1
|
Salisbury SJ, Daniels RR, Monaghan SJ, Bron JE, Villamayor PR, Gervais O, Fast MD, Sveen L, Houston RD, Robinson N, Robledo D. Keratinocytes drive the epithelial hyperplasia key to sea lice resistance in coho salmon. BMC Biol 2024; 22:160. [PMID: 39075472 PMCID: PMC11287951 DOI: 10.1186/s12915-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. RESULTS We characterized the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12 h, 24 h, 36 h, 48 h, and 60 h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. CONCLUSIONS Our results highlight the key role of keratinocytes in coho salmon's sea lice resistance and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.
Collapse
Affiliation(s)
- S J Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - R Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - S J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - J E Bron
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - P R Villamayor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - O Gervais
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - M D Fast
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | - R D Houston
- Benchmark Genetics, 1 Pioneer BuildingMilton Bridge, Edinburgh TechnopolePenicuik, UK
| | - N Robinson
- Nofima AS, Tromsø, Norway.
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), Deakin University, Melbourne, VIC, 3225, Australia.
| | - D Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Shi F, Tang S, Chen D, Mo F, Li J, Fang C, Wei H, Xing J, Liu L, Gong Y, Tan Z, Zhang Z, Pan X, Zhao S, Huang J. Immunological characteristics of CD103 +CD8 + Tc cells in the liver of C57BL/6 mouse infected with plasmodium NSM. Parasitol Res 2023; 122:2513-2524. [PMID: 37707607 DOI: 10.1007/s00436-023-07950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
CD103 is an important marker of tissue-resident memory T cells (TRM) which play important roles in fighting against infection. However, the immunological characteristics of CD103+ T cells are not thoroughly elucidated in the liver of mouse infected with Plasmodium. Six- to eight-week-old C57BL/6 mice were infected with Plasmodium yoelii nigeriensis NSM. Mice were sacrificed on 12-16 days after infection and the livers were picked out. Sections of the livers were stained, and serum aspartate aminotransferase (AST) and alanine transaminase (ALT) levels were measured. Moreover, lymphocytes in the liver were isolated, and the expression of CD103 was determined by using qPCR. The percentage of CD103 on different immune cell populations was dynamically observed by using flow cytometry (FCM). In addition, the phenotype and cytokine production characteristics of CD103+CD8+ Tc cell were analyzed by using flow cytometry, respectively. Erythrocyte stage plasmodium infection could result in severe hepatic damage, a widespread inflammatory response and the decrease of CD103 expression on hepatic immune cells. Only CD8+ Tc and γδT cells expressed higher levels of CD103 in the uninfected state.CD103 expression in CD8+ Tc cells significantly decreased after infection. Compared to that of CD103- CD8+ Tc cells, CD103+ CD8+ Tc cells from the infected mice expressed lower level of CD69, higher level of CD62L, and secreted more IL-4, IL-10, IL-17, and secreted less IFN-γ. CD103+CD8+ Tc cells might mediate the hepatic immune response by secreting IL-4, IL-10, and IL-17 except IFN-γ in the mice infected with the erythrocytic phase plasmodium, which could be involved in the pathogenesis of severe liver damage resulted from the erythrocytic phase plasmodium yoelii nigeriensis NSM infection.
Collapse
Affiliation(s)
- Feihu Shi
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Shanni Tang
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Dianhui Chen
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Feng Mo
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Junmin Xing
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lin Liu
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yumei Gong
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Tan
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Zhang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xingfei Pan
- Department of Infectious Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Shan Zhao
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| | - Jun Huang
- China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Chen H, Jia Z, He M, Chen A, Zhang X, Xu J, Wang C. Arula-7 powder improves diarrhea and intestinal epithelial tight junction function associated with its regulation of intestinal flora in calves infected with pathogenic Escherichia coli O 1. MICROBIOME 2023; 11:172. [PMID: 37542271 PMCID: PMC10403850 DOI: 10.1186/s40168-023-01616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/07/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND The effects of Arula-7 powder (ASP) on diarrhea and intestinal barrier function associated with its regulation of intestinal microflora in calves infected with pathogenic Escherichia coli O1 (E. coli O1) were studied. METHOD Twenty Holstein calves were randomly divided into four treatment groups: normal control (NC), model control (MC), 0.5 mg/kg ciprofloxacin (CIP) and 2.50 g/kg ASP groups. RESULTS ASP inhibited the relative abundance of Proteobacteria, Selenomonadales, and Enterobacteriales, and increased the relative abundance of Lactobacillus, Faecalibacterium, and Alloprevotella. Moreover, we demonstrated for the first time that the ASP and CIP promoted weight gain, reduced the diarrhea rate (P < 0.05), and enhanced antioxidant capacity (P < 0.05) due to the increase in average daily gain (ADG), total protein (TP), and albumin (ALB). In addition, ASP and CIP increased the expression of Zunola occludens-1 (ZO-1), Occludin, and Claudin-1 in the ileum (P < 0.05), and improved immunity due to increase levels of interleukin-2 (IL-2), interleukin-4 (IL-4), interferon-γ (IFN-γ), immunoglobulin A (IgA), and immunoglobulin G (IgG) in the serum, strengthened CD4+T levels in the ileal mucosa and reducing CD8+T and CD11c+T (P < 0.05). CONCLUSION Hence, The intestinal microbiota environment formed by early intervention of ASP powder has a protective effect on the intestinal mucosal function of calves infected with pathogenic E. coli. Video Abstract.
Collapse
Affiliation(s)
- Hao Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Zhifeng Jia
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- Animal Disease Prevention and Control Center of Bazhou District, Bazhong, China
| | - Meiling He
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Xin Zhang
- College of Basic Medical, Inner Mongolia Medical University, Hohhot, 010110, People's Republic of China
| | - Jin Xu
- Henan Houyi Bio-Engineering, Inc, He Nan, 451161, Zhengzhou, People's Republic of China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| |
Collapse
|
4
|
Sakowska J, Glasner P, Dukat-Mazurek A, Rydz A, Zieliński M, Pellowska I, Biernat W, Glasner L, Michalska-Małecka K, Trzonkowski P. Local T cell infiltrates are predominantly associated with corneal allograft rejection. Transpl Immunol 2023; 79:101852. [PMID: 37196866 DOI: 10.1016/j.trim.2023.101852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Corneal transplantations (CTXs) are a vision-saving procedure. Routinely, while CTXs' survival rates remain high, the risk of graft failure increases significantly for repeated CTXs. The reason is an alloimmunization following previous CTXs and development of memory T (Tm) and B (Bm) cells. METHODS We characterized populations of cells present in explanted human corneas from patients receiving the first CTX and marked as a primary CTX (PCTX) or the second or more CTXs and marked as a repeated CTX (RCTX). Cells extracted from resected corneas and from peripheral blood mononuclear cells (PBMCs) were analyzed by the flow cytometry method using multiple surface and intracellular markers. RESULTS Overall, the number of cells was similar in PCTX and RCTX patients. Extracted infiltrates from PCTXs and RCTXs contained similar numbers of T cell subsets, namely CD4+, CD8+, CD4+ Tm, CD8+ Tm, CD4+Foxp3+ T regulatory (Tregs), CD8+ Treg cells, while very few B cells (all p = NS). However, when compared to peripheral blood, PCTX and RCTX corneas contained significantly higher percentages of effector memory CD4+ and CD8+ T cells (both p < 0,05). In comparison to PCTX, RCTX group had the highest levels of Foxp3 in T CD4+ Tregs (p = 0,04) but decreased percentage of Helios-positive CD4+ Tregs. CONCLUSION PCTXs and especially RCTXs are rejected mainly by local T cells. The accumulation of effector CD4+ and CD8+ T cells, as well as CD4+ and CD8+ Tm cells is associated with the final rejection. Furthermore, local CD4+ and CD8+ Tregs expressing Foxp3 and Helios are probably insufficient to impose the acceptance of CTX.
Collapse
Affiliation(s)
- Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland.
| | - Paulina Glasner
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Anna Dukat-Mazurek
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| | - Anna Rydz
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| | - Irena Pellowska
- Department of Clinical Pathomorphology, University Clinical Centre in Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Leopold Glasner
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| |
Collapse
|
5
|
Ibrahim YS, Amin AH, Jawhar ZH, Alghamdi MA, Al-Awsi GRL, Shbeer AM, Al-Ghamdi HS, Gabr GA, Ramírez-Coronel AA, Almulla AF. "To be or not to Be": Regulatory T cells in melanoma. Int Immunopharmacol 2023; 118:110093. [PMID: 37023699 DOI: 10.1016/j.intimp.2023.110093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
In spite of progresses in the therapy of different malignancies, melanoma still remains as one of lethal types of skin tumor. Melanoma is almost easily treatable by surgery alone with higher overall survival rates when it is diagnosed at early stages. However, survival rates are decreased remarkably upon survival if the tumor is progressed to advanced metastatic stages. Immunotherapeutics have been prosperous in the development of anti-tumor responses in patients with melanoma through promotion of the tumor-specific effector T cells in vivo; nonetheless, suitable clinical outcomes have not been satisfactory. One of the underlying causes of the unfavorable clinical outcomes might stem from adverse effects of regulatory T (Treg) cell, which is a prominent mechanism of tumor cells to escape from tumor-specific immune responses. Evidence shows that a poor prognosis and low survival rate in patients with melanoma can be attributed to a higher Treg cell number and function in these subjects. As a result, to promote melanoma-specific anti-tumor responses, depletion of Treg cells appears to be a promising approach; even though the clinical efficacy of different approaches to attain appropriate Treg cell depletion has been inconsistent. Here in this review, the main purpose is to assess the role of Treg cells in the initiation and perpetuation of melanoma and to discuss effective strategies for Treg cell modulation with the aim of melanoma therapy.
