1
|
Ding X, Zhang K, Zhuang Q, Chen Y, Li H, Liu S, Chen L. Common carp Peptidoglycan Gecognition Protein 2 (CcPGRP2) alleviates gut dysbiosis induced by Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2024; 155:109997. [PMID: 39486560 DOI: 10.1016/j.fsi.2024.109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVES Peptidoglycan recognition protein 2 (PGRP2) plays a role in regulating immune defense in fish. Our previous studies found that CcPGRP2 helped maintain the integrity of the intestinal mucosa of carp and could bind and agglutinate bacteria when infected with A. hydrophila. However, its effect on the structure of the microbiota has not yet been clarified. Therefore, it is necessary to explore the effect of CcPGRP2 on the intestinal microbiota structure in fish. METHODS In the present study, common carp were injected with CcPGRP2 protein intraperitoneally and high-throughput sequencing technology was used to study the difference in intestinal microbiota structure. Firstly, the variations in α- and β-diversity of the intestinal microbiota of common carp in control and treatment groups were tested, and the results indicated that intraperitoneal injection of A. hydrophila significantly reduced the microbial α-diversity (within-samples) and β-diversity (between-samples) in common carp gut samples, but CcPGRP2 protein could alleviate these reduction, no matter in the case of simultaneous injection of CcPGRP2 protein and A. hydrophila or a intermitted injection with first injection of CcPGRP2 and then A. hydrophila after 6 h. Subsequently, the intestinal microbiota structures of common carp on various taxonomic levels were interrogated under the treatments. RESULTS The data revealed that the abundance of intestinal pathogen Aeromonas was reduced when CcPGRP2 was injected in the common carp, and the alleviation effect was better when CcPGRP2 was injected with A. hydrophila at the same time, implying the function of CcPGRP2 in inhibiting intestinal dysbiosis. Moreover, the functional prediction demonstrated the possible physiological shifts and the influences of microbes on the environment after the common carp is injected with A. hydrophila and CcPGRP2. Finally, the bacterial interaction patterns results showed that the groups injected with A. hydrophila were diverted away from the control group in terms of clustering relationship, while the injection of CcPGRP2 could reverse the effect of A. hydrophila and keep the microbial structure closer to that of the control group; meanwhile, the effect of simultaneous injection of A. hydrophila and CcPGRP2 was better than that of intermitted injections. CONCLUSIONS All the results in this study suggest that the CcPGRP2 could alleviate the internal dysbiosis under pathogen infection, which will provide a foundation for disease resistance breeding.
Collapse
Affiliation(s)
- Xinli Ding
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China; Department of Food Industry, Shandong Institute of Commerce and Technology, No.4516 Lvyou Road, Jinan, China
| | - Kaini Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Qianmin Zhuang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Yanru Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Shili Liu
- School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Lei Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Duarte ME, Deng Z, Kim SW. Effects of dietary Lactobacillus postbiotics and bacitracin on the modulation of mucosa-associated microbiota and pattern recognition receptors affecting immunocompetence of jejunal mucosa in pigs challenged with enterotoxigenic F18 + Escherichia coli. J Anim Sci Biotechnol 2024; 15:139. [PMID: 39390608 PMCID: PMC11468193 DOI: 10.1186/s40104-024-01098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (E. coli) is a threat to humans and animals that causes intestinal disorders. Antimicrobial resistance has urged alternatives, including Lactobacillus postbiotics, to mitigate the effects of enterotoxigenic E. coli. METHODS Forty-eight newly weaned pigs were allotted to NC: no challenge/no supplement; PC: F18+ E. coli challenge/no supplement; ATB: F18+ E. coli challenge/bacitracin; and LPB: F18+ E. coli challenge/postbiotics and fed diets for 28 d. On d 7, pigs were orally inoculated with F18+ E. coli. At d 28, the mucosa-associated microbiota, immune and oxidative stress status, intestinal morphology, the gene expression of pattern recognition receptors (PRR), and intestinal barrier function were measured. Data were analyzed using the MIXED procedure in SAS 9.4. RESULTS PC increased (P < 0.05) Helicobacter mastomyrinus whereas reduced (P < 0.05) Prevotella copri and P. stercorea compared to NC. The LPB increased (P < 0.05) P. stercorea and Dialister succinatiphilus compared with PC. The ATB increased (P < 0.05) Propionibacterium acnes, Corynebacterium glutamicum, and Sphingomonas pseudosanguinis compared to PC. The PC tended to reduce (P = 0.054) PGLYRP4 and increased (P < 0.05) TLR4, CD14, MDA, and crypt cell proliferation compared with NC. The ATB reduced (P < 0.05) NOD1 compared with PC. The LPB increased (P < 0.05) PGLYRP4, and interferon-γ and reduced (P < 0.05) NOD1 compared with PC. The ATB and LPB reduced (P < 0.05) TNF-α and MDA compared with PC. CONCLUSIONS The F18+ E. coli challenge compromised intestinal health. Bacitracin increased beneficial bacteria showing a trend towards increasing the intestinal barrier function, possibly by reducing the expression of PRR genes. Lactobacillus postbiotics enhanced the immunocompetence of nursery pigs by increasing the expression of interferon-γ and PGLYRP4, and by reducing TLR4, NOD1, and CD14.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
3
|
Mushtaq Z, Kurcheti PP, Jeena K, Gireesh-Babu P. Short peptidoglycan recognition protein 5 modulates immune response to bacteria in Indian major carp, Cirrhinusmrigala. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105104. [PMID: 38040045 DOI: 10.1016/j.dci.2023.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) function in host antibacterial responses by recognizing bacterial peptidoglycan (PGN). In the present study, a short pgrp5 (named mpgrp5) was identified in Cirrhinus mrigala (mrigal). The full-length cDNA of the mpgrp5 gene was 1255 bp, containing an open reading frame of 746 bp encoding a protein of 248 amino acids. The predicted protein contained the typical Pgrp/amidase domain, conserved Zn2+, and PGN binding residues. The phylogenetic analysis revealed that the mpgrp5 is closely related to Pgrps reported in Labeo rohita, Cyrinus carpio, and Ctenopharyngodon idella. The ontogenetic expression of mpgrp5 was highest at 7 days post-hatching (dph) and its possible maternal transfer. mpgrp5 was constitutively expressed in all tissues examined, with the highest expression observed in the intestine. Furthermore, mpgrp5 was found upregulated in mrigal post-challenge in a time-dependent manner at 6hpi in the liver (3.16 folds, p < 0.05) and kidney (2.79 folds, p < 0.05) and at 12hpi in gill (1.90 folds, p < 0.01), skin (1.93 folds, p < 0.01), and intestine, (2.71 folds, p < 0.05) whereas at 24hpi in spleen (4.0 folds, p < 0.01). Our results suggest that mpgrp5 may play an important role in antibacterial immune response from early life stages in mrigal.
Collapse
Affiliation(s)
- Zahoor Mushtaq
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | - K Jeena
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - P Gireesh-Babu
- ICAR-National Research Centre on Meat, Hyderabad, 500092, India
| |
Collapse
|
4
|
Schnell A, Huang L, Regan BML, Singh V, Vonficht D, Bollhagen A, Wang M, Hou Y, Bod L, Sobel RA, Chihara N, Madi A, Anderson AC, Regev A, Kuchroo VK. Targeting PGLYRP1 promotes antitumor immunity while inhibiting autoimmune neuroinflammation. Nat Immunol 2023; 24:1908-1920. [PMID: 37828379 PMCID: PMC10864036 DOI: 10.1038/s41590-023-01645-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Co-inhibitory and checkpoint molecules suppress T cell function in the tumor microenvironment, thereby rendering T cells dysfunctional. Although immune checkpoint blockade is a successful treatment option for multiple human cancers, severe autoimmune-like adverse effects can limit its application. Here, we show that the gene encoding peptidoglycan recognition protein 1 (PGLYRP1) is highly coexpressed with genes encoding co-inhibitory molecules, indicating that it might be a promising target for cancer immunotherapy. Genetic deletion of Pglyrp1 in mice led to decreased tumor growth and an increased activation/effector phenotype in CD8+ T cells, suggesting an inhibitory function of PGLYRP1 in CD8+ T cells. Surprisingly, genetic deletion of Pglyrp1 protected against the development of experimental autoimmune encephalomyelitis, a model of autoimmune disease in the central nervous system. PGLYRP1-deficient myeloid cells had a defect in antigen presentation and T cell activation, indicating that PGLYRP1 might function as a proinflammatory molecule in myeloid cells during autoimmunity. These results highlight PGLYRP1 as a promising target for immunotherapy that, when targeted, elicits a potent antitumor immune response while protecting against some forms of tissue inflammation and autoimmunity.
Collapse
Affiliation(s)
- Alexandra Schnell
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Linglin Huang
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Brianna M L Regan
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vasundhara Singh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dominik Vonficht
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alina Bollhagen
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mona Wang
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu Hou
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lloyd Bod
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Raymond A Sobel
- Palo Alto Veteran's Administration Health Care System and Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Norio Chihara
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Asaf Madi
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Mhlongo JT, Waddad AY, Albericio F, de la Torre BG. Antimicrobial Peptide Synergies for Fighting Infectious Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300472. [PMID: 37407512 PMCID: PMC10502873 DOI: 10.1002/advs.202300472] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/28/2023] [Indexed: 07/07/2023]
Abstract
Antimicrobial peptides (AMPs) are essential elements of thehost defense system. Characterized by heterogenous structures and broad-spectrumaction, they are promising candidates for combating multidrug resistance. Thecombined use of AMPs with other antimicrobial agents provides a new arsenal ofdrugs with synergistic action, thereby overcoming the drawback of monotherapiesduring infections. AMPs kill microbes via pore formation, thus inhibitingintracellular functions. This mechanism of action by AMPs is an advantage overantibiotics as it hinders the development of drug resistance. The synergisticeffect of AMPs will allow the repurposing of conventional antimicrobials andenhance their clinical outcomes, reduce toxicity, and, most significantly,prevent the development of resistance. In this review, various synergies ofAMPs with antimicrobials and miscellaneous agents are discussed. The effect ofstructural diversity and chemical modification on AMP properties is firstaddressed and then different combinations that can lead to synergistic action,whether this combination is between AMPs and antimicrobials, or AMPs andmiscellaneous compounds, are attended. This review can serve as guidance whenredesigning and repurposing the use of AMPs in combination with other antimicrobialagents for enhanced clinical outcomes.
Collapse
Affiliation(s)
- Jessica T. Mhlongo
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
| | - Ayman Y. Waddad
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
| | - Fernando Albericio
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalWestvilleDurban4000South Africa
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and Nanomedicineand Department of Organic ChemistryUniversity of BarcelonaBarcelona08028Spain
| | - Beatriz G. de la Torre
- KwaZulu‐Natal Research Innovation and Sequencing Platform (KRISP)School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| |
Collapse
|
6
|
Zhao L, Niu J, Feng D, Wang X, Zhang R. Immune functions of pattern recognition receptors in Lepidoptera. Front Immunol 2023; 14:1203061. [PMID: 37398667 PMCID: PMC10312389 DOI: 10.3389/fimmu.2023.1203061] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Pattern recognition receptors (PRRs), as the "sensors" in the immune response, play a prominent role in recognizing pathogen-associated molecular patterns (PAMPs) and initiating an effective defense response to pathogens in Lepidoptera. It is becoming increasingly clear that damage-associated molecular patterns (DAMPs) normally play a physiological role within cells; however, when exposed to extracellular, they may become "part-time" critical signals of the immune response. Based on research in recent years, we review herein typical PRRs of Lepidoptera, including peptidoglycan recognition protein (PGRP), gram-negative binding protein (GNBP), β-1,3-glucan recognition protein (βGRP), C-type lectin (CTL), and scavenger receptor (SR). We also outline the ways in which DAMPs participate in the immune response and the correlation between PRRs and immune escape. Taken together, these findings suggest that the role of PRRs in insect innate immunity may be much greater than expected and that it is possible to recognize a broader range of signaling molecules.
