1
|
Li S, Gao Q, Xu H, Kirk AD. Rapamycin Prevents Expansion of Costimulation Blockade-resistant CD8+ Alloreactive Memory Cells following Depletional Induction in Renal Transplant Recipients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1305-1317. [PMID: 39302088 PMCID: PMC11493497 DOI: 10.4049/jimmunol.2400146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Alemtuzumab induction with belatacept/rapamycin-based maintenance immunotherapy (ABR) prevents kidney allograft rejection and specifically limits early costimulation blockade-resistant rejection (CoBRR). To evaluate the mechanisms by which this regimen alters CoBRR, we characterized the phenotype and functional response of preexisting memory cells to allogeneic endothelial cells using intracellular cytokine staining and flow cytometry. IL-7-induced lymphocyte proliferation in the presence or absence of rapamycin was assessed to characterize the phenotype of proliferating cells. Lymphocytes from 40 recipients who underwent transplant using the ABR regimen were studied longitudinally. The rapid immunoresponses of preexisting alloreactive cells to allogeneic endothelial cells were predominantly CD8+TNF-α+/IFN-γ+ cells. These cells were effector memory (TEM) and terminally differentiated effector memory cells lacking CD28 expression, and most were CD57+PD1-. Neither rapamycin nor belatacept directly inhibited these cells. IL-7, a cytokine induced during lymphopenia postdepletion, provoked dramatic CD8+ TEM cell proliferation and a low level of CD8+CD57+PD1- cell expansion in vitro. The IL-7 stimulation induced CD8+ cell mTOR phosphorylation, and rapamycin treatment markedly inhibited IL-7-induced TEM and CD57+PD1- cell expansion. This effect was evident in patients receiving the ABR in that the repopulation of CD8+CD57+PD1- TEM cells was substantially suppressed for at least 36 mo after transplant. These findings help define one mechanism by which a costimulation blockade/rapamycin-based therapy following alemtuzumab induction minimizes CoBRR, namely that in the presence of rapamycin, costimulation-resistant alloreactive cells are disproportionately ineffective at repopulating following post-transplant T cell depletion.
Collapse
Affiliation(s)
- Shu Li
- Departments of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Qimeng Gao
- Departments of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - He Xu
- Departments of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Allan D. Kirk
- Departments of Surgery, Duke University School of Medicine, Durham, NC, USA
- Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Wang Y, Papayova M, Warren E, Pears CJ. mTORC1 pathway activity biases cell fate choice. Sci Rep 2024; 14:20832. [PMID: 39242621 PMCID: PMC11379915 DOI: 10.1038/s41598-024-71298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Pluripotent stem cells can differentiate into distinct cell types but the intracellular pathways controlling cell fate choice are not well understood. The social amoeba Dictyostelium discoideum is a simplified system to study choice preference as proliferating amoebae enter a developmental cycle upon starvation and differentiate into two major cell types, stalk and spores, organised in a multicellular fruiting body. Factors such as acidic vesicle pH predispose amoebae to one fate. Here we show that the mechanistic target of rapamycin complex 1 (mTORC1) pathway has a role in cell fate bias in Dictyostelium. Inhibiting the mTORC1 pathway activity by disruption of Rheb (activator Ras homolog enriched in brain), or treatment with the mTORC1 inhibitor rapamycin prior to development, biases cells to a spore cell fate. Conversely activation of the pathway favours stalk cell differentiation. The Set1 histone methyltransferase, responsible for histone H3 lysine4 methylation, in Dictyostelium cells regulates transcription at the onset of development. Disruption of Set1 leads to high mTORC1 pathway activity and stalk cell predisposition. The ability of the mTORC1 pathway to regulate cell fate bias of cells undergoing differentiation offers a potential target to increase the efficiency of stem cell differentiation into a particular cell type.
Collapse
Affiliation(s)
- Yuntao Wang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Monika Papayova
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Eleanor Warren
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Catherine J Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
3
|
Pacella I, Pinzon Grimaldos A, Rossi A, Tucci G, Zagaglioni M, Potenza E, Pinna V, Rotella I, Cammarata I, Cancila V, Belmonte B, Tripodo C, Pietropaolo G, Di Censo C, Sciumè G, Licursi V, Peruzzi G, Antonucci Y, Campello S, Guerrieri F, Iebba V, Prota R, Di Chiara M, Terrin G, De Peppo V, Grazi GL, Barnaba V, Piconese S. Iron capture through CD71 drives perinatal and tumor-associated Treg expansion. JCI Insight 2024; 9:e167967. [PMID: 38954474 PMCID: PMC11383606 DOI: 10.1172/jci.insight.167967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Besides suppressing immune responses, regulatory T cells (Tregs) maintain tissue homeostasis and control systemic metabolism. Whether iron is involved in Treg-mediated tolerance is completely unknown. Here, we showed that the transferrin receptor CD71 was upregulated on activated Tregs infiltrating human liver cancer. Mice with a Treg-restricted CD71 deficiency spontaneously developed a scurfy-like disease, caused by impaired perinatal Treg expansion. CD71-null Tregs displayed decreased proliferation and tissue-Treg signature loss. In perinatal life, CD71 deficiency in Tregs triggered hepatic iron overload response, characterized by increased hepcidin transcription and iron accumulation in macrophages. Lower bacterial diversity, and reduction of beneficial species, were detected in the fecal microbiota of CD71 conditional knockout neonates. Our findings indicate that CD71-mediated iron absorption is required for Treg perinatal expansion and is related to systemic iron homeostasis and bacterial gut colonization. Therefore, we hypothesize that Tregs establish nutritional tolerance through competition for iron during bacterial colonization after birth.
Collapse
Affiliation(s)
- Ilenia Pacella
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Alessandra Rossi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Gloria Tucci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Zagaglioni
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Potenza
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Pinna
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ivano Rotella
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ilenia Cammarata
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | | | - Chiara Di Censo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Sapienza University of Rome, Rome, Italy
| | - Giovanna Peruzzi
- Centre for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Ylenia Antonucci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Guerrieri
- Cancer Research Centre of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, Lyon, France
| | - Valerio Iebba
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Rita Prota
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Maria Di Chiara
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Gianluca Terrin
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Valerio De Peppo
- Hepatobiliary and Pancreatic Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gian Luca Grazi
- Hepatobiliary and Pancreatic Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Barnaba
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Piconese
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
- Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
4
|
Jeong M, Cortopassi F, See JX, De La Torre C, Cerwenka A, Stojanovic A. Vitamin A-treated natural killer cells reduce interferon-gamma production and support regulatory T-cell differentiation. Eur J Immunol 2024; 54:e2250342. [PMID: 38593338 DOI: 10.1002/eji.202250342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that contribute to immune responses against stressed, transformed, or infected cells. NK cell effector functions are regulated by microenvironmental factors, including cytokines, metabolites, and nutrients. Vitamin A is an essential micronutrient that plays an indispensable role in embryogenesis and development, but was also reported to regulate immune responses. However, the role of vitamin A in regulating NK cell functions remains poorly understood. Here, we show that the most prevalent vitamin A metabolite, all-trans retinoic acid (atRA), induces transcriptional and functional changes in NK cells leading to altered metabolism and reduced IFN-γ production in response to a wide range of stimuli. atRA-exposed NK cells display a reduced ability to support dendritic cell (DC) maturation and to eliminate immature DCs. Moreover, they support the polarization and proliferation of regulatory T cells. These results imply that in vitamin A-enriched environments, NK cells can acquire functions that might promote tolerogenic immunity and/or immunosuppression.
Collapse
Affiliation(s)
- Mingeum Jeong
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesco Cortopassi
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jia-Xiang See
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ana Stojanovic
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Morel L, Scindia Y. Functional consequence of Iron dyshomeostasis and ferroptosis in systemic lupus erythematosus and lupus nephritis. Clin Immunol 2024; 262:110181. [PMID: 38458303 PMCID: PMC11672638 DOI: 10.1016/j.clim.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Systemic lupus erythematosus (SLE) and its renal manifestation Lupus nephritis (LN) are characterized by a dysregulated immune system, autoantibodies, and injury to the renal parenchyma. Iron accumulation and ferroptosis in the immune effectors and renal tubules are recently identified pathological features in SLE and LN. Ferroptosis is an iron dependent non-apoptotic form of regulated cell death and ferroptosis inhibitors have improved disease outcomes in murine models of SLE, identifying it as a novel druggable target. In this review, we discuss novel mechanisms by which iron accumulation and ferroptosis perpetuate immune cell mediated pathology in SLE/LN. We highlight intra-renal dysregulation of iron metabolism and ferroptosis as an underlying pathogenic mechanism of renal tubular injury. The basic concepts of iron biology and ferroptosis are also discussed to expose the links between iron, cell metabolism and ferroptosis, that identify intracellular pro-ferroptotic enzymes and their protein conjugates as potential targets to improve SLE/LN outcomes.
