1
|
Hayday A, Dechanet-Merville J, Rossjohn J, Silva-Santos B. Cancer immunotherapy by γδ T cells. Science 2024; 386:eabq7248. [PMID: 39361750 PMCID: PMC7616870 DOI: 10.1126/science.abq7248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
The premise of cancer immunotherapy is that cancers are specifically visible to an immune system tolerized to healthy self. The promise of cancer immunotherapy is that immune effector mechanisms and immunological memory can jointly eradicate cancers and inoperable metastases and de facto vaccinate against recurrence. For some patients with hitherto incurable diseases, including metastatic melanoma, this promise is being realized by game-changing immunotherapies based on αβ T cells. Today's challenges are to bring benefit to greater numbers of patients of diverse ethnicities, target more cancer types, and achieve a cure while incurring fewer adverse events. In meeting those challenges, specific benefits may be offered by γδ T cells, which compose a second T cell lineage with distinct recognition capabilities and functional traits that bridge innate and adaptive immunity. γδ T cell-based clinical trials, including off-the-shelf adoptive cell therapy and agonist antibodies, are yielding promising results, although identifiable problems remain. In addressing those problems, we advocate that immunotherapies be guided by the distinctive biology of γδ T cells, as elucidated by ongoing research.
Collapse
Affiliation(s)
- Adrian Hayday
- Francis Crick Institute, Peter Gorer Dept of Immunobiology, King’s College London, and CRUK City of London Cancer Centre, UK
| | - Julie Dechanet-Merville
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Janova H, Zhao FR, Desai P, Mack M, Thackray LB, Stappenbeck TS, Diamond MS. West Nile virus triggers intestinal dysmotility via T cell-mediated enteric nervous system injury. J Clin Invest 2024; 134:e181421. [PMID: 39207863 PMCID: PMC11527448 DOI: 10.1172/jci181421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Intestinal dysmotility syndromes have been epidemiologically associated with several antecedent bacterial and viral infections. To model this phenotype, we previously infected mice with the neurotropic flavivirus West Nile virus (WNV) and demonstrated intestinal transit defects. Here, we found that within 1 week of WNV infection, enteric neurons and glia became damaged, resulting in sustained reductions of neuronal cells and their networks of connecting fibers. Using cell-depleting antibodies, adoptive transfer experiments, and mice lacking specific immune cells or immune functions, we show that infiltrating WNV-specific CD4+ and CD8+ T cells damaged the enteric nervous system (ENS) and glia, which led to intestinal dysmotility; these T cells used multiple and redundant effector molecules including perforin and Fas ligand. In comparison, WNV-triggered ENS injury and intestinal dysmotility appeared to not require infiltrating monocytes, and damage may have been limited by resident muscularis macrophages. Overall, our experiments support a model in which antigen-specific T cell subsets and their effector molecules responding to WNV infection direct immune pathology against enteric neurons and supporting glia that results in intestinal dysmotility.
Collapse
Affiliation(s)
- Hana Janova
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Fang R. Zhao
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Pathology and Immunology
- Department of Molecular Microbiology, and
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Qiu L, Zhang Y, Zeng X. The function of γδ T cells in humoral immune responses. Inflamm Res 2023; 72:747-755. [PMID: 36799949 DOI: 10.1007/s00011-023-01704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
PURPOSE The purpose of this review is to discuss the role of γδ T cells played in humoral immune responses. BACKGROUND The γδ T cell receptor (γδ TCR) recognizes antigens, including haptens and proteins, in an MHC-independent manner. The recognition of these antigens by γδ TCRs crosses antigen recognition by the B cell receptors (BCRs), suggesting that γδ T cells may be involved in the process of antigen recognition and activation of B cells. However, the role of γδ T cells in humoral immune responses is still less clear. METHODS The kinds of literature about the γδ T cell-B cell interaction were searched on PubMed with search terms, such as γδ T cells, antibody, B cell responses, antigen recognition, and infection. RESULTS Accumulating evidence indicates that γδ T cells, independent of αβ T cells, participate in multiple steps of humoral immunity, including B cell maturation, activation and differentiation, antibody production and class switching. Mechanically, γδ T cells affect B cell function by directly interacting with B cells, secreting cytokines, or modulating αβ T cells. CONCLUSION In this review, we summarize current knowledge on how γδ T cells take part in the humoral immune response, which may assist future vaccine design.
Collapse
Affiliation(s)
- Lingfeng Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Cells 2022; 11:cells11223572. [PMID: 36429001 PMCID: PMC9688761 DOI: 10.3390/cells11223572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma/delta (γδ) T cells are innate-like immune effectors that are a critical component linking innate and adaptive immune responses. They are recognized for their contribution to tumor surveillance and fight against infectious diseases. γδ T cells are excellent candidates for cellular immunotherapy due to their unique properties to recognize and destroy tumors or infected cells. They do not depend on the recognition of a single antigen but rather a broad-spectrum of diverse ligands through expression of various cytotoxic receptors. In this manuscript, we review major characteristics of the most abundant circulating γδ subpopulation, Vδ2 T cells, their immunotherapeutic potential, recent advances in expansion protocols, their preclinical and clinical applications for several infectious diseases and malignancies, and how additional modulation could enhance their therapeutic potential.
Collapse
|
5
|
Chen C, Chen A, Yang Y. A diversified role for γδT cells in vector-borne diseases. Front Immunol 2022; 13:965503. [PMID: 36052077 PMCID: PMC9424759 DOI: 10.3389/fimmu.2022.965503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Vector-borne diseases have high morbidity and mortality and are major health threats worldwide. γδT cells represent a small but essential subpopulation of T cells. They reside in most human tissues and exert important functions in both natural and adaptive immune responses. Emerging evidence have shown that the activation and expansion of γδT cells invoked by pathogens play a diversified role in the regulation of host-pathogen interactions and disease progression. A better understanding of such a role for γδT cells may contribute significantly to developing novel preventative and therapeutic strategies. Herein, we summarize recent exciting findings in the field, with a focus on the role of γδT cells in the infection of vector-borne pathogens.
Collapse
Affiliation(s)
- Chen Chen
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Chen Chen, ; Yanan Yang,
| | - Aibao Chen
- Department of Cell Biology, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Yanan Yang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Chen Chen, ; Yanan Yang,
| |
Collapse
|
6
|
Sanz M, Mann BT, Chitrakar A, Soriano-Sarabia N. Defying convention in the time of COVID-19: Insights into the role of γδ T cells. Front Immunol 2022; 13:819574. [PMID: 36032159 PMCID: PMC9403327 DOI: 10.3389/fimmu.2022.819574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is a complex disease which immune response can be more or less potent. In severe cases, patients might experience a cytokine storm that compromises their vital functions and impedes clearance of the infection. Gamma delta (γδ) T lymphocytes have a critical role initiating innate immunity and shaping adaptive immune responses, and they are recognized for their contribution to tumor surveillance, fighting infectious diseases, and autoimmunity. γδ T cells exist as both circulating T lymphocytes and as resident cells in different mucosal tissues, including the lungs and their critical role in other respiratory viral infections has been demonstrated. In the context of SARS-CoV-2 infection, γδ T cell responses are understudied. This review summarizes the findings on the antiviral role of γδ T cells in COVID-19, providing insight into how they may contribute to the control of infection in the mild/moderate clinical outcome.
Collapse
|
7
|
Depletion of γδ T Cells Leads to Reduced Angiogenesis and Increased Infiltration of Inflammatory M1-like Macrophages in Ischemic Muscle Tissue. Cells 2022; 11:cells11091490. [PMID: 35563796 PMCID: PMC9102774 DOI: 10.3390/cells11091490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
γδ T cells, a small subset of T cells in blood, play a substantial role in influencing immunoregulatory and inflammatory processes. The functional impact of γδ T cells on angiogenesis in ischemic muscle tissue has never been reported and is the topic of the present work. Femoral artery ligation (FAL) was used to induce angiogenesis in the lower leg of γδ T cell depleted mice and wildtype and isotype antibody-treated control groups. Gastrocnemius muscle tissue was harvested 3 and 7 days after FAL and assessed using (immuno-)histological analyses. Hematoxylin and Eosin staining showed an increased area of tissue damage in γδ T cell depleted mice 7 days after FAL. Impaired angiogenesis was demonstrated by lower capillary to muscle fiber ratio and decreased number of proliferating endothelial cells (CD31+/BrdU+). γδ T cell depleted mice showed an increased number of total leukocytes (CD45+), neutrophils (MPO+) and neutrophil extracellular traps (NETs) (MPO+/CitH3+), without changes in the neutrophils to NETs ratio. Moreover, the depletion resulted in a higher macrophage count (DAPI/CD68+) caused by an increase in inflammatory M1-like macrophages (CD68+/MRC1−). Altogether, we show that depletion of γδ T cells leads to increased accumulation of leukocytes and M1-like macrophages, along with impaired angiogenesis.
