1
|
Wang HY, Chen JY, Li Y, Zhang X, Liu X, Lu Y, He H, Li Y, Chen H, Liu Q, Huang Y, Jia Z, Li S, Zhang Y, Han S, Jiang S, Yang M, Zhang Y, Zhou L, Tan F, Ji Q, Meng L, Wang R, Liu Y, Liu K, Wang Q, Seim I, Zou J, Fan G, Liu S, Shao C. Single-cell RNA sequencing illuminates the ontogeny, conservation and diversification of cartilaginous and bony fish lymphocytes. Nat Commun 2024; 15:7627. [PMID: 39227568 PMCID: PMC11372145 DOI: 10.1038/s41467-024-51761-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Elucidating cellular architecture and cell-type evolution across species is central to understanding immune system function and susceptibility to disease. Adaptive immunity is a shared trait of the common ancestor of cartilaginous and bony fishes. However, evolutionary features of lymphocytes in these two jawed vertebrates remain unclear. Here, we present a single-cell RNA sequencing atlas of immune cells from cartilaginous (white-spotted bamboo shark) and bony (zebrafish and Chinese tongue sole) fishes. Cross-species comparisons show that the same cell types across different species exhibit similar transcriptional profiles. In the bamboo shark, we identify a phagocytic B cell population expressing several pattern recognition receptors, as well as a T cell sub-cluster co-expressing both T and B cell markers. In contrast to a division by function in the bony fishes, we show close linkage and poor functional specialization among lymphocytes in the cartilaginous fish. Our cross-species single-cell comparison presents a resource for uncovering the origin and evolution of the gnathostome immune system.
Collapse
Affiliation(s)
- Hong-Yan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jian-Yang Chen
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yanan Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianghui Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Xiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Yifang Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Hang He
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yubang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Hongxi Chen
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Qun Liu
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yingyi Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shuo Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yangqing Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Shenglei Han
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Shuhong Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Mingming Yang
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Yingying Zhang
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Li Zhou
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Fujian Tan
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | | | - Liang Meng
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
| | - Rui Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Yuyan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Kaiqiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, 4000, Australia
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, Shandong, China
- BGI Research, Shenzhen, 518083, China
| | | | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Verma A, Hawes CE, Elizaldi SR, Smith JC, Rajasundaram D, Pedersen GK, Shen X, Williams LD, Tomaras GD, Kozlowski PA, Amara RR, Iyer SS. Tailoring T fh profiles enhances antibody persistence to a clade C HIV-1 vaccine in rhesus macaques. eLife 2024; 12:RP89395. [PMID: 38385642 PMCID: PMC10942585 DOI: 10.7554/elife.89395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA) +QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA +QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p<0.05). Notably, interferon γ+Env-specific Tfh responses were consistently higher with gp140 in MPLA +QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.
Collapse
Affiliation(s)
- Anil Verma
- Department of Pathology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Chase E Hawes
- Graduate Group in Immunology, University of California, DavisDavisUnited States
- California National Primate Research Center, University of California, DavisDavisUnited States
| | - Sonny R Elizaldi
- Graduate Group in Immunology, University of California, DavisDavisUnited States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, DavisDavisUnited States
| | - Justin C Smith
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences CenterNew OrleansUnited States
| | - Dhivyaa Rajasundaram
- Bioinformatics Core, Department of Pediatrics, UPMC Children's Hospital of PittsburghPittsburghUnited States
| | | | - Xiaoying Shen
- Center for Human Systems ImmunologyDurhamUnited States
- Department of Surgery, Duke University Medical CenterDurhamUnited States
- Duke Human Vaccine Institute, Duke University Medical CenterDurhamUnited States
| | - LaTonya D Williams
- Center for Human Systems ImmunologyDurhamUnited States
- Department of Surgery, Duke University Medical CenterDurhamUnited States
- Duke Human Vaccine Institute, Duke University Medical CenterDurhamUnited States
| | - Georgia D Tomaras
- Center for Human Systems ImmunologyDurhamUnited States
- Department of Surgery, Duke University Medical CenterDurhamUnited States
- Duke Human Vaccine Institute, Duke University Medical CenterDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Department of Integrative Immunobiology, Duke University Medical CenterDurhamUnited States
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences CenterNew OrleansUnited States
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory UniversityAtlantaUnited States
- Yerkes National Primate Research Center, Emory UniversityAtlantaUnited States
| | - Smita S Iyer
- Department of Pathology, School of Medicine, University of PittsburghPittsburghUnited States
- California National Primate Research Center, University of California, DavisDavisUnited States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, DavisDavisUnited States
| |
Collapse
|
3
|
Verma A, Hawes CE, Elizaldi SR, Smith JC, Rajasundaram D, Pedersen GK, Shen X, Williams LD, Tomaras GD, Kozlowski PA, Amara RR, Iyer SS. Tailoring Tfh Profiles Enhances Antibody Persistence to a Clade C HIV-1 Vaccine in Rhesus Macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549515. [PMID: 37503150 PMCID: PMC10370132 DOI: 10.1101/2023.07.18.549515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA)+QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA+QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p <0.05). Notably, interferon γ+ Env-specific Tfh responses were consistently higher with gp140 in MPLA+QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.
Collapse
|
4
|
Alahyari S, Rajaeinejad M, Jalaeikhoo H, Chegini L, Almasi Aghdam M, Asgari A, Nasiri M, Khoshdel A, Faridfar A. Immunological evaluation of patients with 2019 novel coronavirus pneumonia: CD4+ and CD16+ cells may predict severity and prognosis. PLoS One 2022; 17:e0268712. [PMID: 35930526 PMCID: PMC9355202 DOI: 10.1371/journal.pone.0268712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose Available but insufficient evidence shows that changes may occur in the immune system following coronavirus disease 2019 (COVID-19). The present study aimed at evaluating immunological changes in patients with severe acute respiratory syndrome coronavirus‐2 (SARS-CoV-2) pneumonia compared with the control group. Method The present study was performed on 95 patients with COVID-19 (32 severe and 63 moderate cases) and 22 healthy controls. Relationship between immune cells, disease severity and lung involvement was assessed. Binary logistic regression and ROC curve tests were used for statistical analysis. Results A significant decrease was observed in CD20+ cell counts of the patients. To differentiate patients from healthy individuals, the cutoff point for the CD4+ cell count was 688 /μL, sensitivity 0.96, and specificity 0.84. An increase in CD4+ cells reduces the odds of severe disease (odds ratio = 0.82, P = 0.047) and death (odds ratio = 0.74, P = 0.029). CD4+ cells play a pivotal role in the severity of lung involvement (P = 0.03). In addition to CD4+ cells, Fc gamma receptor III (FcγRIII) (CD16) also played a significant prognosis (odds ratio = 0.55, P = 0.047). In severe cases, C-reactive protein, Blood urea nitrogen, and Creatine phosphokinase levels, as well as neutrophil counts, were significantly higher than those of moderate ones whereas lymphocyte count in severe cases was lower than that of moderate ones. Conclusion The number of total T-cells and B-cells in patients with COVID-19 was lower than that of controls; however, their NK cells increased. FcγRIII and CD4+ cells are of great importance due to their association with COVID-19 prognosis.
Collapse
Affiliation(s)
- Sam Alahyari
- Science and Research branch, AJA University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA‐ CERTC), AJA University of Medical Sciences, Tehran, Iran
- * E-mail:
| | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA‐ CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Leila Chegini
- Resident of Internal Medicine, Faculty of Medicine Aja University of Medical Sciences, Tehran, Iran
| | - Maryam Almasi Aghdam
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asgari
- Infectious Diseases Research Center, AJA University of Medical Science, Tehran, Iran
| | - Malihe Nasiri
- Department of biostatics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Khoshdel
- Modern Epidemiology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA‐ CERTC), AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Brown IK, Dyjack N, Miller MM, Krovi H, Rios C, Woolaver R, Harmacek L, Tu TH, O’Connor BP, Danhorn T, Vestal B, Gapin L, Pinilla C, Seibold MA, Scott-Browne J, Santos RG, Reinhardt RL. Single cell analysis of host response to helminth infection reveals the clonal breadth, heterogeneity, and tissue-specific programming of the responding CD4+ T cell repertoire. PLoS Pathog 2021; 17:e1009602. [PMID: 34106992 PMCID: PMC8216541 DOI: 10.1371/journal.ppat.1009602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/21/2021] [Accepted: 05/01/2021] [Indexed: 12/30/2022] Open
Abstract
The CD4+ T cell response is critical to host protection against helminth infection. How this response varies across different hosts and tissues remains an important gap in our understanding. Using IL-4-reporter mice to identify responding CD4+ T cells to Nippostrongylus brasiliensis infection, T cell receptor sequencing paired with novel clustering algorithms revealed a broadly reactive and clonally diverse CD4+ T cell response. While the most prevalent clones and clonotypes exhibited some tissue selectivity, most were observed to reside in both the lung and lung-draining lymph nodes. Antigen-reactivity of the broader repertoires was predicted to be shared across both tissues and individual mice. Transcriptome, trajectory, and chromatin accessibility analysis of lung and lymph-node repertoires revealed three unique but related populations of responding IL-4+ CD4+ T cells consistent with T follicular helper, T helper 2, and a transitional population sharing similarity with both populations. The shared antigen reactivity of lymph node and lung repertoires combined with the adoption of tissue-specific gene programs allows for the pairing of cellular and humoral responses critical to the orchestration of anti-helminth immunity. Using various “omic” approaches, the CD4+ T cell receptor (TCR) repertoire was explored after primary helminth infection. Infection generated a broadly reactive and clonally diverse CD4+ T cell response with the most prevalent clonotypes and predicted antigen specificities residing in both the lung and lung-draining lymph nodes. Tissue-specific programming of responding CD4+ T cells directed the establishment of committed Tfh and Th2 cells, both critical for driving distinct hallmarks of type-2 inflammation. These datasets help to explore the diverse yet tissue-specific nature of anti-helminth immunity.