Collapse
Affiliation(s)
- Yousif Saleh Ibrahim
- Department of Medical Laboratory Techniques, Al-maarif University College, Ramadi, Al-Anbar, Iraq
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq; Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad A Alghamdi
- Internal Medicine Department, Faculty of Medicine, Albaha University, Saudi Arabia
| | | | - Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Hasan S Al-Ghamdi
- Internal Medicine Department, Division of Dermatology, Faculty of Medicine, Albaha University, Albaha City, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt.
| | - Andrés Alexis Ramírez-Coronel
- Catholic University of Cuenca, Azogues Campus, Ecuador; University of Palermo, Buenos Aires, Argentina; National University of Education, Azogues, Ecuador; CES University, Colombia
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| |
Collapse
|
6
|
Girdhar K, Dogru YD, Huang Q, Yang Y, Tolstikov V, Raisingani A, Chrudinova M, Oh J, Kelley K, Ludvigsson JF, Kiebish MA, Palm NW, Ludvigsson J, Altindis E. Dynamics of the gut microbiome, IgA response, and plasma metabolome in the development of pediatric celiac disease. MICROBIOME 2023; 11:9. [PMID: 36639805 PMCID: PMC9840338 DOI: 10.1186/s40168-022-01429-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disorder triggered by gluten consumption. Almost all CD patients possess human leukocyte antigen (HLA) DQ2/DQ8 haplotypes; however, only a small subset of individuals carrying these alleles develop CD, indicating the role of environmental factors in CD pathogenesis. The main objective of this study was to determine the contributory role of gut microbiota and microbial metabolites in CD onset. To this end, we obtained fecal samples from a prospective cohort study (ABIS) at ages 2.5 and 5 years. Samples were collected from children who developed CD after the final sample collection (CD progressors) and healthy children matched by age, HLA genotype, breastfeeding duration, and gluten-exposure time (n=15-16). We first used 16S sequencing and immunoglobulin-A sequencing (IgA-seq) using fecal samples obtained from the same children (i) 16 controls and 15 CD progressors at age 2.5 and (ii) 13 controls and 9 CD progressors at age 5. We completed the cytokine profiling, and plasma metabolomics using plasma samples obtained at age 5 (n=7-9). We also determined the effects of one microbiota-derived metabolite, taurodeoxycholic acid (TDCA), on the small intestines and immune cell composition in vivo. RESULTS CD progressors have a distinct gut microbiota composition, an increased IgA response, and unique IgA targets compared to healthy subjects. Notably, 26 plasma metabolites, five cytokines, and one chemokine were significantly altered in CD progressors at age 5. Among 26 metabolites, we identified a 2-fold increase in TDCA. TDCA treatment alone caused villous atrophy, increased CD4+ T cells, Natural Killer cells, and two important immunoregulatory proteins, Qa-1 and NKG2D expression on T cells while decreasing T-regulatory cells in intraepithelial lymphocytes (IELs) in C57BL/6J mice. CONCLUSIONS Pediatric CD progressors have a distinct gut microbiota composition, plasma metabolome, and cytokine profile before diagnosis. Furthermore, CD progressors have more IgA-coated bacteria and unique targets of IgA in their gut microbiota. TDCA feeding alone stimulates an inflammatory immune response in the small intestines of C57BJ/6 mice and causes villous atrophy, the hallmark of CD. Thus, a microbiota-derived metabolite, TDCA, enriched in CD progressors' plasma, has the potential to drive inflammation in the small intestines and enhance CD pathogenesis. Video Abstract.
Collapse
Affiliation(s)
- Khyati Girdhar
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | | | - Qian Huang
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Yi Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | | | - Amol Raisingani
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | | | - Jaewon Oh
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Kristina Kelley
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Örebro University Hospital, Örebro, Sweden
| | | | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital, Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, SE, Sweden
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
7
|
Li H, Wang D, Zhou X, Ding S, Guo W, Zhang S, Li Z, Huang T, Cai YD. Characterization of spleen and lymph node cell types via CITE-seq and machine learning methods. Front Mol Neurosci 2022; 15:1033159. [PMID: 36311013 PMCID: PMC9608858 DOI: 10.3389/fnmol.2022.1033159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The spleen and lymph nodes are important functional organs for human immune system. The identification of cell types for spleen and lymph nodes is helpful for understanding the mechanism of immune system. However, the cell types of spleen and lymph are highly diverse in the human body. Therefore, in this study, we employed a series of machine learning algorithms to computationally analyze the cell types of spleen and lymph based on single-cell CITE-seq sequencing data. A total of 28,211 cell data (training vs. test = 14,435 vs. 13,776) involving 24 cell types were collected for this study. For the training dataset, it was analyzed by Boruta and minimum redundancy maximum relevance (mRMR) one by one, resulting in an mRMR feature list. This list was fed into the incremental feature selection (IFS) method, incorporating four classification algorithms (deep forest, random forest, K-nearest neighbor, and decision tree). Some essential features were discovered and the deep forest with its optimal features achieved the best performance. A group of related proteins (CD4, TCRb, CD103, CD43, and CD23) and genes (Nkg7 and Thy1) contributing to the classification of spleen and lymph nodes cell types were analyzed. Furthermore, the classification rules yielded by decision tree were also provided and analyzed. Above findings may provide helpful information for deepening our understanding on the diversity of cell types.
Collapse
Affiliation(s)
- Hao Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Deling Wang
- State Key Laboratory of Oncology in South China, Department of Radiology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xianchao Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijian Ding
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shiqi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- Yu-Dong Cai,
| |
Collapse
|
8
|
Hitchcock J, Hughes K, Pensa S, Lloyd-Lewis B, Watson CJ. The immune environment of the mammary gland fluctuates during post-lactational regression and correlates with tumour growth rate. Development 2022; 149:275060. [PMID: 35420674 PMCID: PMC9124574 DOI: 10.1242/dev.200162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/04/2022] [Indexed: 01/02/2023]
Abstract
Post-lactational mammary gland regression encompasses extensive programmed cell death and removal of milk-producing epithelial cells, breakdown of extracellular matrix components and redifferentiation of stromal adipocytes. This highly regulated involution process is associated with a transient increased risk of breast cancer in women. Using a syngeneic tumour model, we show that tumour growth is significantly altered depending on the stage of involution at which tumour cells are implanted. Tumour cells injected at day 3 involution grew faster than those in nulliparous mice, whereas tumours initiated at day 6 involution grew significantly slower. These differences in tumour progression correlate with distinct changes in innate immune cells, in particular among F4/80-expressing macrophages and among TCRδ+ unconventional T cells. Breast cancer post-pregnancy risk is exacerbated in older first-time mothers and, in our model, initial tumour growth is moderately faster in aged mice compared with young mice. Our results have implications for breast cancer risk and the use of anti-inflammatory therapeutics for postpartum breast cancers. Summary: Mammary gland involution is associated with dynamic changes in immune cell types and numbers at different stages that correlates with the initial rate of growth of implanted tumour cells.
Collapse
Affiliation(s)
- Jessica Hitchcock
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Sara Pensa
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Bethan Lloyd-Lewis
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christine J. Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
9
|
Bolivar-Wagers S, Larson JH, Jin S, Blazar BR. Cytolytic CD4 + and CD8 + Regulatory T-Cells and Implications for Developing Immunotherapies to Combat Graft-Versus-Host Disease. Front Immunol 2022; 13:864748. [PMID: 35493508 PMCID: PMC9040077 DOI: 10.3389/fimmu.2022.864748] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T-cells (Treg) are critical for the maintenance of immune homeostasis and tolerance induction. While the immunosuppressive mechanisms of Treg have been extensively investigated for decades, the mechanisms responsible for Treg cytotoxicity and their therapeutic potential in regulating immune responses have been incompletely explored and exploited. Conventional cytotoxic T effector cells (Teffs) are known to be important for adaptive immune responses, particularly in the settings of viral infections and cancer. CD4+ and CD8+ Treg subsets may also share similar cytotoxic properties with conventional Teffs. Cytotoxic effector Treg (cyTreg) are a heterogeneous population in the periphery that retain the capacity to suppress T-cell proliferation and activation, induce cellular apoptosis, and migrate to tissues to ensure immune homeostasis. The latter can occur through several cytolytic mechanisms, including the Granzyme/Perforin and Fas/FasL signaling pathways. This review focuses on the current knowledge and recent advances in our understanding of cyTreg and their potential application in the treatment of human disease, particularly Graft-versus-Host Disease (GVHD).
Collapse
Affiliation(s)
| | | | | | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Ko A, Coward VS, Gokgoz N, Dickson BC, Tsoi K, Wunder JS, Andrulis IL. Investigating the Potential of Isolating and Expanding Tumour-Infiltrating Lymphocytes from Adult Sarcoma. Cancers (Basel) 2022; 14:548. [PMID: 35158816 PMCID: PMC8833772 DOI: 10.3390/cancers14030548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Sarcomas are a heterogeneous group of mesenchymal neoplasms, many of which are associated with a high risk of metastasis and poor prognosis. Conventional chemotherapy and targeted therapies have varying effects across individuals and tumour subtypes. The current therapies frequently provide limited clinical benefit; hence, more effective treatments are urgently needed. Recent advances in immunotherapy, such as checkpoint inhibition or adoptive cell therapy (ACT), show potential in increasing efficacy by providing a more personalized treatment. Therapy with tumour-infiltrating lymphocytes (TILs) is an emerging field in immunotherapy. Here, we collected 190 sarcoma tumour specimens from patients without pre-operative adjuvant treatment in order to isolate TILs. We compared different methods of TIL expansion and optimized a protocol specifically for efficacy in culturing TILs from sarcoma. The expanded TIL populations were characterized by flow cytometry analysis using CD3, CD4, CD8, CD14, CD19 and CD56 markers. The TIL populations were non-specifically stimulated to establish TIL reactivity. Through an optimized expansion protocol, TILs were isolated and cultured from 54 of 92 primary sarcoma specimens. The isolated TILs varied in CD4+ and CD8+ T-cell compositions and retained their ability to release IFNγ upon stimulation. Our results suggest that certain sarcoma subtypes have the potential to yield a sufficient number of TILs for TIL therapy.
Collapse
Affiliation(s)
- Alice Ko
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (B.C.D.); (I.L.A.)
| | - Victoria S. Coward
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Nalan Gokgoz
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (N.G.); (J.S.W.)
| | - Brendan C. Dickson
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (B.C.D.); (I.L.A.)
- University of Toronto Musculoskeletal Oncology Unit, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Kim Tsoi
- University of Toronto Musculoskeletal Oncology Unit, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Jay S. Wunder
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (N.G.); (J.S.W.)
- University of Toronto Musculoskeletal Oncology Unit, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Irene L. Andrulis
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (B.C.D.); (I.L.A.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (N.G.); (J.S.W.)
| |
Collapse
|
11
|
Krishnarajah S, Ingelfinger F, Friebel E, Cansever D, Amorim A, Andreadou M, Bamert D, Litscher G, Lutz M, Mayoux M, Mundt S, Ridder F, Sparano C, Stifter SA, Ulutekin C, Unger S, Vermeer M, Zwicky P, Greter M, Tugues S, De Feo D, Becher B. Single-cell profiling of immune system alterations in lymphoid, barrier and solid tissues in aged mice. NATURE AGING 2022; 2:74-89. [PMID: 37118354 DOI: 10.1038/s43587-021-00148-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 11/04/2021] [Indexed: 04/30/2023]
Abstract
Aging exerts profound and paradoxical effects on the immune system, at once impairing proliferation, cytotoxicity and phagocytosis, and inducing chronic inflammation. Previous studies have focused on individual tissues or cell types, while a comprehensive multisystem study of tissue-resident and circulating immune populations during aging is lacking. Here we reveal an atlas of age-related changes in the abundance and phenotype of immune cell populations across 12 mouse tissues. Using cytometry-based high parametric analysis of 37 mass-cytometry and 55 spectral flow-cytometry parameters, mapping samples from young and aged animals revealed conserved and tissue-type-specific patterns of both immune atrophy and expansion. We uncovered clear phenotypic changes in both lymphoid and myeloid lineages in aged mice, and in particular a contraction in natural killer cells and plasmacytoid dendritic cells. These changes correlated with a skewing towards myelopoiesis at the expense of early lymphocyte genesis in aged mice. Taken together, this atlas represents a comprehensive, systematic and thorough resource of the age-dependent alterations of the mammalian immune system in lymphoid, barrier and solid tissues.