Collapse
Affiliation(s)
- Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Yogesh Scindia
- Department of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Schrezenmeier E, Dörner T, Halleck F, Budde K. Cellular Immunobiology and Molecular Mechanisms in Alloimmunity-Pathways of Immunosuppression. Transplantation 2024; 108:148-160. [PMID: 37309030 DOI: 10.1097/tp.0000000000004646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current maintenance immunosuppression commonly comprises a synergistic combination of tacrolimus as calcineurin inhibitor (CNI), mycophenolic acid, and glucocorticoids. Therapy is often individualized by steroid withdrawal or addition of belatacept or inhibitors of the mechanistic target of rapamycin. This review provides a comprehensive overview of their mode of action, focusing on the cellular immune system. The main pharmacological action of CNIs is suppression of the interleukin-2 pathway that leads to inhibition of T cell activation. Mycophenolic acid inhibits the purine pathway and subsequently diminishes T and B cell proliferation but also exerts a variety of effects on almost all immune cells, including inhibition of plasma cell activity. Glucocorticoids exert complex regulation via genomic and nongenomic mechanisms, acting mainly by downregulating proinflammatory cytokine signatures and cell signaling. Belatacept is potent in inhibiting B/T cell interaction, preventing formation of antibodies; however, it lacks the potency of CNIs in preventing T cell-mediated rejections. Mechanistic target of rapamycin inhibitors have strong antiproliferative activity on all cell types interfering with multiple metabolic pathways, partly explaining poor tolerability, whereas their superior effector T cell function might explain their benefits in the case of viral infections. Over the past decades, clinical and experimental studies provided a good overview on the underlying mechanisms of immunosuppressants. However, more data are needed to delineate the interaction between innate and adaptive immunity to better achieve tolerance and control of rejection. A better and more comprehensive understanding of the mechanistic reasons for failure of immunosuppressants, including individual risk/benefit assessments, may permit improved patient stratification.
Collapse
Affiliation(s)
- Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Kapnick SM, Martin CA, Jewell CM. Engineering metabolism to modulate immunity. Adv Drug Deliv Rev 2024; 204:115122. [PMID: 37935318 PMCID: PMC10843796 DOI: 10.1016/j.addr.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Metabolic programming and reprogramming have emerged as pivotal mechanisms for altering immune cell function. Thus, immunometabolism has become an attractive target area for treatment of immune-mediated disorders. Nonetheless, many hurdles to delivering metabolic cues persist. In this review, we consider how biomaterials are poised to transform manipulation of immune cell metabolism through integrated control of metabolic configurations to affect outcomes in autoimmunity, regeneration, transplant, and cancer. We emphasize the features of nanoparticles and other biomaterials that permit delivery of metabolic cues to the intracellular compartment of immune cells, or strategies for altering signals in the extracellular space. We then provide perspectives on the potential for reciprocal regulation of immunometabolism by the physical properties of materials themselves. Lastly, opportunities for clinical translation are highlighted. This discussion contributes to our understanding of immunometabolism, biomaterials-based strategies for altering metabolic configurations in immune cells, and emerging concepts in this evolving field.
Collapse
Affiliation(s)
- Senta M Kapnick
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA
| | - Corinne A Martin
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S Greene Street, Suite N9E17, Baltimore, MD, USA.
| |
Collapse
|
8
|
Zuhair R, Eastwood M, Jones M, Cross A, Hester J, Issa F, Ginty F, Sailem H. Decoding mTOR signalling heterogeneity in the tumour microenvironment using multiplexed imaging and graph convolutional networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573693. [PMID: 38234756 PMCID: PMC10793449 DOI: 10.1101/2023.12.30.573693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Evaluating the contribution of the tumour microenvironment (TME) in tumour progression has proven a complex challenge due to the intricate interactions within the TME. Multiplexed imaging is an emerging technology that allows concurrent assessment of multiple of these components simultaneously. Here we utilise a highly multiplexed dataset of 61 markers across 746 colorectal tumours to investigate how complex mTOR signalling in different tissue compartments influences patient prognosis. We found that the signalling of mTOR pathway can have heterogeneous activation patterns in tumour and immune compartments which correlate with patient prognosis. Using graph neural networks, we determined the most predictive features of mTOR activity in immune cells and identified relevant cellular subpopulations. We validated our observations using spatial transcriptomics data analysis in an independent patient cohort. Our work provides a framework for studying complex cell signalling and reveals important insights for developing mTOR-based therapies.
Collapse
|
9
|
Lan T, Zeng Q, Zhu Y, Zheng G, Chen K, Jiang W, Lu W. Xin-Li formula attenuates heart failure induced by a combination of hyperlipidemia and myocardial infarction in rats via Treg immunomodulation and NLRP3 inflammasome inhibition. J Tradit Complement Med 2023; 13:441-453. [PMID: 37693100 PMCID: PMC10491985 DOI: 10.1016/j.jtcme.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
Background and aim Heart failure (HF) is a complex clinical syndrome that represents the end result of several pathophysiologic processes. Despite a dramatic evolution in diagnosis and management of HF, most patients eventually become resistant to therapy. Xin-Li Formula (XLF) is a Chinese medicine formula which shows great potential in the treatment of HF according to our previous studies. The present study was designed to investigate the effects of XLF on HF induced by a combination of hyperlipidemia and myocardial infarction (MI) in rats and reveal the underlying mechanism. Experimental procedure A rat model of HF induced by hyperlipidemia and MI was established with intragastric administration of XLF and Perindopril. In vitro, CD4+ T cells from mouse spleen and LPS/ATP-stimulated THP-1 macrophages were employed. Results and conclusion XLF was shown to have markedly protective effects on MI-induced HF with hyperlipidemia in rats, including improvement of left ventricular function, reduction of left ventricular fibrosis and infarct size. Moreover, XLF administration significantly increased the number of Foxp3+ Tregs, and inhibited mTOR phosphorylation and NLRP3 signaling pathway. In vitro, we found that XLF had induced Treg activation via the inhibition of mTOR phosphorylation in CD4+ T cells. Additionally, XLF inhibited NLRP3 inflammasome activation in LPS/ATP-stimulated THP-1 macrophages. Taken together, this study raises the exciting possibility that Xin-Li Formula may benefit HF patients due to its immunomodulatory and anti-inflammatory effects via Treg activation and NLRP3 inflammasome inhibition.
Collapse
Affiliation(s)
- Taohua Lan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, PR China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, PR China
| | - Qiaohuang Zeng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, PR China
| | - Ying Zhu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, PR China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, PR China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, PR China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Wei Jiang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, PR China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, PR China
| | - Weihui Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, PR China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, PR China
| |
Collapse
|
10
|
Wang Y, Lifshitz L, Silverstein NJ, Mintzer E, Luk K, StLouis P, Brehm MA, Wolfe SA, Deeks SG, Luban J. Transcriptional and chromatin profiling of human blood innate lymphoid cell subsets sheds light on HIV-1 pathogenesis. EMBO J 2023; 42:e114153. [PMID: 37382276 PMCID: PMC10425848 DOI: 10.15252/embj.2023114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a diverse population of cells that include NK cells and contribute to tissue homeostasis and repair, inflammation, and provide protection from infection. The interplay between human blood ILCs, as well as their responses to HIV-1 infection, remains poorly understood. This study used transcriptional and chromatin profiling to explore these questions. Transcriptional profiling and flow cytometry analysis support that there are four main ILC subsets found in human blood. Unlike in mice, human NK cells expressed the tissue repair protein amphiregulin (AREG). AREG production was induced by TCF7/WNT, IL-2, and IL-15, and inhibited by TGFB1, a cytokine increased in people living with HIV-1. In HIV-1 infection, the percentage of AREG+ NK cells correlated positively with the numbers of ILCs and CD4+ T cells but negatively with the concentration of inflammatory cytokine IL-6. NK-cell knockout of the TGFB1-stimulated WNT antagonist RUNX3 increased AREG production. Antiviral gene expression was increased in all ILC subsets from HIV-1 viremic people, and anti-inflammatory gene MYDGF was increased in an NK-cell subset from HIV-1-infected people whose viral load was undetectable in the absence of antiretroviral therapy. The percentage of defective NK cells in people living with HIV-1 correlated inversely with ILC percentage and CD4+ T-cell counts. CD4+ T cells and their production of IL-2 prevented the loss of NK-cell function by activating mTOR. These studies clarify how ILC subsets are interrelated and provide insight into how HIV-1 infection disrupts NK cells, including an uncharacterized homeostatic function in NK cells.
Collapse
Affiliation(s)
- Yetao Wang
- Hospital for Skin Diseases (Institute of Dermatology)Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjingChina
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Lawrence Lifshitz
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Noah J Silverstein
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Esther Mintzer
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Pamela StLouis
- Diabetes Center of ExcellenceUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Michael A Brehm
- Diabetes Center of ExcellenceUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Steven G Deeks
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Jeremy Luban
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Department of Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Ragon Institute of MGH, MIT, and HarvardCambridgeMAUSA
- Massachusetts Consortium on Pathogen ReadinessBostonMAUSA
| |
Collapse
|
11
|
Gill AL, Wang PH, Lee J, Hudson WH, Ando S, Araki K, Hu Y, Wieland A, Im S, Gavora A, Medina CB, Freeman GJ, Hashimoto M, Reiner SL, Ahmed R. PD-1 blockade increases the self-renewal of stem-like CD8 T cells to compensate for their accelerated differentiation into effectors. Sci Immunol 2023; 8:eadg0539. [PMID: 37624909 PMCID: PMC10798572 DOI: 10.1126/sciimmunol.adg0539] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
PD-1+TCF-1+ stem-like CD8 T cells act as critical resource cells for maintaining T cell immunity in chronic viral infections and cancer. In addition, they provide the proliferative burst of effector CD8 T cells after programmed death protein 1 (PD-1)-directed immunotherapy. However, it is not known whether checkpoint blockade diminishes the number of these stem-like progenitor cells as effector cell differentiation increases. To investigate this, we used the mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection. Treatment of chronically infected mice with either αPD-1 or αPD-L1 antibody not only increased effector cell differentiation from the virus-specific stem-like CD8 T cells but also increased their proliferation so their numbers were maintained. The increased self-renewal of LCMV-specific stem-like CD8 T cells was mTOR dependent. We used microscopy to understand the division of these progenitor cells and found that after PD-1 blockade, an individual dividing cell could give rise to a differentiated TCF-1- daughter cell alongside a self-renewing TCF-1+ sister cell. This asymmetric division helped to preserve the number of stem-like cells. Moreover, we found that the PD-1+TCF-1+ stem-like CD8 T cells retained their transcriptional program and their in vivo functionality in terms of responding to viral infection and to repeat PD-1 blockade. Together, our results demonstrate that PD-1 blockade does not deplete the stem-like population despite increasing effector differentiation. These findings have implications for PD-1-directed immunotherapy in humans.