Collapse
|
8
|
Rocha RF, Del Sarto JL, Gomes GF, Gonçalves MP, Rachid MA, Smetana JHC, Souza DG, Teixeira MM, Marques RE. Type I interferons are essential while type II interferon is dispensable for protection against St. Louis encephalitis virus infection in the mouse brain. Virulence 2021; 12:244-259. [PMID: 33410731 PMCID: PMC7808420 DOI: 10.1080/21505594.2020.1869392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/24/2023] Open
Abstract
St. Louis encephalitis virus (SLEV) is a neglected mosquito-borne flavivirus that causes severe neurological disease in humans. SLEV replication in the central nervous system (CNS) induces the local production of interferons (IFNs), which are attributed to host protection. The antiviral response to SLEV infection in the CNS is not completely understood, which led us to characterize the roles of IFNs using mouse models of St. Louis encephalitis. We infected mice deficient in type I IFN receptor (ABR-/-) or deficient in Type II IFN (IFNγ-/-) and assessed the contribution of each pathway to disease development. We found that type I and II IFNs play different roles in SLEV infection. Deficiency in type I IFN signaling was associated to an early and increased mortality, uncontrolled SLEV replication and impaired ISG expression, leading to increased proinflammatory cytokine production and brain pathology. Conversely, IFNγ-/- mice were moderately resistant to SLEV infection. IFNγ deficiency caused no changes to viral load or SLEV-induced encephalitis and did not change the expression of ISGs in the brain. We found that type I IFN is essential for the control of SLEV replication whereas type II IFN was not associated with protection in this model.
Collapse
Affiliation(s)
- Rebeca Froes Rocha
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana L. Del Sarto
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Giovanni F. Gomes
- Laboratório de Neurofarmacologia, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mariana P. Gonçalves
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Milene A. Rachid
- Laboratório de Apoptose, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana H. C. Smetana
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Daniele G. Souza
- Laboratório de Interação Microrganismo-Hospedeiro, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
9
|
Dai R, Huang X, Yang Y. γδT Cells Are Required for CD8 + T Cell Response to Vaccinia Viral Infection. Front Immunol 2021; 12:727046. [PMID: 34691033 PMCID: PMC8531544 DOI: 10.3389/fimmu.2021.727046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Vaccinia virus (VV) is the most studied member of the poxvirus family, is responsible for the successful elimination of smallpox worldwide, and has been developed as a vaccine vehicle for infectious diseases and cancer immunotherapy. We have previously shown that the unique potency of VV in the activation of CD8+ T cell response is dependent on efficient activation of the innate immune system through Toll-like receptor (TLR)-dependent and -independent pathways. However, it remains incompletely defined what regulate CD8+ T cell response to VV infection. In this study, we showed that γδT cells play an important role in promoting CD8+ T cell response to VV infection. We found that γδT cells can directly present viral antigens in the context of MHC-I for CD8+ T cell activation to VV in vivo, and we further demonstrated that cell-intrinsic MyD88 signaling in γδT cells is required for activation of γδT cells and CD8+ T cells. These results illustrate a critical role for γδT cells in the regulation of adaptive T cell response to viral infection and may shed light on the design of more effective vaccine strategies based on manipulation of γδT cells.
Collapse
Affiliation(s)
- Rui Dai
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Xiaopei Huang
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Yiping Yang
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
10
|
Morrison AL, Sharpe S, White AD, Bodman-Smith M. Cheap and Commonplace: Making the Case for BCG and γδ T Cells in COVID-19. Front Immunol 2021; 12:743924. [PMID: 34567010 PMCID: PMC8455994 DOI: 10.3389/fimmu.2021.743924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Antigen-specific vaccines developed for the COVID-19 pandemic demonstrate a remarkable achievement and are currently being used in high income countries with much success. However, new SARS-CoV-2 variants are threatening this success via mutations that lessen the efficacy of antigen-specific antibodies. One simple approach to assisting with this issue is focusing on strategies that build on the non-specific protection afforded by the innate immune response. The BCG vaccine has been shown to provide broad protection beyond tuberculosis disease, including against respiratory viruses, and ongoing studies are investigating its efficacy as a tool against SARS-CoV-2. Gamma delta (γδ) T cells, particularly the Vδ2 subtype, undergo rapid expansion after BCG vaccination due to MHC-independent mechanisms. Consequently, γδ T cells can produce diverse defenses against virally infected cells, including direct cytotoxicity, death receptor ligands, and pro-inflammatory cytokines. They can also assist in stimulating the adaptive immune system. BCG is affordable, commonplace and non-specific, and therefore could be a useful tool to initiate innate protection against new SARS-CoV-2 variants. However, considerations must also be made to BCG vaccine supply and the prioritization of countries where it is most needed to combat tuberculosis first and foremost.
Collapse
Affiliation(s)
| | - Sally Sharpe
- Public Health England, National Infection Service, Porton Down, United Kingdom
| | - Andrew D. White
- Public Health England, National Infection Service, Porton Down, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St George’s University of London, London, United Kingdom
| |
Collapse
|
11
|
Saiz JC, Martín-Acebes MA, Blázquez AB, Escribano-Romero E, Poderoso T, Jiménez de Oya N. Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence 2021; 12:1145-1173. [PMID: 33843445 PMCID: PMC8043182 DOI: 10.1080/21505594.2021.1908740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus which transmission cycle is maintained between mosquitoes and birds, although it occasionally causes sporadic outbreaks in horses and humans that can result in serious diseases and even death. Since its first isolation in Africa in 1937, WNV had been considered a neglected pathogen until its recent spread throughout Europe and the colonization of America, regions where it continues to cause outbreaks with severe neurological consequences in humans and horses. Although our knowledge about the characteristics and consequences of the virus has increased enormously lately, many questions remain to be resolved. Here, we thoroughly update our knowledge of different aspects of the WNV life cycle: virology and molecular classification, host cell interactions, transmission dynamics, host range, epidemiology and surveillance, immune response, clinical presentations, pathogenesis, diagnosis, prophylaxis (antivirals and vaccines), and prevention, and we highlight those aspects that are still unknown and that undoubtedly require further investigation.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Ana B Blázquez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Teresa Poderoso
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
12
|
Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Front Immunol 2021; 12:666983. [PMID: 33854516 PMCID: PMC8039298 DOI: 10.3389/fimmu.2021.666983] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of viruses with pandemic potential such as the SARS-CoV-2 coronavirus causing COVID-19 poses a global health challenge. There is remarkable progress in vaccine technology in response to this threat, but their design often overlooks the innate arm of immunity. Gamma Delta (γδ) T cells are a subset of T cells with unique features that gives them a key role in the innate immune response to a variety of homeostatic alterations, from cancer to microbial infections. In the context of viral infection, a growing body of evidence shows that γδ T cells are particularly equipped for early virus detection, which triggers their subsequent activation, expansion and the fast deployment of antiviral functions such as direct cytotoxic pathways, secretion of cytokines, recruitment and activation of other immune cells and mobilization of a trained immunity memory program. As such, γδ T cells represent an attractive target to stimulate for a rapid and effective resolution of viral infections. Here, we review the known aspects of γδ T cells that make them crucial component of the immune response to viruses, and the ways that their antiviral potential can be harnessed to prevent or treat viral infection.
Collapse
Affiliation(s)
- Jonathan Caron
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Laura Alice Ridgley
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
13
|
Fischer MA, Golovchenko NB, Edelblum KL. γδ T cell migration: Separating trafficking from surveillance behaviors at barrier surfaces. Immunol Rev 2020; 298:165-180. [PMID: 32845516 PMCID: PMC7968450 DOI: 10.1111/imr.12915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022]
Abstract
γδ T cells are found in highest numbers at barrier surfaces throughout the body, including the skin, intestine, lung, gingiva, and uterus. Under homeostatic conditions, γδ T cells provide immune surveillance of the epidermis, intestinal, and oral mucosa, whereas the presence of pathogenic microorganisms in the dermis or lungs elicits a robust γδ17 response to clear the infection. Although T cell migration is most frequently defined in the context of trafficking, analysis of specific migratory behaviors of lymphocytes within the tissue microenvironment can provide valuable insight into their function. Intravital imaging and computational analyses have been used to define "search" behavior associated with conventional αβ T cells; however, based on the known role of γδ T cells as immune sentinels at barrier surfaces and their TCR-independent functions, we put forth the need to classify distinct migratory patterns that reflect the surveillance capacity of these unconventional lymphocytes. This review will focus on how γδ T cells traffic to various barrier surfaces and how recent investigation into their migratory behavior has provided unique insight into the contribution of γδ T cells to barrier immunity.
