treatment. CONCLUSIONS This study opens new paths to deepen our understanding on the effect of PD treatment on the cells of the regulatory immune response.
Collapse
Affiliation(s)
- Asiel Arce-Sillas
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas, Instituto de Investigaciones Biomédicas, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edgar Sevilla-Reyes
- Clinica de investigación en enfermedades infecciosas (CIENI), Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Diana Denisse Álvarez-Luquín
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas, Instituto de Investigaciones Biomédicas, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Adrian Guevara-Salinas
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas, Instituto de Investigaciones Biomédicas, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | | | - Citzielli Aseret Pérez-Correa
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas, Instituto de Investigaciones Biomédicas, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Alma Viridiana Vivas-Almazan
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas, Instituto de Investigaciones Biomédicas, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | | | - Carlos Castellanos Barba
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisela Hernandez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Graciela Cárdenas
- Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Laura Virginia Adalid-Peralta
- Unidad Periférica para el Estudio de la Neuroinflamación en Patologías Neurológicas, Instituto de Investigaciones Biomédicas, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico,
- Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico,
| |
Collapse
|
36
|
Nolan RA, Muir R, Runner K, Haddad EK, Gaskill PJ. Role of Macrophage Dopamine Receptors in Mediating Cytokine Production: Implications for Neuroinflammation in the Context of HIV-Associated Neurocognitive Disorders. J Neuroimmune Pharmacol 2018; 14:134-156. [PMID: 30519866 DOI: 10.1007/s11481-018-9825-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Despite the success of combination anti-retroviral therapy (cART), around 50% of HIV-infected individuals still display a variety of neuropathological and neurocognitive sequelae known as NeuroHIV. Current research suggests these effects are mediated by long-term changes in CNS function in response to chronic infection and inflammation, and not solely due to active viral replication. In the post-cART era, drug abuse is a major risk-factor for the development of NeuroHIV, and increases extracellular dopamine in the CNS. Our lab has previously shown that dopamine can increase HIV infection of primary human macrophages and increase the production of inflammatory cytokines, suggesting that elevated dopamine could enhance the development of HIV-associated neuropathology. However, the precise mechanism(s) by which elevated dopamine could exacerbate NeuroHIV, particularly in chronically-infected, virally suppressed individuals remain unclear. To determine the connection between dopaminergic alterations and HIV-associated neuroinflammation, we have examined the impact of dopamine exposure on macrophages from healthy and virally suppressed, chronically infected HIV patients. Our data show that dopamine treatment of human macrophages isolated from healthy and cART-treated donors promotes production of inflammatory mediators including IL-1β, IL-6, IL-18, CCL2, CXCL8, CXCL9, and CXCL10. Furthermore, in healthy individuals, dopamine-mediated modulation of specific cytokines is correlated with macrophage expression of dopamine-receptor transcripts, particularly DRD5, the most highly-expressed dopamine-receptor subtype. Overall, these data will provide more understanding of the role of dopamine in the development of NeuroHIV, and may suggest new molecules or pathways that can be useful as therapeutic targets during HIV infection.