Collapse
Affiliation(s)
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Dilay Cansever
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ana Amorim
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Myrto Andreadou
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - David Bamert
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Gioana Litscher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Mirjam Lutz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Maud Mayoux
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Frederike Ridder
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Colin Sparano
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Can Ulutekin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Marijne Vermeer
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Wang W, Hong T, Wang X, Wang R, Du Y, Gao Q, Yang S, Zhang X. Newly Found Peacekeeper: Potential of CD8+ Tregs for Graft-Versus-Host Disease. Front Immunol 2021; 12:764786. [PMID: 34899714 PMCID: PMC8652293 DOI: 10.3389/fimmu.2021.764786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 01/14/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the most effective and potentially curative treatment for a variety of hematologic malignancies. However, graft-versus-host disease (GVHD) is a major obstacle that limits wide application of allo-HSCT, despite the development of prophylactic strategies. Owing to experimental and clinical advances in the field, GVHD is characterized by disruption of the balance between effector and regulatory immune cells, resulting in higher inflammatory cytokine levels. A reduction in regulatory T cells (Tregs) has been associated with limiting recalibration of inflammatory overaction and maintaining immune tolerance. Moreover, accumulating evidence suggests that immunoregulation may be useful for preventing GVHD. As opposed to CD4+ Tregs, the CD8+ Tregs population, which constitutes an important proportion of all Tregs, efficiently attenuates GVHD while sparing graft-versus-leukemic (GVL) effects. CD8+ Tregs may provide another form of cellular therapy for preventing GVHD and preserving GVL effects, and understanding the underlying mechanisms that different from those of CD4+ Tregs is significant. In this review, we summarize preclinical experiments that have demonstrated the role of CD8+ Tregs during GVHD and attempted to obtain optimized CD8+ Tregs. Notably, although optimized CD8+ Tregs have obvious advantages, more exploration is needed to determine how to apply them in the clinic.
Collapse
Affiliation(s)
- Weihao Wang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Tao Hong
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yuxuan Du
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China.,Department of Laboratory Medicine, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Niederkorn JY. "Corneal Nerves, CD11c + Dendritic Cells and Their Impact on Ocular Immune Privilege". Front Immunol 2021; 12:701935. [PMID: 34220866 PMCID: PMC8253307 DOI: 10.3389/fimmu.2021.701935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 11/19/2022] Open
Abstract
The eye and the brain have limited capacities for regeneration and as such, immune-mediated inflammation can produce devastating consequences in the form of neurodegenerative diseases of the central nervous system or blindness as a result of ocular inflammatory diseases such as uveitis. Accordingly, both the eye and the brain are designed to limit immune responses and inflammation - a condition known as "immune privilege". Immune privilege is sustained by physiological, anatomical, and regulatory processes that conspire to restrict both adaptive and innate immune responses.
Collapse
Affiliation(s)
- Jerry Y. Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
14
|
Elzein SM, Zimmerer JM, Han JL, Ringwald BA, Bumgardner GL. CXCR5 +CD8 + T cells: A Review of their Antibody Regulatory Functions and Clinical Correlations. THE JOURNAL OF IMMUNOLOGY 2021; 206:2775-2783. [PMID: 34602651 DOI: 10.4049/jimmunol.2100082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD8+ T cells have conventionally been studied in relationship to pathogen or tumor clearance. Recent reports have identified novel functions of CXCR5+CD8+ T cells that can home to lymphoid follicles, a key site of antibody production. In this review we provide an in-depth analysis of conflicting reports regarding the impact of CXCR5+CD8+ T cells on antibody production and examine the data supporting a role for antibody-enhancement (B cell "helper") and antibody-downregulation (antibody-suppressor) by CXCR5+CD8+ T cell subsets. CXCR5+CD8+ T cell molecular phenotypes are associated with CD8-mediated effector functions including distinct subsets that regulate antibody responses. Co-inhibitory molecule PD-1, among others, distinguish CXCR5+CD8+ T cell subsets. We also provide the first in-depth review of human CXCR5+CD8+ T cells in the context of clinical outcomes and discuss the potential utility of monitoring the quantity of peripheral blood or tissue infiltrating CXCR5+CD8+ T cells as a prognostic tool in multiple disease states.
Collapse
Affiliation(s)
- Steven M Elzein
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jason M Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Jing L Han
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Bryce A Ringwald
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Ginny L Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
15
|
West AC, Mizoro Y, Wood SH, Ince LM, Iversen M, Jørgensen EH, Nome T, Sandve SR, Martin SAM, Loudon ASI, Hazlerigg DG. Immunologic Profiling of the Atlantic Salmon Gill by Single Nuclei Transcriptomics. Front Immunol 2021; 12:669889. [PMID: 34017342 PMCID: PMC8129531 DOI: 10.3389/fimmu.2021.669889] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/05/2022] Open
Abstract
Anadromous salmonids begin life adapted to the freshwater environments of their natal streams before a developmental transition, known as smoltification, transforms them into marine-adapted fish. In the wild, smoltification is a photoperiod-regulated process, involving radical remodeling of gill function to cope with the profound osmotic and immunological challenges of seawater (SW) migration. While prior work has highlighted the role of specialized "mitochondrion-rich" cells (MRCs) and accessory cells (ACs) in delivering this phenotype, recent RNA profiling experiments suggest that remodeling is far more extensive than previously appreciated. Here, we use single-nuclei RNAseq to characterize the extent of cytological changes in the gill of Atlantic salmon during smoltification and SW transfer. We identify 20 distinct cell clusters, including known, but also novel gill cell types. These data allow us to isolate cluster-specific, smoltification-associated changes in gene expression and to describe how the cellular make-up of the gill changes through smoltification. As expected, we noted an increase in the proportion of seawater mitochondrion-rich cells, however, we also identify previously unknown reduction of several immune-related cell types. Overall, our results provide fresh detail of the cellular complexity in the gill and suggest that smoltification triggers unexpected immune reprogramming.
Collapse
Affiliation(s)
- Alexander C. West
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Yasutaka Mizoro
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium
| | - Shona H. Wood
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Louise M. Ince
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marianne Iversen
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Even H. Jørgensen
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Torfinn Nome
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Simen Rød Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andrew S. I. Loudon
- Division of Diabetes, Endocrinology & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David G. Hazlerigg
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
16
|
Datta SK. Harnessing Tolerogenic Histone Peptide Epitopes From Nucleosomes for Selective Down-Regulation of Pathogenic Autoimmune Response in Lupus (Past, Present, and Future). Front Immunol 2021; 12:629807. [PMID: 33936042 PMCID: PMC8080879 DOI: 10.3389/fimmu.2021.629807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Autoantigen-directed tolerance can be induced by certain nucleosomal histone peptide epitope/s in nanomolar dosage leading to sustained remission of disease in mice with spontaneous SLE. By contrast, lupus is accelerated by administration of intact (whole) histones, or whole nucleosomes in microparticles from apoptotic cells, or by post-translationally acetylated histone-peptides. Low-dose therapy with the histone-peptide epitopes simultaneously induces TGFβ and inhibits IL-6 production by DC in vivo, especially pDC, which then induce CD4+CD25+ Treg and CD8+ Treg cells that suppress pathogenic autoimmune response. Both types of induced Treg cells are FoxP3+ and act by producing TGFβ at close cell-to-cell range. No anaphylactic adverse reactions, or generalized immunosuppression have been detected in mice injected with the peptides, because the epitopes are derived from evolutionarily conserved histones in the chromatin; and the peptides are expressed in the thymus during ontogeny, and their native sequences have not been altered. The peptide-induced Treg cells can block severe lupus on adoptive transfer reducing inflammatory cell reaction and infiltration in the kidney. In Humans, similar potent Treg cells are generated by the histone peptide epitopes in vitro in lupus patients’ PBMC, inhibiting anti-dsDNA autoantibody and interferon production. Furthermore, the same types of Treg cells are generated in lupus patients who are in very long-term remission (2-8 years) after undergoing autologous hematopoietic stem cell transplantation. These Treg cells are not found in lupus patients treated conventionally into clinical remission (SLEDAI of 0); and consequently they still harbor pathogenic autoimmune cells, causing subclinical damage. Although antigen-specific therapy with pinpoint accuracy is suitable for straight-forward organ-specific autoimmune diseases, Systemic Lupus is much more complex. The histone peptide epitopes have unique tolerogenic properties for inhibiting Innate immune cells (DC), T cells and B cell populations that are both antigen-specifically and cross-reactively involved in the pathogenic autoimmune response in lupus. The histone peptide tolerance is a natural and non-toxic therapy suitable for treating early lupus, and also maintaining lupus patients after toxic drug therapy. The experimental steps, challenges and possible solutions for successful therapy with these peptide epitopes are discussed in this highly focused review on Systemic Lupus.
Collapse
Affiliation(s)
- Syamal K Datta
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
17
|
Galletti JG, de Paiva CS. The ocular surface immune system through the eyes of aging. Ocul Surf 2021; 20:139-162. [PMID: 33621658 PMCID: PMC8113112 DOI: 10.1016/j.jtos.2021.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Since the last century, advances in healthcare, housing, and education have led to an increase in life expectancy. Longevity is accompanied by a higher prevalence of age-related diseases, such as cancer, autoimmunity, diabetes, and infection, and part of this increase in disease incidence relates to the significant changes that aging brings about in the immune system. The eye is not spared by aging either, presenting with age-related disorders of its own, and interestingly, many of these diseases have immune pathophysiology. Being delicate organs that must be exposed to the environment in order to capture light, the eyes are endowed with a mucosal environment that protects them, the so-called ocular surface. As in other mucosal sites, immune responses at the ocular surface need to be swift and potent to eliminate threats but are at the same time tightly controlled to prevent excessive inflammation and bystander damage. This review will detail how aging affects the mucosal immune response of the ocular surface as a whole and how this process relates to the higher incidence of ocular surface disease in the elderly.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), CONICET-National Academy of Medicine, Buenos Aires, Argentina.
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Ferreras C, Pascual-Miguel B, Mestre-Durán C, Navarro-Zapata A, Clares-Villa L, Martín-Cortázar C, De Paz R, Marcos A, Vicario JL, Balas A, García-Sánchez F, Eguizabal C, Solano C, Mora-Rillo M, Soria B, Pérez-Martínez A. SARS-CoV-2-Specific Memory T Lymphocytes From COVID-19 Convalescent Donors: Identification, Biobanking, and Large-Scale Production for Adoptive Cell Therapy. Front Cell Dev Biol 2021; 9:620730. [PMID: 33718360 PMCID: PMC7947351 DOI: 10.3389/fcell.2021.620730] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Syndrome coronavirus 2 (SARS-CoV-2) pandemic is causing a second outbreak significantly delaying the hope for the virus’ complete eradication. In the absence of effective vaccines, we need effective treatments with low adverse effects that can treat hospitalized patients with COVID-19 disease. In this study, we determined the existence of SARS-CoV-2-specific T cells within CD45RA– memory T cells in the blood of convalescent donors. Memory T cells can respond quickly to infection and provide long-term immune protection to reduce the severity of COVID-19 symptoms. Also, CD45RA– memory T cells confer protection from other pathogens encountered by the donors throughout their life. It is of vital importance to resolve other secondary infections that usually develop in patients hospitalized with COVID-19. We found SARS-CoV-2-specific memory T cells in all of the CD45RA– subsets (CD3+, CD4+, and CD8+) and in the central memory and effector memory subpopulations. The procedure for obtaining these cells is feasible, easy to implement for small-scale manufacture, quick and cost-effective, involves minimal manipulation, and has no GMP requirements. This biobank of specific SARS-CoV-2 memory T cells would be immediately available “off-the-shelf” to treat moderate/severe cases of COVID-19, thereby increasing the therapeutic options available for these patients.