Collapse
Affiliation(s)
- Matthew A. Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Natasha B. Golovchenko
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L. Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
14
|
Abstract
The recent successes of chimeric antigen receptor T cells in the treatment of hematological malignancies have clearly led to an explosion in the field of adoptive cell therapy for cancer. Current efforts are focused on the translation of this exciting technology to the treatment of solid tumors and the development of allogeneic ‘off-the-shelf’ therapies. γδ T cells are currently gaining considerable attention in this field as their unique biology and established role in cancer immunosurveillance place them in a unique position to potentially overcome these challenges in adoptive cell therapy. Here, we review the relevant aspects of the function of γδ T cells in cancer immunity, and summarize clinical observations and clinical trial results that highlight their emerging role as a platform for the development of safe and effective cancer immunotherapies. γδ T cells are a unique subset of T cells combining innate and adaptive features. Tissue-resident γδ T cells have important functions in tissue and cancer immunosurveillance. γδ T cells are being exploited increasingly for cancer immunotherapy.
Collapse
|
15
|
Hildreth AD, O'Sullivan TE. Tissue-Resident Innate and Innate-Like Lymphocyte Responses to Viral Infection. Viruses 2019; 11:v11030272. [PMID: 30893756 PMCID: PMC6466361 DOI: 10.3390/v11030272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Infection is restrained by the concerted activation of tissue-resident and circulating immune cells. Recent discoveries have demonstrated that tissue-resident lymphocyte subsets, comprised of innate lymphoid cells (ILCs) and unconventional T cells, have vital roles in the initiation of primary antiviral responses. Via direct and indirect mechanisms, ILCs and unconventional T cell subsets play a critical role in the ability of the immune system to mount an effective antiviral response through potent early cytokine production. In this review, we will summarize the current knowledge of tissue-resident lymphocytes during initial viral infection and evaluate their redundant or nonredundant contributions to host protection or virus-induced pathology.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|
16
|
Mantri CK, St John AL. Immune synapses between mast cells and γδ T cells limit viral infection. J Clin Invest 2019; 129:1094-1108. [PMID: 30561384 DOI: 10.1172/jci122530] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/11/2018] [Indexed: 02/01/2023] Open
Abstract
Mast cells (MCs) are immune sentinels, but whether they also function as antigen-presenting cells (APCs) remains elusive. Using mouse models of MC deficiency, we report on MC-dependent recruitment and activation of multiple T cell subsets to the skin and draining lymph nodes (DLNs) during dengue virus (DENV) infection. Newly recruited and locally proliferating γδ T cells were the first T cell subset to respond to MC-driven inflammation, and their production of IFN-γ was MC dependent. MC-γδ T cell conjugates were observed consistently in infected peripheral tissues, suggesting a new role for MCs as nonconventional APCs for γδ T cells. MC-dependent γδ T cell activation and proliferation during DENV infection required T cell receptor (TCR) signaling and the nonconventional antigen presentation molecule endothelial cell protein C receptor (EPCR) on MCs. γδ T cells, not previously implicated in DENV host defense, killed infected targeted DCs and contributed to the clearance of DENV in vivo. We believe immune synapse formation between MCs and γδ T cells is a novel mechanism to induce specific and protective immunity at sites of viral infection.
Collapse
Affiliation(s)
- Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-National University of Singapore (Duke-NUS) Medical School, Singapore
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore (Duke-NUS) Medical School, Singapore.,Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Microbiology and Immunology, Young Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
17
|
Shiromizu CM, Jancic CC. γδ T Lymphocytes: An Effector Cell in Autoimmunity and Infection. Front Immunol 2018; 9:2389. [PMID: 30386339 PMCID: PMC6198062 DOI: 10.3389/fimmu.2018.02389] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are non-conventional lymphocytes which show several properties of innate immune cells. They present a limited TCR repertoire and circulate as cells with a pre-activated phenotype thus being able to generate rapid immune responses. γδ T cells do not recognize classical peptide antigens, their TCRs are non-MHC restricted and they can respond to pathogen-associated molecular patterns and to cytokines in absence of TCR ligands. They also recognize self-molecules induced by stress, which indicate infection and cellular transformation. All these features let γδ T cells act as a first line of defense in sterile and non-sterile inflammation. γδ T cells represent 1–10% of circulating lymphocytes in the adult human peripheral blood, they are widely localized in non-lymphoid tissues and constitute the majority of immune cells in some epithelial surfaces, where they participate in the maintenance of the epithelial barriers. γδ T cells produce a wide range of cytokines that orchestrate the course of immune responses and also exert high cytotoxic activity against infected and transformed cells. In contrast to their beneficial role during infection, γδ T cells are also implicated in the development and progression of autoimmune diseases. Interestingly, several functions of γδ T cells are susceptible to modulation by interaction with other cells. In this review, we give an overview of the γδ T cell participation in infection and autoimmunity. We also revise the underlying mechanisms that modulate γδ T cell function that might provide tools to control pathological immune responses.
Collapse
Affiliation(s)
- Carolina Maiumi Shiromizu
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carolina Cristina Jancic
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX) - CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Prediction of Disordered Regions and Their Roles in the Anti-Pathogenic and Immunomodulatory Functions of Butyrophilins. Molecules 2018; 23:molecules23020328. [PMID: 29401697 PMCID: PMC6017450 DOI: 10.3390/molecules23020328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Butyrophilins (BTNs) are a group of the moonlighting proteins, some members of which are secreted in milk. They constitute a large family of structurally similar type 1 transmembrane proteins from the immunoglobulin superfamily. Although the founding member of this family is related to lactation, participating in the secretion, formation and stabilization of milk fat globules, it may also have a cell surface receptor function. Generally, the BTN family members are known to modulate co-stimulatory responses, T cell selection, differentiation, and cell fate determination. Polymorphism of these genes was shown to be associated with the pathology of several human diseases. Despite their biological significance, structural information on human butyrophilins is rather limited. Based on their remarkable multifunctionality, butyrophilins seem to belong to the category of moonlighting proteins, which are known to contain intrinsically disordered protein regions (IDPRs). However, the disorder status of human BTNs was not systematically investigated as of yet. The goal of this study is to fill this gap and to evaluate peculiarities of intrinsic disorder predisposition of the members of human BTN family, and to find if they have IDPRs that can be attributed to the multifunctionality of these important proteins.
Collapse
|
19
|
Human Zika infection induces a reduction of IFN-γ producing CD4 T-cells and a parallel expansion of effector Vδ2 T-cells. Sci Rep 2017; 7:6313. [PMID: 28740159 PMCID: PMC5524759 DOI: 10.1038/s41598-017-06536-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/13/2017] [Indexed: 12/25/2022] Open
Abstract
The definition of the immunological response to Zika (ZIKV) infection in humans represents a key issue to identify protective profile useful for vaccine development and for pathogenesis studies. No data are available on the cellular immune response in the acute phase of human ZIKV infection, and its role in the protection and/or pathogenesis needs to be clarified. We studied and compared the phenotype and functionality of T-cells in patients with acute ZIKV and Dengue viral (DENV) infections. A significant activation of T-cells was observed during both ZIKV and DENV infections. ZIKV infection was characterized by a CD4 T cell differentiation toward effector cells and by a lower frequency of IFN-γ producing CD4 T cells. Moreover, a substantial expansion of CD3+CD4−CD8− T-cell subset expressing Vδ2 TCR was specifically observed in ZIKV patients. Vδ2 T cells presented a terminally differentiated profile, expressed granzyme B and maintained their ability to produce IFN-γ. These findings provide new knowledge on the immune response profile during self-limited infection that may help in vaccine efficacy definition, and in identifying possible immuno-pathogenetic mechanisms of severe infection.