Collapse
Affiliation(s)
- R A Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - R Muir
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - K Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - E K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
37
|
Kuo SC, Yeh YW, Chen CY, Huang CC, Ho PS, Liang CS, Lin CL, Yeh TC, Tsou CC, Yang BZ, Lu RB, Huang SY. Differential effect of the DRD3 genotype on inflammatory cytokine responses during abstinence in amphetamine-dependent women. Psychoneuroendocrinology 2018; 97:37-46. [PMID: 30005280 DOI: 10.1016/j.psyneuen.2018.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/25/2018] [Accepted: 06/29/2018] [Indexed: 11/19/2022]
Abstract
Amphetamine exposure impacts on innate and adaptive immunity and DRD3 may modulate the effect of amphetamine on the immune response. We assessed the immune-cytokine markers in 72 female patients with amphetamine dependence (AD) at baseline and after 4-week drug abstinence and in 51 healthy women. Multiplex magnetic bead assay was used to measure the plasma cytokine expression level simultaneously in all participants and DRD3 rs6280 polymorphism was genotyped in patients. We demonstrated an increase of the T helper 1 (Th1) cytokines (IL-2), Th2 cytokines (IL-4, IL-5, IL-6 and IL-10) and other cytokines (IL-1β) in the entire AD cohort. A similar cytokine pattern, along with a significantly decreased IL-8 and IL-10 levels was observed after 4-week abstinence. Among AD patients with DRD3 rs6280 TT genotype, the cytokine expression profile was consistent with total AD cohort at baseline and revealed a significant down-regulated plasma level of the Th1, Th2, and other cytokines except for IL-6 after 4-week abstinence. In AD group with DRD3 rs6280 C allele carrier, we found IL-2 level was significantly higher than healthy controls at baseline and remained higher, accompanied with a borderline increase in IL-4, IL-6 and IL-1β levels after 4-week abstinence. Our results suggest that chronic use of amphetamine increased both pro- and anti-inflammatory cytokines in AD patients, indicating the immune imbalance that may persist for 4 weeks or more. Besides, DRD3 rs6280 TT genotype may be associated with favorable recovery in general inflammatory cytokines during period of abstinence.
Collapse
Affiliation(s)
- Shin-Chang Kuo
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Wei Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chun-Yen Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chang-Chih Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Buddhist Tzu Chi General Hospital, Taipei Branch, Taipei, Taiwan, ROC
| | - Pei-Shen Ho
- Department of Psychiatry, Taichung Armed Forces General Hospital, Taichung, Taiwan, ROC
| | - Chih-Sung Liang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chun-Long Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Hsinchu Branch, Taoyuan Armed Forces General Hospital, Hsinchu, Taiwan, ROC
| | - Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chang-Chih Tsou
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Bao-Zhu Yang
- Department of Psychiatry, Division of Human Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ru-Band Lu
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - San-Yuan Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
38
|
Talhada D, Rabenstein M, Ruscher K. The role of dopaminergic immune cell signalling in poststroke inflammation. Ther Adv Neurol Disord 2018; 11:1756286418774225. [PMID: 29774058 PMCID: PMC5952273 DOI: 10.1177/1756286418774225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Upon ischaemic stroke, brain-resident and peripheral immune cells accumulate in the central nervous system (CNS). Interestingly, these cells express pattern specific to neurotransmitter receptors and, therefore, seem to be susceptible to neurotransmitter stimulation, potentially modulating their properties and functions. One of the principal neurotransmitters in the CNS, dopamine, is involved in the regulation of processes of brain development, motor control and higher brain functions. It is constantly released in the brain and there is experimental and clinical evidence that dopaminergic signalling is involved in recovery of lost neurological function after stroke. Independent studies have revealed specific but different patterns of dopamine receptor subtypes on different populations of immune cells. Those patterns are dependent on the activation status of cells. Generally, exposure to dopamine or dopamine receptor agonists decreases detrimental actions of immune cells. In contrast, a reduction of dopaminergic inputs perpetuates a pro-inflammatory state associated with increased release of pro-inflammatory molecules. In addition, subsets of immune cells have been identified to synthesize and release dopamine, suggesting autoregulatory mechanisms. Evidence supports that inflammatory processes activated following ischaemic stroke are modulated by dopaminergic signalling.