Collapse
Affiliation(s)
- Lin Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinlan Niu
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Disong Feng
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Hou J, Hao W, Chang Li M, Gan Z, Chen SN, Lu YS, Xia LQ. Identification and characterization of two long-type peptidoglycan recognition proteins, PGRP-L1 and PGRP-L2, in the orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108580. [PMID: 36796596 DOI: 10.1016/j.fsi.2023.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) play an important role in innate immunity by recognizing components of pathogenic bacteria (such as peptidoglycan, PGN) and are evolutionarily conserved pattern recognition receptors (PRRs) in both invertebrates and vertebrates. In the present study, two long-type PGRPs (designed as Eco-PGRP-L1 and Eco-PGRP-L2) were identified in orange-spotted grouper (Epinephelus coioides), which is a major economic species cultured in Asia. The predicted protein sequences of both Eco-PGRP-L1 and Eco-PGRP-L2 contain a typical PGRP domain. Eco-PGRP-L1 and Eco-PGRP-L2 exhibited organ/tissue-specific expression patterns. An abundant expression of Eco-PGRP-L1 was observed in pyloric caecum, stomach and gill, whereas a highest expression level of Eco-PGRP-L2 was found in head kidney, spleen, skin and heart. In addition, Eco-PGRP-L1 is distributed in the cytoplasm and nucleus, while Eco-PGRP-L2 is mainly localized in cytoplasm. Both Eco-PGRP-L1 and Eco-PGRP-L2 were induced following the stimulation of PGN and have PGN binding activity. In addition, functional analysis revealed that Eco-PGRP-L1 and Eco-PGRP-L2 possess antibacterial activity against Edwardsiella tarda. These results may contribute to understand the innate immune system of orange-spotted grouper.
Collapse
Affiliation(s)
- Jing Hou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of fishery, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, China
| | - Wei Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Chang Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of fishery, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Shan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of fishery, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, China.
| | - Li Qun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of fishery, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, China.
| |
Collapse
|
8
|
Bai L, Zhou Y, Sheng C, Yin Y, Chen Y, Ding X, Yu G, Yang G, Chen L. Common carp Peptidoglycan Recognition Protein 2 (CcPGRP2) plays a role in innate immunity for defense against bacterial infections. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108564. [PMID: 36690267 DOI: 10.1016/j.fsi.2023.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
PGRP is a family of pattern recognition molecules of the innate immune system. PGRPs are conserved from insects to mammals and have diverse functions in antimicrobial defense. Here we cloned a common carp PGRP ortholog, CcPGRP2 containing a conserved C-terminal PGRP domain. We tested the expression levels of CcPGRP2 in the liver, spleen, kidney, foregut, midgut, and hindgut of the highest level in the liver. The expression of CcPGRP2 upregulated in common carp infected with Aeromonas hydrophila (A. hydrophila) or Staphylococcus aureus (S. aureus). Recombinant CcPGRP2 protein expressed in Escherichia coli (E. coli) system and the purified CcPGRP2 could maintain the integrity of intestinal mucosa of common carp infected with A. hydrophila. In addition, CcPGRP2 could agglutinate or bind both gram-positive and gram-negative bacteria in a Zn2+-dependent manner. CcPGRP2 has a stronger agglutination and bacterial binding ability in gram-positive bacteria than in gram-negative bacteria. It is perhaps because CcPGRP2 could bind peptidoglycan (PGN) with a higher degree to lipopolysaccharide (LPS). And CcPGRP2 shows antimicrobial activities in the presence of Zn2+. Our results of CcPGRP2 provided new insight into the function of PGRP in the innate immunity of the common carp.
Collapse
Affiliation(s)
- Linyi Bai
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Yuan Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Chen Sheng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Yizhi Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Yanru Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Xinli Ding
- Department of Food Industry, Shandong Institute of Commerce and Technology, No.4516 Lvyou Road, Jinan, 250103, PR China
| | - Guanliu Yu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China
| | - Lei Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250000, PR China.
| |
Collapse
|
9
|
Dong J, Wang W, Zhou W, Zhang S, Li M, Li N, Pan G, Zhang X, Bai J, Zhu C. Immunomodulatory biomaterials for implant-associated infections: from conventional to advanced therapeutic strategies. Biomater Res 2022; 26:72. [PMID: 36471454 PMCID: PMC9721013 DOI: 10.1186/s40824-022-00326-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/19/2022] [Indexed: 12/11/2022] Open
Abstract
Implant-associated infection (IAI) is increasingly emerging as a serious threat with the massive application of biomaterials. Bacteria attached to the surface of implants are often difficult to remove and exhibit high resistance to bactericides. In the quest for novel antimicrobial strategies, conventional antimicrobial materials often fail to exert their function because they tend to focus on direct bactericidal activity while neglecting the modulation of immune systems. The inflammatory response induced by host immune cells was thought to be a detrimental force impeding wound healing. However, the immune system has recently received increasing attention as a vital player in the host's defense against infection. Anti-infective strategies based on the modulation of host immune defenses are emerging as a field of interest. This review explains the importance of the immune system in combating infections and describes current advanced immune-enhanced anti-infection strategies. First, the characteristics of traditional/conventional implant biomaterials and the reasons for the difficulty of bacterial clearance in IAI were reviewed. Second, the importance of immune cells in the battle against bacteria is elucidated. Then, we discuss how to design biomaterials that activate the defense function of immune cells to enhance the antimicrobial potential. Based on the key premise of restoring proper host-protective immunity, varying advanced immune-enhanced antimicrobial strategies were discussed. Finally, current issues and perspectives in this field were offered. This review will provide scientific guidance to enhance the development of advanced anti-infective biomaterials.
Collapse
Affiliation(s)
- Jiale Dong
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wenzhi Wang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wei Zhou
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Siming Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Meng Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China ,grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Ning Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Guoqing Pan
- grid.440785.a0000 0001 0743 511XInstitute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Xianzuo Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Jiaxiang Bai
- grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Chen Zhu
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| |
Collapse
|
10
|
Gauthier AE, Rotjan RD, Kagan JC. Lipopolysaccharide detection by the innate immune system may be an uncommon defence strategy used in nature. Open Biol 2022; 12:220146. [PMID: 36196535 PMCID: PMC9533005 DOI: 10.1098/rsob.220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
Since the publication of the Janeway's Pattern Recognition hypothesis in 1989, study of pathogen-associated molecular patterns (PAMPs) and their immuno-stimulatory activities has accelerated. Most studies in this area have been conducted in model organisms, which leaves many open questions about the universality of PAMP biology across living systems. Mammals have evolved multiple proteins that operate as receptors for the PAMP lipopolysaccharide (LPS) from Gram-negative bacteria, but LPS is not immuno-stimulatory in all eukaryotes. In this review, we examine the history of LPS as a PAMP in mammals, recent data on LPS structure and its ability to activate mammalian innate immune receptors, and how these activities compare across commonly studied eukaryotes. We discuss why LPS may have evolved to be immuno-stimulatory in some eukaryotes but not others and propose two hypotheses about the evolution of PAMP structure based on the ecology and environmental context of the organism in question. Understanding PAMP structures and stimulatory mechanisms across multi-cellular life will provide insights into the evolutionary origins of innate immunity and may lead to the discovery of new PAMP variations of scientific and therapeutic interest.
Collapse
Affiliation(s)
- Anna E. Gauthier
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Randi D. Rotjan
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, and Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, USA
| |
Collapse
|
11
|
Beneficial commensal bacteria promote Drosophila growth by down-regulating the expression of peptidoglycan recognition proteins. iScience 2022; 25:104357. [PMID: 35601912 PMCID: PMC9121327 DOI: 10.1016/j.isci.2022.104357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/24/2021] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
|
12
|
Bastos PAD, Wheeler R, Boneca IG. Uptake, recognition and responses to peptidoglycan in the mammalian host. FEMS Microbiol Rev 2021; 45:5902851. [PMID: 32897324 PMCID: PMC7794044 DOI: 10.1093/femsre/fuaa044] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Microbiota, and the plethora of signalling molecules that they generate, are a major driving force that underlies a striking range of inter-individual physioanatomic and behavioural consequences for the host organism. Among the bacterial effectors, one finds peptidoglycan, the major constituent of the bacterial cell surface. In the steady-state, fragments of peptidoglycan are constitutively liberated from bacterial members of the gut microbiota, cross the gut epithelial barrier and enter the host system. The fate of these peptidoglycan fragments, and the outcome for the host, depends on the molecular nature of the peptidoglycan, as well the cellular profile of the recipient tissue, mechanism of cell entry, the expression of specific processing and recognition mechanisms by the cell, and the local immune context. At the target level, physiological processes modulated by peptidoglycan are extremely diverse, ranging from immune activation to small molecule metabolism, autophagy and apoptosis. In this review, we bring together a fragmented body of literature on the kinetics and dynamics of peptidoglycan interactions with the mammalian host, explaining how peptidoglycan functions as a signalling molecule in the host under physiological conditions, how it disseminates within the host, and the cellular responses to peptidoglycan.
Collapse
Affiliation(s)
- Paulo A D Bastos
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Université de Paris, Sorbonne Paris Cité, 12 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Richard Wheeler
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Tumour Immunology and Immunotherapy, Institut Gustave Roussy, 114 rue Edouard-Vaillant, Villejuif 94800, France; INSERM UMR 1015, Villejuif 94800, France
| | - Ivo G Boneca
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France
| |
Collapse
|
13
|
Aevarsson A, Kaczorowska AK, Adalsteinsson BT, Ahlqvist J, Al-Karadaghi S, Altenbuchner J, Arsin H, Átlasson ÚÁ, Brandt D, Cichowicz-Cieślak M, Cornish KAS, Courtin J, Dabrowski S, Dahle H, Djeffane S, Dorawa S, Dusaucy J, Enault F, Fedøy AE, Freitag-Pohl S, Fridjonsson OH, Galiez C, Glomsaker E, Guérin M, Gundesø SE, Gudmundsdóttir EE, Gudmundsson H, Håkansson M, Henke C, Helleux A, Henriksen JR, Hjörleifdóttir S, Hreggvidsson GO, Jasilionis A, Jochheim A, Jónsdóttir I, Jónsdóttir LB, Jurczak-Kurek A, Kaczorowski T, Kalinowski J, Kozlowski LP, Krupovic M, Kwiatkowska-Semrau K, Lanes O, Lange J, Lebrat J, Linares-Pastén J, Liu Y, Lorentsen SA, Lutterman T, Mas T, Merré W, Mirdita M, Morzywołek A, Ndela EO, Karlsson EN, Olgudóttir E, Pedersen C, Perler F, Pétursdóttir SK, Plotka M, Pohl E, Prangishvili D, Ray JL, Reynisson B, Róbertsdóttir T, Sandaa RA, Sczyrba A, Skírnisdóttir S, Söding J, Solstad T, Steen IH, Stefánsson SK, Steinegger M, Overå KS, Striberny B, Svensson A, Szadkowska M, Tarrant EJ, Terzian P, Tourigny M, Bergh TVD, Vanhalst J, Vincent J, Vroling B, Walse B, Wang L, Watzlawick H, Welin M, Werbowy O, Wons E, Zhang R. Going to extremes - a metagenomic journey into the dark matter of life. FEMS Microbiol Lett 2021; 368:6296640. [PMID: 34114607 DOI: 10.1093/femsle/fnab067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.