Collapse
Affiliation(s)
- Ivy K. Brown
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Mindy M. Miller
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Rachel Woolaver
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Laura Harmacek
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Ting-Hui Tu
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Brian P. O’Connor
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
| | - Thomas Danhorn
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Brian Vestal
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Clemencia Pinilla
- Florida International University, Port Saint Lucie, Florida, United States of America
| | - Max A. Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - James Scott-Browne
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, United States of America
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Radleigh G. Santos
- Department of Mathematics, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - R. Lee Reinhardt
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
6
|
Raju S, Xia Y, Daniel B, Yost KE, Bradshaw E, Tonc E, Verbaro DJ, Kometani K, Yokoyama WM, Kurosaki T, Satpathy AT, Egawa T. Identification of a T-bet hi Quiescent Exhausted CD8 T Cell Subpopulation That Can Differentiate into TIM3 +CX3CR1 + Effectors and Memory-like Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:2924-2936. [PMID: 34088768 DOI: 10.4049/jimmunol.2001348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022]
Abstract
Persistent Ag induces a dysfunctional CD8 T cell state known as "exhaustion" characterized by PD-1 expression. Nevertheless, exhausted CD8 T cells retain functionality through continued differentiation of progenitor into effector cells. However, it remains ill-defined how CD8 T cell effector responses are sustained in situ. In this study, we show using the mouse chronic lymphocytic choriomeningitis virus infection model that CX3CR1+ CD8 T cells contain a T-bet-dependent TIM3-PD-1lo subpopulation that is distinct from the TIM3+CX3CR1+PD-1+ proliferative effector subset. The TIM3-CX3CR1+ cells are quiescent and express a low but significant level of the transcription factor TCF-1, demonstrating similarity to TCF-1hi progenitor CD8 T cells. Furthermore, following the resolution of lymphocytic choriomeningitis virus viremia, a substantial proportion of TCF-1+ memory-like CD8 T cells show evidence of CX3CR1 expression during the chronic phase of the infection. Our results suggest a subset of the CX3CR1+ exhausted population demonstrates progenitor-like features that support the generation of the CX3CR1+ effector pool from the TCF-1hi progenitors and contribute to the memory-like pool following the resolution of viremia.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Yu Xia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Bence Daniel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Kathryn E Yost
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Elliot Bradshaw
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Elena Tonc
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Daniel J Verbaro
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Kohei Kometani
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Wayne M Yokoyama
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Tomohiro Kurosaki
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan.,Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; and
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA.,Parker Institute for Cancer Immunotherapy, Stanford University School of Medicine, Stanford, CA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO;
| |
Collapse
|
7
|
SLAM/SAP Decreased Follicular Regulatory T Cells in Patients with Graves' Disease. J Immunol Res 2021; 2021:5548463. [PMID: 33987447 PMCID: PMC8079219 DOI: 10.1155/2021/5548463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/30/2021] [Indexed: 01/25/2023] Open
Abstract
Signaling lymphocytic activation molecule (SLAM) and SLAM-associated protein (SAP) play important role in inflammatory and autoimmune diseases. Our study is aimed at detecting the expression of SLAM and SAP in patients with Graves' disease (GD) and analyzing the effect of SLAM/SAP on circulating blood CD4+CXCR5+Foxp3+ follicular regulatory T (Tfr) cells. The level of SAP in CD4+CXCR5+ T cells and the level of SLAM on CD19+ B cells were significantly increased in the patients with GD, but no significant difference in the level of SLAM on CD4+CXCR5+ T cells was observed between the patients with GD and the healthy controls. A decrease in the percentage of Foxp3+ cells in CD4+CXCR5+ T cells was observed following anti-SLAM treatment, but the percentages of IFN-γ+ cells, IL-4+ cells, and IL-17+ cells showed no obvious differences. The proportion of circulating Tfr cells was decreased in the patients with GD, and the proportion of circulating Tfr cells had a negative correlation with the level of SAP in CD4+CXCR5+ T cells and the levels of autoantibodies in the serum of the patients with GD. Our results suggested that the SLAM/SAP signaling pathway is involved in the decrease of circulating Tfr cells in Graves' disease.
Collapse
|
8
|
Gartshteyn Y, Askanase AD, Mor A. SLAM Associated Protein Signaling in T Cells: Tilting the Balance Toward Autoimmunity. Front Immunol 2021; 12:654839. [PMID: 33936082 PMCID: PMC8086963 DOI: 10.3389/fimmu.2021.654839] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
T cell activation is the result of the integration of signals across the T cell receptor and adjacent co-receptors. The signaling lymphocyte activation molecules (SLAM) family are transmembrane co-receptors that modulate antigen driven T cell responses. Signal transduction downstream of the SLAM receptor is mediated by the adaptor protein SLAM Associated Protein (SAP), a small intracellular protein with a single SH2 binding domain that can recruit tyrosine kinases as well as shield phosphorylated sites from dephosphorylation. Balanced SLAM-SAP signaling within T cells is required for healthy immunity, with deficiency or overexpression prompting autoimmune diseases. Better understanding of the molecular pathways involved in the intracellular signaling downstream of SLAM could provide treatment targets for these autoimmune diseases.
Collapse
Affiliation(s)
- Yevgeniya Gartshteyn
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Anca D Askanase
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States.,Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
9
|
Biram A, Winter E, Denton AE, Zaretsky I, Dassa B, Bemark M, Linterman MA, Yaari G, Shulman Z. B Cell Diversification Is Uncoupled from SAP-Mediated Selection Forces in Chronic Germinal Centers within Peyer's Patches. Cell Rep 2021; 30:1910-1922.e5. [PMID: 32049020 PMCID: PMC7016508 DOI: 10.1016/j.celrep.2020.01.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/24/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
Antibodies secreted within the intestinal tract provide protection from the invasion of microbes into the host tissues. Germinal center (GC) formation in lymph nodes and spleen strictly requires SLAM-associated protein (SAP)-mediated T cell functions; however, it is not known whether this mechanism plays a similar role in mucosal-associated lymphoid tissues. Here, we find that in Peyer’s patches (PPs), SAP-mediated T cell help is required for promoting B cell selection in GCs, but not for clonal diversification. PPs of SAP-deficient mice host chronic GCs that are absent in T cell-deficient mice. GC B cells in SAP-deficient mice express AID and Bcl6 and generate plasma cells in proportion to the GC size. Single-cell IgA sequencing analysis reveals that these mice host few diversified clones that were subjected to mild selection forces. These findings demonstrate that T cell-derived help to B cells in PPs includes SAP-dependent and SAP-independent functions. Chronic germinal centers in Peyer’s patches are formed in SAP-deficient mice SAP-independent germinal centers arise in response to influenza infection Few highly diversified clones dominate the SAP-independent germinal centers Germinal center B cells in SAP-deficient mice are subjected to mild selection forces
Collapse
Affiliation(s)
- Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eitan Winter
- Faculty of Engineering, Bar Ilan University, Ramat Gan 52900, Israel
| | - Alice E Denton
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge CB22 3AT, UK
| | - Irina Zaretsky
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bareket Dassa
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge CB22 3AT, UK
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
10
|
Qi H. New twists in humoral immune regulation by SLAM family receptors. J Exp Med 2021; 218:e20202300. [PMID: 33570568 PMCID: PMC7879578 DOI: 10.1084/jem.20202300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
SLAM family receptors are involved in humoral immune regulation. In this issue of JEM, Zhong et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20200756) provide evidence that these receptors collectively suppress germinal center reaction but promote production of antigen-specific antibodies.
Collapse
|
11
|
Pontarini E, Murray-Brown WJ, Croia C, Lucchesi D, Conway J, Rivellese F, Fossati-Jimack L, Astorri E, Prediletto E, Corsiero E, Romana Delvecchio F, Coleby R, Gelbhardt E, Bono A, Baldini C, Puxeddu I, Ruscitti P, Giacomelli R, Barone F, Fisher B, Bowman SJ, Colafrancesco S, Priori R, Sutcliffe N, Challacombe S, Carlesso G, Tappuni A, Pitzalis C, Bombardieri M. Unique expansion of IL-21+ Tfh and Tph cells under control of ICOS identifies Sjögren's syndrome with ectopic germinal centres and MALT lymphoma. Ann Rheum Dis 2020; 79:1588-1599. [PMID: 32963045 PMCID: PMC7677495 DOI: 10.1136/annrheumdis-2020-217646] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To explore the relevance of T-follicular-helper (Tfh) and pathogenic peripheral-helper T-cells (Tph) in promoting ectopic lymphoid structures (ELS) and B-cell mucosa-associated lymphoid tissue (MALT) lymphomas (MALT-L) in Sjögren's syndrome (SS) patients. METHODS Salivary gland (SG) biopsies with matched peripheral blood were collected from four centres across the European Union. Transcriptomic (microarray and quantitative PCR) analysis, FACS T-cell immunophenotyping with intracellular cytokine detection, multicolor immune-fluorescence microscopy and in situ hybridisation were performed to characterise lesional and circulating Tfh and Tph-cells. SG-organ cultures were used to investigate functionally the blockade of T-cell costimulatory pathways on key proinflammatory cytokine production. RESULTS Transcriptomic analysis in SG identified Tfh-signature, interleukin-21 (IL-21) and the inducible T-cell co-stimulator (ICOS) costimulatory pathway as the most upregulated genes in ELS+SS patients, with parotid MALT-L displaying a 400-folds increase in IL-21 mRNA. Peripheral CD4+CXC-motif chemokine receptor 5 (CXCR5)+programmed cell death protein 1 (PD1)+ICOS+ Tfh-like cells were significantly expanded in ELS+SS patients, were the main producers of IL-21, and closely correlated with circulating IgG and reduced complement C4. In the SG, lesional CD4+CD45RO+ICOS+PD1+ cells selectively infiltrated ELS+ tissues and were aberrantly expanded in parotid MALT-L. In ELS+SG and MALT-L parotids, conventional CXCR5+CD4+PD1+ICOS+Foxp3- Tfh-cells and a uniquely expanded population of CXCR5-CD4+PD1hiICOS+Foxp3- Tph-cells displayed frequent IL-21/interferon-γ double-production but poor IL-17 expression. Finally, ICOS blockade in ex vivo SG-organ cultures significantly reduced the production of IL-21 and inflammatory cytokines IL-6, IL-8 and tumour necrosis factor-α (TNF-α). CONCLUSIONS Overall, these findings highlight Tfh and Tph-cells, IL-21 and the ICOS costimulatory pathway as key pathogenic players in SS immunopathology and exploitable therapeutic targets in SS.