Collapse
Affiliation(s)
- Amanda L. Gill
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine; Atlanta, GA, 30329, USA
| | - Peter H. Wang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center; New York, NY, 10032, USA
| | - Judong Lee
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine; Atlanta, GA, 30329, USA
| | - William H. Hudson
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine; Atlanta, GA, 30329, USA
| | - Satomi Ando
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati, OH, 45229, USA
| | - Koichi Araki
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati, OH, 45229, USA
| | - Yinghong Hu
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine; Atlanta, GA, 30329, USA
| | - Andreas Wieland
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University; Columbus, OH, 43210, USA
| | - Sejin Im
- Department of Immunology, Sungkyunkwan University School of Medicine; Suwon, Republic of Korea
| | - Autumn Gavora
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine; Atlanta, GA, 30329, USA
| | - Christopher B. Medina
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine; Atlanta, GA, 30329, USA
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Masao Hashimoto
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine; Atlanta, GA, 30329, USA
| | - Steven L. Reiner
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center; New York, NY, 10032, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine; Atlanta, GA, 30329, USA
| |
Collapse
|
12
|
Kennewick KT, Bensinger SJ. Decoding the crosstalk between mevalonate metabolism and T cell function. Immunol Rev 2023; 317:71-94. [PMID: 36999733 DOI: 10.1111/imr.13200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
The mevalonate pathway is an essential metabolic pathway in T cells regulating development, proliferation, survival, differentiation, and effector functions. The mevalonate pathway is a complex, branched pathway composed of many enzymes that ultimately generate cholesterol and nonsterol isoprenoids. T cells must tightly control metabolic flux through the branches of the mevalonate pathway to ensure sufficient isoprenoids and cholesterol are available to meet cellular demands. Unbalanced metabolite flux through the sterol or the nonsterol isoprenoid branch is metabolically inefficient and can have deleterious consequences for T cell fate and function. Accordingly, there is tight regulatory control over metabolic flux through the branches of this essential lipid synthetic pathway. In this review we provide an overview of how the branches of the mevalonate pathway are regulated in T cells and discuss our current understanding of the relationship between mevalonate metabolism, cholesterol homeostasis and T cell function.
Collapse
Affiliation(s)
- Kelly T Kennewick
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Steven J Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| |
Collapse
|
13
|
Istomine R, Al-Aubodah TA, Alvarez F, Smith JA, Wagner C, Piccirillo CA. The eIF4EBP-eIF4E axis regulates CD4 + T cell differentiation through modulation of T cell activation and metabolism. iScience 2023; 26:106683. [PMID: 37187701 PMCID: PMC10176268 DOI: 10.1016/j.isci.2023.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/27/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
CD4+ T cells are critical for adaptive immunity, differentiating into distinct effector and regulatory subsets. Although the transcriptional programs underlying their differentiation are known, recent research has highlighted the importance of mRNA translation in determining protein abundance. We previously conducted genome-wide analysis of translation in CD4+ T cells revealing distinct translational signatures distinguishing these subsets, identifying eIF4E as a central differentially translated transcript. As eIF4E is vital for eukaryotic translation, we examined how altered eIF4E activity affected T cell function using mice lacking eIF4E-binding proteins (BP-/-). BP-/- effector T cells showed elevated Th1 responses ex vivo and upon viral challenge with enhanced Th1 differentiation observed in vitro. This was accompanied by increased TCR activation and elevated glycolytic activity. This study highlights how regulating T cell-intrinsic eIF4E activity can influence T cell activation and differentiation, suggesting the eIF4EBP-eIF4E axis as a potential therapeutic target for controlling aberrant T cell responses.
Collapse
Affiliation(s)
- Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Jacob A. Smith
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carston Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
- Corresponding author
| |
Collapse
|
14
|
Collins DR, Hitschfel J, Urbach JM, Mylvaganam GH, Ly NL, Arshad U, Racenet ZJ, Yanez AG, Diefenbach TJ, Walker BD. Cytolytic CD8 + T cells infiltrate germinal centers to limit ongoing HIV replication in spontaneous controller lymph nodes. Sci Immunol 2023; 8:eade5872. [PMID: 37205767 DOI: 10.1126/sciimmunol.ade5872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Follicular CD8+ T cells (fCD8) mediate surveillance in lymph node (LN) germinal centers against lymphotropic infections and cancers, but the precise mechanisms by which these cells mediate immune control remain incompletely resolved. To address this, we investigated functionality, clonotypic compartmentalization, spatial localization, phenotypic characteristics, and transcriptional profiles of LN-resident virus-specific CD8+ T cells in persons who control HIV without medications. Antigen-induced proliferative and cytolytic potential consistently distinguished spontaneous controllers from noncontrollers. T cell receptor analysis revealed complete clonotypic overlap between peripheral and LN-resident HIV-specific CD8+ T cells. Transcriptional analysis of LN CD8+ T cells revealed gene signatures of inflammatory chemotaxis and antigen-induced effector function. In HIV controllers, the cytotoxic effectors perforin and granzyme B were elevated among virus-specific CXCR5+ fCD8s proximate to foci of HIV RNA within germinal centers. These results provide evidence consistent with cytolytic control of lymphotropic infection supported by inflammatory recruitment, antigen-specific proliferation, and cytotoxicity of fCD8s.
Collapse
Affiliation(s)
- David R Collins
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Julia Hitschfel
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Geetha H Mylvaganam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ngoc L Ly
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Umar Arshad
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Adrienne G Yanez
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
Fehrenbach DJ, Nguyen B, Alexander MR, Madhur MS. Modulating T Cell Phenotype and Function to Treat Hypertension. KIDNEY360 2023; 4:e534-e543. [PMID: 36951464 PMCID: PMC10278787 DOI: 10.34067/kid.0000000000000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/25/2023] [Indexed: 03/24/2023]
Abstract
Hypertension is the leading modifiable risk factor of worldwide morbidity and mortality because of its effects on cardiovascular and renal end-organ damage. Unfortunately, BP control is not sufficient to fully reduce the risks of hypertension, underscoring the need for novel therapies that address end-organ damage in hypertension. Over the past several decades, the link between immune activation and hypertension has been well established, but there are still no therapies for hypertension that specifically target the immune system. In this review, we describe the critical role played by T cells in hypertension and hypertensive end-organ damage and outline potential therapeutic targets to modulate T-cell phenotype and function in hypertension without causing global immunosuppression.
Collapse
Affiliation(s)
- Daniel J. Fehrenbach
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
| | - Bianca Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Matthew R. Alexander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee
| | - Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee
| |
Collapse
|
16
|
Lin C, Traets JJH, Vredevoogd DW, Visser NL, Peeper DS. TSC2 regulates tumor susceptibility to TRAIL-mediated T-cell killing by orchestrating mTOR signaling. EMBO J 2023; 42:e111614. [PMID: 36715448 PMCID: PMC9975943 DOI: 10.15252/embj.2022111614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Resistance to cancer immunotherapy continues to impair common clinical benefit. Here, we use whole-genome CRISPR-Cas9 knockout data to uncover an important role for Tuberous Sclerosis Complex 2 (TSC2) in determining tumor susceptibility to cytotoxic T lymphocyte (CTL) killing in human melanoma cells. TSC2-depleted tumor cells had disrupted mTOR regulation following CTL attack, which was associated with enhanced cell death. Wild-type tumor cells adapted to CTL attack by shifting their mTOR signaling balance toward increased mTORC2 activity, circumventing apoptosis, and necroptosis. TSC2 ablation strongly augmented tumor cell sensitivity to CTL attack in vitro and in vivo, suggesting one of its functions is to critically protect tumor cells. Mechanistically, TSC2 inactivation caused elevation of TRAIL receptor expression, cooperating with mTORC1-S6 signaling to induce tumor cell death. Clinically, we found a negative correlation between TSC2 expression and TRAIL signaling in TCGA patient cohorts. Moreover, a lower TSC2 immune response signature was observed in melanomas from patients responding to immune checkpoint blockade. Our study uncovers a pivotal role for TSC2 in the cancer immune response by governing crosstalk between TSC2-mTOR and TRAIL signaling, aiding future therapeutic exploration of this pathway in immuno-oncology.
Collapse
Affiliation(s)
- Chun‐Pu Lin
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
17
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|
18
|
Malcolm J, Nyirenda MH, Brown JL, Adrados-Planell A, Campbell L, Butcher JP, Glass DG, Piela K, Goodyear CS, Wright AJ, McInnes IB, Millington OR, Culshaw S. C-terminal citrullinated peptide alters antigen-specific APC:T cell interactions leading to breach of immune tolerance. J Autoimmun 2023; 135:102994. [PMID: 36706535 DOI: 10.1016/j.jaut.2023.102994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/03/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
In rheumatoid arthritis, the emergence of anti-citrullinated autoimmunity is associated with HLA-antigen-T cell receptor complexes. The precise mechanisms underpinning this breach of tolerance are not well understood. Porphyromonas gingivalis expresses an enzyme capable of non-endogenous C-terminal citrullination with potential to generate citrullinated autoantigens. Here we document how C-terminal citrullination of ovalbumin peptide323-339 alters the interaction between antigen-presenting cells and OTII T cells to induce functional changes in responding T cells. These data reveal that C-terminal citrullination is sufficient to breach T cell peripheral tolerance in vivo and reveal the potential of C-terminal citrullination to lower the threshold for T cell activation. Finally, we demonstrate a role for the IL-2/STAT5/CD25 signalling axis in breach of tolerance. Together, our data identify a tractable mechanism and targetable pathways underpinning breach of tolerance in rheumatoid arthritis and provide new conceptual insight into the origins of anti-citrullinated autoimmunity.