Collapse
Affiliation(s)
- Daniela Talhada
- LUBIN Lab – Lund Brain Injury Laboratory for Neurosurgical Research, Department of Clinical Sciences, Lund University, Lund, Sweden CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Av. Infante D. Henrique, Universidade da Beira Interior, Portugal
| | - Monika Rabenstein
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Karsten Ruscher
- Lund Brain Injury Laboratory for Neurosurgical Research, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184 Lund, Sweden
| |
Collapse
|
39
|
Mackie P, Lebowitz J, Saadatpour L, Nickoloff E, Gaskill P, Khoshbouei H. The dopamine transporter: An unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson's Disease. Brain Behav Immun 2018; 70:21-35. [PMID: 29551693 PMCID: PMC5953824 DOI: 10.1016/j.bbi.2018.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023] Open
Abstract
The second-most common neurodegenerative disease, Parkinson's Disease (PD) has three hallmarks: dysfunctional dopamine transmission due, at least in part, to dopamine neuron degeneration; intracellular inclusions of α-synuclein aggregates; and neuroinflammation. The origin and interplay of these features remains a puzzle, as does the underlying mechanism of PD pathogenesis and progression. When viewed in the context of neuroimmunology, dopamine also plays a role in regulating peripheral immune cells. Intriguingly, plasma dopamine levels are altered in PD, suggesting collateral dysregulation of peripheral dopamine transmission. The dopamine transporter (DAT), the main regulator of dopaminergic tone in the CNS, is known to exist in lymphocytes and monocytes/macrophages, but little is known about peripheral DAT biology or how DAT regulates the dopaminergic tone, much less how peripheral DAT alters immune function. Our review is guided by the hypothesis that dysfunctional peripheral dopamine signaling might be linked to the dysfunctional immune responses in PD and thereby suggests a potential bidirectional communication between central and peripheral dopamine systems. This review seeks to foster new perspectives concerning PD pathogenesis and progression.
Collapse
Affiliation(s)
- Phillip Mackie
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Joe Lebowitz
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Leila Saadatpour
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States
| | - Emily Nickoloff
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Peter Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Habibeh Khoshbouei
- University of Florida College of Medicine, Department of Neuroscience, Gainesville, FL 32611, United States.
| |
Collapse
|
40
|
Elmetwally MA, Lenis Y, Tang W, Wu G, Bazer FW. Effects of catecholamines on secretion of interferon tau and expression of genes for synthesis of polyamines and apoptosis by ovine trophectoderm†. Biol Reprod 2018; 99:611-628. [DOI: 10.1093/biolre/ioy085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mohammed A Elmetwally
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt
| | - Yasser Lenis
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
- Centauro Research Group, School of Veterinary Medicine, Faculty of Agrarian Science, Universidad de Antioquia, Medellín, Colombia
- Faculty of Agricultural Sciences, U.D.C.A, Bogota, Colombia
| | - Wanjin Tang
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
41
|
Liu Z, Wang L, Lv Z, Zhou Z, Wang W, Li M, Yi Q, Qiu L, Song L. The Cholinergic and Adrenergic Autocrine Signaling Pathway Mediates Immunomodulation in Oyster Crassostrea gigas. Front Immunol 2018. [PMID: 29535711 PMCID: PMC5834419 DOI: 10.3389/fimmu.2018.00284] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is becoming increasingly clear that neurotransmitters impose direct influence on regulation of the immune process. Recently, a simple but sophisticated neuroendocrine-immune (NEI) system was identified in oyster, which modulated neural immune response via a "nervous-hemocyte"-mediated neuroendocrine immunomodulatory axis (NIA)-like pathway. In the present study, the de novo synthesis of neurotransmitters and their immunomodulation in the hemocytes of oyster Crassostrea gigas were investigated to understand the autocrine/paracrine pathway independent of the nervous system. After hemocytes were exposed to lipopolysaccharide (LPS) stimulation, acetylcholine (ACh), and norepinephrine (NE) in the cell supernatants, both increased to a significantly higher level (2.71- and 2.40-fold, p < 0.05) comparing with that in the control group. The mRNA expression levels and protein activities of choline O-acetyltransferase and dopamine β-hydroxylase in hemocytes which were involved in the synthesis of ACh and NE were significantly elevated at 1 h after LPS stimulation, while the activities of acetylcholinesterase and monoamine oxidase, two enzymes essential in the metabolic inactivation of ACh and NE, were inhibited. These results demonstrated the existence of the sophisticated intracellular machinery for the generation, release and inactivation of ACh and NE in oyster hemocytes. Moreover, the hemocyte-derived neurotransmitters could in turn regulate the mRNA expressions of tumor necrosis factor (TNF) genes, the activities of superoxide