Collapse
Affiliation(s)
- C Ferreras
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - B Pascual-Miguel
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - C Mestre-Durán
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - A Navarro-Zapata
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - L Clares-Villa
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - C Martín-Cortázar
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - R De Paz
- Hematology Department, University Hospital La Paz, Madrid, Spain
| | - A Marcos
- Hematology Department, University Hospital La Paz, Madrid, Spain
| | - J L Vicario
- Histocompatibility, Centro de Transfusión de Madrid, Madrid, Spain
| | - A Balas
- Histocompatibility, Centro de Transfusión de Madrid, Madrid, Spain
| | - F García-Sánchez
- Histocompatibility, Centro de Transfusión de Madrid, Madrid, Spain
| | - C Eguizabal
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain.,Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - C Solano
- Hospital Clínico Universitario de Valencia/Instituto de Investigación Sanitaria INCLIVA, Universidad de Valencia, Valencia, Spain
| | - M Mora-Rillo
- Infectious Diseases Unit, Internal Medicine Department, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - B Soria
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain.,Instituto de Investigación Sanitaria Hospital General y Universitario de Alicante (ISABIAL), Alicante, Spain
| | - A Pérez-Martínez
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain.,Pediatric Hemato-Oncology Department, University Hospital La Paz, Madrid, Spain.,Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
19
|
The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sci 2021; 284:119132. [PMID: 33513396 DOI: 10.1016/j.lfs.2021.119132] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Despite developments in the treatment of various cancers, prostate cancer is one of the deadliest diseases known to men. Systemic therapies such as androgen deprivation, chemotherapy, and radiation therapy have not been very successful in treating this disease. Numerous studies have shown that there is a direct relationship between cancer progression and inhibition of anti-tumor immune responses that can lead to progression of various malignancies, including prostate cancer. Interestingly, CD4+CD25+FoxP3+ regulatory T cells significantly accumulate and increase in draining lymph nodes and PBMCs of patients with prostate cancer and other solid tumors. In vivo and in vitro studies have shown that Tregs can suppress anti-tumor responses, which is directly related to the increased risk of cancer recurrence. Tregs are essential for preserving self-tolerance and inhibiting extra immune responses harmful to the host. Since the tumor-related antigens are mainly self-antigens, Tregs could play a major role in tumor progression. Accordingly, it has discovered that prostate cancer patients with higher Tregs have poor prognosis and low survival rates. However, anti-tumor responses can be reinforced by suppression of Tregs with using monoclonal antibodies against CD25 and CTLA-4. Therefore, depleting Tregs or suppressing their functions could be one of the effective ways for prostate cancer immunotherapy. The purpose of this review is to investigate the role of Treg cells in the progression of prostate cancer and to evaluate effective strategies for the treatment of prostate cancer by regulating Treg cells.
Collapse
|
20
|
Du Y, Fang Q, Zheng SG. Regulatory T Cells: Concept, Classification, Phenotype, and Biological Characteristics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:1-31. [PMID: 33523440 DOI: 10.1007/978-981-15-6407-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Treg) play an indispensable role in maintaining the body's immune nonresponse to self-antigens and suppressing the body's unwarranted and potentially harmful immune responses. Their absence, reduction, dysfunction, transformation, and instability can lead to numerous autoimmune diseases. There are several distinct subtypes of the Treg cells, although they share certain biological characteristics and have unique phenotypes with different regulatory functions, as well as mechanistic abilities. In this book chapter, we introduce the latest advances in Treg cell subtypes pertaining to classification, phenotype, biological characteristics, and mechanisms. We also highlight the relationship between Treg cells and various diseases, including autoimmune, infectious, as well as tumors and organ transplants.
Collapse
Affiliation(s)
- Yang Du
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi, China.,Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Qiannan Fang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song-Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
21
|
Goggin RK, Bennett CA, Ramezanpour M, Hu H, Fenix K, Bassiouni A, Javadiyan S, Bialasiewicz S, Wormald PJ, Psaltis AJ, Vreugde S. Association between viral infection and increased mucosal eosinophils and CD8 + CD103 + T cells in chronic rhinosinusitis. Int Forum Allergy Rhinol 2020; 10:978-980. [PMID: 32463993 DOI: 10.1002/alr.22564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Rachel K Goggin
- Otolaryngology-Head and Neck Surgery Group, University of Adelaide, Adelaide, Australia
| | - Catherine A Bennett
- Otolaryngology-Head and Neck Surgery Group, University of Adelaide, Adelaide, Australia
| | - Mahnaz Ramezanpour
- Otolaryngology-Head and Neck Surgery Group, University of Adelaide, Adelaide, Australia
| | - Hua Hu
- Otolaryngology-Head and Neck Surgery Group, University of Adelaide, Adelaide, Australia
| | - Kevin Fenix
- Department of Surgery, University of Adelaide, Adelaide, Australia
| | - Ahmed Bassiouni
- Otolaryngology-Head and Neck Surgery Group, University of Adelaide, Adelaide, Australia
| | - Shari Javadiyan
- Otolaryngology-Head and Neck Surgery Group, University of Adelaide, Adelaide, Australia
| | - Seweryn Bialasiewicz
- Queensland Paediatric Infectious Diseases Laboratory, University of Queensland, Brisbane, Australia.,Child Health Research Centre, University of Queensland, Brisbane, Australia.,Children's Health Queensland Hospital and Health Service, The State of Queensland, Brisbane, Australia
| | - Peter-John Wormald
- Otolaryngology-Head and Neck Surgery Group, University of Adelaide, Adelaide, Australia
| | - Alkis J Psaltis
- Otolaryngology-Head and Neck Surgery Group, University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Otolaryngology-Head and Neck Surgery Group, University of Adelaide, Adelaide, Australia
| |
Collapse
|
22
|
Huang X, Liu L, Xu C, Peng X, Li D, Wang L, Du M. Tissue-resident CD8 + T memory cells with unique properties are present in human decidua during early pregnancy. Am J Reprod Immunol 2020; 84:e13254. [PMID: 32329123 DOI: 10.1111/aji.13254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Resident memory T (TRM ) cells reside in the uterus during pregnancy may play an important role in balancing maternal-fetal tolerance with anti-infectious immunity. Although CD8+ TRM and decidual CD8+ T cells have been extensively characterized, the properties of decidual CD8+ TRM (dTRM ) cells remain poorly defined. METHOD OF STUDY We investigated the heterogeneity, phenotypes, and functions of dTRM cells, and compared the proportion of dTRM cells between normal pregnancy and recurrent spontaneous abortion (RSA) using flow cytometry. Moreover, we cocultured peripheral CD8+ T (CD8+ pT) cells with trophoblast, or decidual stomal cells (DSCs) in the presence or absence of anti-TGF-β antibody or TGF-β type I receptor inhibitor to explore the effects of maternal-fetal environment on decidual CD8+ TRM cell formation. RESULTS We found that CD69+ CD103+ TRM cells were abundant in CD8+ dT cells but not in CD4+ dT cells with effector-memory (EM, CD45RA- CCR7- ) phenotypes. The percentage of dTRM cells from RSA patients was significantly higher than that from normal pregnancy. Furthermore, dTRM cells showed increased expressions of chemokine receptors, T-cell exhaustion-related molecules, and produced more anti-inflammatory cytokines and effector cytokines upon stimulation. Moreover, DSCs produced a considerable level of TGF-β and upregulated CD103 expression on CD69+ CD8+ pT cells, which can be significantly reversed by blocking TGF-β receptor. CONCLUSION Our findings demonstrate that TRM cells with unique properties are present in the decidua during human early pregnancy. They possess an enhanced capacity to produce effector cytokines and regulatory molecules, which might be important in the balance between maternal-fetal immune tolerance and the capacity to aggressively respond to infections.
Collapse
Affiliation(s)
- Xixi Huang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Lu Liu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Chunfang Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiandong Peng
- Shanghai Jiai Genetics & IVF Institute, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Li Wang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Department of Obstetrics and Gynecology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
23
|
Neelam S, Niederkorn JY. Corneal Nerve Ablation Abolishes Ocular Immune Privilege by Downregulating CD103 on T Regulatory Cells. Invest Ophthalmol Vis Sci 2020; 61:25. [PMID: 32305043 PMCID: PMC7401639 DOI: 10.1167/iovs.61.4.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/28/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Severing corneal nerves during orthotopic corneal transplantation elicits the elaboration of the neuropeptide substance P (SP), which induces the generation of CD11c+ contrasuppressor (CS) cells. CS cells disable T regulatory cells (Tregs) that are induced when antigens enter the anterior chamber (AC), either by direct injection or by orthotopic corneal transplantation. This study examined the crucial cell surface molecules on Tregs that are adversely affected by CS cells that are generated by severing corneal nerves. Methods CS cells were induced by producing shallow 2.0-mm circular incisions in the corneal epithelium in BALB/c mice. CD8+ Tregs were generated by injecting ovalbumin into the AC. The effects of CS cells and SP on the expression and function of two cell surface molecules (CD103 and the receptor of interferon-γ) that are crucial for the induction and function of CD8+ Tregs were analyzed. Results SP converted CD11c+, but not CD11c- , dendritic cells (DCs) to CS cells. Severing corneal nerves resulted in a 66% reduction in the expression of CD103 on CD8+ AC-associated immune deviation (ACAID) Tregs, and a 50% reduction in the interferon-γ receptor (IFN-γR). These effects could be mimicked in vitro by coculturing CS cells with CD8+ ACAID Tregs. Conclusions The elaboration of SP in response to corneal nerve ablation converts CD11c+ DCs to CS cells. CS cells disable CD8+ ACAID Tregs by downregulating two crucial cell surface molecules, CD103 and IFN-γR, by an SP-dependent pathway. Blocking this pathway may provide a means of restoring ocular immune privilege in corneas subjected to corneal nerve injury.
Collapse
Affiliation(s)
- Sudha Neelam
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jerry Y. Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
24
|
Immunophenotypes associated with bipolar disorder and lithium treatment. Sci Rep 2019; 9:17453. [PMID: 31767892 PMCID: PMC6877517 DOI: 10.1038/s41598-019-53745-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/22/2019] [Indexed: 01/09/2023] Open
Abstract
Immune dysfunction is implicated in the etiology of bipolar disorder. The single-nucleotide polymorphism rs17026688 in the gene encoding glutamate decarboxylase–like protein 1 (GADL1) has been found to be associated with lithium response in Han Chinese patients with bipolar I disorder (BDI). However, whether patients with GADL1 polymorphisms have different immunophenotypes is unknown. To address this issue, differences in the immune profiles based on analysis of peripheral blood mononuclear cells (PBMCs) were compared among BDI patients and healthy controls who lack or carry the T allele of rs17026688. BDI patients had significantly higher percentages of total T cells, CD4+ T cells, activated B cells, and monocytes than healthy controls, suggesting that immunologic imbalance might be involved in BDI development or progression. Treatment of BDI patients-derived PBMCs with lithium in vitro increased the percentage of CD14+ monocytes and dendritic cells, suggesting that lithium plays an immunomodulatory role in CD14+ monocytes and dendritic cells. Among BDI patients, non-T carriers had a significantly higher percentage of CD11b+/CD33lo/HLA-DR− myeloid-derived suppressor cells than T carriers. Moreover, only T carriers exhibited differential sensitivity to lithium therapeutic use with respect to the percentage of myeloid cells. These findings suggest that rs17026688 polymorphisms in GADL1 are associated with immune dysfunction in BDI patients.