Collapse
Affiliation(s)
- J Malcolm
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - M H Nyirenda
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle and Oxford, UK
| | - J L Brown
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - A Adrados-Planell
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Genomics and Health, FISABIO Foundation, Avda Cataluña 21, 46020, Valencia, Spain
| | - L Campbell
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - J P Butcher
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - D G Glass
- Centre for Biophotonics, Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - K Piela
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - C S Goodyear
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle and Oxford, UK
| | - A J Wright
- Centre for Biophotonics, Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom; Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - I B McInnes
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - O R Millington
- Centre for Biophotonics, Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - S Culshaw
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
19
|
Wu Q, Lv Q, Liu X, Ye X, Cao L, Wang M, Li J, Yang Y, Li L, Wang S. Natural compounds from botanical drugs targeting mTOR signaling pathway as promising therapeutics for atherosclerosis: A review. Front Pharmacol 2023; 14:1083875. [PMID: 36744254 PMCID: PMC9894899 DOI: 10.3389/fphar.2023.1083875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that is a major cause of cardiovascular diseases (CVDs), including coronary artery disease, hypertension, myocardial infarction, and heart failure. Hence, the mechanisms of AS are still being explored. A growing compendium of evidence supports that the activity of the mechanistic/mammalian target of rapamycin (mTOR) is highly correlated with the risk of AS. The mTOR signaling pathway contributes to AS progression by regulating autophagy, cell senescence, immune response, and lipid metabolism. Various botanical drugs and their functional compounds have been found to exert anti- AS effects by modulating the activity of the mTOR signaling pathway. In this review, we summarize the pathogenesis of AS based on the mTOR signaling pathway from the aspects of immune response, autophagy, cell senescence, and lipid metabolism, and comb the recent advances in natural compounds from botanical drugs to inhibit the mTOR signaling pathway and delay AS development. This review will provide a new perspective on the mechanisms and precision treatments of AS.
Collapse
Affiliation(s)
- Qian Wu
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Qianyu Lv
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao’an Liu
- Capital University of Medical, Beijing, China
| | - Xuejiao Ye
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Cao
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Manshi Wang
- Beijing Xicheng District Guangwai Hospital, Beijing, China
| | - Junjia Li
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yingtian Yang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lanlan Li
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shihan Wang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Liu P, Quan X, Zhang Q, Chen Y, Wang X, Xu C, Li N. Multi-omics reveals the mechanisms of DEHP driven pulmonary toxicity in ovalbumin-sensitized mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114355. [PMID: 36508822 DOI: 10.1016/j.ecoenv.2022.114355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The plasticizer di- (2-ethylhexyl) phthalate (DEHP) is considered a risk factor for allergic diseases and has attracted public attention for its adverse effects on health. However, respiratory adverse effects after DEHP exposure in food allergies have rarely been reported. MiRNAs are considered to be key regulators in the complex interrelationships between the host and microbiome and may be a potential factor involved in DEHP-induced pulmonary toxicity. To investigate the adverse effects of DEHP on the lung during sensitization, we established an ovalbumin (OVA)-sensitized mouse model exposed to DEHP and performed 16S rDNA gene sequencing, miRNA sequencing, and correlation analysis. Our results showed that DEHP aggravated the immune disorder in OVA-sensitized mice, which was mainly characterized by an increase in the proportion of Th2 lymphocytes, and further enhanced OVA-induced airway inflammation without promoting pulmonary fibrosis. Compared with the OVA group, DEHP interfered with the lung microbial community, making Proteobacteria the dominant phylum, while Bacteroidetes were significantly reduced. Differentially expressed miRNAs were enriched in the PI3K/AKT pathway, which was closely related to immune function and airway inflammation. The expression of miR-146b-5p was elevated in the DEHP group, which was positively correlated with the proportion of Th2 cells and significantly negatively correlated with the abundance of Bacteroidetes. The results indicate that DEHP may interfere with the expression of miR-146b-5p, affect the composition of the lung microbiota, induce an imbalance in T cells, and lead to immune disorders and airway inflammation. The current study uses multi-omics to reveal the potential link between the plasticizer DEHP and allergic diseases and provides new insights into the ecotoxicology of environmental exposures to DEHP.
Collapse
Affiliation(s)
- Ping Liu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Quan
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Na Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
21
|
Li T, Yang CL, Du T, Zhang P, Zhou Y, Li XL, Wang CC, Liu Y, Li H, Zhang M, Duan RS. Diabetes mellitus aggravates humoral immune response in myasthenia gravis by promoting differentiation and activation of circulating Tfh cells. Clin Immunol 2022; 245:109141. [PMID: 36270469 DOI: 10.1016/j.clim.2022.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022]
|
22
|
Yu H, Jacquelot N, Belz GT. Metabolic features of innate lymphoid cells. J Exp Med 2022; 219:e20221140. [PMID: 36301303 PMCID: PMC9617479 DOI: 10.1084/jem.20221140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
Innate and adaptive immune cells are found in distinct tissue niches where they orchestrate immune responses. This requires intrinsic and temporal metabolic adaptability to coordinately activate the immune response cascade. Dysregulation of this program is a key feature of immunosuppression. Direct or indirect metabolic immune cell reprogramming may offer new approaches to modulate immune cells behavior for therapy to overcome dysregulation. In this review, we explored how metabolism regulates lymphocytes beyond the classical T cell subsets. We focus on the innate lymphoid cell (ILC) family, highlighting the distinct metabolic characteristics of these cells, the impact of environmental factors, and the receptors that could alter immune cell functions through manipulation of metabolic pathways to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Huiyang Yu
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, Australia
| | - Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gabrielle T. Belz
- The University of Queensland, Diamantina Institute, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Franz T, Negele J, Bruno P, Böttcher M, Mitchell-Flack M, Reemts L, Krone A, Mougiakakos D, Müller AJ, Zautner AE, Kahlfuss S. Pleiotropic effects of antibiotics on T cell metabolism and T cell-mediated immunity. Front Microbiol 2022; 13:975436. [DOI: 10.3389/fmicb.2022.975436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
T cells orchestrate adaptive and innate immune responses against pathogens and transformed cells. However, T cells are also the main adaptive effector cells that mediate allergic and autoimmune reactions. Within the last few years, it has become abundantly clear that activation, differentiation, effector function, and environmental adaptation of T cells is closely linked to their energy metabolism. Beyond the provision of energy equivalents, metabolic pathways in T cells generate building blocks required for clonal expansion. Furthermore, metabolic intermediates directly serve as a source for epigenetic gene regulation by histone and DNA modification mechanisms. To date, several antibiotics were demonstrated to modulate the metabolism of T cells especially by altering mitochondrial function. Here, we set out to systematically review current evidence about how beta-lactam antibiotics, macrolides, fluoroquinolones, tetracyclines, oxazolidinones, nitroimidazoles, and amphenicols alter the metabolism and effector functions of CD4+ T helper cell populations and CD8+ T cells in vitro and in vivo. Based on this evidence, we have developed an overview on how the use of these antibiotics may be beneficial or detrimental in T cell-mediated physiological and pathogenic immune responses, such as allergic and autoimmune diseases, by altering the metabolism of different T cell populations.
Collapse
|
24
|
O'Shea AE, Valdera FA, Ensley D, Smolinsky TR, Cindass JL, Kemp Bohan PM, Hickerson AT, Carpenter EL, McCarthy PM, Adams AM, Vreeland TJ, Clifton GT, Peoples GE. Immunologic and dose dependent effects of rapamycin and its evolving role in chemoprevention. Clin Immunol 2022; 245:109095. [PMID: 35973640 DOI: 10.1016/j.clim.2022.109095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Rapamycin inhibits the mechanistic (formally mammalian) target of rapamycin (mTOR), an evolutionarily conserved intracellular kinase that influences activation of growth signaling pathways and immune responses to malignancy. Rapamycin has been found to have both immunosuppressant and immunostimulatory effects throughout the innate and adaptive responses based on the inhibition of mTOR signaling. While the immunosuppressant properties of rapamycin and mTOR inhibition explain rapamycin's success in the prevention of transplant rejection, the immunostimulatory characteristics are likely partially responsible for rapamycin's anti-neoplastic effects. The immunologic response to rapamycin is at least partially dependent on the dose and administration schedule, with lower doses inducing immunostimulation and intermittent dosing promoting immune function while limiting metabolic and immunosuppressant toxicities. In addition to its FDA-approved application in advanced malignancies, rapamycin may be effective as a chemopreventive agent, suspending progression of low-grade cancers, preventing invasive conversion of in situ malignancy, or delaying malignant transformation of established pre-malignant conditions.