Collapse
Affiliation(s)
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | | | - Josefin Ahlqvist
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, Naturvetarvägen 14/Sölvegatan 39 A, SE-221 00 Lund, Sweden
| | | | - Joseph Altenbuchner
- Institute for Industrial Genetics, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Hasan Arsin
- Department of Biological Sciences, University of Bergen, PO Box 7803, Thormøhlens gate 55, N-5020 Bergen, Norway
| | | | - David Brandt
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Magdalena Cichowicz-Cieślak
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Katy A S Cornish
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | | | | | - Håkon Dahle
- Department of Biological Sciences, University of Bergen, PO Box 7803, Thormøhlens gate 55, N-5020 Bergen, Norway.,Department of Informatics, University of Bergen, PO Box 7803, Thormøhlens gate 53 A/B, N-5020 Bergen, Norway
| | | | - Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | | | - Francois Enault
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, 49 Boulevard François-Mitterrand - CS 60032, UMR 6023, Clermont-Ferrand, France
| | - Anita-Elin Fedøy
- Department of Biological Sciences, University of Bergen, PO Box 7803, Thormøhlens gate 55, N-5020 Bergen, Norway
| | - Stefanie Freitag-Pohl
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | | | - Clovis Galiez
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Eirin Glomsaker
- ArcticZymes Technologies PO Box 6463, Sykehusveien 23, 9294 Tromsø, Norway
| | | | - Sigurd E Gundesø
- ArcticZymes Technologies PO Box 6463, Sykehusveien 23, 9294 Tromsø, Norway
| | | | | | - Maria Håkansson
- SARomics Biostructures, Scheelevägen 2, SE-223 81 Lund, Sweden
| | - Christian Henke
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany.,Computational Metagenomics, Bielefeld University, Universitätsstraße 27, 30501 Bielefeld, Germany
| | | | | | | | - Gudmundur O Hreggvidsson
- Matis ohf, Vinlandsleid 12, Reykjavik 113, Iceland.,Faculty of Life and Environmental Sciences, University of Iceland, Askja-Sturlugata 7, Reykjavik, Iceland
| | - Andrius Jasilionis
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, Naturvetarvägen 14/Sölvegatan 39 A, SE-221 00 Lund, Sweden
| | - Annika Jochheim
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | - Agata Jurczak-Kurek
- Department of Molecular Evolution, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Lukasz P Kozlowski
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.,Institute of Informatics, Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, Warsaw 02-097, Poland
| | - Mart Krupovic
- Institute Pasteur, Department of Microbiology, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Karolina Kwiatkowska-Semrau
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Olav Lanes
- ArcticZymes Technologies PO Box 6463, Sykehusveien 23, 9294 Tromsø, Norway
| | - Joanna Lange
- Bio-Prodict, Nieuwe Marktstraat 54E 6511AA Nijmegen, Netherlands
| | | | - Javier Linares-Pastén
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, Naturvetarvägen 14/Sölvegatan 39 A, SE-221 00 Lund, Sweden
| | - Ying Liu
- Institute Pasteur, Department of Microbiology, 25-28 Rue du Dr Roux, 75015 Paris, France
| | | | - Tobias Lutterman
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Thibaud Mas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, 49 Boulevard François-Mitterrand - CS 60032, UMR 6023, Clermont-Ferrand, France
| | | | - Milot Mirdita
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Agnieszka Morzywołek
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Eric Olo Ndela
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, 49 Boulevard François-Mitterrand - CS 60032, UMR 6023, Clermont-Ferrand, France
| | - Eva Nordberg Karlsson
- Biotechnology, Department of Chemistry, Lund University, PO Box 124, Naturvetarvägen 14/Sölvegatan 39 A, SE-221 00 Lund, Sweden
| | | | - Cathrine Pedersen
- ArcticZymes Technologies PO Box 6463, Sykehusveien 23, 9294 Tromsø, Norway
| | - Francine Perler
- Perls of Wisdom Biotech Consulting, 74 Fuller Street, Brookline, MA 02446, USA
| | | | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ehmke Pohl
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.,Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - David Prangishvili
- Institute Pasteur, Department of Microbiology, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Jessica L Ray
- Department of Biological Sciences, University of Bergen, PO Box 7803, Thormøhlens gate 55, N-5020 Bergen, Norway.,NORCE Environment, NORCE Norwegian Research Centre AS, Nygårdsgaten 112, 5008 Bergen, Norway
| | | | | | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, PO Box 7803, Thormøhlens gate 55, N-5020 Bergen, Norway
| | - Alexander Sczyrba
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany.,Computational Metagenomics, Bielefeld University, Universitätsstraße 27, 30501 Bielefeld, Germany
| | | | - Johannes Söding
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Terese Solstad
- ArcticZymes Technologies PO Box 6463, Sykehusveien 23, 9294 Tromsø, Norway
| | - Ida H Steen
- Department of Biological Sciences, University of Bergen, PO Box 7803, Thormøhlens gate 55, N-5020 Bergen, Norway
| | | | - Martin Steinegger
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | - Bernd Striberny
- ArcticZymes Technologies PO Box 6463, Sykehusveien 23, 9294 Tromsø, Norway
| | - Anders Svensson
- SARomics Biostructures, Scheelevägen 2, SE-223 81 Lund, Sweden
| | - Monika Szadkowska
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Emma J Tarrant
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Paul Terzian
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, 49 Boulevard François-Mitterrand - CS 60032, UMR 6023, Clermont-Ferrand, France
| | | | | | | | - Jonathan Vincent
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, 49 Boulevard François-Mitterrand - CS 60032, UMR 6023, Clermont-Ferrand, France
| | - Bas Vroling
- Bio-Prodict, Nieuwe Marktstraat 54E 6511AA Nijmegen, Netherlands
| | - Björn Walse
- SARomics Biostructures, Scheelevägen 2, SE-223 81 Lund, Sweden
| | - Lei Wang
- Institute for Industrial Genetics, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Hildegard Watzlawick
- Institute for Industrial Genetics, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Martin Welin
- SARomics Biostructures, Scheelevägen 2, SE-223 81 Lund, Sweden
| | - Olesia Werbowy
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ewa Wons
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ruoshi Zhang
- Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
14
|
Turturice BA, Theorell J, Koenig MD, Tussing-Humphreys L, Gold DR, Litonjua AA, Oken E, Rifas-Shiman SL, Perkins DL, Finn PW. Perinatal granulopoiesis and risk of pediatric asthma. eLife 2021; 10:e63745. [PMID: 33565964 PMCID: PMC7889076 DOI: 10.7554/elife.63745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
There are perinatal characteristics, such as gestational age, reproducibly associated with the risk for pediatric asthma. Identification of biologic processes influenced by these characteristics could facilitate risk stratification or new therapeutic targets. We hypothesized that transcriptional changes associated with multiple epidemiologic risk factors would be mediators of pediatric asthma risk. Using publicly available transcriptomic data from cord blood mononuclear cells, transcription of genes involved in myeloid differentiation was observed to be inversely associated with a pediatric asthma risk stratification based on multiple perinatal risk factors. This gene signature was validated in an independent prospective cohort and was specifically associated with genes localizing to neutrophil-specific granules. Further validation demonstrated that umbilical cord blood serum concentration of PGLYRP-1, a specific granule protein, was inversely associated with mid-childhood current asthma and early-teen FEV1/FVCx100. Thus, neutrophil-specific granule abundance at birth predicts risk for pediatric asthma and pulmonary function in adolescence.
Collapse
Affiliation(s)
- Benjamin A Turturice
- Department of Microbiology and Immunology, University of IllinoisChicagoUnited States
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
| | - Juliana Theorell
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
| | - Mary Dawn Koenig
- Department of Women, Children and Family Health Science, College of Nursing, University of IllinoisChicagoUnited States
| | | | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Environmental Health, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Augusto A Litonjua
- Division of Pulmonary Medicine, Department of Pediatrics, University of RochesterRochesterUnited States
| | - Emily Oken
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care InstituteBostonUnited States
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Life Course, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care InstituteBostonUnited States
| | - David L Perkins
- Department of Medicine, Division of Nephrology, University of IllinoisChicagoUnited States
- Department of Bioengineering, University of IllinoisChicagoUnited States
| | - Patricia W Finn
- Department of Microbiology and Immunology, University of IllinoisChicagoUnited States
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of IllinoisChicagoUnited States
- Department of Bioengineering, University of IllinoisChicagoUnited States
| |
Collapse
|
15
|
Yang CK, Kashyap DR, Kowalczyk DA, Rudner DZ, Wang X, Gupta D, Dziarski R. Respiratory chain components are required for peptidoglycan recognition protein-induced thiol depletion and killing in Bacillus subtilis and Escherichia coli. Sci Rep 2021; 11:64. [PMID: 33420211 PMCID: PMC7794252 DOI: 10.1038/s41598-020-79811-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/11/2020] [Indexed: 12/03/2022] Open
Abstract
Mammalian peptidoglycan recognition proteins (PGRPs or PGLYRPs) kill bacteria through induction of synergistic oxidative, thiol, and metal stress. Tn-seq screening of Bacillus subtilis transposon insertion library revealed that mutants in the shikimate pathway of chorismate synthesis had high survival following PGLYRP4 treatment. Deletion mutants for these genes had decreased amounts of menaquinone (MK), increased resistance to killing, and attenuated depletion of thiols following PGLYRP4 treatment. These effects were reversed by MK or reproduced by inhibiting MK synthesis. Deletion of cytochrome aa3-600 or NADH dehydrogenase (NDH) genes also increased B. subtilis resistance to PGLYRP4-induced killing and attenuated thiol depletion. PGLYRP4 treatment also inhibited B. subtilis respiration. Similarly in Escherichia coli, deletion of ubiquinone (UQ) synthesis, formate dehydrogenases (FDH), NDH-1, or cytochrome bd-I genes attenuated PGLYRP4-induced thiol depletion. PGLYRP4-induced low level of cytoplasmic membrane depolarization in B. subtilis and E. coli was likely not responsible for thiol depletion. Thus, our results show that the respiratory electron transport chain components, cytochrome aa3-600, MK, and NDH in B. subtilis, and cytochrome bd-I, UQ, FDH-O, and NDH-1 in E. coli, are required for both PGLYRP4-induced killing and thiol depletion and indicate conservation of the PGLYRP4-induced thiol depletion and killing mechanisms in Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Chun-Kai Yang
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Des R Kashyap
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | | | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Dipika Gupta
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Roman Dziarski
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA.