Collapse
Affiliation(s)
- Elena Pontarini
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - William James Murray-Brown
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Cristina Croia
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Davide Lucchesi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - James Conway
- Oncology R&D, Astrazeneca, Gaithersburg, Maryland, USA
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Elisa Astorri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Edoardo Prediletto
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Elisa Corsiero
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | | | - Rachel Coleby
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Eva Gelbhardt
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Aurora Bono
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | | | - Ilaria Puxeddu
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Ruscitti
- Department of Clinical Sciences and Applied Biotechnology, University of L'Aquila, L'Aquila, Abruzzo, Italy
| | - Roberto Giacomelli
- Department of Clinical Sciences and Applied Biotechnology, University of L'Aquila, L'Aquila, Abruzzo, Italy
| | - Francesca Barone
- RRG, Institute of Inflamation and Ageing, University of Birmingham, Birmingham, UK, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Benjamin Fisher
- RRG, Institute of Inflamation and Ageing, University of Birmingham, Birmingham, UK, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Simon J Bowman
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Serena Colafrancesco
- Dipartimento di Medicina Interna e Specilità Mediche, UOC Reumatologia, Universita degli Studi di Roma La Sapienza Facolta di Medicina e Odontoiatria, Roma, Lazio, Italy
| | - Roberta Priori
- Dipartimento di Medicina Interna e Specilità Mediche, UOC Reumatologia, Universita degli Studi di Roma La Sapienza Facolta di Medicina e Odontoiatria, Roma, Lazio, Italy
| | | | | | - Gianluca Carlesso
- Early ICA Discovery, Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Anwar Tappuni
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| |
Collapse
|
12
|
Tfh Cells in Health and Immunity: Potential Targets for Systems Biology Approaches to Vaccination. Int J Mol Sci 2020; 21:ijms21228524. [PMID: 33198297 PMCID: PMC7696930 DOI: 10.3390/ijms21228524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialised subset of CD4+ T cells that play a significant role in the adaptive immune response, providing critical help to B cells within the germinal centres (GC) of secondary lymphoid organs. The B cell receptors of GC B cells undergo multiple rounds of somatic hypermutation and affinity maturation within the GC response, a process dependent on cognate interactions with Tfh cells. B cells that receive sufficient help from Tfh cells form antibody-producing long-lived plasma and memory B cells that provide the basis of decades of effective and efficient protection and are considered the gold standard in correlates of protection post-vaccination. However, the T cell response to vaccination has been understudied, and over the last 10 years, exponential improvements in the technological underpinnings of sampling techniques, experimental and analytical tools have allowed multidisciplinary characterisation of the role of T cells and the immune system as a whole. Of particular interest to the field of vaccinology are GCs and Tfh cells, representing a unique target for improving immunisation strategies. Here, we discuss recent insights into the unique journey of Tfh cells from thymus to lymph node during differentiation and their role in the production of high-quality antibody responses as well as their journey back to the periphery as a population of memory cells. Further, we explore their function in health and disease and the power of next-generation sequencing techniques to uncover their potential as modulators of vaccine-induced immunity.
Collapse
|
13
|
Rivellese F, Pontarini E, Pitzalis C. Tertiary Lymphoid Organs in Rheumatoid Arthritis. Curr Top Microbiol Immunol 2020; 426:119-141. [PMID: 32483659 DOI: 10.1007/82_2020_216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease. RA mainly affects the joints, with inflammation of the synovial membrane, characterized by hyperplasia, neo-angiogenesis, and immune cell infiltration that drives local inflammation and, if untreated, can lead to joint destruction and disability. In parallel to the well-known clinical heterogeneity, the underlying synovitis can also be significantly heterogeneous. In particular, in about 40% of patients with RA, synovitis is characterized by a dense lymphocytic infiltrate that can acquire the features of fully functional tertiary lymphoid organs (TLO). These structures amplify autoimmunity and inflammation locally associated with worse prognosis and potential implications for treatment response. Here, we will review the current knowledge on TLO in RA, with a focus on their pathogenetic and clinical relevance.
Collapse
Affiliation(s)
- Felice Rivellese
- Barts and the London School of Medicine & Dentistry, Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, John Vane Science Centre, London, UK
| | - Elena Pontarini
- Barts and the London School of Medicine & Dentistry, Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, John Vane Science Centre, London, UK
| | - Costantino Pitzalis
- Barts and the London School of Medicine & Dentistry, Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, John Vane Science Centre, London, UK.
| |
Collapse
|
14
|
Biram A, Davidzohn N, Shulman Z. T cell interactions with B cells during germinal center formation, a three-step model. Immunol Rev 2019; 288:37-48. [PMID: 30874355 DOI: 10.1111/imr.12737] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022]
Abstract
Establishment of effective immunity against invading microbes depends on continuous generation of antibodies that facilitate pathogen clearance. Long-lived plasma cells with the capacity to produce high affinity antibodies evolve in germinal centers (GCs), where B cells undergo somatic hypermutation and are subjected to affinity-based selection. Here, we focus on the cellular interactions that take place early in the antibody immune response during GC colonization. Clones bearing B-cell receptors with different affinities and specificities compete for entry to the GC, at the boundary between the B-cell and T-cell zones in lymphoid organs. During this process, B cells compete for interactions with T follicular helper cells, which provide selection signals required for differentiation into GC cells and antibody secreting cells. These cellular engagements are long-lasting and depend on activation of adhesion molecules that support persistent interactions and promote transmission of signals between the cells. Here, we discuss how interactions between cognate T and B cells are primarily maintained by three types of molecular interactions: homophilic signaling lymphocytic activation molecule (SLAM) interactions, T-cell receptor: peptide-loaded major histocompatibility class II (pMHCII), and LFA-1:ICAMs. These essential components support a three-step process that controls clonal selection for entry into the antibody affinity maturation response in the GC, and establishment of long-lasting antibody-mediated immunity.
Collapse
Affiliation(s)
- Adi Biram
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Davidzohn
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Huang Q, Hu J, Tang J, Xu L, Ye L. Molecular Basis of the Differentiation and Function of Virus Specific Follicular Helper CD4 + T Cells. Front Immunol 2019; 10:249. [PMID: 30828337 PMCID: PMC6384271 DOI: 10.3389/fimmu.2019.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
During viral infection, virus-specific follicular helper T cells provide important help to cognate B cells for their survival, consecutive proliferation and mutation and eventual differentiation into memory B cells and antibody-secreting plasma cells. Similar to Tfh cells generated in other conditions, the differentiation of virus-specific Tfh cells can also be characterized as a process involved multiple factors and stages, however, which also exhibits distinct features. Here, we mainly focus on the current understanding of Tfh fate commitment, functional maturation, lineage maintenance and memory transition and formation in the context of viral infection.
Collapse
Affiliation(s)
- Qizhao Huang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China.,Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianjun Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
Fujisawa M, Chiba S, Sakata-Yanagimoto M. Recent Progress in the Understanding of Angioimmunoblastic T-cell Lymphoma. J Clin Exp Hematop 2018; 57:109-119. [PMID: 29279549 DOI: 10.3960/jslrt.17019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) has been classified as a subtype of mature T-cell neoplasms. The recent revision of the WHO classification proposed a new category of nodal T-cell lymphoma with follicular helper T (TFH)-cell phenotype, which was classified into three diseases: AITL, follicular T-cell lymphoma, and nodal peripheral T-cell lymphoma with TFH phenotype. These lymphomas are defined by the expression of TFH-related antigens, CD279/PD-1, CD10, BCL6, CXCL13, ICOS, SAP, and CXCR5. Although recurrent mutations in TET2, IDH2, DNMT3A, RHOA, and CD28, as well as gene fusions, such as ITK-SYK and CTLA4-CD28, were not diagnostic criteria, they may be considered as novel criteria in the near future. Notably, premalignant mutations, tumor-specific mutations, and mutations specific to tumor-infiltrating B cells were identified in AITL. Thus, multi-step and multi-lineage genetic events may lead to the development of AITL.
Collapse
Affiliation(s)
- Manabu Fujisawa
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Shigeru Chiba
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Department of Hematology, Faculty of Medicine, University of Tsukuba.,Department of Hematology, University of Tsukuba Hospital
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Department of Hematology, Faculty of Medicine, University of Tsukuba.,Department of Hematology, University of Tsukuba Hospital
| |
Collapse
|
17
|
Kim ST, Choi JY, Lainez B, Schulz VP, Karas DE, Baum ED, Setlur J, Gallagher PG, Craft J. Human Extrafollicular CD4 + Th Cells Help Memory B Cells Produce Igs. THE JOURNAL OF IMMUNOLOGY 2018; 201:1359-1372. [PMID: 30030323 DOI: 10.4049/jimmunol.1701217] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 06/29/2018] [Indexed: 12/31/2022]
Abstract
Follicular helper T (Tfh) cells are necessary for germinal center B cell maturation during primary immune responses; however, the T cells that promote humoral recall responses via memory B cells are less well defined. In this article, we characterize a human tonsillar CD4+ T cell subset with this function. These cells are similar to Tfh cells in terms of expression of the chemokine receptor CXCR5 and the inhibitory receptor PD-1, IL-21 secretion, and expression of the transcription factor BCL6; however, unlike Tfh cells that are located within the B cell follicle and germinal center, they reside at the border of the T cell zone and the B cell follicle in proximity to memory B cells, a position dictated by their unique chemokine receptor expression. They promote memory B cells to produce Abs via CD40L, IL-10, and IL-21. Our results reveal a unique extrafollicular CD4+ T cell subset in human tonsils, which specialize in promoting T cell-dependent humoral recall responses.