Collapse
|
25
|
Zhao H, Feng R, Peng A, Li G, Zhou L. The expanding family of noncanonical regulatory cell subsets. J Leukoc Biol 2019; 106:369-383. [DOI: 10.1002/jlb.6ru0918-353rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hai Zhao
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Ridong Feng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Aijun Peng
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Gaowei Li
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| | - Liangxue Zhou
- Department of NeurosurgeryWest China HospitalSichuan University Chengdu China
| |
Collapse
|
26
|
Rouas R, Merimi M, Najar M, El Zein N, Fayyad‐Kazan M, Berehab M, Agha D, Bron D, Burny A, Rachidi W, Badran B, Lewalle P, Fayyad‐Kazan H. Human CD8
+
CD25
+
CD127
low
regulatory T cells: microRNA signature and impact on TGF‐β and IL‐10 expression. J Cell Physiol 2019; 234:17459-17472. [DOI: 10.1002/jcp.28367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Redouane Rouas
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Makram Merimi
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy Institut Jules Bordet, Université Libre de Bruxelles (ULB) Brussels Belgium
| | - Nabil El Zein
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I Lebanese University Hadath Lebanon
| | - Mohammad Fayyad‐Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I Lebanese University Hadath Lebanon
| | - Mimoune Berehab
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Douaa Agha
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Dominique Bron
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Arsene Burny
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Walid Rachidi
- Univ. Grenoble Alpes, SYMMES/CIBEST UMR 5819 UGA‐CNRS‐CEA, INAC/CEA‐Grenoble Grenoble France
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I Lebanese University Hadath Lebanon
| | - Philippe Lewalle
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
| | - Hussein Fayyad‐Kazan
- Laboratory of Experimental Hematology Institut Jules Bordet, Université Libre de Bruxelles Bruxelles Belgium
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I Lebanese University Hadath Lebanon
| |
Collapse
|
27
|
Zeng W, Liu X, Liu Z, Zheng Y, Yu T, Fu S, Li X, Zhang J, Zhang S, Ma X, Liu XR, Qin X, Khanniche A, Zhang Y, Tian F, Lin Y. Deep Surveying of the Transcriptional and Alternative Splicing Signatures for Decidual CD8 + T Cells at the First Trimester of Human Healthy Pregnancy. Front Immunol 2018; 9:937. [PMID: 29780389 PMCID: PMC5946033 DOI: 10.3389/fimmu.2018.00937] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
Decidual CD8+ (dCD8) T cells have been proposed to play important roles in immune protection against the invading pathogens and in tolerance toward the growing semi-allogeneic fetus during early pregnancy. However, their phenotypic and functional characteristics remain poorly defined. Here, we performed the first analysis of the transcriptional and alternative splicing (AS) signatures for human first-trimester dCD8 T cells using high-throughput mRNA sequencing. Our data revealed that dCD8 T cells have distinct transcriptional and AS landscapes when compared with their autologous peripheral blood CD8+ (pCD8) T counterparts. Furthermore, human dCD8 T cells were observed to contain CD8-Treg and effector-memory T-cell subsets, and display enhanced functionality in terms of degranulation and cytokine production on a per-cell basis. Additionally, we have identified the novel splice junctions that use a high ratio of the non-canonical splicing motif GC-AG and found that AS is not a major contributor to the gene expression-level changes between paired pCD8 and dCD8 T cells. Together, our findings not only provide a comprehensive framework of the transcriptional and AS landscapes but also reveal the functional feature of human dCD8 T cells, which are of great importance in understanding the biology of these cells and the physiology of human healthy pregnancy.
Collapse
Affiliation(s)
- Weihong Zeng
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinmei Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicui Liu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Zheng
- Out-Patient Operatingroom, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Yu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaliu Fu
- School of Life Science, Tongji University, Shanghai, China
| | - Xiao Li
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhang
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siming Zhang
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Ma
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Rui Liu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Qin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Asma Khanniche
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuju Tian
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Motta ACF, Zhan Q, Larson A, Lerman M, Woo SB, Soiffer RJ, Murphy GF, Treister NS. Immunohistopathological characterization and the impact of topical immunomodulatory therapy in oral chronic graft-versus-host disease: A pilot study. Oral Dis 2018; 24:580-590. [PMID: 29197137 PMCID: PMC5902645 DOI: 10.1111/odi.12813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 11/11/2017] [Accepted: 11/26/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To characterize the immunohistopathological features of oral chronic graft-versus-host disease (cGVHD), and the impact of topical immunomodulatory therapy on the infiltrating cells. MATERIAL AND METHODS Paired oral cGVHD biopsies obtained before (n = 12) and 1 month after treatment (n = 12) with topical dexamethasone (n = 8) or tacrolimus (n = 4) were characterized by immunohistochemistry using a panel of CD1a, CD3, CD4, CD8, CD20, CD31, CD62E, CD103, CD163, c-kit, and FoxP3. Controls included acute GVHD (aGVHD; n = 3), oral lichen planus (OLP; n = 5), and normal tissues (n = 5). RESULTS Oral cGVHD specimens prior to treatment were mainly characterized by basal cell squamatization, lichenoid inflammation, sclerosis, apoptosis, and lymphocytic exocytosis. The infiltrating cells in oral cGVHD primarily consisted of CD3+ , CD4+ , CD8+ , CD103+ , CD163+ , and FoxP3+ cells, which were higher than in normal tissues. Topical dexamethasone or tacrolimus reduced neutrophilic exocytosis, basal cell squamatization, and lichenoid inflammation in oral cGVHD, and dexamethasone reduced the number of CD4+ and CD103+ cells. CONCLUSION The high expression of CD3, CD4, CD8, CD103, CD163, and FoxP3 confirms that oral cGVHD is largely T-cell-driven with macrophage participation. The impact of topical immunomodulatory therapy was variable, reducing histological inflammatory features, but with a weak clinicopathological correlation. Topical dexamethasone reduced the expression of CD4 and CD103, which may offer novel therapeutic targets.
Collapse
Affiliation(s)
- Ana Carolina F. Motta
- Department of Stomatology, Public Oral Health and Forensic Dentistry, School of Dentistry of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Qian Zhan
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Allison Larson
- Department of Dermatology, Boston University School of Medicine, Boston, MA, USA
| | - Mark Lerman
- Department of Diagnostic Sciences, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Sook-Bin Woo
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Division of Oral Medicine and Dentistry, Brigham and Women’s Hospital, Boston, MA, USA
| | - Robert J. Soiffer
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nathaniel S. Treister
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Division of Oral Medicine and Dentistry, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
29
|
Dommaschk A, Lang LF, Maus R, Stolper J, Welte T, Maus UA. Colonization-induced protection against invasive pneumococcal disease in mice is independent of CD103 driven adaptive immune responses. Eur J Immunol 2018; 48:965-974. [PMID: 29543979 DOI: 10.1002/eji.201747236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/22/2018] [Accepted: 03/08/2018] [Indexed: 11/09/2022]
Abstract
Nasopharyngeal colonization with Streptococcus pneumoniae (the pneumococcus) is known to mount protective adaptive immune responses in rodents and humans. However, the cellular response of the nasopharyngeal compartment to pneumococcal colonization and its importance for the ensuing adaptive immune response is only partially defined. Here we show that nasopharyngeal colonization with S. pneumoniae triggered substantial expansion of both integrin αE (CD103) positive dendritic cells (DC) and T lymphocytes in nasopharynx, nasal-associated lymphoid tissue (NALT) and cervical lymph nodes (CLN) of WT mice. However, nasopharyngeal de-colonization and pneumococcus-specific antibody responses were similar between WT and CD103 KO mice or Batf3 KO mice. Also, naïve WT mice passively immunized with antiserum from previously colonized WT and CD103 KO mice were similarly protected against invasive pneumococcal disease (IPD). In summary, the data show that CD103 is dispensable for pneumococcal colonization-induced adaptive immune responses in mice.
Collapse
Affiliation(s)
- Anne Dommaschk
- Department of Experimental Pneumology, Hannover School of Medicine, Hannover, Germany
| | - Lara F Lang
- Department of Experimental Pneumology, Hannover School of Medicine, Hannover, Germany
| | - Regina Maus
- Department of Experimental Pneumology, Hannover School of Medicine, Hannover, Germany
| | - Jennifer Stolper
- Department of Experimental Pneumology, Hannover School of Medicine, Hannover, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover School of Medicine, Hannover, Germany.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover School of Medicine, Hannover, Germany.,German Center for Lung Research, partner site BREATH, Hannover, Germany
| |
Collapse
|
30
|
Dedeoglu B, Litjens NHR, Klepper M, Kraaijeveld R, Verschoor W, Baan CC, Betjes MGH. CD4 + CD28 null T cells are not alloreactive unless stimulated by interleukin-15. Am J Transplant 2018; 18:341-350. [PMID: 28858434 DOI: 10.1111/ajt.14480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023]
Abstract
Proinflammatory, cytotoxic CD4+ CD28null T cells can be substantially expanded in patients with end-stage renal disease. These cells have been associated with the risk for rejection, but their alloreactive potential is unknown. CD4+ CD28null T cells were stimulated with HLA-mismatched antigen presenting cells in the absence/presence of exogenous cytokines. Alloreactive potential was evaluated based on proliferation, degranulation, cytotoxicity, and cytokine production. Further, their suppressive capacity was assessed by measuring inhibition of proliferating alloreactive CD28+ T cells. CD4+ CD28null T cells contained alloreactive (CD137+ ) T cells but did not proliferate in response to allogeneic stimulation, unless interleukin (IL)-15 was added. However, they could proliferate on stimulation with cytomegalovirus antigen without exogenous cytokines. IL-15 increased the frequency of proliferating alloreactive CD4+ CD28null T cells to 30.5% without inducing CD28 expression (P < .05). After allogeneic stimulation together with IL-15 and IL-21, frequency of degranulating CD107a+ CD4+ CD28null T cells increased significantly from 0.6% to 5.8% (P < .001). Granzyme B and perforin positivity remained similar, but production of interferon-γ and tumor necrosis factor-α increased by the combination of IL-15 and IL-21 (P < .001 and P < .05, respectively). Finally, CD4+ CD28null T cells did not show significant suppression. Thus, CD4+ CD28null T cells represent a population with absent alloreactivity unless IL-15 is present.