dismutase, catalase and lysosome, and hemocyte phagocytosis. The phagocytic activities of hemocytes, the mRNA expressions of TNF and the activities of key immune-related enzymes were significantly changed after the block of ACh and NE receptors with different kinds of antagonists, suggesting that autocrine/paracrine self-regulation was mediated by transmembrane receptors on hemocyte. The present study proved that oyster hemocyte could de novo synthesize and release cholinergic and adrenergic neurotransmitters, and the hemocyte-derived ACh/NE could then execute a negative regulation on hemocyte phagocytosis and synthesis of immune effectors with similar autocrine/paracrine signaling pathway identified in vertebrate macrophages. Findings in the present study demonstrated that the immune and neuroendocrine system evolved from a common origin and enriched our knowledge on the evolution of NEI system.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Meijia Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
42
|
Zhu H, Lemos H, Bhatt B, Islam BN, Singh A, Gurav A, Huang L, Browning DD, Mellor A, Fulzele S, Singh N. Carbidopa, a drug in use for management of Parkinson disease inhibits T cell activation and autoimmunity. PLoS One 2017; 12:e0183484. [PMID: 28898256 PMCID: PMC5595290 DOI: 10.1371/journal.pone.0183484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/28/2017] [Indexed: 11/19/2022] Open
Abstract
Carbidopa is a drug that blocks conversion of levodopa to dopamine outside of central nervous system (CNS) and thus inhibits unwanted side effects of levodopa on organs located outside of CNS during management of Parkinson's Disease (PD). PD is associated with increased expression of inflammatory genes in peripheral and central nervous system (CNS), infiltration of immune cells into brain, and increased numbers of activated/memory T cells. Animal models of PD have shown a critical role of T cells in inducing pathology in CNS. However, the effect of carbidopa on T cell responses in vivo is unknown. In this report, we show that carbidopa strongly inhibited T cell activation in vitro and in vivo. Accordingly, carbidopa mitigated myelin oligodendrocyte glycoprotein peptide fragment 35-55 (MOG-35-55) induced experimental autoimmune encephalitis (EAE) and collagen induced arthritis in animal models. The data presented here suggest that in addition to blocking peripheral conversion of levodopa, carbidopa may inhibit T cell responses in PD individuals and implicate a potential therapeutic use of carbidopa in suppression of T cell mediated pathologies.
Collapse
MESH Headings
- Animals
- Antiparkinson Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmunity/drug effects
- Carbidopa/pharmacology
- Cytokines/metabolism
- Disease Models, Animal
- Dopamine Agents/pharmacology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Inflammation Mediators/metabolism
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Henrique Lemos
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Brinda Bhatt
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Bianca N. Islam
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Abhijit Singh
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Ashish Gurav
- University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States of America
| | - Lei Huang
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Darren D. Browning
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Andrew Mellor
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Sadanand Fulzele
- Department of Orthopedics Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| |
Collapse
|
43
|
Pinoli M, Marino F, Cosentino M. Dopaminergic Regulation of Innate Immunity: a Review. J Neuroimmune Pharmacol 2017; 12:602-623. [PMID: 28578466 DOI: 10.1007/s11481-017-9749-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/28/2017] [Indexed: 12/13/2022]
Abstract
Dopamine (DA) is a neurotransmitter in the central nervous system as well as in peripheral tissues. Emerging evidence however points to DA also as a key transmitter between the nervous system and the immune system as well as a mediator produced and released by immune cells themselves. Dopaminergic pathways have received so far extensive attention in the adaptive branch of the immune system, where they play a role in health and disease such as multiple sclerosis, rheumatoid arthritis, cancer, and Parkinson's disease. Comparatively little is known about DA and the innate immune response, although DA may affect innate immune system cells such as dendritic cells, macrophages, microglia, and neutrophils. The present review aims at providing a complete and exhaustive summary of currently available evidence about DA and innate immunity, and to become a reference for anyone potentially interested in the fields of immunology, neurosciences and pharmacology. A wide array of dopaminergic drugs is used in therapeutics for non-immune indications, such as Parkinson's disease, hyperprolactinemia, shock, hypertension, with a usually favorable therapeutic index, and they might be relatively easily repurposed for immune-mediated disease, thus leading to innovative treatments at low price, with benefit for patients as well as for the healthcare systems.