Collapse
Affiliation(s)
- Sang Taek Kim
- Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520.,Rheumatology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jin-Young Choi
- Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Begona Lainez
- Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
| | - Vincent P Schulz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520
| | - David E Karas
- Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven, CT 06520
| | - Eric D Baum
- Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven, CT 06520
| | - Jennifer Setlur
- Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven, CT 06520
| | - Patrick G Gallagher
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520.,Department of Pathology and Genetics, Yale School of Medicine, New Haven, CT 06520; and
| | - Joe Craft
- Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520; .,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
18
|
Translational repression of pre-formed cytokine-encoding mRNA prevents chronic activation of memory T cells. Nat Immunol 2018; 19:828-837. [PMID: 29988089 DOI: 10.1038/s41590-018-0155-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 05/22/2018] [Indexed: 02/05/2023]
Abstract
Memory T cells are critical for the immune response to recurring infections. Their instantaneous reactivity to pathogens is empowered by the persistent expression of cytokine-encoding mRNAs. How the translation of proteins from pre-formed cytokine-encoding mRNAs is prevented in the absence of infection has remained unclear. Here we found that protein production in memory T cells was blocked via a 3' untranslated region (3' UTR)-mediated process. Germline deletion of AU-rich elements (AREs) in the Ifng-3' UTR led to chronic cytokine production in memory T cells. This aberrant protein production did not result from increased expression and/or half-life of the mRNA. Instead, AREs blocked the recruitment of cytokine-encoding mRNA to ribosomes; this block depended on the ARE-binding protein ZFP36L2. Thus, AREs mediate repression of translation in mouse and human memory T cells by preventing undesirable protein production from pre-formed cytokine-encoding mRNAs in the absence of infection.
Collapse
|
19
|
Raju S, Kometani K, Kurosaki T, Shaw AS, Egawa T. The adaptor molecule CD2AP in CD4 T cells modulates differentiation of follicular helper T cells during chronic LCMV infection. PLoS Pathog 2018; 14:e1007053. [PMID: 29734372 PMCID: PMC5957453 DOI: 10.1371/journal.ppat.1007053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/17/2018] [Accepted: 04/24/2018] [Indexed: 12/24/2022] Open
Abstract
CD4 T cell-mediated help to CD8 T cells and B cells is a critical arm of the adaptive immune system required for control of pathogen infection. CD4 T cells express cytokines and co-stimulatory molecules that support a sustained CD8 T cell response and also enhance generation of protective antibody by germinal center B cells. However, the molecular components that modulate CD4 T cell functions in response to viral infection or vaccine are incompletely understood. Here we demonstrate that inactivation of the signaling adaptor CD2-associated protein (CD2AP) promotes CD4 T cell differentiation towards the follicular helper lineage, leading to enhanced control of viral infection by augmented germinal center response in chronic lymphocytic choriomeningitis virus (LCMV) infection. The enhanced follicular helper differentiation is associated with extended duration of TCR signaling and enhanced cytokine production of CD2AP-deficient CD4 T cells specifically under TH1 conditions, while neither prolonged TCR signaling nor enhanced follicular helper differentiation was observed under conditions that induce other helper effector subsets. Despite the structural similarity between CD2AP and the closely related adaptor protein CIN85, we observed defective antibody-mediated control of chronic LCMV infection in mice lacking CIN85 in T cells, suggesting non-overlapping and potentially antagonistic roles for CD2AP and CIN85. These results suggest that tuning of TCR signaling by targeting CD2AP improves protective antibody responses in viral infection. Enhancing the production of protective antibodies in response to infection or vaccine is critically important for host protection. However, we have only limited knowledge about molecular targets to enhance functions of CD4 helper T cells that are essential for antibody affinity maturation and class switching. In this work, we found that inhibiting the function of the adaptor molecule CD2AP results in enhanced antibody responses and improved protection of mice from chronic infection by LCMV. Mice lacking CD2AP specifically in T cells showed enhanced CD4 T cell differentiation towards the follicular helper subset, which is a critical regulator of antibody responses, and generated more germinal center B cells leading to production of mutated, protective antibodies. This effect was specific to CD4 T cells in type-I immune responses, associated with viral infection, while deletion of CD2AP had little impact on CD4 T cells in type-II immune responses or CD8 T cells. Our results thus suggest that CD2AP can be a specific target to enhance antiviral protective immunity during viral infection or vaccination.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Andrey S. Shaw
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
20
|
Panchal N, Booth C, Cannons JL, Schwartzberg PL. X-Linked Lymphoproliferative Disease Type 1: A Clinical and Molecular Perspective. Front Immunol 2018; 9:666. [PMID: 29670631 PMCID: PMC5893764 DOI: 10.3389/fimmu.2018.00666] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
X-linked lymphoproliferative disease (XLP) was first described in the 1970s as a fatal lymphoproliferative syndrome associated with infection with Epstein–Barr virus (EBV). Features include hemophagocytic lymphohistiocytosis (HLH), lymphomas, and dysgammaglobulinemias. Molecular cloning of the causative gene, SH2D1A, has provided insight into the nature of disease, as well as helped characterize multiple features of normal immune cell function. Although XLP type 1 (XLP1) provides an example of a primary immunodeficiency in which patients have problems clearing primarily one infectious agent, it is clear that XLP1 is also a disease of severe immune dysregulation, even independent of EBV infection. Here, we describe clinical features of XLP1, how molecular and biological studies of the gene product, SAP, and the associated signaling lymphocyte activation molecule family receptors have provided insight into disease pathogenesis including specific immune cell defects, and current therapeutic approaches including the potential use of gene therapy. Together, these studies have helped change the outcome of this once almost uniformly fatal disease.
Collapse
Affiliation(s)
- Neelam Panchal
- Molecular and Cellular Immunology Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Pediatric Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Jennifer L Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Pamela L Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.,National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Burbage M, Gasparrini F, Aggarwal S, Gaya M, Arnold J, Nair U, Way M, Bruckbauer A, Batista FD. Tuning of in vivo cognate B-T cell interactions by Intersectin 2 is required for effective anti-viral B cell immunity. eLife 2018; 7. [PMID: 29337666 PMCID: PMC5770159 DOI: 10.7554/elife.26556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is an immune pathology associated with mutations in WAS protein (WASp) or in WASp interacting protein (WIP). Together with the small GTPase Cdc42 and other effectors, these proteins participate in the remodelling of the actin network downstream of BCR engagement. Here we show that mice lacking the adaptor protein ITSN2, a G-nucleotide exchange factor (GEF) for Cdc42 that also interacts with WASp and WIP, exhibited increased mortality during primary infection, incomplete protection after Flu vaccination, reduced germinal centre formation and impaired antibody responses to vaccination. These defects were found, at least in part, to be intrinsic to the B cell compartment. In vivo, ITSN2 deficient B cells show a reduction in the expression of SLAM, CD84 or ICOSL that correlates with a diminished ability to form long term conjugates with T cells, to proliferate in vivo, and to differentiate into germinal centre cells. In conclusion, our study not only revealed a key role for ITSN2 as an important regulator of adaptive immune-response during vaccination and viral infection but it is also likely to contribute to a better understanding of human immune pathologies.
Collapse
Affiliation(s)
- Marianne Burbage
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Francesca Gasparrini
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Shweta Aggarwal
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mauro Gaya
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom.,Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Johan Arnold
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Usha Nair
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andreas Bruckbauer
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Facundo D Batista
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom.,Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| |
Collapse
|
22
|
Pérez-Mazliah D, Nguyen MP, Hosking C, McLaughlin S, Lewis MD, Tumwine I, Levy P, Langhorne J. Follicular Helper T Cells are Essential for the Elimination of Plasmodium Infection. EBioMedicine 2017; 24:216-230. [PMID: 28888925 PMCID: PMC5652023 DOI: 10.1016/j.ebiom.2017.08.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023] Open
Abstract
CD4+ follicular helper T (Tfh) cells have been shown to be critical for the activation of germinal center (GC) B-cell responses. Similar to other infections, Plasmodium infection activates both GC as well as non-GC B cell responses. Here, we sought to explore whether Tfh cells and GC B cells are required to eliminate a Plasmodium infection. A CD4 T cell-targeted deletion of the gene that encodes Bcl6, the master transcription factor for the Tfh program, resulted in complete disruption of the Tfh response to Plasmodium chabaudi in C57BL/6 mice and consequent disruption of GC responses and IgG responses and the inability to eliminate the otherwise self-resolving chronic P. chabaudi infection. On the other hand, and contrary to previous observations in immunization and viral infection models, Signaling Lymphocyte Activation Molecule (SLAM)-Associated Protein (SAP)-deficient mice were able to activate Tfh cells, GC B cells, and IgG responses to the parasite. This study demonstrates the critical role for Tfh cells in controlling this systemic infection, and highlights differences in the signals required to activate GC B cell responses to this complex parasite compared with those of protein immunizations and viral infections. Therefore, these data are highly pertinent for designing malaria vaccines able to activate broadly protective B-cell responses. Chronic Plasmodium infection cannot be eliminated in the absence of Tfh cell responses. SAP-deficient mice are able to activate GC Tfh and GC B-cell responses to Plasmodium infection. There is a hierarchical requirement for the control of chronic Plasmodium infection following IL-21R > Tfh cells > SAP.
Successful vaccines work through activation of protective B-cell responses. Malaria, caused by Plasmodium infection transmitted by mosquito bites, remains a global threat. Despite substantial efforts, a vaccine able to bring about high levels of protection from Plasmodium infection remains elusive. Here, using an experimental malaria model including natural mosquito transmission, we demonstrate that proper activation of follicular helper CD4+ T cells is essential for the control and eradication of chronic Plasmodium infection through protective B-cell responses. Thus, it is strongly advisable for novel vaccine efforts to monitor the robust activation of this important immune compartment.