Collapse
Affiliation(s)
- B Dedeoglu
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - N H R Litjens
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M Klepper
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - R Kraaijeveld
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - W Verschoor
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - C C Baan
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M G H Betjes
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron 2018; 97:742-768. [DOI: 10.1016/j.neuron.2018.01.021] [Citation(s) in RCA: 432] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/25/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
|
32
|
Zhong H, Liu Y, Xu Z, Liang P, Yang H, Zhang X, Zhao J, Chen J, Fu S, Tang Y, Lv J, Wang J, Olsen N, Xu A, Zheng SG. TGF-β-Induced CD8 +CD103 + Regulatory T Cells Show Potent Therapeutic Effect on Chronic Graft-versus-Host Disease Lupus by Suppressing B Cells. Front Immunol 2018; 9:35. [PMID: 29441062 PMCID: PMC5797539 DOI: 10.3389/fimmu.2018.00035] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022] Open
Abstract
Lupus nephritis is one of most severe complications of systemic erythematosus lupus and current approaches are not curative for lupus nephritis. Although CD4+Foxp3+ regulatory T cells (Treg) are crucial for prevention of autoimmunity, the therapeutic effect of these cells on lupus nephritis is not satisfactory. We previously reported that CD8+CD103+ Treg induced ex vivo with TGF-β1 and IL-2 (CD8+CD103+ iTreg), regardless of Foxp3 expression, displayed potent immunosuppressive effect on Th cell response and had therapeutic effect on Th cell-mediated colitis. Here, we tested whether CD8+CD103+ iTreg can ameliorate lupus nephritis and determined potential molecular mechanisms. Adoptive transfer of CD8+CD103+ iTreg but not control cells to chronic graft-versus-host disease with a typical lupus syndrome showed decreased levels of autoantibodies and proteinuria, reduced renal pathological lesions, lowered renal deposition of IgG/C3, and improved survival. CD8+CD103+ iTreg cells suppressed not only T helper cells but also B cell responses directly that may involve in both TGF-β and IL-10 signals. Using RNA-seq, we demonstrated CD8+CD103+ iTreg have its own unique expression profiles of transcription factors. Thus, current study has identified and extended the target cells of CD8+CD103+ iTreg and provided a possible application of this new iTreg subset on lupus nephritis and other autoimmune diseases.
Collapse
Affiliation(s)
- Haowen Zhong
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Clinical Immunology, The Third Affiliate Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ya Liu
- Department of Nephrology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhenjian Xu
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peifeng Liang
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Yang
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao Zhang
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Zhao
- Department of Clinical Immunology, The Third Affiliate Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junzhen Chen
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sha Fu
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Tang
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Lv
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Julie Wang
- Division of Rheumatology, Milton S. Hershey Medical Center, Penn State University, Hershey, PA, United States
| | - Nancy Olsen
- Division of Rheumatology, Milton S. Hershey Medical Center, Penn State University, Hershey, PA, United States
| | - Anping Xu
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Clinical Immunology, The Third Affiliate Hospital of Sun Yat-sen University, Guangzhou, China.,Division of Rheumatology, Milton S. Hershey Medical Center, Penn State University, Hershey, PA, United States
| |
Collapse
|
33
|
Gabriely G, da Cunha AP, Rezende RM, Kenyon B, Madi A, Vandeventer T, Skillin N, Rubino S, Garo L, Mazzola MA, Kolypetri P, Lanser AJ, Moreira T, Faria AMC, Lassmann H, Kuchroo V, Murugaiyan G, Weiner HL. Targeting latency-associated peptide promotes antitumor immunity. Sci Immunol 2017; 2:2/11/eaaj1738. [PMID: 28763794 DOI: 10.1126/sciimmunol.aaj1738] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/14/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) promote cancer by suppressing antitumor immune responses. We found that anti-LAP antibody, which targets the latency-associated peptide (LAP)/transforming growth factor-β (TGF-β) complex on Tregs and other cells, enhances antitumor immune responses and reduces tumor growth in models of melanoma, colorectal carcinoma, and glioblastoma. Anti-LAP decreases LAP+ Tregs, tolerogenic dendritic cells, and TGF-β secretion and is associated with CD8+ T cell activation. Anti-LAP increases infiltration of tumors by cytotoxic CD8+ T cells and reduces CD103+ CD8 T cells in draining lymph nodes and the spleen. We identified a role for CD103+ CD8 T cells in cancer. Tumor-associated CD103+ CD8 T cells have a tolerogenic phenotype with increased expression of CTLA-4 and interleukin-10 and decreased expression of interferon-γ, tumor necrosis factor-α, and granzymes. Adoptive transfer of CD103+ CD8 T cells promotes tumor growth, whereas CD103 blockade limits tumorigenesis. Thus, anti-LAP targets multiple immunoregulatory pathways and represents a potential approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andre P da Cunha
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Brendan Kenyon
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Asaf Madi
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler Vandeventer
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nathaniel Skillin
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen Rubino
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lucien Garo
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria A Mazzola
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Panagiota Kolypetri
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda J Lanser
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thais Moreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31.270-901, Brazil
| | - Ana Maria C Faria
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31.270-901, Brazil
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Wien, Austria
| | - Vijay Kuchroo
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Abstract
Regulatory T cells (Tregs) represent a cell type that promotes immune tolerance to autologous components and maintains immune system homeostasis. The abnormal function of Tregs is relevant to the pathogenesis of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and other autoimmune diseases. Therefore, therapeutic modulation of Tregs could be a potent means of treating autoimmune diseases. Human Tregs are diverse, however, and not all of them have immunosuppressive effects. Forkhead box P3 (Foxp3), a pivotal transcription factor of Tregs that is crucial in maintaining Treg immunosuppressive function, can be expressed heterogeneously or unstably across Treg subpopulations. Insights into modulating Treg differentiation on the level of DNA transcription or protein modification may improve the success of Treg modifying immunotherapies. In this review, we will summarize three main prospects: the regulatory mechanism of Foxp3, the influence on Foxp3 and Tregs in autoimmune diseases, then finally, how Tregs can be used to treat autoimmune diseases.
Collapse
|
35
|
Smids C, Horjus Talabur Horje CS, van Wijk F, van Lochem EG. The Complexity of alpha E beta 7 Blockade in Inflammatory Bowel Diseases. J Crohns Colitis 2017; 11:500-508. [PMID: 27660340 DOI: 10.1093/ecco-jcc/jjw163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023]
Abstract
Monoclonal antibodies targeting integrins are emerging as new treatment option in inflammatory bowel diseases. Integrins are molecules involved in cell adhesion and signalling. After the successful introduction of anti-α4β7, currently anti-β7 is under evaluation in a phase three trial. Anti-β7 blocks both α4β7/MAdCAM-1 and αEβ7/E-cadherin interaction, targeting both the homing to and the retention in the gut of potential pathological T cells. Since the physiological and potential pathological roles of immune cells expressing αEβ7 are less distinct than of those expressing α4β7, an overview of the current state of knowledge on αEβ7 in mice and humans in both health and inflammatory bowel diseases is presented here, also addressing the potential consequences of anti-β7 treatment.
Collapse
Affiliation(s)
- Carolijn Smids
- Department of Gastroenterology and Hepatology, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Femke van Wijk
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ellen G van Lochem
- Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
36
|
Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of Innate and Adaptive Immunity by TGFβ. Adv Immunol 2017; 134:137-233. [PMID: 28413021 DOI: 10.1016/bs.ai.2017.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune regulation by cytokines is crucial in maintaining immune homeostasis, promoting responses to infection, resolving inflammation, and promoting immunological memory. Additionally, cytokine responses drive pathology in immune-mediated disease. A crucial cytokine in the regulation of all aspects of an immune response is transforming growth factor beta (TGFβ). Although best known as a crucial regulator of T cell responses, TGFβ plays a vital role in regulating responses mediated by virtually every innate and adaptive immune cell, including dendritic cells, B cells, NK cells, innate lymphoid cells, and granulocytes. Here, we review our current knowledge of how TGFβ regulates the immune system, highlighting the multifunctional nature of TGFβ and how its function can change depending on location and context of action.
Collapse
Affiliation(s)
- Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stephanie A Houston
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eleanor Sherwood
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
37
|
Palma M, Gentilcore G, Heimersson K, Mozaffari F, Näsman-Glaser B, Young E, Rosenquist R, Hansson L, Österborg A, Mellstedt H. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers. Haematologica 2016; 102:562-572. [PMID: 27927767 PMCID: PMC5394965 DOI: 10.3324/haematol.2016.151100] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic lymphocytic leukemia is characterized by impaired immune functions largely due to profound T-cell defects. T-cell functions also depend on co-signaling receptors, inhibitory or stimulatory, known as immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death-1 (PD-1). Here we analyzed the T-cell phenotype focusing on immune checkpoints and activation markers in chronic lymphocytic leukemia patients (n=80) with different clinical characteristics and compared them to healthy controls. In general, patients had higher absolute numbers of CD3+ cells and the CD8+ subset was particularly expanded in previously treated patients. Progressive patients had higher numbers of CD4+ and CD8+ cells expressing PD-1 compared to healthy controls, which was more pronounced in previously treated patients (P=0.0003 and P=0.001, respectively). A significant increase in antigen-experienced T cells was observed in patients within both the CD4+ and CD8+ subsets, with a significantly higher PD-1 expression. Higher numbers of CD4+ and CD8+ cells with intracellular CTLA-4 were observed in patients, as well as high numbers of proliferating (Ki67+) and activated (CD69+) CD4+ and CD8+ cells, more pronounced in patients with active disease. The numbers of Th1, Th2, Th17 and regulatory T cells were substantially increased in patients compared to controls (P<0.05), albeit decreasing to low levels in pre-treated patients. In conclusion, chronic lymphocytic leukemia T cells display increased expression of immune checkpoints, abnormal subset distribution, and a higher proportion of proliferating cells compared to healthy T cells. Disease activity and previous treatment shape the T-cell profile of chronic lymphocytic leukemia patients in different ways.
Collapse
Affiliation(s)
- Marzia Palma
- Immune and Gene Therapy Laboratory, Department of Oncology & Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden .,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Giusy Gentilcore
- Immune and Gene Therapy Laboratory, Department of Oncology & Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Kia Heimersson
- Immune and Gene Therapy Laboratory, Department of Oncology & Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Fariba Mozaffari
- Immune and Gene Therapy Laboratory, Department of Oncology & Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Barbro Näsman-Glaser
- Immune and Gene Therapy Laboratory, Department of Oncology & Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Emma Young
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Lotta Hansson
- Immune and Gene Therapy Laboratory, Department of Oncology & Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Österborg
- Immune and Gene Therapy Laboratory, Department of Oncology & Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Håkan Mellstedt
- Immune and Gene Therapy Laboratory, Department of Oncology & Pathology, Cancer Centre Karolinska, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Cascabulho CM, Beghini DG, Meuser-Batista M, Penido C, Henriques-Pons A. Chemotaxis and Immunoregulatory Function of Cardiac γδ T Cells in Dystrophin-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:3531-3544. [DOI: 10.4049/jimmunol.1600335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
|
39
|
Wu M, Lou J, Zhang S, Chen X, Huang L, Sun R, Huang P, Pan S, Wang F. Gene expression profiling of CD8 + T cells induced by ovarian cancer cells suggests a possible mechanism for CD8 + Treg cell production. Cell Prolif 2016; 49:669-677. [PMID: 27641758 DOI: 10.1111/cpr.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/30/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate a possible mechanism of CD8+ regulatory T-cell (Treg) production in an ovarian cancer (OC) microenvironment. MATERIALS AND METHODS Agilent microarray was used to detect changes in gene expression between CD8+ T cells cultured with and without the SKOV3 ovarian adenocarcinoma cell line. QRT-PCR was performed to determine glycolysis gene expression in CD8+ T cells from a transwell culturing system and OC patients. We also detected protein levels of glycolysis-related genes using Western blot analysis. RESULTS Comparing gene expression profiles revealed significant differences in expression levels of 1420 genes, of which 246 were up-regulated and 1174 were down-regulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that biological processes altered in CD8+ Treg are particularly associated with energy metabolism. CD8+ Treg cells induced by co-culture with SKOV3 had lower glycolysis gene expression compared to CD8+ T cells cultured alone. Glycolysis gene expression was also decreased in the CD8+ T cells of OC patients. CONCLUSIONS These findings provide a comprehensive bioinformatics analysis of DEGs in CD8+ T cells cultured with and without SKOV3 and suggests that metabolic processes may be a possible mechanism for CD8+ Treg induction.