| |
Collapse
|
16
|
Li X, Yuan S, Sun Z, Lei L, Wan S, Wang J, Zou J, Gao Q. Gene identification and functional analysis of peptidoglycan recognition protein from the spotted sea bass (Lateolabrax maculatus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:1014-1024. [PMID: 32866609 DOI: 10.1016/j.fsi.2020.08.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs), which are structurally conserved innate immune molecules in invertebrate and vertebrate animals, play the important roles in regulation of innate immune responses. In this paper, three PGRP genes of spotted sea bass, Lateolabrax maculatus, were cloned, designated as Ssb-PGRP2, Ssb-PGRP-L2 and Ssb-PGRP-SC2, respectively. Sequence analysis showed that the deduced amino acid sequences of Ssb-PGRP2, Ssb-PGRP-L2 and Ssb-PGRP-SC2 proteins contained respectively 468, 482 and 167 amino acid residues, and had the typical structural features of PGRPs, i.e. conserved PGRP domain and Zn2+ binding domain including four specific amino acid residues which were required for amidase activity. q-PCR analysis of total mRNA showed that the mRNA expression of three PGRP genes were detected in all the examined tissues and the expression patterns of Ssb-PGRP2, Ssb-PGRP-L2 and Ssb-PGRP-SC2 were different. After injected with LPS, Poly (I:C) and Edwardsiella tarda, there was a clear time-dependent expression pattern for each of the three PGRP genes in head kidney, spleen, intestine and gill of the spotted sea bass. In our study, three recombinant proteins corresponding to the three members of the peptidoglycan recognition protein family were expressed and purified. Moreover, all of the three recombinant PGRP proteins significantly inhibited bacterial survival and growth, and expressed bactericidal effects on Vibrio harveyi, Staphylococcus aureus and Edwardsiella tarda. In particular, it was firstly verified that their antimicrobial activity presented the superimposed effect. Overall, these findings indicated that three PGRP genes of spotted sea bass were at least involved in host defense against bacterial infections.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Shuya Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lina Lei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Shuai Wan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
17
|
McConnel CS, Crisp SA, Biggs TD, Ficklin SP, Parrish LM, Trombetta SC, Sischo WM, Adams-Progar A. A Fixed Cohort Field Study of Gene Expression in Circulating Leukocytes From Dairy Cows With and Without Mastitis. Front Vet Sci 2020; 7:559279. [PMID: 33195534 PMCID: PMC7554338 DOI: 10.3389/fvets.2020.559279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/03/2020] [Indexed: 12/04/2022] Open
Abstract
Specifically designed gene expression studies can be used to prioritize candidate genes and identify novel biomarkers affecting resilience against mastitis and other diseases in dairy cattle. The primary goal of this study was to assess whether specific peripheral leukocyte genes expressed differentially in a previous study of dairy cattle with postpartum disease, also would be expressed differentially in peripheral leukocytes from a diverse set of different dairy cattle with moderate to severe clinical mastitis. Four genes were selected for this study due to their differential expression in a previous transcriptomic analysis of circulating leukocytes from dairy cows with and without evidence of early postpartum disease. An additional 15 genes were included based on their cellular, immunologic, and inflammatory functions associated with resistance and tolerance to mastitis. This fixed cohort study was conducted on a conventional dairy in Washington state. Cows >50 days in milk (DIM) with mastitis (n = 12) were enrolled along with healthy cows (n = 8) selected to match the DIM and lactation numbers of mastitic cows. Blood was collected for a complete blood count (CBC), serum biochemistry, leukocyte isolation, and RNA extraction on the day of enrollment and twice more at 6 to 8-days intervals. Latent class analysis was performed to discriminate healthy vs. mastitic cows and to describe disease resolution. RNA samples were processed by the Primate Diagnostic Services Laboratory (University of Washington, Seattle, WA). Gene expression analysis was performed using the Nanostring System (Nanostring Technologies, Seattle, Washington, USA). Of the four genes (C5AR1, CATHL6, LCN2, and PGLYRP1) with evidence of upregulation in cows with mastitis, three of those genes (CATHL6, LCN2, and PGLYRP1) were investigated due to their previously identified association with postpartum disease. These genes are responsible for immunomodulatory molecules that selectively enhance or alter host innate immune defense mechanisms and modulate pathogen-induced inflammatory responses. Although further research is warranted to explain their functional mechanisms and bioactivity in cattle, our findings suggest that these conserved elements of innate immunity have the potential to bridge disease states and target tissues in diverse dairy populations.
Collapse
Affiliation(s)
- Craig S McConnel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sierra A Crisp
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Tyler D Biggs
- Department of Horticulture, College of Agriculture, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
| | - Stephen P Ficklin
- Department of Horticulture, College of Agriculture, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
| | - Lindsay M Parrish
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sophie C Trombetta
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - William M Sischo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Amber Adams-Progar
- Department of Animal Sciences, College of Agriculture, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
18
|
Torrens G, Escobar-Salom M, Oliver A, Juan C. Activity of mammalian peptidoglycan-targeting immunity against Pseudomonas aeruginosa. J Med Microbiol 2020; 69:492-504. [PMID: 32427563 DOI: 10.1099/jmm.0.001167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most important opportunistic pathogens, whose clinical relevance is not only due to the high morbidity/mortality of the infections caused, but also to its striking capacity for antibiotic resistance development. In the current scenario of a shortage of effective antipseudomonal drugs, it is essential to have thorough knowledge of the pathogen's biology from all sides, so as to find weak points for drug development. Obviously, one of these points could be the peptidoglycan, given its essential role for cell viability. Meanwhile, immune weapons targeting this structure could constitute an excellent model to be taken advantage of in order to design new therapeutic strategies. In this context, this review gathers all the information regarding the activity of mammalian peptidoglycan-targeting innate immunity (namely lysozyme and peptidoglycan recognition proteins), specifically against P. aeruginosa. All the published studies were considered, from both in vitro and in vivo fields, including works that envisage these weapons as options not only to potentiate their innate effects within the host or for use as exogenously administered treatments, but also harnessing their inflammatory and immune regulatory capacity to finally reduce damage in the patient. Altogether, this review has the objective of anticipating and discussing whether these innate immune resources, in combination or not with other drugs attacking certain P. aeruginosa targets leading to its increased sensitization, could be valid therapeutic antipseudomonal allies.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Maria Escobar-Salom
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | | |
Collapse
|
19
|
Keshavarz M, Jo YH, Edosa TT, Han YS. Tenebrio molitor PGRP-LE Plays a Critical Role in Gut Antimicrobial Peptide Production in Response to Escherichia coli. Front Physiol 2020; 11:320. [PMID: 32372972 PMCID: PMC7179671 DOI: 10.3389/fphys.2020.00320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
Invading pathogens are recognized by peptidoglycan recognition proteins (PGRPs) that induce translocation of NF-κB transcription proteins and expression of robust antimicrobial peptides (AMPs). Tenebrio molitor PGRP-LE (TmPGRP-LE) has been previously identified as a key sensor of Listeria monocytogenes infection. Here, we present that TmPGRP-LE is highly expressed in the gut of T. molitor larvae and 5-day-old adults in the absence of microbial infection. In response to Escherichia coli and Candida albicans infections, TmPGRP-LE mRNA levels are significantly upregulated in both the fat body and gut. Silencing of TmPGRP-LE by RNAi rendered T. molitor significantly more susceptible to challenge by E. coli infection and, to a lesser extent, Staphylococcus aureus and C. albicans infections. Reduction of TmPGRP-LE levels in the larval gut resulted in downregulation of eight AMP genes following exposure to E. coli, S. aureus, and C. albicans. However, the transcriptional levels of AMPs more rapidly reached a higher level in the dsEGFP-treated larval gut after challenge with E. coli, which may suggest that AMPs induction were more sensitive to E. coli than S. aureus and C. albicans. In addition, TmPGRP-LE RNAi following E. coli and C. albicans challenges had notable effects on TmRelish, TmDorsal X1 isoform (TmDorX1), and TmDorX2 expression level in the fat body and gut. Taken together, TmPGRP-LE acts as an important gut microbial sensor that induces AMPs via Imd activation in response to E. coli, whereas involvement of TmPGRP-LE in AMPs synthesize is barely perceptible in the hemocytes and fat body.
Collapse
Affiliation(s)
- Maryam Keshavarz
- Department of Applied Biology, College of Agriculture and Life Sciences, Institute of Environmentally-Friendly Agriculture (IEFA), Chonnam National University, Gwangju, South Korea
| | - Yong Hun Jo
- Department of Applied Biology, College of Agriculture and Life Sciences, Institute of Environmentally-Friendly Agriculture (IEFA), Chonnam National University, Gwangju, South Korea
| | - Tariku Tesfaye Edosa
- Department of Applied Biology, College of Agriculture and Life Sciences, Institute of Environmentally-Friendly Agriculture (IEFA), Chonnam National University, Gwangju, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, College of Agriculture and Life Sciences, Institute of Environmentally-Friendly Agriculture (IEFA), Chonnam National University, Gwangju, South Korea
| |
Collapse
|
20
|
Arenius I, Ruokonen H, Ortiz F, Furuholm J, Välimaa H, Bostanci N, Eskola M, Maria Heikkinen A, Meurman JH, Sorsa T, Nylund K. The relationship between oral diseases and infectious complications in patients under dialysis. Oral Dis 2020; 26:1045-1052. [PMID: 32026534 DOI: 10.1111/odi.13296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Association was investigated between oral health before dialysis and the incidence of systemic infections during dialysis. We hypothesized that low-grade systemic inflammation caused by poor oral health associates with infectious episodes in patients on dialysis, despite earlier eradication of oral infection foci. SUBJECTS AND METHODS A total of 117 patients (46 with peritoneal and 71 with hemodialysis) were examined and treated at predialysis stage and followed up during dialysis. Number of infection episodes and microorganisms cultured from blood and peritoneal fluid were analyzed. Number of teeth, periodontal inflammatory burden, and total dental index scores were assessed, and salivary matrix metalloproteinase 8, triggering receptor on myeloid cells 1, peptidoglycan recognition protein 1 (PGLYRP1), and interleukin-1β were measured. RESULTS In hemodialysis, 134 infection episodes were recorded, while peritoneal dialysis group had 77 peritonitis episodes. Culture-negative samples were 69% in hemodialysis and 23% in peritoneal dialysis group. Staphylococci were the most frequently associated microorganisms. Infections during dialysis did neither associate with oral health parameters nor associate with salivary inflammatory biomarkers, except for PGLYRP1, which associated with number of infection episodes during hemodialysis (p = .046). CONCLUSIONS A number of infection episodes during hemodialysis were associated with salivary PGLYRP1 but not the other salivary markers or oral infection markers.
Collapse
Affiliation(s)
- Ilona Arenius
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hellevi Ruokonen
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Fernanda Ortiz
- Division of Nephrology, Department of Medicine, Helsinki University Hospital, Helsinki, Finland.,Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Jussi Furuholm
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hannamari Välimaa
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Oral and Maxillofacial Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nagihan Bostanci
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maija Eskola
- Division of Nephrology, Department of Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Anna Maria Heikkinen
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jukka H Meurman
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Karita Nylund
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Kashyap DR, Kowalczyk DA, Shan Y, Yang CK, Gupta D, Dziarski R. Formate dehydrogenase, ubiquinone, and cytochrome bd-I are required for peptidoglycan recognition protein-induced oxidative stress and killing in Escherichia coli. Sci Rep 2020; 10:1993. [PMID: 32029761 PMCID: PMC7005000 DOI: 10.1038/s41598-020-58302-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/14/2020] [Indexed: 11/09/2022] Open
Abstract
Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill bacteria through induction of synergistic oxidative, thiol, and metal stress. PGRPs induce oxidative stress in bacteria through a block in the respiratory chain, which results in decreased respiration and incomplete reduction of oxygen (O2) to hydrogen peroxide (H2O2). In this study we identify the site of PGRP-induced generation of H2O2 in Escherichia coli. Tn-seq screening of E. coli Tn10 insertion library revealed that mutants in formate dehydrogenase (FDH) genes had the highest survival following PGRP treatment. Mutants lacking functional FDH-O had abolished PGRP-induced H2O2 production and the highest resistance to PGRP-induced killing, and formate enhanced PGRP-induced killing and H2O2 production in an FDH-dependent manner. Mutants in ubiquinone synthesis (but not menaquinone and demethylmenaquinone) and cytochrome bd-I (but not cytochromes bo3 and bd-II) also had completely abolished PGRP-induced H2O2 production and high resistance to PGRP-induced killing. Because electrons in the respiratory chain flow from dehydrogenases' substrates through quinones and then cytochromes to O2, these results imply that the site of PGRP-induced incomplete reduction of O2 to H2O2 is downstream from dehydrogenases and ubiquinone at the level of cytochrome bd-I, which results in oxidative stress. These results reveal several essential steps in PGRP-induced bacterial killing.