Collapse
Affiliation(s)
- Anne E O'Shea
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | - Franklin A Valdera
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA.
| | - Daniel Ensley
- Department of Urology, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | - Todd R Smolinsky
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | - Jessica L Cindass
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | | | | | | | - Patrick M McCarthy
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | - Alexandra M Adams
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA
| | - Timothy J Vreeland
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA; Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Guy T Clifton
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA; Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
25
|
Yahsi B, Gunaydin G. Immunometabolism - The Role of Branched-Chain Amino Acids. Front Immunol 2022; 13:886822. [PMID: 35812393 PMCID: PMC9259854 DOI: 10.3389/fimmu.2022.886822] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Immunometabolism has been the focus of extensive research over the last years, especially in terms of augmenting anti-tumor immune responses. Regulatory T cells (Tregs) are a subset of CD4+ T cells, which have been known for their immunosuppressive roles in various conditions including anti-tumor immune responses. Even though several studies aimed to target Tregs in the tumor microenvironment (TME), such approaches generally result in the inhibition of the Tregs non-specifically, which may cause immunopathologies such as autoimmunity. Therefore, specifically targeting the Tregs in the TME would be vital in terms of achieving a successful and specific treatment. Recently, an association between Tregs and isoleucine, which represents one type of branched-chain amino acids (BCAAs), has been demonstrated. The presence of isoleucine seems to affect majorly Tregs, rather than conventional T cells. Considering the fact that Tregs bear several distinct metabolic features in the TME, targeting their immunometabolic pathways may be a rational approach. In this Review, we provide a general overview on the potential distinct metabolic features of T cells, especially focusing on BCAAs in Tregs as well as in their subtypes.
Collapse
Affiliation(s)
- Berkay Yahsi
- School of Medicine, Hacettepe University, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| |
Collapse
|
26
|
Dimitriou ID, Meiri D, Jitkova Y, Elford AR, Koritzinsky M, Schimmer AD, Ohashi PS, Sonenberg N, Rottapel R. Translational Control by 4E-BP1/2 Suppressor Proteins Regulates Mitochondrial Biosynthesis and Function during CD8 + T Cell Proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2702-2712. [PMID: 35667842 DOI: 10.4049/jimmunol.2101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
CD8+ T cell proliferation and differentiation into effector and memory states are high-energy processes associated with changes in cellular metabolism. CD28-mediated costimulation of T cells activates the PI3K/AKT/mammalian target of rapamycin signaling pathway and induces eukaryotic translation initiation factor 4E-dependent translation through the derepression by 4E-BP1 and 4E-BP2. In this study, we demonstrate that 4E-BP1/2 proteins are required for optimum proliferation of mouse CD8+ T cells and the development of an antiviral effector function. We show that translation of genes encoding mitochondrial biogenesis is impaired in T cells derived from 4E-BP1/2-deficient mice. Our findings demonstrate an unanticipated role for 4E-BPs in regulating a metabolic program that is required for cell growth and biosynthesis during the early stages of CD8+ T cell expansion.
Collapse
Affiliation(s)
- Ioannis D Dimitriou
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David Meiri
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alisha R Elford
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada;
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
McTernan PM, Levitt DE, Welsh DA, Simon L, Siggins RW, Molina PE. Alcohol Impairs Immunometabolism and Promotes Naïve T Cell Differentiation to Pro-Inflammatory Th1 CD4 + T Cells. Front Immunol 2022; 13:839390. [PMID: 35634279 PMCID: PMC9133564 DOI: 10.3389/fimmu.2022.839390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/19/2022] [Indexed: 12/30/2022] Open
Abstract
CD4+ T cell differentiation to pro-inflammatory and immunosuppressive subsets depends on immunometabolism. Pro-inflammatory CD4+ subsets rely on glycolysis, while immunosuppressive Treg cells require functional mitochondria for their differentiation and function. Previous pre-clinical studies have shown that ethanol (EtOH) administration increases pro-inflammatory CD4+ T cell subsets; whether this shift in immunophenotype is linked to alterations in CD4+ T cell metabolism had not been previously examined. The objective of this study was to determine whether ethanol alters CD4+ immunometabolism, and whether this affects CD4+ T cell differentiation. Naïve human CD4+ T cells were plated on anti-CD3 coated plates with soluble anti-CD28, and differentiated with IL-12 in the presence of ethanol (0 and 50 mM) for 3 days. Both Tbet-expressing (Th1) and FOXP3-expressing (Treg) CD4+ T cells increased after differentiation. Ethanol dysregulated CD4+ T cell differentiation by increasing Th1 and decreasing Treg CD4+ T cell subsets. Ethanol increased glycolysis and impaired oxidative phosphorylation in differentiated CD4+ T cells. Moreover, the glycolytic inhibitor 2-deoxyglucose (2-DG) prevented the ethanol-mediated increase in Tbet-expressing CD4+ T cells but did not attenuate the decrease in FOXP3 expression in differentiated CD4+ T cells. Ethanol increased Treg mitochondrial volume and altered expression of genes implicated in mitophagy and autophagosome formation (PINK1 and ATG7). These results suggest that ethanol impairs CD4+ T cell immunometabolism and disrupts mitochondrial repair processes as it promotes CD4+ T cell differentiation to a pro-inflammatory phenotype.
Collapse
Affiliation(s)
- Patrick M. McTernan
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Danielle E. Levitt
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - David A. Welsh
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Medicine, Section of Pulmonary/Critical Care Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Robert W. Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
28
|
Oberholtzer N, Quinn KM, Chakraborty P, Mehrotra S. New Developments in T Cell Immunometabolism and Implications for Cancer Immunotherapy. Cells 2022; 11:708. [PMID: 35203357 PMCID: PMC8870179 DOI: 10.3390/cells11040708] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Despite rapid advances in the field of immunotherapy, the elimination of established tumors has not been achieved. Many promising new treatments such as adoptive cell therapy (ACT) fall short, primarily due to the loss of T cell effector function or the failure of long-term T cell persistence. With the availability of new tools and advancements in technology, our understanding of metabolic processes has increased enormously in the last decade. Redundancy in metabolic pathways and overlapping targets that could address the plasticity and heterogenous phenotypes of various T cell subsets have illuminated the need for understanding immunometabolism in the context of multiple disease states, including cancer immunology. Herein, we discuss the developing field of T cell immunometabolism and its crucial relevance to improving immunotherapeutic approaches. This in-depth review details the metabolic pathways and preferences of the antitumor immune system and the state of various metabolism-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Nathaniel Oberholtzer
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.Q.); (P.C.)
| | | | | | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.Q.); (P.C.)
| |
Collapse
|
29
|
Lian X, Yang K, Li R, Li M, Zuo J, Zheng B, Wang W, Wang P, Zhou S. Immunometabolic rewiring in tumorigenesis and anti-tumor immunotherapy. Mol Cancer 2022; 21:27. [PMID: 35062950 PMCID: PMC8780708 DOI: 10.1186/s12943-021-01486-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Cellular metabolism constitutes a fundamental process in biology. During tumor initiation and progression, each cellular component in the cancerous niche undergoes dramatic metabolic reprogramming, adapting to a challenging microenvironment of hypoxia, nutrient deprivation, and other stresses. While the metabolic hallmarks of cancer have been extensively studied, the metabolic states of the immune cells are less well elucidated. Here we review the metabolic disturbance and fitness of the immune system in the tumor microenvironment (TME), focusing on the impact of oncometabolites to the function of immune cells and the clinical significance of targeting metabolism in anti-tumor immunotherapy. Metabolic alterations in the immune system of TME offer novel therapeutic insight into cancer treatment.
Collapse
|
30
|
Ginefra P, Carrasco Hope H, Spagna M, Zecchillo A, Vannini N. Ionic Regulation of T-Cell Function and Anti-Tumour Immunity. Int J Mol Sci 2021; 22:ijms222413668. [PMID: 34948472 PMCID: PMC8705279 DOI: 10.3390/ijms222413668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
The capacity of T cells to identify and kill cancer cells has become a central pillar of immune-based cancer therapies. However, T cells are characterized by a dysfunctional state in most tumours. A major obstacle for proper T-cell function is the metabolic constraints posed by the tumour microenvironment (TME). In the TME, T cells compete with cancer cells for macronutrients (sugar, proteins, and lipid) and micronutrients (vitamins and minerals/ions). While the role of macronutrients in T-cell activation and function is well characterized, the contribution of micronutrients and especially ions in anti-tumour T-cell activities is still under investigation. Notably, ions are important for most of the signalling pathways regulating T-cell anti-tumour function. In this review, we discuss the role of six biologically relevant ions in T-cell function and in anti-tumour immunity, elucidating potential strategies to adopt to improve immunotherapy via modulation of ion metabolism.
Collapse
|
31
|
Zhang M, Jin X, Sun R, Xiong X, Wang J, Xie D, Zhao M. Optimization of metabolism to improve efficacy during CAR-T cell manufacturing. J Transl Med 2021; 19:499. [PMID: 34876185 PMCID: PMC8650271 DOI: 10.1186/s12967-021-03165-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Chimeric antigen receptor T cell (CAR-T cell) therapy is a relatively new, effective, and rapidly evolving therapeutic for adoptive immunotherapies. Although it has achieved remarkable effect in hematological malignancies, there are some problems that remain to be resolved. For example, there are high recurrence rates and poor efficacy in solid tumors. In this review, we first briefly describe the metabolic re-editing of T cells and the changes in metabolism during the preparation of CAR-T cells. Furthermore, we summarize the latest developments and newest strategies to improve the metabolic adaptability and antitumor activity of CAR-T cells in vitro and in vivo.