Collapse
Affiliation(s)
- Meng Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Jianfang Lou
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Shuping Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Xian Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Lei Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Ruihong Sun
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Peijun Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China. .,National Key Clinical Department of Laboratory Medicine, 210029, Nanjing, China.
| |
Collapse
|
40
|
Smids C, Horjus-Talabur Horje CS, van Lochem EG. Integrin αEβ7 in Inflammatory Bowel Disease: Friend or Foe? Gastroenterology 2016; 151:213-4. [PMID: 27243635 DOI: 10.1053/j.gastro.2016.02.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/16/2016] [Indexed: 12/02/2022]
Affiliation(s)
- Carolijn Smids
- Department of Gastroenterology and Hepatology, Rijnstate Hospital, Arnhem, the Netherlands
| | | | - Ellen G van Lochem
- Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, the Netherlands
| |
Collapse
|
41
|
Chattopadhyay A, Navab M, Hough G, Grijalva V, Mukherjee P, Fogelman HR, Hwang LH, Faull KF, Lusis AJ, Reddy ST, Fogelman AM. Tg6F ameliorates the increase in oxidized phospholipids in the jejunum of mice fed unsaturated LysoPC or WD. J Lipid Res 2016; 57:832-47. [PMID: 26965826 DOI: 10.1194/jlr.m064352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 12/13/2022] Open
Abstract
Mouse chow supplemented with lysophosphatidylcholine with oleic acid at sn-1 and a hydroxyl group at sn-2 (LysoPC 18:1) increased LysoPC 18:1 in tissue of the jejunum of LDL receptor (LDLR)-null mice by 8.9 ± 1.7-fold compared with chow alone. Western diet (WD) contained dramatically less phosphatidylcholine 18:1 or LysoPC 18:1 compared with chow, but feeding WD increased LysoPC 18:1 in the jejunum by 7.5 ± 1.4-fold compared with chow. Feeding LysoPC 18:1 or feeding WD increased oxidized phospholipids in the jejunum by 5.2 ± 3.0-fold or 8.6 ± 2.2-fold, respectively, in LDLR-null mice (P < 0.0004), and 2.6 ± 1.5-fold or 2.4 ± 0.92-fold, respectively, in WT C57BL/6J mice (P < 0.0001). Adding 0.06% by weight of a concentrate of transgenic tomatoes expressing the 6F peptide (Tg6F) decreased LysoPC 18:1 in the jejunum of LDLR-null mice on both diets (P < 0.0001), and prevented the increase in oxidized phospholipids in the jejunum in LDLR-null and WT mice on both diets (P < 0.008). Tg6F decreased inflammatory cells in the villi of the jejunum, decreased dyslipidemia, and decreased systemic inflammation in LDLR-null and WT mice on both diets. We conclude that Tg6F reduces diet-induced inflammation by reducing the content of unsaturated LysoPC and oxidized phospholipids in the jejunum of mice.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Mohamad Navab
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Greg Hough
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Victor Grijalva
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Pallavi Mukherjee
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Hannah R Fogelman
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Lin H Hwang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Kym F Faull
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Aldons J Lusis
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Srinivasa T Reddy
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736 Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| | - Alan M Fogelman
- Departments of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1736
| |
Collapse
|
42
|
Wei Z, Gao W, Wu Y, Ni B, Tian Y. Mutual interaction between BCL6 and microRNAs in T cell differentiation. RNA Biol 2015; 12:21-5. [PMID: 25826411 DOI: 10.1080/15476286.2015.1017232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The transcription factor B-cell CLL/lymphoma 6 (BCL6) and the regulatory factor microRNAs (miRNAs) are of great importance in the differentiation of T cell subsets. An increasing body of evidence has demonstrated that BCL6 and miRNAs can target one another and mutually adjust their expression in T cell subsets, such as T helper (Th)-2, Th17, CD8+ regulatory T (CD8+Treg) and T follicular helper (Tfh) cells. Here, we discuss the most recent advances and emerging concepts in how BCL6 and miRNAs regulate one another, and the effects of such mutual regulations on T cell subset differentiation.
Collapse
Affiliation(s)
- Zhiyuan Wei
- a Institute of Immunology; PLA; Third Military Medical University ; Chongqing , PR China
| | | | | | | | | |
Collapse
|
43
|
Advances on Non-CD4 + Foxp3+ T Regulatory Cells: CD8+, Type 1, and Double Negative T Regulatory Cells in Organ Transplantation. Transplantation 2015; 99:1553-9. [PMID: 26193065 DOI: 10.1097/tp.0000000000000813] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The overwhelming body of research on T regulatory cells (Treg) has focused on CD4 + CD25 + Foxp3+ T cells. However, recent years have witnessed a resurgence in interest in CD4 - CD8+, CD4 - CD8- (double negative [DN]), and CD4 + Foxp3- type 1 Treg (Tr1) Treg and their role in controlling autoimmune diseases and in promoting the survival of organ allografts and xenografts. CD8+ and DN Treg can arise spontaneously (natural Treg) or can be induced in situ. Both CD8+ and DN Treg have been shown to enhance the survival of organ allografts and xenografts. Additionally, both can suppress alloimmune responses by contact-dependent mechanisms by either inducing apoptosis or mediating direct cytolysis of effector T cells. CD8+, DN, and Tr1 Treg can also act in a contact-independent manner by elaborating soluble immunosuppressive factors, such as TGF-β and IL-10. Applying CD8+, DN, and Tr1 Treg for enhancing the survival of organ allografts and xenografts is still in its infancy but holds significant potential. Furthermore, there is a need for a more comprehensive understanding of how current immunosuppressive therapies applied to organ transplantations affect the wide array of Treg populations.
Collapse
|
44
|
Kostic M, Stojanovic I, Marjanovic G, Zivkovic N, Cvetanovic A. Deleterious versus protective autoimmunity in multiple sclerosis. Cell Immunol 2015; 296:122-32. [PMID: 25944389 DOI: 10.1016/j.cellimm.2015.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/18/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disorder of central nervous system, in which myelin specific CD4(+) T cells have a central role in orchestrating pathological events involved in disease pathogenesis. There is compelling evidence that Th1, Th9 and Th17 cells, separately or in cooperation, could mediate deleterious autoimmune response in MS. However, the phenotype differences between Th cell subpopulations initially employed in MS pathogenesis are mainly reflected in the different patterns of inflammation introduction, which results in the development of characteristic pathological features (blood-brain barrier disruption, demyelination and neurodegeneration), clinically presented with MS symptoms. Although, autoimmunity was traditionally seen as deleterious, some studies indicated that autoimmunity mediated by Th2 cells and T regulatory cells could be protective by nature. The concept of protective autoimmunity in MS pathogenesis is still poorly understood, but could be of great importance in better understanding of MS immunology and therefore, creating better therapeutic strategies.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty, University of Nis, Blvd. Dr. Zorana Djindjica 81, 18000 Nis, Serbia.
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty, University of Nis, Blvd. Dr. Zorana Djindjica 81, 18000 Nis, Serbia
| | - Goran Marjanovic
- Department of Immunology, Medical Faculty, University of Nis, Blvd. Dr. Zorana Djindjica 81, 18000 Nis, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty, University of Nis, Blvd. Dr. Zorana Djindjica 81, 18000 Nis, Serbia
| | - Ana Cvetanovic
- Clinic of Oncology, Clinical Centre, Blvd. Dr. Zorana Djindjica 48, 18000 Nis, Serbia
| |
Collapse
|
45
|
The Immune Adaptor ADAP Regulates Reciprocal TGF-β1-Integrin Crosstalk to Protect from Influenza Virus Infection. PLoS Pathog 2015; 11:e1004824. [PMID: 25909459 PMCID: PMC4409120 DOI: 10.1371/journal.ppat.1004824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/20/2015] [Indexed: 11/19/2022] Open
Abstract
Highly pathogenic avian influenza virus (HPAI, such as H5N1) infection causes severe cytokine storm and fatal respiratory immunopathogenesis in human and animal. Although TGF-β1 and the integrin CD103 in CD8+ T cells play protective roles in H5N1 virus infection, it is not fully understood which key signaling proteins control the TGF-β1-integrin crosstalk in CD8+ T cells to protect from H5N1 virus infection. This study showed that ADAP (Adhesion and Degranulation-promoting Adapter Protein) formed a complex with TRAF6 and TAK1 in CD8+ T cells, and activated SMAD3 to increase autocrine TGF-β1 production. Further, TGF-β1 induced CD103 expression via an ADAP-, TRAF6- and SMAD3-dependent manner. In response to influenza virus infection (i.e. H5N1 or H1N1), lung infiltrating ADAP-/- CD8+ T cells significantly reduced the expression levels of TGF-β1, CD103 and VLA-1. ADAP-/- mice as well as Rag1-/- mice receiving ADAP-/- T cells enhanced mortality with significant higher levels of inflammatory cytokines and chemokines in lungs. Together, we have demonstrated that ADAP regulates the positive feedback loop of TGF-β1 production and TGF-β1-induced CD103 expression in CD8+ T cells via the TβRI-TRAF6-TAK1-SMAD3 pathway and protects from influenza virus infection. It is critical to further explore whether the SNP polymorphisms located in human ADAP gene are associated with disease susceptibility in response to influenza virus infection.
Collapse
|
46
|
Mattoscio M, Nicholas R, Sormani MP, Malik O, Lee JS, Waldman AD, Dazzi F, Muraro PA. Hematopoietic mobilization: Potential biomarker of response to natalizumab in multiple sclerosis. Neurology 2015; 84:1473-82. [PMID: 25762712 DOI: 10.1212/wnl.0000000000001454] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/22/2014] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To ascertain the mobilization from the bone marrow and the functional relevance of the increased number of circulating hematopoietic stem and progenitor cells (HSPC) induced by the anti-α-4 integrin antibody natalizumab in patients with multiple sclerosis (MS). METHODS We evaluated CD45(low)CD34+ HSPC frequency by flow cytometry in blood from 45 natalizumab-treated patients (12 of whom were prospectively followed during the first year of treatment as part of a pilot cohort and 16 prospectively followed for validation), 10 untreated patients with MS, and 24 healthy donors. In the natalizumab-treated group, we also assessed sorted HSPC cell cycle status, T- and B-lymphocyte subpopulation frequencies (n = 29), and HSPC differentiation potential (n = 10). RESULTS Natalizumab-induced circulating HSPC were predominantly quiescent, suggesting recent mobilization from the bone marrow, and were capable of differentiating ex vivo. Circulating HSPC numbers were significantly increased during natalizumab, but heterogeneously, allowing the stratification of mobilizer and nonmobilizer subgroups. Nonmobilizer status was associated with persistence of disease activity during treatment. The frequency of B cells and CD103+CD8+ regulatory T cells persistently increased, more significantly in mobilizer patients, who also showed a specific naive/memory B-cell profile. CONCLUSIONS The data suggest that natalizumab-induced circulating HSPC increase is the result of true mobilization from the bone marrow and has clinical and immunologic relevance. HSPC mobilization, associated with clinical remission and increased proportion of circulating B and regulatory T cells, may contribute to the treatment's mode of action; thus, HSPC blood counts could represent an early biomarker of responsiveness to natalizumab.