Collapse
|
20
|
Douguet L, Cherfils-Vicini J, Bod L, Lengagne R, Gilson E, Prévost-Blondel A. Nitric Oxide Synthase 2 Improves Proliferation and Glycolysis of Peripheral γδ T Cells. PLoS One 2016; 11:e0165639. [PMID: 27812136 PMCID: PMC5094591 DOI: 10.1371/journal.pone.0165639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/14/2016] [Indexed: 01/06/2023] Open
Abstract
γδ T cells play critical roles in host defense against infections and cancer. Although advances have been made in identifying γδ TCR ligands, it remains essential to understand molecular mechanisms responsible for in vivo expansion of γδ T cells in periphery. Recent findings identified the expression of the inducible NO synthase (NOS2) in lymphoid cells and highlighted novel immunoregulatory functions of NOS2 in αβ T cell differentiation and B cell survival. In this context, we wondered whether NOS2 exerts an impact on γδ T cell properties. Here, we show that γδ T cells express NOS2 not only in vitro after TCR triggering, but also directly ex vivo. Nos2 deficient mice have fewer γδ T cells in peripheral lymph nodes (pLNs) than their wild-type counterparts, and these cells exhibit a reduced ability to produce IL-2. Using chemical NOS inhibitors and Nos2 deficient γδ T cells, we further evidence that the inactivation of endogenous NOS2 significantly reduced γδ T cell proliferation and glycolysis metabolism that can be restored in presence of exogenous IL-2. Collectively, we demonstrate the crucial role of endogenous NOS2 in promoting optimal IL-2 production, proliferation and glycolysis of γδ T cells that may contribute to their regulation at steady state.
Collapse
Affiliation(s)
- Laetitia Douguet
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julien Cherfils-Vicini
- Institut de Recherche sur le cancer et le vieillissement, CNRS UMR7284, INSERM U1081, Université de Nice, Nice, France
- Département de génétique médicale, Hôpital l’Archet, CHU de Nice, Nice, France
| | - Lloyd Bod
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Renée Lengagne
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Eric Gilson
- Institut de Recherche sur le cancer et le vieillissement, CNRS UMR7284, INSERM U1081, Université de Nice, Nice, France
- Département de génétique médicale, Hôpital l’Archet, CHU de Nice, Nice, France
| | - Armelle Prévost-Blondel
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Montgomery RR. Age-related alterations in immune responses to West Nile virus infection. Clin Exp Immunol 2016; 187:26-34. [PMID: 27612657 DOI: 10.1111/cei.12863] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/25/2022] Open
Abstract
West Nile virus (WNV) is the most important causative agent of viral encephalitis worldwide and an important public health concern in the United States due to its high prevalence, severe disease, and the absence of effective treatments. Infection with WNV is mainly asymptomatic, but some individuals develop severe, possibly fatal, neurological disease. Individual host factors play a role in susceptibility to WNV infection, including genetic polymorphisms in key anti-viral immune genes, but age is the most well-defined risk factor for susceptibility to severe disease. Ageing is associated with distinct changes in immune cells and a decline in immune function leading to increased susceptibility to infection and reduced responses to vaccination. WNV is detected by pathogen recognition receptors including Toll-like receptors (TLRs), which show reduced expression and function in ageing. Neutrophils, monocyte/macrophages and dendritic cells, which first recognize and respond to infection, show age-related impairment of many functions relevant to anti-viral responses. Natural killer cells control many viral infections and show age-related changes in phenotype and functional responses. A role for the regulatory receptors Mertk and Axl in blood-brain barrier permeability and in facilitating viral uptake through phospholipid binding may be relevant for susceptibility to WNV, and age-related up-regulation of Axl has been noted previously in human dendritic cells. Understanding the specific immune parameters and mechanisms that influence susceptibility to symptomatic WNV may lead to a better understanding of increased susceptibility in elderly individuals and identify potential avenues for therapeutic approaches: an especially relevant goal, as the world's populating is ageing.
Collapse
Affiliation(s)
- R R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
Abstract
West Nile virus (WNV), a neurotropic single-stranded flavivirus has been the leading cause of arboviral encephalitis worldwide. Up to 50% of WNV convalescent patients in the United States were reported to have long-term neurological sequelae. Neither antiviral drugs nor vaccines are available for humans. Animal models have been used to investigate WNV pathogenesis and host immune response in humans. In this review, we will discuss recent findings from studies in animal models of WNV infection, and provide new insights on WNV pathogenesis and WNV-induced host immunity in the central nervous system.
Collapse
Affiliation(s)
- Evandro R Winkelmann
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| |
Collapse
|
23
|
Durrant DM, Daniels BP, Pasieka T, Dorsey D, Klein RS. CCR5 limits cortical viral loads during West Nile virus infection of the central nervous system. J Neuroinflammation 2015; 12:233. [PMID: 26667390 PMCID: PMC4678669 DOI: 10.1186/s12974-015-0447-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Cell-mediated immunity is critical for clearance of central nervous system (CNS) infection with the encephalitic flavivirus, West Nile virus (WNV). Prior studies from our laboratory have shown that WNV-infected neurons express chemoattractants that mediate recruitment of antiviral leukocytes into the CNS. Although the chemokine receptor, CCR5, has been shown to play an important role in CNS host defense during WNV infection, regional effects of its activity within the infected brain have not been defined. Methods We used CCR5-deficient mice and an established murine model of WNV encephalitis to determine whether CCR5 activity impacts on WNV levels within the CNS in a region-specific fashion. Statistical comparisons between groups were made with one- or two-way analysis of variance; Bonferroni’s post hoc test was subsequently used to compare individual means. Survival was analyzed by the log-rank test. Analyses were conducted using Prism software (GraphPad Prism). All data were expressed as means ± SEM. Differences were considered significant if P ≤ 0.05. Results As previously shown, lack of CCR5 activity led to increased symptomatic disease and mortality in mice after subcutaneous infection with WNV. Evaluation of viral burden in the footpad, draining lymph nodes, spleen, olfactory bulb, and cerebellum derived from WNV-infected wild-type, and CCR5−/− mice showed no differences between the genotypes. In contrast, WNV-infected, CCR5−/− mice exhibited significantly increased viral burden in cortical tissues, including the hippocampus, at day 8 post-infection. CNS regional studies of chemokine expression via luminex analysis revealed significantly increased expression of CCR5 ligands, CCL4 and CCL5, within the cortices of WNV-infected, CCR5−/− mice compared with those of similarly infected WT animals. Cortical elevations in viral loads and CCR5 ligands in WNV-infected, CCR5−/− mice, however, were associated with decreased numbers of infiltrating mononuclear cells and increased permeability of the blood-brain barrier. Conclusions These data indicate that regional differences in chemokine expression occur in response to WNV infection of the CNS, and that cortical neurons require CCR5 activity to limit viral burden in this brain region.
Collapse
Affiliation(s)
- Douglas M Durrant
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - Brian P Daniels
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - TracyJo Pasieka
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - Denise Dorsey
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA. .,Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA. .,Department of Anatomy & Neurobiology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
24
|
Hou L, Wang T, Sun J. γδ T cells in infection and autoimmunity. Int Immunopharmacol 2015; 28:887-91. [PMID: 25864620 DOI: 10.1016/j.intimp.2015.03.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/28/2015] [Indexed: 01/13/2023]
Abstract
Standing at the interface of innate and adaptive immune, γδ T cells play important pathophysiologic roles in infection, autoimmunity, and tumorigenesis. Recent studies indicate that γδ T cells could be categorized into IFN-γ(+) and IL-17(+) subsets, both of which possess select TCR usages, bear unique surface markers and require different cytokine signaling to maintain the homeostasis. In addition, as the major innate IL-17 producers, γδ T cells are increasingly appreciated for their involvement in various acute infections and injuries. This review will summarize the characteristics of IFN-γ(+) (γδ T-IFN-γ) and IL-17(+) γδ T cells (γδT17) and discuss their distinct pathogenic functions in different disease models.
Collapse
Affiliation(s)
- Lifei Hou
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA.
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA.
| |
Collapse
|
25
|
Zhang J, Wang J, Pang L, Xie G, Welte T, Saxena V, Wicker J, Mann B, Soong L, Barrett A, Born W, O'Brien R, Wang T. The co-stimulatory effects of MyD88-dependent Toll-like receptor signaling on activation of murine γδ T cells. PLoS One 2014; 9:e108156. [PMID: 25232836 PMCID: PMC4169491 DOI: 10.1371/journal.pone.0108156] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022] Open
Abstract
γδ T cells express several different toll-like receptor (TLR)s. The role of MyD88- dependent TLR signaling in TCR activation of murine γδ T cells is incompletely defined. Here, we report that Pam3CSK4 (PAM, TLR2 agonist) and CL097 (TLR7 agonist), but not lipopolysaccharide (TLR4 agonist), increased CD69 expression and Th1-type cytokine production upon anti-CD3 stimulation of γδ T cells from young adult mice (6-to 10-week-old). However, these agonists alone did not induce γδ T cell activation. Additionally, we noted that neither PAM nor CL097 synergized with anti-CD3 in inducing CD69 expression on γδ T cells of aged mice (21-to 22-month-old). Compared to young γδ T cells, PAM and CL097 increased Th-1 type cytokine production with a lower magnitude from anti-CD3- stimulated, aged γδ T cells. Vγ1+ and Vγ4+ cells are two subpopulations of splenic γδ T cells. PAM had similar effects in anti-CD3-activated control and Vγ4+ subset- depleted γδ T cells; whereas CL097 induced more IFN-γ production from Vγ4+ subset-depleted γδ T cells than from the control group. Finally, we studied the role of MyD88-dependent TLRs in γδ T cell activation during West Nile virus (WNV) infection. γδ T cell, in particular, Vγ1+ subset expansion was significantly reduced in both MyD88- and TLR7- deficient mice. Treatment with TLR7 agonist induced more Vγ1+ cell expansion in wild-type mice during WNV infection. In summary, these results suggest that MyD88-dependent TLRs provide co-stimulatory signals during TCR activation of γδ T cells and these have differential effects on distinct subsets.