Collapse
Affiliation(s)
- Meng Zhang
- First Center Clinical College, Tianjin Medical University, Tianjin, 300192, China
| | - Xin Jin
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Rui Sun
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xia Xiong
- First Center Clinical College, Tianjin Medical University, Tianjin, 300192, China
| | - Jiaxi Wang
- First Center Clinical College, Tianjin Medical University, Tianjin, 300192, China
| | - Danni Xie
- First Center Clinical College, Tianjin Medical University, Tianjin, 300192, China
| | - MingFeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
32
|
Borges TJ, Murakami N, Lape IT, Gassen RB, Liu K, Cai S, Daccache J, Safa K, Shimizu T, Ohori S, Paterson AM, Cravedi P, Azzi J, Sage P, Sharpe A, Li XC, Riella LV. Overexpression of PD-1 on T cells promotes tolerance in cardiac transplantation via an ICOS-dependent mechanism. JCI Insight 2021; 6:142909. [PMID: 34752418 PMCID: PMC8783692 DOI: 10.1172/jci.insight.142909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/04/2021] [Indexed: 12/04/2022] Open
Abstract
The programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway is a potent inhibitory pathway involved in immune regulation and is a potential therapeutic target in transplantation. In this study, we show that overexpression of PD-1 on T cells (PD-1 Tg) promotes allograft tolerance in a fully MHC-mismatched cardiac transplant model when combined with costimulation blockade with CTLA-4–Ig. PD-1 overexpression on T cells also protected against chronic rejection in a single MHC II–mismatched cardiac transplant model, whereas the overexpression still allowed the generation of an effective immune response against an influenza A virus. Notably, Tregs from PD-1 Tg mice were required for tolerance induction and presented greater ICOS expression than those from WT mice. The survival benefit of PD-1 Tg recipients required ICOS signaling and donor PD-L1 expression. These results indicate that modulation of PD-1 expression, in combination with a costimulation blockade, is a promising therapeutic target to promote transplant tolerance.
Collapse
Affiliation(s)
- Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Naoka Murakami
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Isadora T Lape
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Rodrigo B Gassen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Kaifeng Liu
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Songjie Cai
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Joe Daccache
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Kassem Safa
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Tetsunosuke Shimizu
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Shunsuke Ohori
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Alison M Paterson
- Department of Immunobiology, Harvard Medical School, Boston, United States of America
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Jamil Azzi
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Peter Sage
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Arlene Sharpe
- Department of Immunology, Harvard Medical School, Boston, United States of America
| | - Xian C Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, United States of America
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| |
Collapse
|
33
|
Martínez-Méndez D, Mendoza L, Villarreal C, Huerta L. Continuous Modeling of T CD4 Lymphocyte Activation and Function. Front Immunol 2021; 12:743559. [PMID: 34804023 PMCID: PMC8602102 DOI: 10.3389/fimmu.2021.743559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
T CD4+ cells are central to the adaptive immune response against pathogens. Their activation is induced by the engagement of the T-cell receptor by antigens, and of co-stimulatory receptors by molecules also expressed on antigen presenting cells. Then, a complex network of intracellular events reinforce, diversify and regulate the initial signals, including dynamic metabolic processes that strongly influence both the activation state and the differentiation to effector cell phenotypes. The regulation of cell metabolism is controlled by the nutrient sensor adenosine monophosphate-activated protein kinase (AMPK), which drives the balance between oxidative phosphorylation (OXPHOS) and glycolysis. Herein, we put forward a 51-node continuous mathematical model that describes the temporal evolution of the early events of activation, integrating a circuit of metabolic regulation into the main routes of signaling. The model simulates the induction of anergy due to defective co-stimulation, the CTLA-4 checkpoint blockade, and the differentiation to effector phenotypes induced by external cytokines. It also describes the adjustment of the OXPHOS-glycolysis equilibrium by the action of AMPK as the effector function of the T cell develops. The development of a transient phase of increased OXPHOS before induction of a sustained glycolytic phase during differentiation to the Th1, Th2 and Th17 phenotypes is shown. In contrast, during Treg differentiation, glycolysis is subsequently reduced as cell metabolism is predominantly polarized towards OXPHOS. These observations are in agreement with experimental data suggesting that OXPHOS produces an ATP reservoir before glycolysis boosts the production of metabolites needed for protein synthesis, cell function, and growth.
Collapse
Affiliation(s)
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonor Huerta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
34
|
Padilha CS, Figueiredo C, Minuzzi LG, Chimin P, Deminice R, Krüger K, Rosa-Neto JC, Lira FS. Immunometabolic responses according to physical fitness status and lifelong exercise during aging: New roads for exercise immunology. Ageing Res Rev 2021; 68:101341. [PMID: 33839332 DOI: 10.1016/j.arr.2021.101341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Molecules such as cytokines, energetic substrates, and hormones found in the immune cell environment, especially lymphocytes and monocytes, are crucial for directing energy metabolism. In turn, changes in energy metabolism occur in a synchronized manner with the activation of certain signaling pathways, thereby this crosstalk is responsible for determining the functionality of immune cells. The immunometabolism field has grown over time and that is becoming increasingly promising in several populations; here we discuss the mechanisms involved in sedentary and physically active middle-aged individuals and master athletes. In this context, this review shows that the physical activity status and lifelong exercise seems to be good strategies for the promotion of metabolic and functional adaptations in T lymphocytes and monocytes, counteracting inflammatory environments caused by expanded adipose tissue and sedentary behavior, as well as delaying the immunosenescence caused by aging.
Collapse
Affiliation(s)
- Camila S Padilha
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil.
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Luciele Guerra Minuzzi
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Patricia Chimin
- Laboratory of Biochemistry Exercise, Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Londrina, Brazil
| | - Rafael Deminice
- Laboratory of Biochemistry Exercise, Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Londrina, Brazil
| | - Karsten Krüger
- Institute of Sports Science, Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - José Cesar Rosa-Neto
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
35
|
Lei G, Zhuang L, Gan B. mTORC1 and ferroptosis: Regulatory mechanisms and therapeutic potential. Bioessays 2021; 43:e2100093. [PMID: 34121197 DOI: 10.1002/bies.202100093] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022]
Abstract
Ferroptosis, a form of regulated cell death triggered by lipid hydroperoxide accumulation, has an important role in a variety of diseases and pathological conditions, such as cancer. Targeting ferroptosis is emerging as a promising means of therapeutic intervention in cancer treatment. Polyunsaturated fatty acids, reactive oxygen species, and labile iron constitute the major underlying triggers for ferroptosis. Other regulators of ferroptosis have also been discovered recently, among them the mechanistic target of rapamycin complex 1 (mTORC1), a central controller of cell growth and metabolism. Inhibitors of mTORC1 have been used in treating diverse diseases, including cancer. In this review, we discuss recent findings linking mTORC1 to ferroptosis, dissect mechanisms underlying the establishment of mTORC1 as a key ferroptosis modulator, and highlight the potential of co-targeting mTORC1 and ferroptosis in cancer treatment. This review will provide valuable insights for future investigations of ferroptosis and mTORC1 in fundamental biology and cancer therapy.
Collapse
Affiliation(s)
- Guang Lei
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
36
|
Nailwal NP, Doshi GM. Role of intracellular signaling pathways and their inhibitors in the treatment of inflammation. Inflammopharmacology 2021; 29:617-640. [PMID: 34002330 DOI: 10.1007/s10787-021-00813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is not only a defense mechanism of the innate immune system against invaders, but it is also involved in the pathogenesis of many diseases such as atherosclerosis, thrombosis, diabetes, epilepsy, and many neurodegenerative disorders. The World Health Organization (WHO) reports worldwide estimates of people (9.6% in males and 18.0% in females) aged over 60 years, suffering from symptomatic osteoarthritis, and around 339 million suffering from asthma. Other chronic inflammatory diseases, such as ulcerative colitis and Crohn's disease are also highly prevalent. The existing anti-inflammatory agents, both non-steroidal and steroidal, are highly effective; however, their prolonged use is marred by the severity of associated side effects. A holistic approach to ensure patient compliance requires understanding the pathophysiology of inflammation and exploring new targets for drug development. In this regard, various intracellular cell signaling pathways and their signaling molecules have been identified to be associated with inflammation. Therefore, chemical inhibitors of these pathways may be potential candidates for novel anti-inflammatory drug approaches. This review focuses on the anti-inflammatory effect of these inhibitors (for JAK/STAT, MAPK, and mTOR pathways) describing their mechanism of action through literature search, current patents, and molecules under clinical trials.
Collapse
Affiliation(s)
- Namrata P Nailwal
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India.
| |
Collapse
|
37
|
Taylor HE, Calantone N, Lichon D, Hudson H, Clerc I, Campbell EM, D'Aquila RT. mTOR Overcomes Multiple Metabolic Restrictions to Enable HIV-1 Reverse Transcription and Intracellular Transport. Cell Rep 2021; 31:107810. [PMID: 32579936 DOI: 10.1016/j.celrep.2020.107810] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/28/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular metabolism governs the susceptibility of CD4 T cells to HIV-1 infection. Multiple early post-fusion steps of HIV-1 replication are restricted in resting peripheral blood CD4 T cells; however, molecular mechanisms that underlie metabolic control of these steps remain undefined. Here, we show that mTOR activity following T cell stimulatory signals overcomes metabolic restrictions in these cells by enabling the expansion of dNTPs to fuel HIV-1 reverse transcription (RT), as well as increasing acetyl-CoA to stabilize microtubules that transport RT products. We find that catalytic mTOR inhibition diminishes the expansion of pools of both of these metabolites by limiting glucose and glutamine utilization in several pathways, thereby suppressing HIV-1 infection. We demonstrate how mTOR-coordinated biosyntheses enable the early steps of HIV-1 replication, add metabolic mechanisms by which mTOR inhibitors block HIV-1, and identify some metabolic modules downstream of mTOR as druggable targets for HIV-1 inhibition.