Collapse
Affiliation(s)
- Des R Kashyap
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | | | - Yue Shan
- Antimicrobial Discovery Center, Northeastern University, Boston, MA, 02115, USA.,Department of Medicine, The University of Chicago, Chicago, 60637, USA
| | - Chun-Kai Yang
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Dipika Gupta
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Roman Dziarski
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA.
| |
Collapse
|
22
|
Banskar S, Detzner AA, Juarez-Rodriguez MD, Hozo I, Gupta D, Dziarski R. The Pglyrp1-Regulated Microbiome Enhances Experimental Allergic Asthma. THE JOURNAL OF IMMUNOLOGY 2019; 203:3113-3125. [PMID: 31704882 DOI: 10.4049/jimmunol.1900711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Changes in intestinal or respiratory microbiomes in infants correlate with increased incidence of asthma, but the causative role of microbiome in the susceptibility to asthma and the host genes that regulate these changes in microbiome are mostly unknown. In this study, we show that decreased responsiveness to allergic asthma in Pglyrp1 -/- mice (lacking bactericidal peptidoglycan recognition protein 1) could be transferred to germ-free wild-type mice by colonization of mothers and newborns with microbiota from Pglyrp1 -/- mice. These colonized mice had decreased airway resistance and fewer inflammatory cells, less severe histopathology, and lower levels of IgE and proallergic cytokines and chemokines in the lungs. This microbiome-dependent decreased responsiveness to asthma was most pronounced in colonized germ-free BALB/c mice (genetically predisposed to asthma), only partially evident in outbred germ-free Swiss Webster mice, and marginal in conventional BALB/c mice following depletion of microbiome with antibiotics. Mice with a low asthmatic response colonized with microbiota from Pglyrp1 -/- mice had increased abundance of Bacteroidetes and decreased abundance of Firmicutes, Tenericutes, Deferribacteres, and Spirochaetes in the feces and increased abundance of Pasteurella in the oropharynx. These changes in bacterial abundance in the feces and oropharynx correlated with lower asthmatic responses in the lungs. Thus, our results show that Pglyrp1 enhances allergic asthmatic responses primarily through its effect on the host intestinal microbiome and identify several bacteria that may increase or decrease sensitivity to asthma. This effect of microbiome is strong in asthma-prone BALB/c mice and weak in asthma-resistant outbred mice and requires germ-free conditions before colonization with microbiota from Pglyrp1 -/- mice.
Collapse
Affiliation(s)
- Sunil Banskar
- Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Ashley A Detzner
- Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | | | - Iztok Hozo
- Department of Mathematics, Indiana University-Northwest, Gary, IN 46408
| | - Dipika Gupta
- Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Roman Dziarski
- Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| |
Collapse
|
23
|
Dabrowski AN, Shrivastav A, Conrad C, Komma K, Weigel M, Dietert K, Gruber AD, Bertrams W, Wilhelm J, Schmeck B, Reppe K, N'Guessan PD, Aly S, Suttorp N, Hain T, Zahlten J. Peptidoglycan Recognition Protein 4 Limits Bacterial Clearance and Inflammation in Lungs by Control of the Gut Microbiota. Front Immunol 2019; 10:2106. [PMID: 31616404 PMCID: PMC6763742 DOI: 10.3389/fimmu.2019.02106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
Streptococcus pneumoniae is the most frequent cause of community-acquired pneumonia. Endogenous host defense molecules such as peptidoglycan recognition protein 4 (PGLYRP4) might influence the course of this disease. To the best of our knowledge, there are no reports on the relevance of PGLYRP4 in pneumonia. Therefore, wild type (WT) and PGLYRP4-deficient (PGLYRP4KO) mice were analyzed in an in vivo and in vitro experimental setting to examine the influence of PGLYRP4 on the course of pneumococcal pneumonia. Furthermore, caecal 16S rRNA microbiome analysis was performed, and microbiota were transferred to germfree WT mice to assess the influence of microbiotal communities on the bacterial burden. Mice lacking PGLYRP4 displayed an enhanced bacterial clearance in the lungs, and fewer mice developed bacteremia. In addition, an increased recruitment of immune cells to the site of infection, and an enhanced bacterial killing by stronger activation of phagocytes could be shown. This may depend partly on the detected higher expression of complement factors, interferon-associated genes, and the higher pro-inflammatory cytokine response in isolated primary PGLYRP4KO vs. WT cells. This phenotype is underlined by changes in the complexity and composition of the caecal microbiota of PGLYRP4KO compared to WT mice. Strikingly, we provided evidence, by cohousing and stable transfer of the respective WT or PGLYRP4KO mice microbiota into germfree WT mice, that the changes of the microbiota are responsible for the improved clearance of S. pneumoniae lung infection. In conclusion, the deficiency of PGLYRP4, a known antibacterial protein, leads to changes in the gut microbiota. Thus, alterations in the microbiota can change the susceptibility to S. pneumoniae lung infection independently of the host genotype.
Collapse
Affiliation(s)
- Alexander N Dabrowski
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Anshu Shrivastav
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Claudia Conrad
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Kassandra Komma
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Kristina Dietert
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research/iLung, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardio Pulmonary System, The German Center for Lung Research, Justus-Liebig University Giessen, Giessen, Germany
| | - Bernd Schmeck
- Institute for Lung Research/iLung, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philippe D N'Guessan
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sahar Aly
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Giessen, Germany.,German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Janine Zahlten
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
24
|
Yang D, Han Y, Liu Y, Cao R, Wang Q, Dong Z, Liu H, Zhang X, Zhang Q, Zhao J. A peptidoglycan recognition protein involved in immune recognition and immune defenses in Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2019; 88:441-448. [PMID: 30872031 DOI: 10.1016/j.fsi.2019.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are important pattern recognition receptors in the innate immune system of invertebrates. In the study, a short PGRP (designed as RpPGRP) was identified and characterized from the manila clam Ruditapes philippinarum. The open reading frame of RpPGRP encoded a polypeptide of 249-amino acids with a calculated molecular mass of 27.2 kDa and an isoelectric point of 6.62. Multiple alignments and phylogenetic analysis strongly suggested that RpPGRP was a new member of the PGRP superfamily. In non-stimulated clams, RpPGRP exhibited different tissue expression pattern, and highly expressed in hepatopancreas and hemocytes. Expression of RpPGRP transcripts was significantly up-regulated in hemocytes of clams post Vibrio anguillarum or Micrococcus luteus challenge. The recombinant RpPGRP (rRpPGRP) exhibited high affinity to PGN, LPS and zymosan in a concentration-dependent manner. With a broad spectrum of bacterial binding activities, rRpPGRP exhibited strong agglutination activity to Escherichia coli, Vibrio splendidus, V. anguillarum and M. luteus. Furthermore, rRpPGRP exhibited Zn2+-dependent amidase activity and catalyzed the degradation of insoluble PGN. Especially, rRpPGRP exhibited significant antibacterial activity against E. coli and M. luteus. Moreover, the biofilm formation of E. coli could be inhibited after rRpPGRP incubation in the presence of Zn2+. This inhibitory effect of rRpPGRP might attribute to its amide bactericidal activity. Taken together, rRpPGRP played important roles in PGRP-mediated immune defense mechanisms, especially by recognizing antigens and eliminating bacteria.
Collapse
Affiliation(s)
- Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yijing Han
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongliang Liu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Ruiwen Cao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qing Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hui Liu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiaoli Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Qianqian Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao Shandong, 266071, PR China.
| |
Collapse
|
25
|
Dabrowski AN, Conrad C, Behrendt U, Shrivastav A, Baal N, Wienhold SM, Hackstein H, N'Guessan PD, Aly S, Reppe K, Suttorp N, Zahlten J. Peptidoglycan Recognition Protein 2 Regulates Neutrophil Recruitment Into the Lungs After Streptococcus pneumoniae Infection. Front Microbiol 2019; 10:199. [PMID: 30837960 PMCID: PMC6389715 DOI: 10.3389/fmicb.2019.00199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Peptidoglycan (PGN) recognition proteins (PGLYRPs) are a highly conserved group of host defense proteins in insects and mammals that sense bacterial cell wall PGN and act bactericidally or cleave PGN by amidase function. Streptococcus (S.) pneumoniae is one of the top five killers worldwide and causes, e.g., pneumonia, endocarditis, meningitis and sepsis. S. pneumoniae accounts for approximately 1.5–2 million deaths every year. The risk of antibiotic resistance and a general poor prognosis in young children and elderly people have led to the need for new treatment approaches. To the best of our knowledge, there is no report on the relevance of PGLYRP2 in lung infections. Therefore, we infected mice deficient for PGLYRP2 transnasally with S. pneumoniae and examined the innate immune response in comparison to WT animals. As expected, PGLYRP2-KO animals had to be sacrificed earlier than their WT counterparts, and this was due to higher bacteremia. The higher bacterial load in the PGLYRP2-KO mice was accomplished with lower amounts of proinflammatory cytokines in the lungs. This led to an abolished recruitment of neutrophils into the lungs, the spread of bacteria and the subsequent aggravated course of the disease and early mortality of the PGLYRP2-KO mice. These data suggest a substantial role of PGLYRP2 in the early defense against S. pneumoniae infection, and PGLYRP2 might also affect other infections in the lungs.
Collapse
Affiliation(s)
- Alexander N Dabrowski
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia Conrad
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Behrendt
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anshu Shrivastav
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nelli Baal
- Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Sandra M Wienhold
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Hackstein
- Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Philippe D N'Guessan
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sahar Aly
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Janine Zahlten
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
26
|
Peptidoglycan Recognition Protein 4 Suppresses Early Inflammatory Responses to Bordetella pertussis and Contributes to Sphingosine-1-Phosphate Receptor Agonist-Mediated Disease Attenuation. Infect Immun 2018; 87:IAI.00601-18. [PMID: 30510103 DOI: 10.1128/iai.00601-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Incidence of whooping cough (pertussis), a bacterial infection of the respiratory tract caused by the bacterium Bordetella pertussis, has reached levels not seen since the 1950s. Antibiotics fail to improve the course of disease unless administered early in infection. Therefore, there is an urgent need for the development of antipertussis therapeutics. Sphingosine-1-phosphate receptor (S1PR) agonists have been shown to reduce pulmonary inflammation during Bordetella pertussis infection in mouse models. However, the mechanisms by which S1PR agonists attenuate pertussis disease are unknown. We report the results of a transcriptome sequencing study examining pulmonary transcriptional responses in B. pertussis-infected mice treated with S1PR agonist AAL-R or vehicle control. This study identified peptidoglycan recognition protein 4 (PGLYRP4) as one of the most highly upregulated genes in the lungs of infected mice following S1PR agonism. PGLYRP4, a secreted, innate mediator of host defenses, was found to limit early inflammatory pathology in knockout mouse studies. Further, S1PR agonist AAL-R failed to attenuate pertussis disease in PGLYRP4 knockout (KO) mice. B. pertussis virulence factor tracheal cytotoxin (TCT), a secreted peptidoglycan breakdown product, induces host tissue damage. TCT-oversecreting strains were found to drive an early inflammatory response similar to that observed in PGLYRP4 KO mice. Further, TCT-oversecreting strains induced significantly greater pathology in PGLYRP4-deficient animals than their wild-type counterparts. Together, these data indicate that S1PR agonist-mediated protection against pertussis disease is PGLYRP4 dependent. Our data suggest PGLYRP4 functions, in part, by preventing TCT-induced airway damage.
Collapse
|
27
|
Ishida T. Antibacterial mechanism of Ag+ ions for bacteriolyses of bacterial cell walls via peptidoglycan autolysins, and DNA damages. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/mojt.2018.04.00125] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Rahman MT, Karim MM. Metallothionein: a Potential Link in the Regulation of Zinc in Nutritional Immunity. Biol Trace Elem Res 2018; 182:1-13. [PMID: 28585004 DOI: 10.1007/s12011-017-1061-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Nutritional immunity describes mechanisms for withholding essential transition metals as well as directing the toxicity of these metals against infectious agents. Zinc is one of these transition elements that are essential for both humans and microbial pathogens. At the same time, Zn can be toxic both for man and microbes if its concentration is higher than the tolerance limit. Therefore a "delicate" balance of Zn must be maintained to keep the immune cells surveilling while making the level of Zn either to starve or to intoxicate the pathogens. On the other hand, the invading pathogens will exploit the host Zn pool for its survival and replication. Apparently, different sets of protein in human and bacteria are involved to maintain their Zn need. Metallothionein (MT)-a group of low molecular weight proteins, is well known for its Zn-binding ability and is expected to play an important role in that Zn balance at the time of active infection. However, the differences in structural, functional, and molecular control of biosynthesis between human and bacterial MT might play an important role to determine the proper use of Zn and the winning side. The current review explains the possible involvement of human and bacterial MT at the time of infection to control and exploit Zn for their need.