Collapse
Affiliation(s)
- Monica Pinoli
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy.
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| |
Collapse
|
44
|
Levite M, Marino F, Cosentino M. Dopamine, T cells and multiple sclerosis (MS). J Neural Transm (Vienna) 2017; 124:525-542. [DOI: 10.1007/s00702-016-1640-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/31/2016] [Indexed: 01/11/2023]
|
45
|
Inhibition of dopamine receptor D3 signaling in dendritic cells increases antigen cross-presentation to CD8 + T-cells favoring anti-tumor immunity. J Neuroimmunol 2017; 303:99-107. [PMID: 28077213 DOI: 10.1016/j.jneuroim.2016.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/06/2016] [Accepted: 12/28/2016] [Indexed: 11/23/2022]
Abstract
Dendritic cells (DCs) display the unique ability for cross-presenting antigens to CD8+ T-cells, promoting their differentiation into cytotoxic T-lymphocytes (CTLs), which play a pivotal role in anti-tumor immunity. Emerging evidence points to dopamine receptor D3 (D3R) as a key regulator of immunity. Accordingly, we studied how D3R regulates DCs function in anti-tumor immunity. The results show that D3R-deficiency in DCs enhanced expansion of CTLs in vivo and induced stronger anti-tumor immunity. Co-culture experiments indicated that D3R-inhibition in DCs potentiated antigen cross-presentation and CTLs activation. Our findings suggest that D3R in DCs constitutes a new therapeutic target to strengthen anti-tumor immunity.
Collapse
|
46
|
Immunomodulatory Effects Mediated by Dopamine. J Immunol Res 2016; 2016:3160486. [PMID: 27795960 PMCID: PMC5067323 DOI: 10.1155/2016/3160486] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers.
Collapse
|
47
|
Xue L, Geng Y, Li M, Jin YF, Ren HX, Li X, Wu F, Wang B, Cheng WY, Chen T, Chen YJ. The effects of D3R on TLR4 signaling involved in the regulation of METH-mediated mast cells activation. Int Immunopharmacol 2016; 36:187-198. [PMID: 27156126 DOI: 10.1016/j.intimp.2016.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/09/2016] [Accepted: 04/19/2016] [Indexed: 01/06/2023]
Abstract
Accumulating studies have revealed that the dopamine D3 receptor (D3R) plays an important role in methamphetamine (METH) addiction. However, the action of D3R on METH-mediated immune response and the underlying mechanism remain unclear. Mast cells (MCs) are currently identified as effector cells in many processes of immune responses, and MC activation is induced by various stimuli such as lipopolysaccharide (LPS). Moreover, CD117 and FcεRI are known as MC markers due to their specific expression in MCs. To investigate the effects of D3R on METH-mediated alteration of LPS-induced MCs activation and the underlying mechanism, in this study, we examined the expression of CD117 and FcεRI in the intestines of wild-type (D3R(+/+)) and D3R-deficient (D3R(-/-)) mice. We also measured the production of MC-derived cytokines, including TNF-α, IL-6, IL-4, IL-13 and CCL-5, in the bone marrow-derived mast cells (BMMCs) of WT and D3R(-/-) mice. Furthermore, we explored the effects of D3R on METH-mediated TLR4 and downstream MAPK and NF-κB signaling induced by LPS in mouse BMMCs. We found that METH suppressed MC activation induced by LPS in the intestines of D3R(+/)mice. In contrast, LPS-induced MC activation was less affected by METH in D3R(-/-) mice. Furthermore, METH altered LPS-induced cytokine production in BMMCs of D3R(+/+) mice but not D3R(-/-) mice. D3R was also involved in METH-mediated modulation of LPS-induced expression of TLR4 and downstream MAPK and NF-κB signaling molecules in mouse BMMCs. Taken together, our findings demonstrate that the effect of D3R on TLR4 signaling may be implicated in the regulation of METH-mediated MCs activation induced by LPS.