Collapse
|
23
|
Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, Li D, Du J, Lin X, Yang M, Dong Z. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med 2017; 214:475-489. [PMID: 28049627 PMCID: PMC5294859 DOI: 10.1084/jem.20161312] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022] Open
Abstract
Chen et al. dissect SAP-dependent and SAP-independent SLAM family signaling in the regulation of NKT cell development and follicular T helper cell differentiation using a novel mouse model lacking all seven SLAM family receptors. Signaling lymphocytic activation molecule (SLAM)–associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (TFH) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in TFH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient TFH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP.
Collapse
Affiliation(s)
- Shasha Chen
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Chenxu Cai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Zehua Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Guangao Liu
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Yuande Wang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Marzenna Blonska
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Dan Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Juan Du
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Xin Lin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Meixiang Yang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Zhongjun Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| |
Collapse
|
24
|
Huang B, Gomez-Rodriguez J, Preite S, Garrett LJ, Harper UL, Schwartzberg PL. CRISPR-Mediated Triple Knockout of SLAMF1, SLAMF5 and SLAMF6 Supports Positive Signaling Roles in NKT Cell Development. PLoS One 2016; 11:e0156072. [PMID: 27258160 PMCID: PMC4892526 DOI: 10.1371/journal.pone.0156072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 01/04/2023] Open
Abstract
The SLAM family receptors contribute to diverse aspects of lymphocyte biology and signal via the small adaptor molecule SAP. Mutations affecting SAP lead to X-linked lymphoproliferative syndrome Type 1, a severe immunodysregulation characterized by fulminant mononucleosis, dysgammaglobulinemia, and lymphoproliferation/lymphomas. Patients and mice having mutations affecting SAP also lack germinal centers due to a defect in T:B cell interactions and are devoid of invariant NKT (iNKT) cells. However, which and how SLAM family members contribute to these phenotypes remains uncertain. Three SLAM family members: SLAMF1, SLAMF5 and SLAMF6, are highly expressed on T follicular helper cells and germinal center B cells. SLAMF1 and SLAMF6 are also implicated in iNKT development. Although individual receptor knockout mice have limited iNKT and germinal center phenotypes compared to SAP knockout mice, the generation of multi-receptor knockout mice has been challenging, due to the genomic linkage of the genes encoding SLAM family members. Here, we used Cas9/CRISPR-based mutagenesis to generate mutations simultaneously in Slamf1, Slamf5 and Slamf6. Genetic disruption of all three receptors in triple-knockout mice (TKO) did not grossly affect conventional T or B cell development and led to mild defects in germinal center formation post-immunization. However, the TKO worsened defects in iNKT cells development seen in SLAMF6 single gene-targeted mice, supporting data on positive signaling and potential redundancy between these receptors.
Collapse
Affiliation(s)
- Bonnie Huang
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Julio Gomez-Rodriguez
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Silvia Preite
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Lisa J. Garrett
- Embryonic Stem Cell and Transgenic Mouse Core, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Ursula L. Harper
- Genomics Core, National Human Genome Research Institute, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Pamela L. Schwartzberg
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
van Driel BJ, Liao G, Engel P, Terhorst C. Responses to Microbial Challenges by SLAMF Receptors. Front Immunol 2016; 7:4. [PMID: 26834746 PMCID: PMC4718992 DOI: 10.3389/fimmu.2016.00004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 12/24/2022] Open
Abstract
The SLAMF family (SLAMF) of cell surface glycoproteins is comprised of nine glycoproteins and while SLAMF1, 3, 5, 6, 7, 8, and 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development, and T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils, and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SLAM-associated protein and EAT-2 regulate innate and adaptive immune responses to microbes.
Collapse
Affiliation(s)
- Boaz Job van Driel
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Gongxian Liao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Pablo Engel
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona , Barcelona , Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
26
|
Liñán-Rico L, Hernández-Castro B, Doniz-Padilla L, Portillo-Salazar H, Baranda L, Cruz-Muñoz ME, González-Amaro R. Analysis of expression and function of the co-stimulatory receptor SLAMF1 in immune cells from patients with systemic lupus erythematosus (SLE). Lupus 2015; 24:1184-90. [PMID: 25920347 DOI: 10.1177/0961203315584412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/30/2015] [Indexed: 01/30/2023]
Abstract
The signaling lymphocytic activation molecule SLAMF1 (CD150) is a co-stimulatory molecule that is expressed by most immune cells, including T regulatory (Treg) lymphocytes. Since different abnormalities have been reported regarding the number and function of Foxp3+ Treg cells in patients with systemic lupus erythematosus (SLE), we decided to analyze the expression and function of CD150 in these regulatory lymphocytes in this condition. We isolated peripheral blood mononuclear cells from 20 patients with SLE, and 20 healthy controls. The expression of SLAMF1 was determined by multi-parametric flow cytometry and the suppressive function of CD4+CD25+ lymphocytes, upon engagement or not of CD150 with an agonistic monoclonal antibody, was analyzed by an assay of inhibition of cell proliferation. We observed a significantly increased expression of SLAMF1 by CD3+CD4+ helper T cells and CD19+ B cells in patients with SLE and active disease. However, similar levels of SLAMF1 expression were detected in Foxp3+ Treg cells from patients and controls. In contrast, a higher proportion of SLE patients increased their suppressive function of Treg cells upon CD150 engagement compared to healthy controls. Our data suggest that SLAMF1 is another significant piece in the intricate defective immune-regulatory function of patients with SLE.
Collapse
Affiliation(s)
- L Liñán-Rico
- Department of Immunology, UASLP, San Luis Potosí, Mexico
| | | | - L Doniz-Padilla
- Unidad Académica Multidisciplinaria Zona Huasteca, UASLP, San Luis Potosí, Mexico
| | - H Portillo-Salazar
- Unidad Académica Multidisciplinaria Zona Huasteca, UASLP, San Luis Potosí, Mexico
| | - L Baranda
- Department of Immunology, UASLP, San Luis Potosí, Mexico Regional Unit of Rheumatology and Osteoporosis, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, Mexico
| | | | - R González-Amaro
- Department of Immunology, UASLP, San Luis Potosí, Mexico Unidad Académica Multidisciplinaria Zona Huasteca, UASLP, San Luis Potosí, Mexico
| |
Collapse
|
27
|
Wang N, Halibozek PJ, Yigit B, Zhao H, O'Keeffe MS, Sage P, Sharpe A, Terhorst C. Negative Regulation of Humoral Immunity Due to Interplay between the SLAMF1, SLAMF5, and SLAMF6 Receptors. Front Immunol 2015; 6:158. [PMID: 25926831 PMCID: PMC4396446 DOI: 10.3389/fimmu.2015.00158] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/23/2015] [Indexed: 12/30/2022] Open
Abstract
Whereas the SLAMF-associated protein (SAP) is involved in differentiation of T follicular helper (Tfh) cells and antibody responses, the precise requirements of SLAMF receptors in humoral immune responses are incompletely understood. By analyzing mice with targeted disruptions of the Slamf1, Slamf5, and Slamf6 genes, we found that both T-dependent and T-independent antibody responses were twofold higher compared to those in single knockout mice. These data suggest a suppressive synergy of SLAMF1, SLAMF5, and SLAMF6 in humoral immunity, which contrasts the decreased antibody responses resulting from a defective GC reaction in the absence of the adapter SAP. In adoptive co-transfer assays, both [Slamf1 + 5 + 6]−/− B and T cells were capable of inducing enhanced antibody responses, but more pronounced enhancement was observed after adoptive transfer of [Slamf1 + 5 + 6]−/− B cells compared to that of [Slamf1 + 5 + 6]−/− T cells. In support of [Slamf1 + 5 + 6]−/− B cell intrinsic activity, [Slamf1 + 5 + 6]−/− mice also mounted significantly higher antibody responses to T-independent type 2 antigen. Furthermore, treatment of mice with anti-SLAMF6 monoclonal antibody results in severe inhibition of the development of Tfh cells and GC B cells, confirming a suppressive effect of SLAMF6. Taken together, these results establish SLAMF1, SLAMF5, and SLAMF6 as important negative regulators of humoral immune response, consistent with the notion that SLAM family receptors have dual functions in immune responses.
Collapse
Affiliation(s)
- Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Peter J Halibozek
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Burcu Yigit
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Hui Zhao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Michael S O'Keeffe
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Peter Sage
- Department of Microbiology and Immunology, Harvard Medical School , Boston, MA , USA
| | - Arlene Sharpe
- Department of Microbiology and Immunology, Harvard Medical School , Boston, MA , USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
28
|
Wong EB, Soni C, Chan AY, Domeier PP, Shwetank, Abraham T, Limaye N, Khan TN, Elias MJ, Chodisetti SB, Wakeland EK, Rahman ZSM. B cell-intrinsic CD84 and Ly108 maintain germinal center B cell tolerance. THE JOURNAL OF IMMUNOLOGY 2015; 194:4130-43. [PMID: 25801429 DOI: 10.4049/jimmunol.1403023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/16/2015] [Indexed: 12/22/2022]
Abstract
Signaling lymphocyte activation molecules (SLAMs) play an integral role in immune regulation. Polymorphisms in the SLAM family receptors are implicated in human and mouse model of lupus disease. The lupus-associated, somatically mutated, and class-switched pathogenic autoantibodies are generated in spontaneously developed germinal centers (GCs) in secondary lymphoid organs. The role and mechanism of B cell-intrinsic expression of polymorphic SLAM receptors that affect B cell tolerance at the GC checkpoint are not clear. In this study, we generated several bacterial artificial chromosome-transgenic mice that overexpress C57BL/6 (B6) alleles of different SLAM family genes on an autoimmune-prone B6.Sle1b background. B6.Sle1b mice overexpressing B6-derived Ly108 and CD84 exhibit a significant reduction in the spontaneously developed GC response and autoantibody production compared with B6.Sle1b mice. These data suggest a prominent role for Sle1b-derived Ly108 and CD84 in altering the GC checkpoint. We further confirm that expression of lupus-associated CD84 and Ly108 specifically on GC B cells in B6.Sle1b mice is sufficient to break B cell tolerance, leading to an increase in autoantibody production. In addition, we observe that B6.Sle1b B cells have reduced BCR signaling and a lower frequency of B cell-T cell conjugates; the reverse is seen in B6.Sle1b mice overexpressing B6 alleles of CD84 and Ly108. Finally, we find a significant decrease in apoptotic GC B cells in B6.Sle1b mice compared with B6 controls. Our study establishes a central role for GC B cell-specific CD84 and Ly108 expression in maintaining B cell tolerance in GCs and in preventing autoimmunity.