Collapse
Affiliation(s)
- Miriam Mattoscio
- From the Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories (M.M., R.N., O.M., P.A.M.), and the Department of Medicine, Division of Experimental Medicine, Centre for Haematology (F.D.), Imperial College London, UK; the Departments of Neurosciences (R.N., O.M.) and Imaging (J.S.L., A.D.W.), Imperial College Healthcare NHS Trust, London, UK; and the Biostatistics Unit, Department of Health Sciences (M.P.S.), University of Genoa, Italy
| | - Richard Nicholas
- From the Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories (M.M., R.N., O.M., P.A.M.), and the Department of Medicine, Division of Experimental Medicine, Centre for Haematology (F.D.), Imperial College London, UK; the Departments of Neurosciences (R.N., O.M.) and Imaging (J.S.L., A.D.W.), Imperial College Healthcare NHS Trust, London, UK; and the Biostatistics Unit, Department of Health Sciences (M.P.S.), University of Genoa, Italy
| | - Maria P Sormani
- From the Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories (M.M., R.N., O.M., P.A.M.), and the Department of Medicine, Division of Experimental Medicine, Centre for Haematology (F.D.), Imperial College London, UK; the Departments of Neurosciences (R.N., O.M.) and Imaging (J.S.L., A.D.W.), Imperial College Healthcare NHS Trust, London, UK; and the Biostatistics Unit, Department of Health Sciences (M.P.S.), University of Genoa, Italy
| | - Omar Malik
- From the Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories (M.M., R.N., O.M., P.A.M.), and the Department of Medicine, Division of Experimental Medicine, Centre for Haematology (F.D.), Imperial College London, UK; the Departments of Neurosciences (R.N., O.M.) and Imaging (J.S.L., A.D.W.), Imperial College Healthcare NHS Trust, London, UK; and the Biostatistics Unit, Department of Health Sciences (M.P.S.), University of Genoa, Italy
| | - Jean S Lee
- From the Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories (M.M., R.N., O.M., P.A.M.), and the Department of Medicine, Division of Experimental Medicine, Centre for Haematology (F.D.), Imperial College London, UK; the Departments of Neurosciences (R.N., O.M.) and Imaging (J.S.L., A.D.W.), Imperial College Healthcare NHS Trust, London, UK; and the Biostatistics Unit, Department of Health Sciences (M.P.S.), University of Genoa, Italy
| | - Adam D Waldman
- From the Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories (M.M., R.N., O.M., P.A.M.), and the Department of Medicine, Division of Experimental Medicine, Centre for Haematology (F.D.), Imperial College London, UK; the Departments of Neurosciences (R.N., O.M.) and Imaging (J.S.L., A.D.W.), Imperial College Healthcare NHS Trust, London, UK; and the Biostatistics Unit, Department of Health Sciences (M.P.S.), University of Genoa, Italy
| | - Francesco Dazzi
- From the Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories (M.M., R.N., O.M., P.A.M.), and the Department of Medicine, Division of Experimental Medicine, Centre for Haematology (F.D.), Imperial College London, UK; the Departments of Neurosciences (R.N., O.M.) and Imaging (J.S.L., A.D.W.), Imperial College Healthcare NHS Trust, London, UK; and the Biostatistics Unit, Department of Health Sciences (M.P.S.), University of Genoa, Italy
| | - Paolo A Muraro
- From the Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories (M.M., R.N., O.M., P.A.M.), and the Department of Medicine, Division of Experimental Medicine, Centre for Haematology (F.D.), Imperial College London, UK; the Departments of Neurosciences (R.N., O.M.) and Imaging (J.S.L., A.D.W.), Imperial College Healthcare NHS Trust, London, UK; and the Biostatistics Unit, Department of Health Sciences (M.P.S.), University of Genoa, Italy.
| |
Collapse
|
47
|
Bernatchez E, Gold MJ, Langlois A, Lemay AM, Brassard J, Flamand N, Marsolais D, McNagny KM, Blanchet MR. Pulmonary CD103 expression regulates airway inflammation in asthma. Am J Physiol Lung Cell Mol Physiol 2015; 308:L816-26. [PMID: 25681437 DOI: 10.1152/ajplung.00319.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/11/2015] [Indexed: 12/31/2022] Open
Abstract
Although CD103(+) cells recently emerged as key regulatory cells in the gut, the role of CD103 ubiquitous expression in the lung and development of allergic airway disease has never been studied. To answer this important question, we evaluated the response of Cd103(-/-) mice in two separate well-described mouse models of asthma (ovalbumin and house dust mite extract). Pulmonary inflammation was assessed by analysis of bronchoalveolar lavage content, histology, and cytokine response. CD103 expression was analyzed on lung dendritic cells and T cell subsets by flow cytometry. Cd103(-/-) mice exposed to antigens developed exacerbated lung inflammation, characterized by increased eosinophilic infiltration, severe tissue inflammation, and altered cytokine response. In wild-type mice exposed to house dust mite, CD103(+) dendritic cells are increased in the lung and an important subset of CD4(+) T cells, CD8(+) T cells, and T regulatory cells express CD103. Importantly, Cd103(-/-) mice presented a deficiency in the resolution phase of inflammation, which supports an important role for this molecule in the control of inflammation severity. These results suggest an important role for CD103 in the control of airway inflammation in asthma.
Collapse
Affiliation(s)
- Emilie Bernatchez
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada; and
| | - Matthew J Gold
- The Biomedical Research Center, University of British Columbia, Vancouver, BC, Canada
| | - Anick Langlois
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada; and
| | - Anne-Marie Lemay
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada; and
| | - Julyanne Brassard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada; and
| | - Nicolas Flamand
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada; and
| | - David Marsolais
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada; and
| | - Kelly M McNagny
- The Biomedical Research Center, University of British Columbia, Vancouver, BC, Canada
| | - Marie-Renee Blanchet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada; and
| |
Collapse
|
48
|
Sreedharanunni S, Varma N, Sachdeva MUS, Gupta K, Pai R, Kochhar R, Malhotra P, Varma S. CD103+ γδ T cell large granular lymphocytosis in a patient with refractory celiac disease: a diagnostic enigma. Int J Hematol 2015; 101:603-7. [PMID: 25637255 DOI: 10.1007/s12185-015-1736-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 01/19/2023]
Abstract
Indolent γδ T cell lymphomas/leukemias are rare and overlap with the morphological spectrum of large granular lymphocyte (LGL) leukemia. We report an extremely rare case of CD103(+) γδ T LGL leukemia in a patient with celiac disease who presented with refractory diarrhea. Whether the refractory diarrhea in our patient was a manifestation of LGL leukemia itself or whether the clonal LGL expansion is a manifestation of refractory celiac disease (RCD) remains an enigma. This report highlights the diagnostic difficulties and the need of consensus in categorizing clonal CD103(+) lymphocytosis in patients with RCD.
Collapse
Affiliation(s)
- Sreejesh Sreedharanunni
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), V Floor, SS Anand Block (Research Block A), Chandigarh, 160012, India,
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Vittoraki AG, Boletis JN, Darema MN, Kostakis AJ, Iniotaki AG. Adenosine triphosphate production by peripheral blood CD4⁺T cells in clinically stable renal transplant recipients. Transplant Proc 2015; 46:108-14. [PMID: 24507034 DOI: 10.1016/j.transproceed.2013.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/12/2013] [Accepted: 04/23/2013] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that intracellular adenosine triphosphate (iATP) in activated CD4 T cells in vitro may identify patients at risk of infection or rejection post-transplantation. In this study, we evaluated whether this test could identify the level of risk in 656 renal transplant recipients (RTRs) with good and stable graft function. Therefore, 1095 blood samples from RTRs and 200 from healthy blood donors (normal controls [NCs]) were collected in 2 years and analyzed using the Cylex(®) ImmuKnow™ assay (Cylex, Inc., Columbia, MD, USA). The classification of T cell responses into strong, moderate, and low revealed significant differences between patients and NCs in low and strong responses (P < .001 and P = .021, respectively). The majority of patient samples exhibited moderate immune response (72.2%) in comparison with NC (75%). One hundred twenty-eight patients had fluctuated T cell responses between the three response zones. All patients were clinically stable for at least 1 month after the test. T cell response was increased after time post-transplantation (P < .001) and was found higher in protocols using azathioprine versus other immunosuppression (P < .001) and cyclosporine instead of tacrolimus (P = .012). According to the results of this study, we are not able to support this assay as an immune monitoring test post-transplantation in clinically stable RTRs. In contrast, measuring of iATP in CD4 T cells is a valuable tool for estimating T cell activation capacity. Because T cell activation is mainly affected by immunosuppression, this test may give information regarding the strength of different immunosuppressive protocols or the strength of immunosuppression as it is associated with longer follow-up periods.
Collapse
Affiliation(s)
- A G Vittoraki
- National Tissue Typing Center, General Hospital of Athens "G.Gennimatas", Athens, Greece.
| | - J N Boletis
- Transplantation Unit, "Laiko Hospital", Athens, Greece
| | - M N Darema
- Transplantation Unit, "Laiko Hospital", Athens, Greece
| | - A J Kostakis
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - A G Iniotaki
- National Tissue Typing Center, General Hospital of Athens "G.Gennimatas", Athens, Greece
| |
Collapse
|
50
|
Profile of CD103 expression in T-cell neoplasms: immunoreactivity is not restricted to enteropathy-associated T-cell lymphoma. Am J Surg Pathol 2014; 38:1557-70. [PMID: 25025448 DOI: 10.1097/pas.0000000000000296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intestinal intraepithelial T lymphocytes express the α E subunit of integrin αEβ7, which is detected by antibodies to CD103. Accordingly, within T-cell neoplasms, CD103 reactivity has most frequently been reported in enteropathy-associated T-cell lymphomas, which are postulated to arise from intestinal intraepithelial T lymphocytes. However, prior studies of CD103 expression in T-cell neoplasms have been limited by the requirement for fresh or frozen tissue, given the historic lack of an antibody to CD103 for use in paraffin-embedded sections. Thus, a thorough assessment of CD103 expression in a broad spectrum of T-cell neoplasms as categorized by the current classification system has not yet been performed. This study uses a newly described antibody to define the profile of CD103 immunoreactivity in paraffin sections of a wide variety of T-cell neoplasms (184 cases). Overall, 22 T-cell neoplasms (12%) were CD103 positive, including 7 of 15 gastrointestinal lymphomas (3.8% of total cases; 46% of gastrointestinal cases). In intestinal cases, CD103 positivity did not correlate with morphology, presence or absence of enteropathy, or immunohistochemical profile. A history of celiac disease was not documented in any case. Frequent but inconsistent reactivity was also noted for adult T-cell leukemia/lymphoma with 4 of 10 cases (40%) positive. In the remaining T-cell neoplasms representing most entities within the current World Health Organization classification, CD103 reactivity was sporadically observed in 11 of 159 cases (6.9%). CD103 positivity is an unusual feature in T-cell neoplasms and tends to occur in gastrointestinal lymphomas and adult T-cell leukemia/lymphoma but is not a consistent characteristic of these neoplasms.
Collapse
|