Collapse
Affiliation(s)
- Jinping Zhang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jia Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lan Pang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Guorui Xie
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Welte
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Vandana Saxena
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jason Wicker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Brian Mann
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alan Barrett
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Willi Born
- Integrated Department of Immunology, National Jewish Health Center, Denver, Colorado, United States of America
| | - Rebecca O'Brien
- Integrated Department of Immunology, National Jewish Health Center, Denver, Colorado, United States of America
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Hsiao CH, Lin X, Barney R, Shippy R, Li J, Vinogradova O, Wiemer D, Wiemer A. Synthesis of a Phosphoantigen Prodrug that Potently Activates Vγ9Vδ2 T-Lymphocytes. ACTA ACUST UNITED AC 2014; 21:945-54. [DOI: 10.1016/j.chembiol.2014.06.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/12/2014] [Accepted: 06/18/2014] [Indexed: 12/31/2022]
|
27
|
Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H. Mechanism of West Nile virus neuroinvasion: a critical appraisal. Viruses 2014; 6:2796-825. [PMID: 25046180 PMCID: PMC4113794 DOI: 10.3390/v6072796] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) is an important emerging neurotropic virus, responsible for increasingly severe encephalitis outbreaks in humans and horses worldwide. However, the mechanism by which the virus gains entry to the brain (neuroinvasion) remains poorly understood. Hypotheses of hematogenous and transneural entry have been proposed for WNV neuroinvasion, which revolve mainly around the concepts of blood-brain barrier (BBB) disruption and retrograde axonal transport, respectively. However, an over‑representation of in vitro studies without adequate in vivo validation continues to obscure our understanding of the mechanism(s). Furthermore, WNV infection in the current rodent models does not generate a similar viremia and character of CNS infection, as seen in the common target hosts, humans and horses. These differences ultimately question the applicability of rodent models for pathogenesis investigations. Finally, the role of several barriers against CNS insults, such as the blood-cerebrospinal fluid (CSF), the CSF-brain and the blood-spinal cord barriers, remain largely unexplored, highlighting the infancy of this field. In this review, a systematic and critical appraisal of the current evidence relevant to the possible mechanism(s) of WNV neuroinvasion is conducted.
Collapse
Affiliation(s)
- Willy W Suen
- School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia.
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, QLD, 4072, Australia.
| | | |
Collapse
|
28
|
Wiemer DF, Wiemer AJ. Opportunities and challenges in development of phosphoantigens as Vγ9Vδ2 T cell agonists. Biochem Pharmacol 2014; 89:301-12. [DOI: 10.1016/j.bcp.2014.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 01/29/2023]
|
29
|
Visnyei K, Grossbard ML, Shapira I. Hepatosplenic γδ T-cell lymphoma: an overview. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 13:360-9. [PMID: 23876844 DOI: 10.1016/j.clml.2013.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/19/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
Peripheral T-cell lymphomas are a heterogeneous group of lymphoid malignancies. Among these, hepatosplenic γδ T-cell lymphoma (HTCL) represents an aggressive and treatment-resistant subgroup for which new avenues of treatment are critically needed. HTCL is characterized by primary extranodal distribution of the malignant cells with typical intrasinusoidal infiltration of the liver, spleen, and bone marrow, which results in hepatosplenomegaly and peripheral blood cytopenias. Another characteristic feature is the expression of γδ T-cell receptors. HTCL exhibits a rapid progressive course and an extremely poor response to currently known therapeutic strategies, with a 5-year overall survival rate of only 7%. In this review, we discuss the clinical, pathologic, and molecular characteristics of this disease, along with the challenges that are associated with its diagnosis and treatment.
Collapse
Affiliation(s)
- Koppany Visnyei
- Department of Internal Medicine, Beth Israel Medical Center, Albert Einstein College of Medicine, New York, NY 10003, USA.
| | | | | |
Collapse
|
30
|
The protective effect of CD40 ligand-CD40 signalling is limited during the early phase of Plasmodium infection. FEBS Lett 2014; 588:2147-53. [PMID: 24815981 DOI: 10.1016/j.febslet.2014.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 01/30/2023]
Abstract
γδ T cells are essential for eliminating Plasmodium berghei XAT. Because administration of the agonistic anti-CD40 antibody can induce elimination of P. berghei XAT parasites in γδ T cell-deficient mice, we considered that γδ T cells might activate dendritic cells via CD40 signalling during infection. Here we report that administration of the anti-CD40 antibody to γδ T cell-deficient mice 3-10 days post-P. berghei XAT infection could eliminate the parasites. Our data suggest that dendritic cell activation via γδ T cells expressing CD40 ligand is critical during the early phase of infection.
Collapse
|
31
|
Parkinson RM, Collins SL, Horton MR, Powell JD. Egr3 induces a Th17 response by promoting the development of γδ T cells. PLoS One 2014; 9:e87265. [PMID: 24475259 PMCID: PMC3901773 DOI: 10.1371/journal.pone.0087265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/24/2013] [Indexed: 01/13/2023] Open
Abstract
The transcription factor Early Growth Response 3 (Egr3) has been shown to play an important role in negatively regulating T cell activation and promoting T cell anergy in Th1 cells. However, its role in regulating other T helper subsets has yet to be described. We sought to determine the role of Egr3 in a Th17 response using transgenic mice that overexpress Egr3 in T cells (Egr3 TG). Splenocytes from Egr3 TG mice demonstrated more robust generation of Th17 cells even under non-Th17 skewing conditions. We found that while Egr3 TG T cells were not intrinsically more likely to become Th17 cells, the environment encountered by these cells was more conducive to Th17 development. Further analysis revealed a considerable increase in the number of γδ T cells in both the peripheral lymphoid organs and mucosal tissues of Egr3 TG mice, a cell type which normally accounts for only a small fraction of peripheral lymphocytes. Consistent with this marked increase in peripheral γδ T cells, thymocytes from Egr3 TG mice also appear biased toward γδ T cell development. Coculture of these Egr3-induced γδ T cells with wildtype CD4+ T cells increases Th17 differentiation, and Egr3 TG mice are more susceptible to bleomycin-induced lung inflammation. Overall our findings strengthen the role for Egr3 in promoting γδ T cell development and show that Egr3-induced γδ T cells are both functional and capable of altering the adaptive immune response in a Th17-biased manner. Our data also demonstrates that the role played by Egr3 in T cell activation and differentiation is more complex than previously thought.
Collapse
Affiliation(s)
- Rose M. Parkinson
- The Sidney-Kimmel Cancer Research Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Samuel L. Collins
- Division of Pulmonary Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Maureen R. Horton
- Division of Pulmonary Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan D. Powell
- The Sidney-Kimmel Cancer Research Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Role of natural killer and Gamma-delta T cells in West Nile virus infection. Viruses 2013; 5:2298-310. [PMID: 24061543 PMCID: PMC3798903 DOI: 10.3390/v5092298] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/30/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
Natural Killer (NK) cells and Gamma-delta T cells are both innate lymphocytes that respond rapidly and non-specifically to viral infection and other pathogens. They are also known to form a unique link between innate and adaptive immunity. Although they have similar immune features and effector functions, accumulating evidence in mice and humans suggest these two cell types have distinct roles in the control of infection by West Nile virus (WNV), a re-emerging pathogen that has caused fatal encephalitis in North America over the past decade. This review will discuss recent studies on these two cell types in protective immunity and viral pathogenesis during WNV infection.