Collapse
Affiliation(s)
- Eric B Wong
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Chetna Soni
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Alice Y Chan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Shwetank
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Thomas Abraham
- Department of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Nisha Limaye
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Tahsin N Khan
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Melinda J Elias
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033;
| |
Collapse
|
29
|
Chu C, Wang Y, Zhang X, Ni X, Cao J, Xu W, Dong Z, Yuan P, Wei W, Ma Y, Zhang L, Wu L, Qi H. SAP-regulated T Cell-APC adhesion and ligation-dependent and -independent Ly108-CD3ζ interactions. THE JOURNAL OF IMMUNOLOGY 2014; 193:3860-71. [PMID: 25217164 DOI: 10.4049/jimmunol.1401660] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The germinal center response requires cooperation between Ag-specific T and B lymphocytes, which takes the form of long-lasting cell-cell conjugation in vivo. Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is required for stable cognate T-B cell conjugation, whereas SLAM family transmembrane (TM) receptor Ly108 may negatively regulate this process. We show that, other than phosphotyrosine-binding, SAP does not harbor motifs that recruit additional signaling intermediates to stabilize T-B adhesion. Ly108 dampens T cell adhesion to not only Ag-presenting B cells, but also dendritic cells by inhibiting CD3ζ phosphorylation through two levels of regulated Ly108-CD3ζ interactions. Constitutively associated with Src homology 2 domain-containing tyrosine phosphatase-1 even in SAP-competent cells, Ly108 is codistributed with the CD3 complex within a length scale of 100-200 nm on quiescent cells and can reduce CD3ζ phosphorylation in the absence of overt TCR stimulation or Ly108 ligation. When Ly108 is engaged in trans during cell-cell interactions, Ly108-CD3ζ interactions are promoted in a manner that uniquely depends on Ly108 TM domain, leading to more efficient CD3ζ dephosphorylation. Whereas replacement of the Ly108 TM domain still allows the constitutive, colocalization-dependent inhibition of CD3ζ phosphorylation, it abrogates the ligation-dependent Ly108-CD3ζ interactions and CD3ζ dephosphorylation, and it abolishes the suppression on Ag-triggered T-B adhesion. These results offer new insights into how SAP and Ly108 antagonistically modulate the strength of proximal TCR signaling and thereby control cognate T cell-APC interactions.
Collapse
Affiliation(s)
- Coco Chu
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yifeng Wang
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xu Zhang
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xinya Ni
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Junxia Cao
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wan Xu
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhongjun Dong
- Laboratory of Tumor Immunology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Pengfei Yuan
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; and
| | - Wensheng Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; and
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Longyan Wu
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China;
| |
Collapse
|
30
|
Winstead CJ. Follicular helper T cell-mediated mucosal barrier maintenance. Immunol Lett 2014; 162:39-47. [PMID: 25149860 DOI: 10.1016/j.imlet.2014.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 02/07/2023]
Abstract
The basic functions of the immune system are protection from pathogens and maintenance of tolerance to self. The maintenance of commensal microbiota at mucosal surfaces adds a layer of complexity to these basic functions. Recent reports suggest follicular helper T cells (Tfh), a CD4(+) T cell subset specialized to provide help to B cells undergoing isotype switching and affinity maturation in germinal centers (GC), interact with the microbiota and are essential to maintenance of mucosal barriers. Complicating the issue is ongoing controversy in the field regarding origin of the Tfh subset and its distinction from other effector CD4 T cell phenotypes (Th1/Th17/Treg). This review focuses on the differentiation, phenotypic plasticity, and function of CD4 T cells, with an emphasis on commensal-specific GC responses in the gut.
Collapse
Affiliation(s)
- Colleen J Winstead
- University of Alabama at Birmingham, Department of Pathology, Birmingham, AL, United States.
| |
Collapse
|
31
|
Xiao N, Eto D, Elly C, Peng G, Crotty S, Liu YC. The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells. Nat Immunol 2014; 15:657-66. [PMID: 24859451 DOI: 10.1038/ni.2912] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/30/2014] [Indexed: 12/12/2022]
Abstract
Follicular helper T cells (T(FH) cells) are responsible for effective B cell-mediated immunity, and Bcl-6 is a central factor for the differentiation of T(FH) cells. However, the molecular mechanisms that regulate the induction of T(FH) cells remain unclear. Here we found that the E3 ubiquitin ligase Itch was essential for the differentiation of T(FH) cells, germinal center responses and immunoglobulin G (IgG) responses to acute viral infection. Itch acted intrinsically in CD4(+) T cells at early stages of T(FH) cell development. Itch seemed to act upstream of Bcl-6 expression, as Bcl-6 expression was substantially impaired in Itch(-/-) cells, and the differentiation of Itch(-/-) T cells into T(FH) cells was restored by enforced expression of Bcl-6. Itch associated with the transcription factor Foxo1 and promoted its ubiquitination and degradation. The defective T(FH) differentiation of Itch(-/-) T cells was rectified by deletion of Foxo1. Thus, our results indicate that Itch acts as an essential positive regulator in the differentiation of T(FH) cells.
Collapse
Affiliation(s)
- Nengming Xiao
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Danelle Eto
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Chris Elly
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Guiying Peng
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
32
|
Collins CM, Speck SH. Expansion of murine gammaherpesvirus latently infected B cells requires T follicular help. PLoS Pathog 2014; 10:e1004106. [PMID: 24789087 PMCID: PMC4006913 DOI: 10.1371/journal.ppat.1004106] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/21/2014] [Indexed: 11/19/2022] Open
Abstract
X linked lymphoproliferative disease (XLP) is an inherited immunodeficiency resulting from mutations in the gene encoding the slam associated protein (SAP). One of the defining characteristics of XLP is extreme susceptibility to infection with Epstein-Barr virus (EBV), a gammaherpesvirus belonging to the genus Lymphocryptovirus, often resulting in fatal infectious mononucleosis (FIM). However, infection of SAP deficient mice with the related Murine gammaherpesvirus 68 (MHV68), a gammaherpesvirus in the genus Rhadinovirus, does not recapitulate XLP. Here we show that MHV68 inefficiently establishes latency in B cells in SAP deficient mice due to insufficient CD4 T cell help during the germinal center response. Although MHV68 infected B cells can be found in SAP-deficient mice, significantly fewer of these cells had a germinal center phenotype compared to SAP-sufficient mice. Furthermore, we show that infected germinal center B cells in SAP-deficient mice fail to proliferate. This failure to proliferate resulted in significantly lower viral loads, and likely accounts for the inability of MHV68 to induce a FIM-like syndrome. Finally, inhibiting differentiation of T follicular helper (TFH) cells in SAP-sufficient C57Bl/6 mice resulted in decreased B cell latency, and the magnitude of the TFH response directly correlated with the level of infection in B cells. This requirement for CD4 T cell help during the germinal center reaction by MHV68 is in contrast with EBV, which is thought to be capable of bypassing this requirement by expressing viral proteins that mimic signals provided by TFH cells. In conclusion, the outcome of MHV68 infection in mice in the setting of loss of SAP function is distinct from that observed in SAP-deficient patients infected with EBV, and may identify a fundamental difference between the strategies employed by the rhadinoviruses and lymphocryptoviruses to expand B cell latency during the early phase of infection. During an immune response, B cells respond to invading pathogens by undergoing massive expansion during the germinal center reaction. This proliferation requires signals from CD4 T cells, with some B cells then maturing into antibody secreting plasma cells, while others mature into memory B cells that may persist for the life of the host. Gammaherpesviruses take advantage of this immune response by infecting B cells, resulting in expansion of the pool of infected cells during the germinal center reaction. The human gammaherpesvirus Epstein-Barr virus (EBV) is thought to be able to accomplish this without the need for CD4 T cell help by expressing viral proteins that mimic signals from CD4 T cells. Here we show in a mouse model of gammaherpesvirus infection that infected B cells require signals from CD4 T cells for proliferation. Since the mouse gammaherpesvirus and EBV belong to different subgroups of gammaherpesviruses, this suggests that these subgroups utilize fundamentally different strategies to expand the pool of infected B cells during the establishment of latency. These different strategies may explain the different outcome of infection by these different subgroups of gammaherpesviruses in the context of defective germinal center responses that result from defective CD4 T cell help.
Collapse
Affiliation(s)
- Christopher M. Collins
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel H. Speck
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
33
|
Misumi I, Whitmire JK. B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1597-608. [PMID: 24453250 PMCID: PMC3925510 DOI: 10.4049/jimmunol.1302661] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dynamic interactions between CD4(+) T cells and B cells are needed for humoral immunity and CD4(+) T cell memory. It is not known whether B cells are needed early on to induce the formation of memory precursor cells or are needed later to sustain memory cells. In this study, primary and memory CD4(+) T cells responses were followed in wild-type mice that were depleted of mature B cells by anti-CD20 before or different times after acute lymphocytic choriomeningitis virus infection. The Ab treatment led to a 1000-fold reduction in B cell number that lasted 6 wk. Primary virus-specific CD4(+) Th1 cells were generated in B cell-depleted mice; however, there was a decrease in the CD4(+)Ly6C(lo)Tbet(+) memory precursor population and a corresponding 4-fold reduction in CD4(+) memory cell number. Memory T cells showed impaired cytokine production when they formed without B cells. B cell depletion had no effect on established memory populations. During disseminating virus infection, B cell depletion led to sustained weight loss and functional exhaustion of CD4(+) and CD8(+) T cells, and prevented mice from resolving the infection. Thus, B cells contribute to the establishment and survival of memory CD4(+) T cells post-acute infection and play an essential role in immune protection against disseminating virus infection.