Collapse
Affiliation(s)
- Li Xue
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China; Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 71004, China
| | - Yan Geng
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 71004, China
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yao-Feng Jin
- Pathology Department, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hui-Xun Ren
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Xia Li
- VIP Internal Medicine Department, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Feng Wu
- Graduate Teaching and Experiment Centre, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Wei-Ying Cheng
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of the Ministry of Education for Environment and Genes Related to Diseases, Xi'an 710061, China
| | - Yan-Jiong Chen
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China.
| |
Collapse
|
48
|
Contreras F, Prado C, González H, Franz D, Osorio-Barrios F, Osorio F, Ugalde V, Lopez E, Elgueta D, Figueroa A, Lladser A, Pacheco R. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 196:4143-9. [PMID: 27183640 DOI: 10.4049/jimmunol.1502420] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/18/2016] [Indexed: 01/10/2023]
Abstract
Dopamine receptor D3 (DRD3) expressed on CD4(+) T cells is required to promote neuroinflammation in a murine model of Parkinson's disease. However, how DRD3 signaling affects T cell-mediated immunity remains unknown. In this study, we report that TCR stimulation on mouse CD4(+) T cells induces DRD3 expression, regardless of the lineage specification. Importantly, functional analyses performed in vivo using adoptive transfer of OVA-specific OT-II cells into wild-type recipients show that DRD3 deficiency in CD4(+) T cells results in attenuated differentiation of naive CD4(+) T cells toward the Th1 phenotype, exacerbated generation of Th2 cells, and unaltered Th17 differentiation. The reciprocal regulatory effect of DRD3 signaling in CD4(+) T cells favoring Th1 generation and impairing the acquisition of Th2 phenotype was also reproduced using in vitro approaches. Mechanistic analysis indicates that DRD3 signaling evokes suppressor of cytokine signaling 5 expression, a negative regulator of Th2 development, which indirectly favors acquisition of Th1 phenotype. Accordingly, DRD3 deficiency results in exacerbated eosinophil infiltration into the airways of mice undergoing house dust mite-induced allergic response. Interestingly, our results show that, upon chronic inflammatory colitis induced by transfer of naive CD4(+) T cells into lymphopenic recipients, DRD3 deficiency not only affects Th1 response, but also the frequency of Th17 cells, suggesting that DRD3 signaling also contributes to Th17 expansion under chronic inflammatory conditions. In conclusion, our findings indicate that DRD3-mediated signaling in CD4(+) T cells plays a crucial role in the balance of effector lineages, favoring the inflammatory potential of CD4(+) T cells.
Collapse
Affiliation(s)
- Francisco Contreras
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile; Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Carolina Prado
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | - Hugo González
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | - Dafne Franz
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | | | - Fabiola Osorio
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; and
| | - Valentina Ugalde
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | - Ernesto Lopez
- Laboratorio de Inmunoterapia Génica, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | - Daniela Elgueta
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile; Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Alicia Figueroa
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | - Alvaro Lladser
- Laboratorio de Inmunoterapia Génica, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia y Vida, Ñuñoa 7780272, Santiago, Chile; Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 8370146, Chile;
| |
Collapse
|
49
|
Levite M. Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxf) 2016; 216:42-89. [PMID: 25728499 DOI: 10.1111/apha.12476] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/07/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
Abstract