Collapse
|
29
|
Shrivastav A, Dabrowski AN, Conrad C, Baal N, Hackstein H, Plog S, Dietert K, Gruber AD, N'Guessan PD, Aly S, Suttorp N, Zahlten J. Peptidoglycan Recognition Protein 3 Does Not Alter the Outcome of Pneumococcal Pneumonia in Mice. Front Microbiol 2018; 9:103. [PMID: 29449834 PMCID: PMC5799233 DOI: 10.3389/fmicb.2018.00103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/17/2018] [Indexed: 01/07/2023] Open
Abstract
Pneumococci frequently cause community-acquired pneumonia, a disease with high mortality rates, particularly in young children and in the elderly. Endogenous antimicrobial peptides and proteins such as PGLYRP3 may contribute to the progression and outcome of this disease. Since increasing antibiotic resistant strains occur all over the world, these endogenous antimicrobial molecules are interesting new targets for future therapies. In this study, the expression pattern of PGLYRP3 was analyzed in alveolar epithelial cells, alveolar macrophages and neutrophils. Additionally, the function of PGLYRP3 during Streptococcus pneumoniae-induced pneumonia was investigated in a murine pneumococcal pneumonia model using PGLYRP3KO mice. PGLYRP3 is expressed in all selected cell types but pneumococcus-dependent induction of PGLYRP3 was observed only in neutrophils and alveolar macrophages. Interestingly, there were no significant differences in the bacterial loads within the lungs, the blood or the spleens, in the cytokine response, the composition of immune cells and the histopathology between wild type and PGLYRP3KO mice. Finally, we could neither observe significant differences in the clinical symptoms nor in the overall survival. Collectively, PGLYRP3 seems to be dispensable for the antibacterial defense during pneumococcal pneumonia.
Collapse
Affiliation(s)
- Anshu Shrivastav
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander N Dabrowski
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Conrad
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nelli Baal
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Stephanie Plog
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Kristina Dietert
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Philippe D N'Guessan
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sahar Aly
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Janine Zahlten
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Mechanistic insights into the protective impact of zinc on sepsis. Cytokine Growth Factor Rev 2017; 39:92-101. [PMID: 29279185 DOI: 10.1016/j.cytogfr.2017.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Sepsis, a systemic inflammation as a response to a bacterial infection, is a huge unmet medical need. Data accumulated over the last decade suggest that the nutritional status of patients as well as composition of their gut microbiome, are strongly linked with the risk to develop sepsis, the severity of the disease and prognosis. In particular, the essential micronutrient zinc is essential in the resistance against sepsis and has shown to be protective in animal models as well as in human patients. The potential mechanisms by which zinc protects in sepsis are discussed in this review paper: we will focus on the inflammatory response, chemotaxis, phagocytosis, immune response, oxidative stress and modulation of the microbiome. A full understanding of the mechanism of action of zinc may open new preventive and therapeutic interventions in sepsis.
Collapse
|
31
|
Yang PJ, Zhan MY, Ye C, Yu XQ, Rao XJ. Molecular cloning and characterization of a short peptidoglycan recognition protein from silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2017; 26:665-676. [PMID: 28703893 DOI: 10.1111/imb.12330] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptidoglycan is the major bacterial component recognized by the insect immune system. Peptidoglycan recognition proteins (PGRPs) are a family of pattern-recognition receptors that recognize peptidoglycans and modulate innate immune responses. Some PGRPs retain N-acetylmuramoyl-L-alanine amidase (Enzyme Commission number: 3.5.1.28) activity to hydrolyse bacterial peptidoglycans. Others have lost the enzymatic activity and work only as immune receptors. They are all important modulators for innate immunity. Here, we report the cloning and functional analysis of PGRP-S4, a short-form PGRP from the domesticated silkworm, Bombyx mori. The PGRP-S4 gene encodes a protein of 199 amino acids with a signal peptide and a PGRP domain. PGRP-S4 was expressed in the fat body, haemocytes and midgut. Its expression level was significantly induced by bacterial challenges in the midgut. The recombinant PGRP-S4 bound bacteria and different peptidoglycans. In addition, it inhibited bacterial growth and hydrolysed an Escherichia coli peptidoglycan in the presence of Zn2+ . Scanning electron microscopy showed that PGRP-S4 disrupted the bacterial cell surface. PGRP-S4 further increased prophenoloxidase activation caused by peptidoglycans. Taken together, our data suggest that B. mori PGRP-S4 has multiple functions in immunity.
Collapse
Affiliation(s)
- P-J Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - M-Y Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - C Ye
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - X-Q Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - X-J Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
32
|
Chen Y, Zhao B, Wu Y, Hu S, Mu L, Zhu C, Pan Y, Wu X. Impacts of diarrhea on the immune system, intestinal environment, and expression of PGRPs in New Zealand rabbits. PeerJ 2017; 5:e4100. [PMID: 29201570 PMCID: PMC5708184 DOI: 10.7717/peerj.4100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
Diarrhea is a syndrome of digestive disorders in young rabbits and may lead to secondary infections resulting in reduced immunity and higher mortality in baby rabbits, with serious impacts on rabbit farming. In this study, we investigated the effects of diarrhea on the health of baby rabbits in terms of intestinal mucosal development, immune function, and intestinal microbial diversity. We found that the duodenal villus length and the villus/crypt ratio in rabbits with diarrhea were significantly reduced compared with those in healthy rabbits (P < 0.01). Rabbits with diarrhea had significantly lower concentrations of acetic acid (P < 0.05), higher pH levels (P < 0.05), and higher levels of ammonia nitrogen (P < 0.01) in the cecum. Moreover, diarrhea in baby rabbits led to significantly reduced levels of total serum protein (P < 0.05) and markedly increased levels of alkaline phosphatase, urea nitrogen, TNF-α, and IL-6 (P < 0.05). Transcriptional analysis of peptidoglycan recognition proteins (PGRPs, including PGLYRP-1, PGLYRP-2, and PGLYRP-3) using real-time PCR revealed that diarrhea induced the upregulation of PGRPs in the cecum and duodenum. Furthermore, through pyrosequencing of the 16S rRNA V4 region in cecum samples, we found that the total number and diversity of microbes were not significantly different between healthy rabbits and those with diarrhea, though there were noticeable differences in the prevalences of Clostridium, Roseburia, and Alistipes. Our results will contribute to a better understanding of the pathological mechanisms of diarrhea in young rabbits.
Collapse
Affiliation(s)
- Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuwei Wu
- Yangzhou University, College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lin Mu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Cigen Zhu
- Jinling Rabbit Farm, Nanjing, Jiangsu, China
| | - Yulai Pan
- Jinling Rabbit Farm, Nanjing, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
33
|
How innate immunity proteins kill bacteria and why they are not prone to resistance. Curr Genet 2017; 64:125-129. [PMID: 28840318 DOI: 10.1007/s00294-017-0737-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 01/11/2023]
Abstract
Recent advances on antibacterial activity of peptidoglycan recognition proteins (PGRPs) offer some insight into how innate immunity has retained its antimicrobial effectiveness for millions of years with no frequent emergence of resistant strains. First, PGRP can bind to multiple components of bacterial envelope (peptidoglycan, lipoteichoic acid, and lipopolysaccharide). Second, PGRP simultaneously induces oxidative, thiol, and metal stress responses in bacteria, which individually are bacteriostatic, but in combination are bactericidal. Third, PGRP induces oxidative, thiol, and metal stress responses in bacteria through three independent pathways. Fourth, antibacterial effects of PGRP are enhanced by other innate immune responses. Thus, emergence of PGRP resistance is prevented by bacteriostatic effect and independence of each PGRP-induced stress response, as PGRP resistance would require simultaneous acquisition of three separate mechanisms disabling the induction of all three stress responses. By contrast, each antibiotic has one primary target and one primary antibacterial mechanism, and for this reason resistance to antibiotics can be generated by inhibition of this primary mechanism. Manipulating bacterial metabolic responses can enhance bacterial killing by antibiotics and elimination of antibiotic-tolerant bacteria, but such manipulations do not overcome genetically encoded antibiotic resistance. Pathogens cause infections by evading, inhibiting, or subverting host immune responses.
Collapse
|
34
|
Targeting the permeability barrier and peptidoglycan recycling pathways to disarm Pseudomonas aeruginosa against the innate immune system. PLoS One 2017; 12:e0181932. [PMID: 28742861 PMCID: PMC5526577 DOI: 10.1371/journal.pone.0181932] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial resistance is a continuously increasing threat that severely compromises our antibiotic arsenal and causes thousands of deaths due to hospital-acquired infections by pathogens such as Pseudomonas aeruginosa, situation further aggravated by the limited development of new antibiotics. Thus, alternative strategies such as those targeting bacterial resistance mechanisms, virulence or potentiating the activity of our immune system resources are urgently needed. We have recently shown that mutations simultaneously causing the peptidoglycan recycling blockage and the β-lactamase AmpC overexpression impair the virulence of P.aeruginosa. These findings suggested that peptidoglycan metabolism might be a good target not only for fighting antibiotic resistance, but also for the attenuation of virulence and/or potentiation of our innate immune weapons. Here we analyzed the activity of the innate immune elements peptidoglycan recognition proteins (PGRPs) and lysozyme against P. aeruginosa. We show that while lysozyme and PGRPs have a very modest basal effect over P. aeruginosa, their bactericidal activity is dramatically increased in the presence of subinhibitory concentrations of the permeabilizing agent colistin. We also show that the P. aeruginosa lysozyme inhibitors seem to play a very residual protective role even in permeabilizing conditions. In contrast, we demonstrate that, once the permeability barrier is overpassed, the activity of lysozyme and PGRPs is dramatically enhanced when inhibiting key peptidoglycan recycling components (such as the 3 AmpDs, AmpG or NagZ), indicating a decisive protective role for cell-wall recycling and that direct peptidoglycan-binding supports, at least partially, the activity of these enzymes. Finally, we show that recycling blockade when occurring simultaneously with AmpC overexpression determines a further decrease in the resistance against PGRP2 and lysozyme, linked to quantitative changes in the cell-wall. Thus, our results help to delineate new strategies against P. aeruginosa infections, simultaneously targeting β–lactam resistance, cell-wall metabolism and virulence, ultimately enhancing the activity of our innate immune weapons.
Collapse
|
35
|
Kashyap DR, Kuzma M, Kowalczyk DA, Gupta D, Dziarski R. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism. Mol Microbiol 2017. [PMID: 28621879 DOI: 10.1111/mmi.13733] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill both Gram-positive and Gram-negative bacteria through simultaneous induction of oxidative, thiol and metal stress responses in bacteria. However, metabolic pathways through which PGRPs induce these bactericidal stress responses are unknown. We screened Keio collection of Escherichia coli deletion mutants and revealed that deleting genes for respiratory chain flavoproteins or for tricarboxylic acid (TCA) cycle resulted in increased resistance of E. coli to PGRP killing. PGRP-induced killing depended on the production of hydrogen peroxide, which required increased supply of NADH for respiratory chain oxidoreductases from central carbon catabolism (glycolysis and TCA cycle), and was controlled by cAMP-Crp. Bactericidal PGRP induced a rapid decrease in respiration, which suggested that the main source of increased production of hydrogen peroxide was a block in respiratory chain and diversion of electrons from NADH oxidoreductases to oxygen. CpxRA two-component system was a negative regulator of PGRP-induced oxidative stress. By contrast, PGRP-induced thiol stress (depletion of thiols) and metal stress (increase in intracellular free Zn2+ through influx of extracellular Zn2+ ) were mostly independent of oxidative stress. Thus, manipulating pathways that induce oxidative, thiol and metal stress in bacteria could be a useful strategy to design new approaches to antibacterial therapy.