Collapse
Affiliation(s)
- Ichiro Misumi
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599
| | - Jason K. Whitmire
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599
- Department of Microbiology & Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
34
|
Parsons RF, Vivek K, Redfield RR, Migone TS, Cancro MP, Naji A, Noorchashm H. B-cell tolerance in transplantation: is repertoire remodeling the answer? Expert Rev Clin Immunol 2014; 5:703. [PMID: 20161663 DOI: 10.1586/eci.09.63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T lymphocytes are the primary targets of immunotherapy in clinical transplantation; however, B lymphocytes and their secreted alloantibodies are also highly detrimental to the allograft. Therefore, the achievement of sustained organ transplant survival will likely require the induction of B-lymphocyte tolerance. During development, acquisition of B-cell tolerance to self-antigens relies on clonal deletion in the early stages of B-cell compartment ontogeny. We contend that this mechanism should be recapitulated in the setting of alloantigens and organ transplantation to eliminate the alloreactive B-cell subset from the recipient. Clinically feasible targets of B-cell-directed immunotherapy, such as CD20 and B-lymphocyte stimulator (BLyS), should drive upcoming clinical trials aimed at remodeling the recipient B-cell repertoire.
Collapse
Affiliation(s)
- Ronald F Parsons
- 329 Stemmler Hall, 36th and Hamilton Walk, University of Pennsylvania School of Medicine, Harrison Department of Surgical Research, Philadelphia, PA 19104, USA, Tel.: +1 215 400 1806
| | | | | | | | | | | | | |
Collapse
|
35
|
Tfh Cell Differentiation and Their Function in Promoting B-Cell Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 841:153-80. [DOI: 10.1007/978-94-017-9487-9_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
|
37
|
Zhong MC, Veillette A. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis. J Biol Chem 2013; 288:31423-36. [PMID: 24045941 DOI: 10.1074/jbc.m113.473736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.
Collapse
Affiliation(s)
- Ming-Chao Zhong
- From the Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec H2W 1R7, Canada
| | | |
Collapse
|
38
|
Hu J, Havenar-Daughton C, Crotty S. Modulation of SAP dependent T:B cell interactions as a strategy to improve vaccination. Curr Opin Virol 2013; 3:363-70. [PMID: 23743125 DOI: 10.1016/j.coviro.2013.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/10/2013] [Indexed: 11/15/2022]
Abstract
Generating long-term humoral immunity is a crucial component of successful vaccines and requires interactions between T cells and B cells in germinal centers (GC). In GCs, a specialized subset of CD4+ helper T cells, called T follicular helper cells (Tfh), provide help to B cells; this help directs the magnitude and quality of the antibody response. Tfh cell help influences B cell survival, proliferation, somatic hypermutation, class switch recombination, and differentiation. Sustained contact between Tfh cells and B cells is necessary for the provision of help to B cells. SAP (Signaling lymphocytic activation molecule (SLAM)-associated protein, encoded by Sh2d1a) regulates the duration of T:B cell interactions and is required for long-term humoral immunity in animal models and in humans. SAP binds to SLAM family receptors and mediates signaling that affects cell adhesion, cytokine secretion, and TCR signaling strength. Therefore, the modulation of SAP and SLAM family receptor expression represents a major axis by which the quality and duration of an antibody response is controlled after vaccination.
Collapse
Affiliation(s)
- Joyce Hu
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, United States
| | | | | |
Collapse
|
39
|
Choi YS, Yang JA, Yusuf I, Johnston RJ, Greenbaum J, Peters B, Crotty S. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory. THE JOURNAL OF IMMUNOLOGY 2013; 190:4014-26. [PMID: 23487426 DOI: 10.4049/jimmunol.1202963] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Follicular helper CD4 T (Tfh) cells are a distinct type of differentiated CD4 T cells uniquely specialized for B cell help. In this study, we examined Tfh cell fate commitment, including distinguishing features of Tfh versus Th1 proliferation and survival. Using cell transfer approaches at early time points after an acute viral infection, we demonstrate that early Tfh cells and Th1 cells are already strongly cell fate committed by day 3. Nevertheless, Tfh cell proliferation was tightly regulated in a TCR-dependent manner. The Tfh cells still depend on extrinsic cell fate cues from B cells in their physiological in vivo environment. Unexpectedly, we found that Tfh cells share a number of phenotypic parallels with memory precursor CD8 T cells, including selective upregulation of IL-7Rα and a collection of coregulated genes. As a consequence, the early Tfh cells can progress to robustly form memory cells. These data support the hypothesis that CD4 and CD8 T cells share core aspects of a memory cell precursor gene expression program involving Bcl6, and a strong relationship exists between Tfh cells and memory CD4 T cell development.
Collapse
Affiliation(s)
- Youn Soo Choi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Mihalj M, Kellermayer Z, Balogh P. Follicles in gut-associated lymphoid tissues create preferential survival niches for follicular Th cells escaping Thy-1-specific depletion in mice. Int Immunol 2013; 25:423-35. [PMID: 23449667 DOI: 10.1093/intimm/dxt001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although a substantial number of T cells may escape depletion following in vivo mAb treatment in patients undergoing immunosuppression, their specific tissue location and phenotypic characteristics in different peripheral lymphoid tissues have not been analyzed in detail. Here we investigated the survival of CD4(+) T cells immediately following anti-Thy-1 mAb treatment in mice. We found a preferential survival of CD4(+) T cells expressing Thy-1 antigen in the Peyer's patches (PP) and also in mesenteric lymph nodes (MLN), where the relative majority of the surviving CD4(+) T cells displayed CD44(high)/CD62L(-) phenotype corresponding to effector memory T-cell features. These CD4(+) T cells also expressed CXCR5 and PD-1 (programmed cell death-1) markers characteristic for follicular Th cells (TFH). We also demonstrate that the immediate survival of these cells does not involve proliferation and is independent of IL-7. Induction of germinal center formation in spleen enhanced while the dissolution of follicular architecture by lymphotoxin-β receptor antagonist treatment slightly reduced TFH survival. Our results thus raise the possibility that the follicles within PP and MLN may create natural support niches for the preferential survival of TFH cells of the memory phenotype, thus allowing their escape during T-cell depletion.
Collapse
Affiliation(s)
- Martina Mihalj
- Department of Immunology & Biotechnology, Faculty of Medicine, University of Pécs, Szigeti ut 12, Pécs H-7624, Hungary
| | | | | |
Collapse
|
41
|
Critical role of SAP in progression and reactivation but not maintenance of T cell-dependent humoral immunity. Mol Cell Biol 2013; 33:1223-32. [PMID: 23319045 DOI: 10.1128/mcb.01591-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a small adaptor molecule mutated in X-linked lymphoproliferative disease, a human immunodeficiency. SAP plays a critical role in the initiation of T cell-dependent B cell responses leading to germinal center reaction, the production of high-affinity antibodies, and B cell memory. However, whether SAP has a role in these responses beyond their initiation is not known. It is important to address this matter not only for mechanistic reasons but also because blockade of the SAP pathway is being contemplated as a means to treat autoimmune diseases in humans. Using an inducibly SAP deficient mouse, we found that SAP was required not only for the initiation but also for the progression of primary T cell-driven B cell responses to haptens. It was also necessary for the reactivation of T cell-dependent B cell immunity during secondary immune responses. These activities consistently correlated with the requirement of SAP for full expression of the lineage commitment factor Bcl-6 in follicular T helper (T(FH)) cells. However, once memory B cells and long-lived antibody-secreting cells were established, SAP became dispensable for maintaining T cell-dependent B cell responses. Thus, SAP is pivotal for nearly all phases, but not for maintenance, of T cell-driven B cell humoral immunity. These findings may have implications for the treatment of immune disorders by targeting the SAP pathway.
Collapse
|
42
|
Cai G, Nie X, Zhang W, Wu B, Lin J, Wang H, Jiang C, Shen Q. A regulatory role for IL-10 receptor signaling in development and B cell help of T follicular helper cells in mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:1294-302. [PMID: 22753938 DOI: 10.4049/jimmunol.1102948] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IL -10 is widely accepted as a survival, proliferation, and differentiation factor for B cells. However, IL-10 deficiency accelerates disease progression as the result of autoantibody production in many autoimmune disease models. It was demonstrated that T follicular helper cells (T(FH) cells) play a key role in helping B cells that are secreting Abs. In this study, we demonstrated a regulatory role for IL-10R signaling on the development and B cell help function of T(FH) cells in vitro and in vivo. IL-1R subunit β-deficient (Il10rb(-/-)) Th cells were able to differentiate more readily into T(FH) cells, as well as secrete more IL-21 and IL-17 compared with wild-type Th cell-derived T(FH) cells. Increased IL-21 and IL-17 contributed to the enhanced B cell help functions of T(FH) cells. Further experiments demonstrated that IL-6 and IL-23 from dendritic cells in Il10rb(-/-) mice contributed to the differentiation of naive Th cells into T(FH) cells, as well as the generation of IL-21- and IL-17-producing T(FH) cells. Our results provide useful information for clarifying the immunoregulatory mechanisms associated with IL-10 deficiency in certain autoimmune disease models. This information could also be of benefit for the development of vaccines.