Dopamine, a principal neurotransmitter, deserves upgrading to 'NeuroImmunotransmitter' thanks to its multiple, direct and powerful effects on most/all immune cells. Dopamine by itself is a potent activator of resting effector T cells (Teffs), via two independent ways: direct Teffs activation, and indirect Teffs activation by suppression of regulatory T cells (Tregs). The review covers the following findings: (i) T cells express functional dopamine receptors (DRs) D1R-D5R, but their level and function are dynamic and context-sensitive, (ii) DR membranal protein levels do not necessarily correlate with DR mRNA levels, (iii) different T cell types/subtypes have different DR levels and composition and different responses to dopamine, (iv) autoimmune and pro-inflammatory T cells and T cell leukaemia/lymphoma also express functional DRs, (v) dopamine (~10(-8) M) activates resting/naive Teffs (CD8(+) >>>CD4(+) ), (vi) dopamine affects Th1/Th2/Th17 differentiation, (vii) dopamine inhibits already activated Teffs (i.e. T cells that have been already activated by either antigen, mitogen, anti-CD3 antibodies cytokines or other molecules), (viii) dopamine inhibits activated Tregs in an autocrine/paracrine manner. Thus, dopamine 'suppresses the suppressors' and releases the inhibition they exert on Teffs, (ix) dopamine affects intracellular signalling molecules and cascades in T cells (e.g. ERK, Lck, Fyn, NF-κB, KLF2), (x) T cells produce dopamine (Tregs>>>Teffs), can release dopamine, mainly after activation (by antigen, mitogen, anti-CD3 antibodies, PKC activators or other), uptake extracellular dopamine, and most probably need dopamine, (xi) dopamine is important for antigen-specific interactions between T cells and dendritic cells, (xii) in few autoimmune diseases (e.g. multiple sclerosis/SLE/rheumatoid arthritis), and neurological/psychiatric diseases (e.g. Parkinson disease, Alzheimer's disease, Schizophrenia and Tourette), patient's T cells seem to have abnormal DRs expression and/or responses to dopamine or production of dopamine, (xiii) drugs that affect the dopaminergic system have potent effects on T cells (e.g. dopamine=Intropin, L-dopa, bromocriptine, haloperidol, quinpirole, reserpine, pergolide, ecopipam, pimozide, amantadine, tetrabenazine, nomifensine, butaclamol). Dopamine-induced activation of resting Teffs and suppression of Tregs seem beneficial for health and may also be used for immunotherapy of cancer and infectious diseases. Independently, suppression of DRs in autoimmune and pro-inflammatory T cells, and also in cancerous T cells, may be advantageous. The review is relevant to Immunologists, Neurologists, Neuroimmunologists, Hematologists, Psychiatrists, Psychologists and Pharmacologists.
Collapse
Affiliation(s)
- M. Levite
- School of Pharmacy; Faculty of Medicine; The Hebrew University; Jerusalem Israel
- Institute of Gene Therapy; Hadassah Hebrew University Hospital; Jerusalem Israel
- School of Behavioral Sciences; Academic College of Tel-Aviv-Yaffo; Tel Aviv Israel
| |
Collapse
|
50
|
Influence of the delivery modus on subpopulations and replication of lymphocytes in mothers and newborns. Early Hum Dev 2015; 91:663-70. [PMID: 26513626 DOI: 10.1016/j.earlhumdev.2015.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Several studies reported that the mode of delivery may induce changes to the immune system. Our hypothesis was that the delivery mode may influence mainly the naive T cell subpopulation. AIMS Particular focus was set on the proportions and peripheral replicative history of naive T cells and cord blood serum concentrations of IL-7, a cytokine involved in peripheral naive T cell homeostasis. STUDY DESIGN, SUBJECTS AND OUTCOME MEASURES In a prospective cohort study, proportions of lymphocyte populations were measured in mothers and newborns delivered by spontaneous vaginal delivery (SD), vacuum extraction (VE), primary (PCS) and secondary Cesarean sections (SCS) by flow cytometry. T-cell-receptor-excision-circles (TRECs) and relative telomere lengths (RTLs) were used to estimate the replicative history of peripheral naive T cells. The cytokine profile was assessed by ELISA. RESULTS The study demonstrated that leukocytes, neutrophils and NK cells were increased in spontaneously delivered newborns compared to PCS, whereas circulating T cells were relatively lower. TRECs and RTLs were not significantly influenced by the delivery mode. IL-2, IL-8 and IFN-γ were increased in VD. IL-7 production tends to be increased in more stress-associated delivery modes, such as VE and SCS. CONCLUSIONS Our results demonstrate proportional changes in newborns delivered by PCS and diminished cytokine production. It has to be proven whether these alterations may be of disadvantage regarding early defense of infectious diseases. Understanding the physiological role of these changes may help to find preventive strategies for neonatal infectious risks and the development of atopy or other immune diseases.
Collapse
|