Collapse
Affiliation(s)
- Harry E Taylor
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA.
| | - Nina Calantone
- Division of Infectious Diseases and HIV Translational Research Center, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Drew Lichon
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Hannah Hudson
- Division of Infectious Diseases and HIV Translational Research Center, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Isabelle Clerc
- Division of Infectious Diseases and HIV Translational Research Center, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Richard T D'Aquila
- Division of Infectious Diseases and HIV Translational Research Center, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
38
|
Jensen-Jarolim E, Roth-Walter F, Jordakieva G, Pali-Schöll I. Allergens and Adjuvants in Allergen Immunotherapy for Immune Activation, Tolerance, and Resilience. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1780-1789. [PMID: 33753052 DOI: 10.1016/j.jaip.2020.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022]
Abstract
Allergen immunotherapy (AIT) is the only setting in which a vaccine is applied in patients allergic exactly to the active principle in the vaccine. Therefore, AIT products need to be not only effective but also safe. In Europe, for subcutaneous AIT, this has been achieved by the allergoid strategy in which IgE epitopes are destroyed or masked. In addition, adjuvants physically precipitate the allergen at the injection site to prevent too rapid systemic distribution. The choice of adjuvant critically shapes the efficacy and type of immune response to the injected allergen. In contrast to TH2-promoting adjuvants, others clearly counteract allergy. Marketed products in Europe are formulated with aluminum hydroxide (alum) (66.7%), microcrystalline tyrosine (16.7%), calcium phosphate (11.1%), or the TH1 adjuvant monophosphoryl lipid A (5.6%). In contrast to the European practice, in the United States mostly nonadjuvanted extracts and no allergoids are used for subcutaneous AIT, highlighting not only a regulatory but maybe a "historic preference." Sublingual AIT in the form of drops or tablets is currently applied worldwide without adjuvants, usually with higher safety but lower patient adherence than subcutaneous AIT. This article will discuss how AIT and adjuvants modulate the immune response in the treated patient toward immune activation, modulation, or-with new developments in the pipeline-immune resilience.
Collapse
Affiliation(s)
- Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria; The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University Vienna, Vienna, Austria.
| | - Franziska Roth-Walter
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria; The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University Vienna, Vienna, Austria
| | - Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| | - Isabella Pali-Schöll
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria; The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University Vienna, Vienna, Austria
| |
Collapse
|
39
|
Kunz N, Kemper C. Complement Has Brains-Do Intracellular Complement and Immunometabolism Cooperate in Tissue Homeostasis and Behavior? Front Immunol 2021; 12:629986. [PMID: 33717157 PMCID: PMC7946832 DOI: 10.3389/fimmu.2021.629986] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
The classical liver-derived and serum-effective complement system is well appreciated as a key mediator of host protection via instruction of innate and adaptive immunity. However, recent studies have discovered an intracellularly active complement system, the complosome, which has emerged as a central regulator of the core metabolic pathways fueling human immune cell activity. Induction of expression of components of the complosome, particularly complement component C3, during transmigration from the circulation into peripheral tissues is a defining characteristic of monocytes and T cells in tissues. Intracellular complement activity is required to induce metabolic reprogramming of immune cells, including increased glycolytic flux and OXPHOS, which drive the production of the pro-inflammatory cytokine IFN-γ. Consequently, reduced complosome activity translates into defects in normal monocyte activation, faulty Th1 and cytotoxic T lymphocyte responses and loss of protective tissue immunity. Intriguingly, neurological research has identified an unexpected connection between the physiological presence of innate and adaptive immune cells and certain cytokines, including IFN-γ, in and around the brain and normal brain function. In this opinion piece, we will first review the current state of research regarding complement driven metabolic reprogramming in the context of immune cell tissue entry and residency. We will then discuss how published work on the role of IFN-γ and T cells in the brain support a hypothesis that an evolutionarily conserved cooperation between the complosome, cell metabolism and IFN-γ regulates organismal behavior, as well as immunity.
Collapse
Affiliation(s)
- Natalia Kunz
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, Bethesda, MD, United States.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
40
|
Shen L, Zhou Y, He H, Chen W, Lenahan C, Li X, Deng Y, Shao A, Huang J. Crosstalk between Macrophages, T Cells, and Iron Metabolism in Tumor Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8865791. [PMID: 33628389 PMCID: PMC7889336 DOI: 10.1155/2021/8865791] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Leukocytes, including macrophages and T cells, represent key players in the human immune system, which plays a considerable role in the development and progression of tumors by immune surveillance or immune escape. Boosting the recruitment of leukocytes into the tumor microenvironment and promoting their antitumor responses have been hot areas of research in recent years. Although immunotherapy has manifested a certain level of success in some malignancies, the overall effectiveness is far from satisfactory. Iron is an essential trace element required in multiple, normal cellular processes, such as DNA synthesis and repair, cellular respiration, metabolism, and signaling, while dysregulated iron metabolism has been declared one of the metabolic hallmarks of malignant cancer cells. Furthermore, iron is implicated in the modulation of innate and adaptive immune responses, and elucidating the targeted regulation of iron metabolism may have the potential to benefit antitumor immunity and cancer treatment. In the present review, we briefly summarize the roles of leukocytes and iron metabolism in tumorigenesis, as well as their crosstalk in the tumor microenvironment. The combination of immunotherapy with targeted regulation of iron and iron-dependent regulated cell death (ferroptosis) may be a focus of future research.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Haifei He
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wuzhen Chen
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Xiaoyi Li
- Department of Nuclear Medicine and PET-CT Center, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian Huang
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
41
|
Iron in immune cell function and host defense. Semin Cell Dev Biol 2020; 115:27-36. [PMID: 33386235 DOI: 10.1016/j.semcdb.2020.12.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The control over iron availability is crucial under homeostatic conditions and even more in the case of an infection. This results from diverse properties of iron: first, iron is an important trace element for the host as well as for the pathogen for various cellular and metabolic processes, second, free iron catalyzes Fenton reaction and is therefore producing reactive oxygen species as a part of the host defense machinery, third, iron exhibits important effects on immune cell function and differentiation and fourth almost every immune activation in turn impacts on iron metabolism and spatio-temporal iron distribution. The central importance of iron in the host and microbe interplay and thus for the course of infections led to diverse strategies to restrict iron for invading pathogens. In this review, we focus on how iron restriction to the pathogen is a powerful innate immune defense mechanism of the host called "nutritional immunity". Important proteins in the iron-host-pathogen interplay will be discussed as well as the influence of iron on the efficacy of innate and adaptive immunity. Recently described processes like ferritinophagy and ferroptosis are further covered in respect to their impact on inflammation and infection control and how they impact on our understanding of the interaction of host and pathogen.
Collapse
|
42
|
Iranparast S, Tayebi S, Ahmadpour F, Yousefi B. Tumor-Induced Metabolism and T Cells Located in Tumor Environment. Curr Cancer Drug Targets 2020; 20:741-756. [PMID: 32691710 DOI: 10.2174/1568009620666200720010647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
Several subtypes of T cells are located in a tumor environment, each of which supplies their energy using different metabolic mechanisms. Since the cancer cells require high levels of glucose, the conditions of food poverty in the tumor environment can cause inactivation of immune cells, especially the T-effector cells, due to the need for glucose in the early stages of these cells activity. Different signaling pathways, such as PI3K-AKt-mTOR, MAPK, HIF-1α, etc., are activated or inactivated by the amount and type of energy source or oxygen levels that determine the fate of T cells in a cancerous environment. This review describes the metabolites in the tumor environment and their effects on the function of T cells. It also explains the signaling pathway of T cells in the tumor and normal conditions, due to the level of access to available metabolites and subtypes of T cells in the tumor environment.
Collapse
Affiliation(s)
- Sara Iranparast
- Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sanaz Tayebi
- Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Li K, Shen X, Qiu H, Zhao T, Ai K, Li C, Zhang Y, Li K, Duan M, Wei X, Yang J. S6K1/S6 axis-regulated lymphocyte activation is important for adaptive immune response of Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2020; 106:1120-1130. [PMID: 32971270 DOI: 10.1016/j.fsi.2020.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Ribosomal protein S6 kinase beta-1 (S6K1) is a serine/threonine kinase downstream of the mechanistic target of rapamycin (mTOR) pathway, and plays crucial roles in immune regulation. Although remarkable progress has been achieved with a mouse model, how S6K1 regulates adaptive immunity is largely unknown in early vertebrates. In this study, we identified an S6K1 from Nile tilapia Oreochromis niloticus (OnS6K1), and further investigated its potential regulatory role on the adaptive immunity of this fish species. Both sequence and structure of OnS6K1 were highly conserved with its homologs from other vertebrates and invertebrates. OnS6K1 was widely expressed in immune tissues, and with a relative higher expression level in the liver, spleen and head kidney. At the adaptive immune stage of Nile tilapia that infected with Aeromonas hydrophila, mRNA expression of OnS6K1 and its downstream effector S6 was significantly up-regulated in spleen lymphocytes. Meanwhile, their phosphorylation level was also enhanced during this process, suggesting that S6K1/S6 axis participated in the primary response of anti-bacterial adaptive immunity in Nile tilapia. Furthermore, after spleen lymphocytes were activated by the T cell-specific mitogen PHA or lymphocytes agonist PMA in vitro, mRNA and phosphorylation levels of S6K1 were elevated, and phosphorylation of S6 was also enhanced. Once S6K1 activity was blocked by a specific inhibitor, both mRNA and phosphorylation levels of S6 were severely impaired. More importantly, blockade of S6K1/S6 axis reduced the expression of T cell activation marker IFN-γ and CD122 in PHA-activated spleen lymphocytes, indicating the essential role of S6K1/S6 axis in regulating T cell activation of Nile tilapia. Together, our study suggests that S6K1 and its effector S6 regulate lymphocyte activation of Nile tilapia, and in turn promote lymphocyte-mediated adaptive immunity. This study enriched the mechanism of adaptive immune response in teleost and provided useful clues to understand the evolution of adaptive immune system.