Collapse
|
33
|
Inoue SI, Niikura M, Mineo S, Kobayashi F. Roles of IFN-γ and γδ T Cells in Protective Immunity Against Blood-Stage Malaria. Front Immunol 2013; 4:258. [PMID: 24009610 PMCID: PMC3756480 DOI: 10.3389/fimmu.2013.00258] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/15/2013] [Indexed: 01/10/2023] Open
Abstract
Malaria is caused by infection with Plasmodium parasites. Various studies with knockout mice have indicated that IFN-γ plays essential roles in protective immunity against blood-stage Plasmodium infection. However, after Plasmodium infection, increased IFN-γ production by various types of cells is involved not only in protective immunity, but also in immunopathology. Recent reports have shown that IFN-γ acts as a pro-inflammatory cytokine to induce not only the activation of macrophages, but also the generation of uncommon myelolymphoid progenitor cells after Plasmodium infection. However, the effects of IFN-γ on hematopoietic stem cells and progenitor cells are unclear. Therefore, the regulation of hematopoiesis by IFN-γ during Plasmodium infection remains to be clarified. Although there are conflicting reports concerning the significance of γδ T cells in protective immunity against Plasmodium infection, γδ T cells may respond to infection and produce IFN-γ as innate immune cells in the early phase of blood-stage malaria. Our recent studies have shown that γδ T cells express CD40 ligand and produce IFN-γ after Plasmodium infection, resulting in the enhancement of dendritic cell activation as part of the immune response to eliminate Plasmodium parasites. These data suggest that the function of γδ T cells is similar to that of NK cells. Although several reports suggest that γδ T cells have the potential to act as memory cells for various infections, it remains to be determined whether memory γδ T cells are generated by Plasmodium infection and whether memory γδ T cells can contribute to the host defense against re-infection with Plasmodium. Here, we summarize and discuss the effects of IFN-γ and the various functions of γδ T cells in blood-stage Plasmodium infection.
Collapse
Affiliation(s)
- Shin-Ichi Inoue
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka , Tokyo , Japan
| | | | | | | |
Collapse
|
34
|
Identification of genes critical for resistance to infection by West Nile virus using RNA-Seq analysis. Viruses 2013; 5:1664-81. [PMID: 23881275 PMCID: PMC3738954 DOI: 10.3390/v5071664] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/21/2013] [Accepted: 06/29/2013] [Indexed: 01/08/2023] Open
Abstract
The West Nile virus (WNV) is an emerging infection of biodefense concern and there are no available treatments or vaccines. Here we used a high-throughput method based on a novel gene expression analysis, RNA-Seq, to give a global picture of differential gene expression by primary human macrophages of 10 healthy donors infected in vitro with WNV. From a total of 28 million reads per sample, we identified 1,514 transcripts that were differentially expressed after infection. Both predicted and novel gene changes were detected, as were gene isoforms, and while many of the genes were expressed by all donors, some were unique. Knock-down of genes not previously known to be associated with WNV resistance identified their critical role in control of viral infection. Our study distinguishes both common gene pathways as well as novel cellular responses. Such analyses will be valuable for translational studies of susceptible and resistant individuals—and for targeting therapeutics—in multiple biological settings.
Collapse
|
35
|
Durrant DM, Robinette ML, Klein RS. IL-1R1 is required for dendritic cell-mediated T cell reactivation within the CNS during West Nile virus encephalitis. ACTA ACUST UNITED AC 2013; 210:503-16. [PMID: 23460727 PMCID: PMC3600909 DOI: 10.1084/jem.20121897] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IL-1R1 signaling drives T cell activation in the CNS via effects on DC activation. Infections of the central nervous system (CNS) with cytopathic viruses require efficient T cell responses to promote viral clearance, limit immunopathology, and enhance survival. We found that IL-1R1 is critical for effector T cell reactivation and limits inflammation within the CNS during murine West Nile virus (WNV) encephalitis. WNV-infected IL-1R1−/− mice display intact adaptive immunity in the periphery but succumb to WNV infection caused by loss of virologic control in the CNS with depressed local Th1 cytokine responses, despite parenchymal entry of virus-specific CD8+ T cells. Ex vivo analysis of CD4+ T cells from WNV-infected CNS of IL-1R1−/− mice revealed impaired effector responses, whereas CD8+ T cells revealed no cell intrinsic defects in response to WNV antigen. WNV-infected, IL-1R1−/− mice also exhibited decreased activation of CNS CD11c+CD11b−CD103+ and CD11c+CD11b−CD8α+Dec-205+ cells with reduced up-regulation of the co-stimulatory molecules CD80, CD86, and CD68. Adoptive transfer of wild-type CD11c-EYFP+ cells from WNV-infected CNS into WNV-infected IL-1R1−/− mice trafficked into the CNS restored T cell functions and improved survival from otherwise lethal infection. These data indicate that IL-1R1 signaling promotes virologic control during WNV infection specifically within the CNS via modulation of CD11c+ cell–mediated T cell reactivation at this site.
Collapse
Affiliation(s)
- Douglas M Durrant
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
36
|
Abstract
γδ T cells are a unique and conserved population of lymphocytes that have been the subject of a recent explosion of interest owing to their essential contributions to many types of immune response and immunopathology. But what does the integration of recent and long-established studies really tell us about these cells and their place in immunology? The time is ripe to consider the evidence for their unique and crucial functions. We conclude that whereas B cells and αβ T cells are commonly thought to contribute primarily to the antigen-specific effector and memory phases of immunity, γδ T cells are distinct in that they combine conventional adaptive features (inherent in their T cell receptors and pleiotropic effector functions) with rapid, innate-like responses that can place them in the initiation phase of immune reactions. This underpins a revised perspective on lymphocyte biology and the regulation of immunogenicity.
Collapse
|
37
|
Machain-Williams C, Reagan K, Wang T, Zeidner NS, Blair CD. Immunization with Culex tarsalis mosquito salivary gland extract modulates West Nile virus infection and disease in mice. Viral Immunol 2013; 26:84-92. [PMID: 23362833 DOI: 10.1089/vim.2012.0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mosquito salivary proteins inoculated during blood feeding modulate the host immune response, which can contribute to the pathogenesis of viruses transmitted by mosquito bites. Previous studies with mosquito bite-naïve mice indicated that exposure to arthropod salivary proteins resulted in a shift toward a Th2-type immune response in flavivirus-susceptible mice but not flavivirus-resistant animals. In the study presented here, we tested the hypothesis that immunization with high doses of Culex tarsalis salivary gland extracts (SGE) with an adjuvant would prevent Th2 polarization after mosquito bite and enhance resistance to mosquito-transmitted West Nile virus (WNV). Our results indicate that mice immunized with Cx. tarsalis SGE produced increased levels of Th1-type cytokines (IFNγ and TNFα) after challenge with mosquito-transmitted WNV and exhibited both a delay in infection of the central nervous system (CNS) and significantly lower WNV brain titers compared to mock-immunized mice. Moreover, mortality was significantly reduced in the SGE-immunized mice, as none of these mice died, compared to mortality of 37.5% of mock-vaccinated mice by 8 days after infected mosquito bite. These results suggest that development of a mosquito salivary protein vaccine might be a strategy to control arthropod-borne viral pathogens such as WNV.
Collapse
Affiliation(s)
- Carlos Machain-Williams
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
38
|
Enhancement of dendritic cell activation via CD40 ligand-expressing γδ T cells is responsible for protective immunity to Plasmodium parasites. Proc Natl Acad Sci U S A 2012; 109:12129-34. [PMID: 22778420 DOI: 10.1073/pnas.1204480109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous reports have shown that γδ T cells are important for the elimination of malaria parasites in humans and mice. However, how γδ T cells are involved in protective immunity against blood-stage malaria remains unknown. We infected γδ T-cell-deficient (TCRδ-KO) mice and control wild-type mice with Plasmodium berghei XAT, which is a nonlethal strain. Although infected red blood cells were eliminated within 30 d after infection, TCRδ-KO mice could not clear the infected red blood cells, showed high parasitemia, and eventually died. Therefore, γδ T cells are essential for clearance of the parasites. Here, we found that γδ T cells play a key role in dendritic cell activation after Plasmodium infection. On day 5 postinfection, γδ T cells produced IFN-γ and expressed CD40 ligand during dendritic cell activation. These results suggest that γδ T cells enhance dendritic cell activation via IFN-γ and CD40 ligand-CD40 signaling. This hypothesis is supported strongly by the fact that in vivo induction of CD40 signaling prevented the death of TCRδ-KO mice after infection with P. berghei XAT. This study improves our understanding of protective immunity against malaria and provides insights into γδ T-cell-mediated protective immunity against various infectious diseases.
Collapse
|
39
|
Immune markers and correlates of protection for vaccine induced immune responses. Vaccine 2012; 30:4907-20. [PMID: 22658928 DOI: 10.1016/j.vaccine.2012.05.049] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/15/2012] [Accepted: 05/19/2012] [Indexed: 12/15/2022]
Abstract
Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For T(H)1 type responses, antigen-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination, through recombinant major histocompatibility complex (MHC) class I tetramers loaded with relevant peptides, has opened a new vista to include CTL responses in the evaluation of protective immune responses. Here, we review different immune markers and new candidates for correlates of a protective vaccine induced immune response against chronic infections and how successful they have been in defining the protective immunity in human and veterinary medicine.