Collapse
Affiliation(s)
- Des R Kashyap
- Indiana University, School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Marcin Kuzma
- Indiana University, School of Medicine-Northwest, Gary, IN, 46408, USA
| | | | - Dipika Gupta
- Indiana University, School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Roman Dziarski
- Indiana University, School of Medicine-Northwest, Gary, IN, 46408, USA
| |
Collapse
|
36
|
Gammoh NZ, Rink L. Zinc in Infection and Inflammation. Nutrients 2017; 9:E624. [PMID: 28629136 PMCID: PMC5490603 DOI: 10.3390/nu9060624] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/09/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022] Open
Abstract
Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.
Collapse
Affiliation(s)
- Nour Zahi Gammoh
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelstrasse 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
37
|
Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017; 25:11-24. [PMID: 28083748 PMCID: PMC5306179 DOI: 10.1007/s10787-017-0309-4] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022]
Abstract
Zinc is a nutritionally fundamental trace element, essential to the structure and function of numerous macromolecules, including enzymes regulating cellular processes and cellular signaling pathways. The mineral modulates immune response and exhibits antioxidant and anti-inflammatory activity. Zinc retards oxidative processes on a long-term basis by inducing the expression of metallothioneins. These metal-binding cysteine-rich proteins are responsible for maintaining zinc-related cell homeostasis and act as potent electrophilic scavengers and cytoprotective agents. Furthermore, zinc increases the activation of antioxidant proteins and enzymes, such as glutathione and catalase. On the other hand, zinc exerts its antioxidant effect via two acute mechanisms, one of which is the stabilization of protein sulfhydryls against oxidation. The second mechanism consists in antagonizing transition metal-catalyzed reactions. Zinc can exchange redox active metals, such as copper and iron, in certain binding sites and attenuate cellular site-specific oxidative injury. Studies have demonstrated that physiological reconstitution of zinc restrains immune activation, whereas zinc deficiency, in the setting of severe infection, provokes a systemic increase in NF-κB activation. In vitro studies have shown that zinc decreases NF-κB activation and its target genes, such as TNF-α and IL-1β, and increases the gene expression of A20 and PPAR-α, the two zinc finger proteins with anti-inflammatory properties. Alternative NF-κB inhibitory mechanism is initiated by the inhibition of cyclic nucleotide phosphodiesterase, whereas another presumed mechanism consists in inhibition of IκB kinase in response to infection by zinc ions that have been imported into cells by ZIP8.
Collapse
Affiliation(s)
- Magdalena Jarosz
- Department of Radioligands, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| | - Magdalena Olbert
- Department of Radioligands, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Gabriela Wyszogrodzka
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Katarzyna Młyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Tadeusz Librowski
- Department of Radioligands, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| |
Collapse
|
38
|
Zhang L, Gao C, Liu F, Song L, Su B, Li C. Characterization and expression analysis of a peptidoglycan recognition protein gene, SmPGRP2 in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 56:367-373. [PMID: 27461422 DOI: 10.1016/j.fsi.2016.07.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
Peptidoglycan recognition receptor proteins (PGRPs), a group of pattern recognition receptors (PRRs), can recognize peptidoglycan (PGN) of the bacteria cell wall and play an important role in host immune defense against pathogen infection. They are highly structurally conserved through evolution, but with different function in innate immunity between invertebrates and vertebrates. In teleost fish, several PGRPs have been characterized recently. They have both amidase activity and bactericidal activity and are involved in indirectly killing bacteria and regulating multiple signaling pathways. However, the knowledge of PGRPs in mucosal immunity of teleost fish is still limited. In this study, we identified a PGRPs gene (SmPGRP2) of turbot and investigated its expression patterns in mucosal tissues after challenge with Gram-positive bacteria Streptococcus iniae and Gram-negative bacteria Vibrio anguillarum. Phylogenetic analysis showed the strongest relationship of turbot PGRP to halibut, which was consistent with their phylogenetic relationships. In addition, SmPGRP2 was ubiquitously expressed in turbot tissues, and constitutive expression levels were higher in classical immune tissues (including liver, spleen, and head-kidney) than mucosal tissues (intestine, gill and skin). After bacterial challenge, the expression of SmPGRP2 was induced and showed a general trend of up-regulation in mucosal tissues, except in intestine following V. anguillarum infection. These different expression patterns varied depending on both pathogen and tissue type, suggesting its distinct roles in the host immune response to bacterial pathogen.
Collapse
Affiliation(s)
- Linan Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengqiao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baofeng Su
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China; National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
39
|
Pglyrp-Regulated Gut Microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii Enhance and Alistipes finegoldii Attenuates Colitis in Mice. PLoS One 2016; 11:e0146162. [PMID: 26727498 PMCID: PMC4699708 DOI: 10.1371/journal.pone.0146162] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023] Open
Abstract
Dysbiosis is a hallmark of inflammatory bowel disease (IBD), but it is unclear which specific intestinal bacteria predispose to and which protect from IBD and how they are regulated. Peptidoglycan recognition proteins (Pglyrps) are antibacterial, participate in maintaining intestinal microflora, and modulate inflammatory responses. Mice deficient in any one of the four Pglyrp genes are more sensitive to dextran sulfate sodium (DSS)-induced colitis, and stools from Pglyrp-deficient mice transferred to wild type (WT) germ-free mice predispose them to much more severe colitis than stools from WT mice. However, the identities of these Pglyrp-regulated bacteria that predispose Pglyrp-deficient mice to colitis or protect WT mice from colitis are not known. Here we identified significant changes in β-diversity of stool bacteria in Pglyrp-deficient mice compared with WT mice. The most consistent changes in microbiome in all Pglyrp-deficient mice were in Bacteroidales, from which we selected four species, two with increased abundance (Prevotella falsenii and Parabacteroides distasonis) and two with decreased abundance (Bacteroides eggerthii and Alistipes finegoldii). We then gavaged WT mice with stock type strains of these species to test the hypothesis that they predispose to or protect from DSS-induced colitis. P. falsenii, P. distasonis, and B. eggerthii all enhanced DSS-induced colitis in both WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora. By contrast, A. finegoldii (which is the most abundant species in WT mice) attenuated DSS-induced colitis both in WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora, similar to the colitis protective effect of the entire normal microflora. These results identify P. falsenii, P. distasonis, and B. eggerthii as colitis-promoting species and A. finegoldii as colitis-protective species.
Collapse
|
40
|
Peterson RA, Gueniche A, Adam de Beaumais S, Breton L, Dalko-Csiba M, Packer NH. Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion. Glycobiology 2015; 26:218-29. [DOI: 10.1093/glycob/cwv102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022] Open
|
41
|
Biophysical and physiological characterization of ZraP from Escherichia coli, the periplasmic accessory protein of the atypical ZraSR two-component system. Biochem J 2015; 472:205-16. [DOI: 10.1042/bj20150827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
Abstract
ZraP is an octamer containing four interfacial metal-binding sites contributing to dimer stability. Zinc binding enhances its chaperone properties and zinc-bound ZraP represses the expression of the zraPSR operon. None of the Zra proteins are involved in zinc resistance.
Collapse
|
42
|
Ledgard AM, Smolenski GA, Henderson H, Lee RSF. Influence of pathogenic bacteria species present in the postpartum bovine uterus on proteome profiles. Reprod Fertil Dev 2015; 27:395-406. [PMID: 24331367 DOI: 10.1071/rd13144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/31/2013] [Indexed: 12/19/2022] Open
Abstract
In the first 2-3 weeks after parturition >90% of dairy cows will have some form of uterine infection. Uterine contamination with pathogens, such as Trueperella (formerly Arcanobacterium) pyogenes increases the risk of developing more severe endometritis, which can reduce conception rates. In this study, we compared the uterine proteome of cows infected with Trueperella pyogenes with that of uninfected cows, using 2D gel electrophoresis, and identified annexins A1 and A2 (ANXA1 and ANXA2), apolipoprotein A-1, calprotectin (S100A9), cathelicidin, enolase 1 (ENO1), peptidoglycan recognition protein 1 (PGLYRP1), phosphoglycerate mutase 1 (PGAM1), serine dehydratase (SDS) and serine protease inhibitors (SERPIN) B1, B3 and B4 proteins as differing in abundance in endometritis. Subsequently, levels of ten of these proteins were monitored in uterine samples collected from a herd of lactating, dairy cows at 15 and 42 days post-partum (DPP). The levels were compared with the cytology scores of the samples and the bacterial species isolated from the uterus. Cathelicidin, PGLYRP1, SERPINB1 and S100A9 levels at 15DPP showed strong positive correlations (r=0.78, 0.80, 0.79, and 0.68 respectively; P<0.001) with % of polymorphonuclear neutrophils (PMN). When compared with other bacterial pathogens identified, Streptococcus agalactiae and Truperella pyogenes induced increased expression of the indicator proteins, suggesting that these organisms may adversely affect the subsequent ability of the cow to conceive. Interestingly, there was no difference in the proportion of cows pregnant at 6 and 17 weeks after start of mating between the cows with high or low %PMN.
Collapse
Affiliation(s)
- A M Ledgard
- AgResearch, Ruakura Research Centre, East Street, Hamilton 3240, New Zealand
| | - G A Smolenski
- AgResearch, Ruakura Research Centre, East Street, Hamilton 3240, New Zealand
| | - H Henderson
- AgResearch, Ruakura Research Centre, East Street, Hamilton 3240, New Zealand
| | - R S F Lee
- AgResearch, Ruakura Research Centre, East Street, Hamilton 3240, New Zealand
| |
Collapse
|
43
|
De Marzi MC, Todone M, Ganem MB, Wang Q, Mariuzza RA, Fernández MM, Malchiodi EL. Peptidoglycan recognition protein-peptidoglycan complexes increase monocyte/macrophage activation and enhance the inflammatory response. Immunology 2015; 145:429-42. [PMID: 25752767 DOI: 10.1111/imm.12460] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/19/2015] [Accepted: 02/28/2015] [Indexed: 02/02/2023] Open
Abstract
Peptidoglycan recognition proteins (PGRP) are pattern recognition receptors that can bind or hydrolyse peptidoglycan (PGN). Four human PGRP have been described: PGRP-S, PGRP-L, PGRP-Iα and PGRP-Iβ. Mammalian PGRP-S has been implicated in intracellular destruction of bacteria by polymorphonuclear cells, PGRP-Iα and PGRP-Iβ have been found in keratinocytes and epithelial cells, and PGRP-L is a serum protein that hydrolyses PGN. We have expressed recombinant human PGRP and observed that PGRP-S and PGRP-Iα exist as monomer and disulphide dimer proteins. The PGRP dimers maintain their biological functions. We detected the PGRP-S dimer in human serum and polymorphonuclear cells, from where it is secreted after degranulation; these cells being a possible source of serum PGRP-S. Recombinant PGRP do not act as bactericidal or bacteriostatic agents in the assayed conditions; however, PGRP-S and PGRP-Iα cause slight damage in the bacterial membrane. Monocytes/macrophages increase Staphylococcus aureus phagocytosis in the presence of PGRP-S, PGRP-Iα and PGRP-Iβ. All PGRP bind to monocyte/macrophage membranes and are endocytosed by them. In addition, all PGRP protect cells from PGN-induced apoptosis. PGRP increase THP-1 cell proliferation and enhance activation by PGN. PGRP-S-PGN complexes increase the membrane expression of CD14, CD80 and CD86, and enhance secretion of interleukin-8, interleukin-12 and tumour necrosis factor-α, but reduce interleukin-10, clearly inducing an inflammatory profile.