Collapse
Affiliation(s)
- Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaotong Shen
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hong Qiu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tianyu Zhao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Cheng Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
44
|
Teijeira A, Garasa S, Etxeberria I, Gato-Cañas M, Melero I, Delgoffe GM. Metabolic Consequences of T-cell Costimulation in Anticancer Immunity. Cancer Immunol Res 2020; 7:1564-1569. [PMID: 31575551 DOI: 10.1158/2326-6066.cir-19-0115] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
T-cell functional behavior and performance are closely regulated by nutrient availability and the control of metabolism within the T cell. T cells have distinct energetic and anabolic needs when nascently activated, actively proliferating, in naïveté, or in a resting, memory state. As a consequence, bioenergetics are key for T cells to mount adequate immune responses in health and disease. Solid tumors are particularly hostile metabolic environments, characterized by low glucose concentration, hypoxia, and low pH. These metabolic conditions in the tumor are known to hinder antitumor immune responses of T cells by limiting nutrient availability and energetic efficiency. In such immunosuppressive environments, artificial modulation of glycolysis, mitochondrial respiratory capabilities, and fatty acid β-oxidation are known to enhance antitumor performance. Reportedly, costimulatory molecules, such as CD28 and CD137, are important regulators of metabolic routes in T cells. In this sense, different costimulatory signals and cytokines induce diverse metabolic changes that critically involve mitochondrial mass and function. For instance, the efficacy of chimeric antigen receptors (CAR) encompassing costimulatory domains, agonist antibodies to costimulatory receptors, and checkpoint inhibitors depends on the associated metabolic events in immune cells. Here, we review the metabolic changes that costimulatory receptors can promote in T cells and the potential consequences for cancer immunotherapy. Our focus is mostly on discoveries regarding the physiology and pharmacology of IL15, CD28, PD-1, and CD137 (4-1BB).
Collapse
Affiliation(s)
- Alvaro Teijeira
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain. .,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Inaki Etxeberria
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria Gato-Cañas
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Greg M Delgoffe
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Vallion R, Divoux J, Glauzy S, Ronin E, Lombardi Y, Lubrano di Ricco M, Grégoire S, Nemazanyy I, Durand A, Fradin D, Lucas B, Salomon BL. Regulatory T Cell Stability and Migration Are Dependent on mTOR. THE JOURNAL OF IMMUNOLOGY 2020; 205:1799-1809. [PMID: 32839235 DOI: 10.4049/jimmunol.1901480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
CD4+ Foxp3+ regulatory T cells (Treg) are essential to maintain immune tolerance, as their loss leads to a fatal autoimmune syndrome in mice and humans. Conflicting findings have been reported concerning their metabolism. Some reports found that Treg have low mechanistic target of rapamycin (mTOR) activity and would be less dependent on this kinase compared with conventional T cells, whereas other reports suggest quite the opposite. In this study, we revisited this question by using mice that have a specific deletion of mTOR in Treg. These mice spontaneously develop a severe and systemic inflammation. We show that mTOR expression by Treg is critical for their differentiation into effector Treg and their migration into nonlymphoid tissues. We also reveal that mTOR-deficient Treg have reduced stability. This loss of Foxp3 expression is associated with partial Foxp3 DNA remethylation, which may be due to an increased activity of the glutaminolysis pathway. Thus, our work shows that mTOR is crucial for Treg differentiation, migration, and identity and that drugs targeting this metabolism pathway will impact on their biology.
Collapse
Affiliation(s)
- Romain Vallion
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Jordane Divoux
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Salomé Glauzy
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Emilie Ronin
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Yannis Lombardi
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Martina Lubrano di Ricco
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Sylvie Grégoire
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Ivan Nemazanyy
- Plateforme Etude du Métabolisme, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Aurélie Durand
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 75014 Paris, France; and
| | - Delphine Fradin
- CRCINA, Institut de Recherche en Santé de l'Université de Nantes, 44007 Nantes, France
| | - Bruno Lucas
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 75014 Paris, France; and
| | - Benoit L Salomon
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, CNRS, 75013 Paris, France;
| |
Collapse
|
46
|
Augello G, Emma MR, Cusimano A, Azzolina A, Montalto G, McCubrey JA, Cervello M. The Role of GSK-3 in Cancer Immunotherapy: GSK-3 Inhibitors as a New Frontier in Cancer Treatment. Cells 2020; 9:cells9061427. [PMID: 32526891 PMCID: PMC7348946 DOI: 10.3390/cells9061427] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) was initially identified because of its key role in the regulation of glycogen synthesis. However, it is now well-established that GSK-3 performs critical functions in many cellular processes, such as apoptosis, tumor growth, cell invasion, and metastasis. Aberrant GSK-3 activity has been associated with many human diseases, including cancer, highlighting its potential therapeutic relevance as a target for anticancer therapy. Recently, newly emerging data have demonstrated the pivotal role of GSK-3 in the anticancer immune response. In the last few years, many GSK-3 inhibitors have been developed, and some are currently being tested in clinical trials. This review will discuss preclinical and initial clinical results with GSK-3β inhibitors, highlighting the potential importance of this target in cancer immunotherapy. As described in this review, GSK-3 inhibitors have been shown to have antitumor activity in a wide range of human cancer cells, and they may also contribute to promoting a more efficacious immune response against tumor target cells, thus showing a double therapeutic advantage.
Collapse
Affiliation(s)
- Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Maria R. Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA;
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
- Correspondence: ; Tel.: +39-091-6809-534
| |
Collapse
|
47
|
Partridge L, Fuentealba M, Kennedy BK. The quest to slow ageing through drug discovery. Nat Rev Drug Discov 2020; 19:513-532. [DOI: 10.1038/s41573-020-0067-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
|
48
|
Bhattacharyya ND, Feng CG. Regulation of T Helper Cell Fate by TCR Signal Strength. Front Immunol 2020; 11:624. [PMID: 32508803 PMCID: PMC7248325 DOI: 10.3389/fimmu.2020.00624] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
49
|
Huang H, Long L, Zhou P, Chapman NM, Chi H. mTOR signaling at the crossroads of environmental signals and T-cell fate decisions. Immunol Rev 2020; 295:15-38. [PMID: 32212344 PMCID: PMC8101438 DOI: 10.1111/imr.12845] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/19/2020] [Indexed: 12/28/2022]
Abstract
The evolutionarily conserved serine/threonine kinase mTOR (mechanistic target of rapamycin) forms the distinct protein complexes mTORC1 and mTORC2 and integrates signals from the environment to coordinate downstream signaling events and various cellular processes. T cells rely on mTOR activity for their development and to establish their homeostasis and functional fitness. Here, we review recent progress in our understanding of the upstream signaling and downstream targets of mTOR. We also provide an updated overview of the roles of mTOR in T-cell development, homeostasis, activation, and effector-cell fate decisions, as well as its important impacts on the suppressive activity of regulatory T cells. Moreover, we summarize the emerging roles of mTOR in T-cell exhaustion and transdifferentiation. A better understanding of the contribution of mTOR to T-cell fate decisions will ultimately aid in the therapeutic targeting of mTOR in human disease.
Collapse
Affiliation(s)
- Hongling Huang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lingyun Long
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Equal contribution
| | - Peipei Zhou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Equal contribution
| | - Nicole M. Chapman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
50
|
Martínez-Méndez D, Villarreal C, Mendoza L, Huerta L. An Integrative Network Modeling Approach to T CD4 Cell Activation. Front Physiol 2020; 11:380. [PMID: 32425809 PMCID: PMC7212416 DOI: 10.3389/fphys.2020.00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
The adaptive immune response is initiated by the interaction of the T cell antigen receptor/CD3 complex (TCR) with a cognate peptide bound to a MHC molecule. This interaction, along with the activity of co-stimulatory molecules and cytokines in the microenvironment, enables cells to proliferate and produce soluble factors that stimulate other branches of the immune response for inactivation of infectious agents. The intracellular activation signals are reinforced, amplified and diversified by a complex network of biochemical interactions, and includes the activity of molecules that modulate the activation process and stimulate the metabolic changes necessary for fulfilling the cell energy demands. We present an approach to the analysis of the main early signaling events of T cell activation by proposing a concise 46-node hybrid Boolean model of the main steps of TCR and CD28 downstream signaling, encompassing the activity of the anergy factor Ndrg1, modulation of activation by CTLA-4, and the activity of the nutrient sensor AMPK as intrinsic players of the activation process. The model generates stable states that reflect the overcoming of activation signals and induction of anergy by the expression of Ndrg1 in the absence of co-stimulation. The model also includes the induction of CTLA-4 upon activation and its competition with CD28 for binding to the co-stimulatory CD80/86 molecules, leading to stable states that reflect the activation arrest. Furthermore, the model integrates the activity of AMPK to the general pathways driving differentiation to functional cell subsets (Th1, Th2, Th17, and Treg). Thus, the network topology incorporates basic mechanism associated to activation, regulation and induction of effector cell phenotypes. The model puts forth a conceptual framework for the integration of functionally relevant processes in the analysis of the T CD4 cell function.
Collapse
Affiliation(s)
- David Martínez-Méndez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonor Huerta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|