Collapse
|
40
|
De Filette M, Ulbert S, Diamond M, Sanders NN. Recent progress in West Nile virus diagnosis and vaccination. Vet Res 2012; 43:16. [PMID: 22380523 PMCID: PMC3311072 DOI: 10.1186/1297-9716-43-16] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/01/2012] [Indexed: 01/22/2023] Open
Abstract
West Nile virus (WNV) is a positive-stranded RNA virus belonging to the Flaviviridae family, a large family with 3 main genera (flavivirus, hepacivirus and pestivirus). Among these viruses, there are several globally relevant human pathogens including the mosquito-borne dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and West Nile virus (WNV), as well as tick-borne viruses such as tick-borne encephalitis virus (TBEV). Since the mid-1990s, outbreaks of WN fever and encephalitis have occurred throughout the world and WNV is now endemic in Africa, Asia, Australia, the Middle East, Europe and the Unites States. This review describes the molecular virology, epidemiology, pathogenesis, and highlights recent progress regarding diagnosis and vaccination against WNV infections.
Collapse
Affiliation(s)
- Marina De Filette
- Laboratory of Gene Therapy, Faculty of Veterinary Sciences, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
41
|
Wang T. Role of γδ T cells in West Nile virus-induced encephalitis: friend or foe? J Neuroimmunol 2011; 240-241:22-7. [PMID: 22078709 DOI: 10.1016/j.jneuroim.2011.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/23/2011] [Accepted: 10/13/2011] [Indexed: 01/12/2023]
Abstract
West Nile virus (WNV)-induced encephalitis has been a public health concern in North America over the past decade. No therapeutics or vaccines are available for human use. Studies in animal models have provided important information for investigations of WNV pathogenesis and the host immune response in humans. This article will give an overview of the role of γδ T cells, one of the non-classical T cell subsets in the murine model of WNV encephalitis.
Collapse
Affiliation(s)
- Tian Wang
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
42
|
Wen K, Li G, Zhang W, Azevedo MSP, Saif LJ, Liu F, Bui T, Yousef A, Yuan L. Development of γδ T cell subset responses in gnotobiotic pigs infected with human rotaviruses and colonized with probiotic lactobacilli. Vet Immunol Immunopathol 2011; 141:267-75. [PMID: 21489639 DOI: 10.1016/j.vetimm.2011.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/02/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
γδ T cell responses are induced by various viral and bacterial infections. Different γδ T cells contribute to activation and regulation of the inflammatory response and to epithelial repair. How γδ T cells respond to rotavirus infection and how the colonization of probiotics influences the γδ T cell response were unknown. In this study, we evaluated by multicolor flow cytometry the frequencies and distribution of total γδ T cells and three major subsets (CD2-CD8-, CD2+CD8- and CD2+CD8+) in ileum, spleen and blood of gnotobiotic (Gn) pigs at early (3-5 days) and late phases (28 days) after rotavirus infection. The Gn pigs were inoculated with the virulent human rotavirus Wa strain and colonized with a mixture of two strains of probiotics Lactobacillus acidophilus and Lactobacillus reuteri. In naïve pigs, the highest frequency of total γδ T cells was found in blood, followed by spleen and ileum at the early age (8-10 days old) whereas in older pigs (32 days of age) the highest frequency of total γδ T cells was found in ileum and spleen followed by blood. Rotavirus infection significantly increased frequencies of intestinal total γδ T cells and the putatively regulatory CD2+CD8+ γδ T cell subset and decreased frequencies of the putatively proinflammatory CD8- subsets in ileum, spleen and blood at post-infection days (PID) 3 or 5. The three γδ T cell subsets distributed and responded differently after rotavirus infection and/or lactobacilli colonization. The CD2+CD8+ subset contributed the most to the expansion of total γδ T cells after rotavirus infection in ileum because more than 77% of the total γδ T cells there were CD2+CD8+ cells. There was an additive effect between lactobacilli and rotavirus in inducing total γδ T cell expansion in ileum at PID 5. The overall effect of lactobacilli colonization versus rotavirus infection on frequencies of the CD2+CD8+ γδ T cell subset in ileum was similar; however, rotavirus-infected pigs maintained significantly higher frequencies of CD8- subsets in ileum than lactobacilli-colonized pigs. The dynamic γδ T cell responses suggest that γδ T cell subsets may play important roles in different stages of immune responses after rotavirus infection and probiotic colonization. The knowledge on the kinetics and distribution patterns of γδ T cell subsets in naïve pigs and after rotavirus infection or lactobacilli colonization provides the foundation for further mechanistic studies of their functions.
Collapse
Affiliation(s)
- Ke Wen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Dr, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Qian F, Wang X, Zhang L, Lin A, Zhao H, Fikrig E, Montgomery RR. Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus. J Infect Dis 2011; 203:1415-24. [PMID: 21398396 DOI: 10.1093/infdis/jir048] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
West Nile virus (WNV), a mosquito-borne, single-stranded RNA flavivirus, causes significant human morbidity and mortality in the older population; thus, we investigated the effects of aging on infection with WNV in dendritic cells (DCs). We infected DCs with WNV in vitro and quantified cytokines and chemokines (type I IFN and CXCL10), pathogen recognition receptors RIG-I, and Toll-like receptors 3 and 7. The production of type I IFN was significantly lower in DCs from older donors, compared with younger donors. Although we observed no significant age-related difference in expression or nuclear translocation of signaling molecules in initial antiviral responses, DCs from older donors have diminished induction of late-phase responses (eg, STAT1, IRF7, and IRF1), suggesting defective regulation of type I IFN. Our results identify deficits in critical regulatory pathways in the antiviral response that may contribute to the enhanced susceptibility to viral infections observed in aging.
Collapse
Affiliation(s)
- Feng Qian
- Section of Rheumatology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Mazzoccoli G, Vendemiale G, De Cata A, Tarquini R. Change of γδTCR-Expressing T Cells in Healthy Aging. Int J Immunopathol Pharmacol 2011; 24:201-9. [DOI: 10.1177/039463201102400124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A mature T-cell lineage with the capacity to proliferate in response to receptor-mediated signals and to display non-major histocompatibility complex (MHC)-restricted cytolysis expresses a CD3-associated heterodimer made up of the protein encoded by the T-cell receptor (TCR) gamma-gene. We investigated the possible differences in lymphocyte subpopulations between healthy young-middle-aged and elderly subjects, focusing attention on y8-TCR-expressing cells. The study was carried out on fifteen healthy young-middle-aged male subjects (age range 36–55 years) and fifteen healthy elderly male subjects (age range 67–79 years). Lymphocyte subpopulations were analyzed in blood samples collected every four hours for 24 hours. The presence of circadian rhythmicity on absolute counts was validated to evaluate the periodicity of variation, and the fractional variation between single time point values was calculated to evaluate the dynamics of variation. In the group of young and middle-aged subjects a clear circadian rhythm was validated for the time-qualified changes of all the lymphocyte subpopulations (CD3, CD4, CD4/CD8 ratio, CD20, CD25 and HLA-DR with acrophase at night, CD8, CD16 and TcRγδ with acrophase at noon). In the group of elderly subjects a clear circadian rhythm was validated for the nyctohemeral changes of CD3, CD8, CD4/CD8 ratio, CD 16, CD25. There was a statistically significant difference for the Midline Estimating Statistic of Rhythm (MESOR) of CD3 (p=0.001), CD25 (p=0.003) and γδ-TCR- expressing cells (p=0.004), higher in the elderly, and for the MESOR of HLA-DR (p=0.002) and CD20 (p=0.002) higher in the young and middle-aged subjects. There was a statistically significant difference between the groups in the fractional variation of TcRγδ-expressing cells between 18:00h and 22:00h values (higher in elderly subjects, p=0.007). In conclusion, specific lymphocyte subsets present different levels and different profiles of nyctohemeral changes in healthy young-middle aged in respect to elderly subjects, since B cells are decreased, whereas CD25 and γδ-TCR-bearing cells are higher in the elderly, but the rhythm and the dynamics of variation of this lymphocyte subset is severely altered and this phenomenon might contribute to the onset of age-related variations of the immune responses.