Collapse
Affiliation(s)
- Gang Cai
- Department of Laboratory Medicine, Shanghai Jiaotong University Medical School, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kageyama R, Cannons JL, Zhao F, Yusuf I, Lao C, Locci M, Schwartzberg PL, Crotty S. The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. Immunity 2012; 36:986-1002. [PMID: 22683125 DOI: 10.1016/j.immuni.2012.05.016] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 04/17/2012] [Accepted: 05/08/2012] [Indexed: 01/01/2023]
Abstract
Humans and mice deficient in the adaptor protein SAP (Sh2d1a) have a major defect in humoral immunity, resulting from a lack of T cell help for B cells. The role of SAP in this process is incompletely understood. We found that deletion of receptor Ly108 (Slamf6) in CD4(+) T cells reversed the Sh2d1a(-/-) phenotype, eliminating the SAP requirement for germinal centers. This potent negative signaling by Ly108 required immunotyrosine switch motifs (ITSMs) and SHP-1 recruitment, resulting in high amounts of SHP-1 at the T cell:B cell synapse, limiting T cell:B cell adhesion. Ly108-negative signaling was important not only in CD4(+) T cells; we found that NKT cell differentiation was substantially restored in Slamf6(-/-)Sh2d1a(-/-) mice. The ability of SAP to regulate both positive and negative signals in T cells can explain the severity of SAP deficiency and highlights the importance of SAP and SHP-1 competition for Ly108 ITSM binding as a rheostat for the magnitude of T cell help to B cells.
Collapse
Affiliation(s)
- Robin Kageyama
- Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Linterman MA, Liston A, Vinuesa CG. T-follicular helper cell differentiation and the co-option of this pathway by non-helper cells. Immunol Rev 2012; 247:143-59. [DOI: 10.1111/j.1600-065x.2012.01121.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Qi H. From SAP-less T cells to helpless B cells and back: dynamic T-B cell interactions underlie germinal center development and function. Immunol Rev 2012; 247:24-35. [DOI: 10.1111/j.1600-065x.2012.01119.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Interleukin-4 production by follicular helper T cells requires the conserved Il4 enhancer hypersensitivity site V. Immunity 2012; 36:175-87. [PMID: 22326582 DOI: 10.1016/j.immuni.2011.12.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/18/2011] [Accepted: 12/06/2011] [Indexed: 12/24/2022]
Abstract
Follicular helper T cells (Tfh cells) are the major producers of interleukin-4 (IL-4) in secondary lymphoid organs where humoral immune responses develop. Il4 regulation in Tfh cells appears distinct from the classical T helper 2 (Th2) cell pathway, but the underlying molecular mechanisms remain largely unknown. We found that hypersensitivity site V (HS V; also known as CNS2), a 3' enhancer in the Il4 locus, is essential for IL-4 production by Tfh cells. Mice lacking HS V display marked defects in type 2 humoral immune responses, as evidenced by abrogated IgE and sharply reduced IgG1 production in vivo. In contrast, effector Th2 cells that are involved in tissue responses were far less dependent on HS V. HS V facilitated removal of repressive chromatin marks during Th2 and Tfh cell differentiation and increased accessibility of the Il4 promoter. Thus, Tfh and Th2 cells utilize distinct but overlapping molecular mechanisms to regulate Il4, a finding with important implications for understanding the molecular basis of allergic diseases.
Collapse
|
47
|
Tangye SG, Deenick EK, Palendira U, Ma CS. T cell-B cell interactions in primary immunodeficiencies. Ann N Y Acad Sci 2012; 1250:1-13. [PMID: 22288566 DOI: 10.1111/j.1749-6632.2011.06361.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulated interactions between cells of the immune system facilitate the generation of successful immune responses, thereby enabling efficient neutralization and clearance of pathogens and the establishment of both cell- and humoral-mediated immunological memory. The corollary of this is that impediments to efficient cell-cell interactions, normally necessary for differentiation and effector functions of immune cells, underly the clinical features and disease pathogenesis of primary immunodeficiencies. In affected individuals, these defects manifest as impaired long-term humoral immunity and susceptibility to infection by specific pathogens. In this review, we discuss the importance of, and requirements for, effective interactions between B cells and T cells during the formation of CD4(+) T follicular helper cells and the elicitation of cytotoxic function of virus-specific CD8(+) T cells, as well as how these processes are abrogated in primary immunodeficiencies due to loss-of-function mutations in defined genes.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
| | | | | | | |
Collapse
|
48
|
Johnston RJ, Choi YS, Diamond JA, Yang JA, Crotty S. STAT5 is a potent negative regulator of TFH cell differentiation. ACTA ACUST UNITED AC 2012; 209:243-50. [PMID: 22271576 PMCID: PMC3281266 DOI: 10.1084/jem.20111174] [Citation(s) in RCA: 399] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interleukin 2, STAT5, and Blimp-1 work together to suppress differentiation of follicular helper T cells in mice. Follicular helper T cells (TFH cells) constitute the CD4+ T cell subset that is specialized to provide help to germinal center (GC) B cells and, consequently, mediate the development of long-lived humoral immunity. TFH cell differentiation is driven by the transcription factor Bcl6, and recent studies have identified cytokine and cell–cell signals that drive Bcl6 expression. However, although TFH dysregulation is associated with several major autoimmune diseases, the mechanisms underlying the negative regulation of TFH cell differentiation are poorly understood. In this study, we show that STAT5 inhibits TFH cell differentiation and function. Constitutive STAT5 signaling in activated CD4+ T cells selectively blocked TFH cell differentiation and GCs, and IL-2 signaling was a primary inducer of this pathway. Conversely, STAT5-deficient CD4+ T cells (mature STAT5fl/fl CD4+ T cells transduced with a Cre-expressing vector) rapidly up-regulated Bcl6 expression and preferentially differentiated into TFH cells during T cell priming in vivo. STAT5 signaling failed to inhibit TFH cell differentiation in the absence of the transcription factor Blimp-1, a direct repressor of Bcl6 expression and TFH cell differentiation. These results demonstrate that IL-2, STAT5, and Blimp-1 collaborate to negatively regulate TFH cell differentiation.
Collapse
Affiliation(s)
- Robert J Johnston
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
49
|
Swain SL, McKinstry KK, Strutt TM. Expanding roles for CD4⁺ T cells in immunity to viruses. Nat Rev Immunol 2012; 12:136-48. [PMID: 22266691 PMCID: PMC3764486 DOI: 10.1038/nri3152] [Citation(s) in RCA: 638] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4+ T cells are orchestrators, regulators and direct effectors of antiviral immunity. Neutralizing antibodies provide protection against many viral pathogens, and CD4+ T cells can help B cells to generate stronger and longer-lived antibody responses. CD4+ T cells help antiviral CD8+ T cells in two main ways: they maximize CD8+ T cell population expansion during a primary immune response and also facilitate the generation of virus-specific memory CD8+ T cell populations. In addition to their helper functions, CD4+ T cells contribute directly to viral clearance. They secrete cytokines with antiviral activities and, in some circumstances, can eliminate infected cells through cytotoxic killing. Memory CD4+ T cells provide superior protection during re-infection with a virus. Compared with new effector CD4+ T cells, memory CD4+ T cells have enhanced helper and effector functions and can rapidly trigger innate immune defence mechanisms early in the infection.
Immunity to viruses is typically associated with the development of cytotoxic CD8+ T cells. However, CD4+ T cells are also important for protection during viral infection. Here, the authors describe the various ways in which different CD4+T cell subsets can contribute to the antiviral immune response. Viral pathogens often induce strong effector CD4+ T cell responses that are best known for their ability to help B cell and CD8+ T cell responses. However, recent studies have uncovered additional roles for CD4+ T cells, some of which are independent of other lymphocytes, and have described previously unappreciated functions for memory CD4+ T cells in immunity to viruses. Here, we review the full range of antiviral functions of CD4+ T cells, discussing the activities of these cells in helping other lymphocytes and in inducing innate immune responses, as well as their direct antiviral roles. We suggest that all of these functions of CD4+ T cells are integrated to provide highly effective immune protection against viral pathogens.
Collapse
Affiliation(s)
- Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue N, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
50
|
Hintersteiner M, Knox AJ, Mudd G, Auer M. Towards mimicking short linear peptide motifs: identification of new mixed α,β-peptidomimetic ligands for SLAM-Associated Protein (SAP) by confocal on-bead screening. J Chem Biol 2012; 5:63-79. [PMID: 23284589 DOI: 10.1007/s12154-011-0071-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 12/08/2011] [Indexed: 11/25/2022] Open
Abstract
UNLABELLED An array of chemical modifications have recently emerged, designed to improve the stability of natural peptides that inherently suffer from short in vivo half-lives, thereby preventing their use as therapeutics. The resultant peptidomimetics resemble native peptides; however, they contain synthetic elements (e.g. non-coded amino acids) which confer improved biophysical properties. An elegant approach towards the identification of peptidomimetics is through screening of large combinatorial chemical libraries incorporating both coded and non-coded amino acids (e.g. β amino acids). We apply here our recently developed Integrated Chemical Biophysics (ICB) platform, which combines microscale one-bead one-compound screening with fluorescence tagging of retrieved hit beads and subsequent affinity determination of hit compounds in homogenous solution, to the task of identifying novel mixed α, β peptidomimetic binders for the adaptor protein SLAM-associated protein (SAP), which acts as an intracellular adapter that transduces T and NK cell activation. An enhancement to the ICB process is introduced which enables ranking hit compounds from single-point measurements even if the library compound is <95% pure and without HPLC purification of single-bead-derived substance. Finally, a novel computational protocol enabling binding mode and SAR rationalisation of hit compounds is also described which we now utilise to inform future library design. Application of the full ICB process has allowed identification of a highly interesting motif, Ac-β(3)-Pro-α-pTyr, as a mimic for the -1 and -2 positions of the natural binding motif and provides a promising starting point for further optimization towards higher-affinity SAP inhibitors with enhanced metabolic stability. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s12154-011-0071-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Hintersteiner
- Novartis Institutes for BioMedical Research Basel, Novartis Campus, Fabrikstrasse 10, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|