Collapse
Affiliation(s)
- G. Mazzoccoli
- Department of Internal Medicine and Chronobiology Unit, Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, S. Giovanni Rotondo, Foggia
| | - G. Vendemiale
- Department of Internal Medicine and Chronobiology Unit, Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, S. Giovanni Rotondo, Foggia
- Geriatrics Unit, Department of Medical Science, University of Foggia, Foggia
| | - A. De Cata
- Department of Internal Medicine and Chronobiology Unit, Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, S. Giovanni Rotondo, Foggia
| | - R. Tarquini
- Department of Internal Medicine, University of Florence, Florence, Italy
| |
Collapse
|
45
|
Bai F, Kong KF, Dai J, Qian F, Zhang L, Brown CR, Fikrig E, Montgomery RR. A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J Infect Dis 2010; 202:1804-12. [PMID: 21050124 DOI: 10.1086/657416] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polymorphonuclear leukocytes (PMNs) are key in innate immunity, but their role in viral pathogenesis is incompletely understood. In infection due to West Nile virus (WNV), we found that expression of 2 PMN-attracting chemokines, Cxcl1 and Cxcl2, was rapidly and dramatically elevated in macrophages. PMNs are rapidly recruited to the site of WNV infection in mice and support efficient replication of WNV. Mice depleted of PMNs after WNV inoculation developed higher viremia and experienced earlier death, compared with the control group, which suggest a protective role for PMNs. In contrast, when PMNs were depleted prior to infection with WNV, and in mice deficient in Cxcr2 (a chemokine receptor gene), viremia was reduced and survival was enhanced. Collectively, these data suggest that PMNs have a biphasic response to WNV infection, serving as a reservoir for replication and dissemination in early infection and later contributing to viral clearance.
Collapse
Affiliation(s)
- Fengwei Bai
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520‐8031, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Innate immune function in placenta and cord blood of hepatitis C--seropositive mother-infant dyads. PLoS One 2010. [PMID: 20814429 DOI: 10.1371/journal.pone.0012232.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV) infection. In contrast to the adult population who develop persistent viremia in approximately 80% of cases following exposure, the rate of mother-to-child transmission (2-6%) is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood) and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and gammadelta-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44) on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells.
Collapse
|
47
|
Waasdorp Hurtado C, Golden-Mason L, Brocato M, Krull M, Narkewicz MR, Rosen HR. Innate immune function in placenta and cord blood of hepatitis C--seropositive mother-infant dyads. PLoS One 2010; 5:e12232. [PMID: 20814429 PMCID: PMC2923602 DOI: 10.1371/journal.pone.0012232] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/24/2010] [Indexed: 12/24/2022] Open
Abstract
Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV) infection. In contrast to the adult population who develop persistent viremia in ∼80% of cases following exposure, the rate of mother-to-child transmission (2–6%) is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood) and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and γδ-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44) on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells.
Collapse
Affiliation(s)
- Christine Waasdorp Hurtado
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics Digestive Health Institute, University of Colorado School of Medicine, The Children's Hospital, Aurora, Colorado, United States of America
| | - Lucy Golden-Mason
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Integrated Program in Immunology, University of Colorado and National Jewish Hospital, Denver, Colorado, United States of America
| | - Megan Brocato
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Mona Krull
- Department of Obstetrics and Gynecology, Denver Health Medical Center, Denver, Colorado, United States of America
| | - Michael R. Narkewicz
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics Digestive Health Institute, University of Colorado School of Medicine, The Children's Hospital, Aurora, Colorado, United States of America
| | - Hugo R. Rosen
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Integrated Program in Immunology, University of Colorado and National Jewish Hospital, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
48
|
Hurtado CW, Golden-Mason L, Brocato M, Krull M, Narkewicz MR, Rosen HR. Innate immune function in placenta and cord blood of hepatitis C--seropositive mother-infant dyads. PLoS One 2010. [PMID: 20814429 DOI: 10.1371/journal.pone.001223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV) infection. In contrast to the adult population who develop persistent viremia in approximately 80% of cases following exposure, the rate of mother-to-child transmission (2-6%) is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood) and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and gammadelta-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44) on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells.
Collapse
Affiliation(s)
- Christine Waasdorp Hurtado
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics Digestive Health Institute, University of Colorado School of Medicine, The Children's Hospital, Aurora, Colorado, United States of America
| | | | | | | | | | | |
Collapse
|
49
|
Schneider BS, Soong L, Coffey LL, Stevenson HL, McGee CE, Higgs S. Aedes aegypti saliva alters leukocyte recruitment and cytokine signaling by antigen-presenting cells during West Nile virus infection. PLoS One 2010; 5:e11704. [PMID: 20661470 PMCID: PMC2908538 DOI: 10.1371/journal.pone.0011704] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/29/2010] [Indexed: 11/18/2022] Open
Abstract
West Nile virus (WNV) is transmitted during mosquito bloodfeeding. Consequently, the first vertebrate cells to contact WNV are cells in the skin, followed by those in the draining lymph node. Macrophages and dendritic cells are critical early responders in host defense against WNV infection, not just because of their role in orchestrating the immune response, but also because of their importance as sites of early peripheral viral replication. Antigen-presenting cell (APC) signals have a profound effect on host antiviral responses and disease severity. During transmission, WNV is intimately associated with mosquito saliva. Due to the ability of mosquito saliva to affect inflammation and immune responses, and the importance of understanding early events in WNV infection, we investigated whether mosquito saliva alters APC signaling during arbovirus infection, and if alterations in cell recruitment occur when WNV infection is initiated with mosquito saliva. Accordingly, experiments were performed with cultured dendritic cells and macrophages, flow cytometry was used to characterize infiltrating cell types in the skin and lymph nodes during early infection, and real-time RT-PCR was employed to evaluate virus and cytokine levels. Our in vitro results suggest that mosquito saliva significantly decreases the expression of interferon-beta and inducible nitric oxide synthase in macrophages (by as much as 50 and 70%, respectively), whilst transiently enhancing interleukin-10 (IL-10) expression. In vivo results indicate that the predominate effect of mosquito feeding is to significantly reduce the recruitment of T cells, leading the inoculation site of mice exposed to WNV alone to have up to 2.8 fold more t cells as mice infected in the presence of mosquito saliva. These shifts in cell population are associated with significantly elevated IL-10 and WNV (up to 4.0 and 10 fold, respectively) in the skin and draining lymph nodes. These results suggest that mosquito saliva dysregulates APC antiviral signaling, and reveal a possible mechanism for the observed enhancement of WNV disease mediated by mosquito saliva via a reduction of T lymphocyte and antiviral activity at the inoculation site, an elevated abundance of susceptible cell types, and a concomitant increase in immunoregulatory activity of IL-10.
Collapse
Affiliation(s)
- Bradley S. Schneider
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lark L. Coffey
- Institut Pasteur, Department of Virology, Viral Populations and Pathogenesis Group, Paris, France
| | - Heather L. Stevenson
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Charles E. McGee
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Stephen Higgs
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
50
|
Vermijlen D, Brouwer M, Donner C, Liesnard C, Tackoen M, Van Rysselberge M, Twité N, Goldman M, Marchant A, Willems F. Human cytomegalovirus elicits fetal gammadelta T cell responses in utero. ACTA ACUST UNITED AC 2010; 207:807-21. [PMID: 20368575 PMCID: PMC2856038 DOI: 10.1084/jem.20090348] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The fetus and infant are highly susceptible to viral infections. Several viruses, including human cytomegalovirus (CMV), cause more severe disease in early life compared with later life. It is generally accepted that this is a result of the immaturity of the immune system. gammadelta T cells are unconventional T cells that can react rapidly upon activation and show major histocompatibility complex-unrestricted activity. We show that upon CMV infection in utero, fetal gammadelta T cells expand and become differentiated. The expansion was restricted to Vgamma9-negative gammadelta T cells, irrespective of their Vdelta chain expression. Differentiated gammadelta T cells expressed high levels of IFN-gamma, transcription factors T-bet and eomes, natural killer receptors, and cytotoxic mediators. CMV infection induced a striking enrichment of a public Vgamma8Vdelta1-TCR, containing the germline-encoded complementary-determining-region-3 (CDR3) delta1-CALGELGDDKLIF/CDR3gamma8-CATWDTTGWFKIF. Public Vgamma8Vdelta1-TCR-expressing cell clones produced IFN-gamma upon coincubation with CMV-infected target cells in a TCR/CD3-dependent manner and showed antiviral activity. Differentiated gammadelta T cells and public Vgamma8Vdelta1-TCR were detected as early as after 21 wk of gestation. Our results indicate that functional fetal gammadelta T cell responses can be generated during development in utero and suggest that this T cell subset could participate in antiviral defense in early life.
Collapse
Affiliation(s)
- David Vermijlen
- Institute for Medical Immunology, Université Libre de Bruxelles, 6041 Gosselies, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|