Collapse
Affiliation(s)
- Mauricio C De Marzi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina.,Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
| | - Marcos Todone
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina.,Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
| | - María B Ganem
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Qian Wang
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Roy A Mariuzza
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Marisa M Fernández
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
44
|
Insights into the antimicrobial properties of hepcidins: advantages and drawbacks as potential therapeutic agents. Molecules 2015; 20:6319-41. [PMID: 25867823 PMCID: PMC6272296 DOI: 10.3390/molecules20046319] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 01/24/2023] Open
Abstract
The increasing frequency of multi-drug resistant microorganisms has driven research into alternative therapeutic strategies. In this respect, natural antimicrobial peptides (AMPs) hold much promise as candidates for the development of novel antibiotics. However, AMPs have some intrinsic drawbacks, such as partial degradation by host proteases or inhibition by host body fluid composition, potential toxicity, and high production costs. This review focuses on the hepcidins, which are peptides produced by the human liver with a known role in iron homeostasis, as well by numerous other organisms (including fish, reptiles, other mammals), and their potential as antibacterial and antifungal agents. Interestingly, the antimicrobial properties of human hepcidins are enhanced at acidic pH, rendering these peptides appealing for the design of new drugs targeting infections that occur in body areas with acidic physiological pH. This review not only considers current research on the direct killing activity of these peptides, but evaluates the potential application of these molecules as coating agents preventing biofilm formation and critically assesses technical obstacles preventing their therapeutic application.
Collapse
|
45
|
Yu ZL, Li JH, Xue NN, Nie P, Chang MX. Expression and functional characterization of PGRP6 splice variants in grass carp Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:264-274. [PMID: 25149135 DOI: 10.1016/j.dci.2014.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs), which are evolutionarily conserved pattern recognition receptors from insects to mammals, recognize bacterial PGN and function in antibacterial innate immunity. The existence of alternative splicing is a common feature for PGRP family. Here the splicing pattern from the splicing at the 5' end of PGRP6 gene was identified in a teleost fish, the grass carp (Ctenopharyngodon idella). Four splice variants of grass carp PGRP6 were designated as gcPGRP6a, gcPGRP6b, gcPGRP6c and gcPGRP6d, respectively. Real-time PCR revealed the different expression of these variants in fish individuals and CIK cell line in response to stimulation with different microbial ligands. Immunofluorescence microscopy and Western blotting showed that the splice variants are intracellular protein. Cell lysates from Epithelioma papulosum cyprini (EPC) cells transfected with gcPGRP6 splice variants are able to bind microbial PAMPs including Lys-type PGN from Staphylococcus aureus, DAP-type PGN from Bacillus subtilis, glucan, mannan, and microorganisms including Streptococcus dysgalactiae, Flavobacterium columnare and Saccharomyces cerevisiae. Moreover, overexpression of gcPGRP6 variants inhibited earlier stage growth of intracellular bacteria. The data also identified a specific role for gcPGRP6c variant in the positive regulation of cytolytic molecule perforin, and for gcPGRP6a, gcPGRP6b and gcPGRP6c variants in positive regulation of antimicrobial peptides (AMPs). However, the gcPGRP6d variant, which encoded basically only the PGRP domain, failed to induce the expression of perforin and AMPs. It is suggested that fish PGRP6 splice variants have common and variant-specific function in innate immune response.
Collapse
Affiliation(s)
- Zhang Long Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jun Hua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Na Na Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
46
|
Jing X, Zulfiqar F, Park SY, Núñez G, Dziarski R, Gupta D. Peptidoglycan recognition protein 3 and Nod2 synergistically protect mice from dextran sodium sulfate-induced colitis. THE JOURNAL OF IMMUNOLOGY 2014; 193:3055-69. [PMID: 25114103 DOI: 10.4049/jimmunol.1301548] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aberrant immune response and changes in the gut microflora are the main causes of inflammatory bowel disease (IBD). Peptidoglycan recognition proteins (Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4) are bactericidal innate immunity proteins that maintain normal gut microbiome, protect against experimental colitis, and are associated with IBD in humans. Nucleotide-binding oligomerization domain 2 (Nod2) is an intracellular bacterial sensor and may be required for maintaining normal gut microbiome. Mutations in Nod2 are strongly associated with Crohn's disease, but the causative mechanism is not understood, and the role of Nod2 in ulcerative colitis is not known. Because IBD is likely caused by variable multiple mutations in different individuals, in this study, we examined the combined role of Pglyrp3 and Nod2 in the development of experimental colitis in mice. We demonstrate that a combined deficiency of Pglyrp3 and Nod2 results in higher sensitivity to dextran sodium sulfate-induced colitis compared with a single deficiency. Pglyrp3(-/-)Nod2(-/-) mice had decreased survival and higher loss of body weight, increased intestinal bleeding, higher apoptosis of colonic mucosa, elevated expression of cytokines and chemokines, altered gut microbiome, and increased levels of ATP in the colon. Increased sensitivity to dextran sodium sulfate-induced colitis in Pglyrp3(-/-)Nod2(-/-) mice depended on increased apoptosis of intestinal epithelium, changed gut microflora, and elevated ATP. Pglyrp3 deficiency contributed colitis-predisposing intestinal microflora and increased intestinal ATP, whereas Nod2 deficiency contributed higher apoptosis and responsiveness to increased level of ATP. In summary, Pglyrp3 and Nod2 are both required for maintaining gut homeostasis and protection against colitis, but their protective mechanisms differ.
Collapse
Affiliation(s)
- Xuefang Jing
- Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Fareeha Zulfiqar
- Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Shin Yong Park
- Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Roman Dziarski
- Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Dipika Gupta
- Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| |
Collapse
|
47
|
Kashyap DR, Rompca A, Gaballa A, Helmann JD, Chan J, Chang CJ, Hozo I, Gupta D, Dziarski R. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress. PLoS Pathog 2014; 10:e1004280. [PMID: 25032698 PMCID: PMC4102600 DOI: 10.1371/journal.ppat.1004280] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
Mammalian Peptidoglycan Recognition Proteins (PGRPs) are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS), a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria. Bacterial infections are still a major cause of morbidity and mortality because of increasing antibiotic resistance. New targets for developing new approaches to antibacterial therapy are needed, because discovering new or improving current antibiotics have become increasingly difficult. One such approach is developing new antibacterial agents based on the antibacterial mechanisms of bactericidal innate immunity proteins, such as human peptidoglycan recognition proteins (PGRPs). Thus, our aim was to determine how PGRPs kill bacteria. We previously proposed that PGRPs kill bacteria by inducing toxic oxygen by-products (“reactive oxygen species”, ROS) in bacteria. It was also previously proposed, but recently refuted, that bactericidal antibiotics kill bacteria by inducing ROS production in bacteria. These findings prompted us to evaluate in greater detail the mechanism of PGRP-induced bacterial killing, including the role of ROS in PGRP killing. We show here that PGRPs kill bacteria through synergistic induction of ROS, depletion of thiols, and increasing intracellular concentration of metals, which are all required, but individually not sufficient for bacterial killing. Our results reveal a novel bactericidal mechanism of innate immunity proteins, which differs from killing by antibiotics and offers alternative targets for developing new antibacterial therapies for antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Des Raj Kashyap
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Annemarie Rompca
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Jefferson Chan
- Departments of Chemistry and Molecular and Cell Biology and the Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Christopher J. Chang
- Departments of Chemistry and Molecular and Cell Biology and the Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Iztok Hozo
- Department of Mathematics, Indiana University Northwest, Gary, Indiana, United States of America
| | - Dipika Gupta
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
| | - Roman Dziarski
- Indiana University School of Medicine–Northwest, Gary, Indiana, United States of America
- * E-mail:
| |
Collapse
|
48
|
Premachandra HKA, Elvitigala DAS, Whang I, Lee J. Identification of a novel molluscan short-type peptidoglycan recognition protein in disk abalone (Haliotis discus discus) involved in host antibacterial defense. FISH & SHELLFISH IMMUNOLOGY 2014; 39:99-107. [PMID: 24811007 DOI: 10.1016/j.fsi.2014.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/02/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a widely studied group of pattern recognition receptors found in invertebrate as well as vertebrate lineages, and are involved in bacterial pathogen sensing. However, in addition to this principal role, they can also function in multiple host defense processes, including cell phagocytosis and hydrolysis of peptidoglycans (PGNs). In this study, a novel invertebrate short-type PGRP was identified in disk abalone (Haliotis discus discus) designated as AbPGRP. The complete coding sequence of AbPGRP was 534 bp, encoding a 178-amino acid protein with a predicted molecular mass of 20 kDa. The AbPGRP gene had a bipartite arrangement consisting of two exons separated by a single intron. Homology analysis revealed that AbPGRP shares conserved features, including amino acid residues critical for substrate and ion binding as well as for its amidase activity, with homologs of other species. Phylogenetic analysis of AbPGRP revealed that it likely evolved from a common ancestor of invertebrates, having significant homology with other molluscan PGRPs. Recombinant AbPGRP exhibited detectable, dose-dependent PGN-hydrolyzing activity with the presence of Zn(2+), and strong antibacterial activity against Vibrio tapetis, consistent with the functional properties previously reported for PGRPs in other mollusks. Moreover, AbPGRP transcription was induced upon treatment of healthy abalones with bacterial peptidoglycan and lipopolysaccharide, although the expression profiles differed with treatment, suggesting a capacity for discriminating between bacterial pathogens through molecular pattern recognition. Collectively, the findings of this study indicate that AbPGRP is a true homolog of invertebrate PGRPs and likely plays an indispensable role in host immunity.
Collapse
Affiliation(s)
- H K A Premachandra
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
49
|
Li JH, Yu ZL, Xue NN, Zou PF, Hu JY, Nie P, Chang MX. Molecular cloning and functional characterization of peptidoglycan recognition protein 6 in grass carp Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:244-255. [PMID: 24099967 DOI: 10.1016/j.dci.2013.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 06/02/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules of innate immunity. In this study, a long-form PGRP, designated as gcPGRP6, was identified from grass carp Ctenopharyngodon idella. The deduced amino acid sequence of gcPGRP6 is composed of 464 residues with a conserved PGRP domain at the C-terminus. The gcPGRP6 gene consists of four exons and three introns, spacing approximately 2.7 kb of genomic sequence. Phylogenetic analysis demonstrated that gcPGRP6 is clustered closely with zebrafish PGLYRP6, and formed a long-type PGRP subfamily together with PGLYRP2 members identified in teleosts and mammals. Real-time PCR and Western blotting analyses revealed that gcPGRP6 is constitutively expressed in organs/tissues examined, and its expression was significantly induced in liver and intestine of grass carp in response to PGN stimulation and in CIK cells treated with lipoteichoic acid (LTA), polyinosinic polycytidylic acid (Poly I:C) and peptidoglycan (PGN). Immunofluorescence microscopy and Western blotting analyses revealed that gcPGRP6 is effectively secreted to the exterior of CIK cells. The over-expression of gcPGRP6 in CIK cells leads to the activation of NF-κB and the inhibition of intracellular bacterial growth. Moreover, cell lysates from CIK cells transfected with pTurbo-gcPGRP6-GFP plasmid display the binding activity towards Lys-type PGN from Staphylococcus aureus and DAP-type PGN from Bacillus subtilis. Furthermore, proinflammatory cytokine IL-2 and intracellular PGN receptor NOD2 had a significantly increased expression in CIK cells overexpressed with gcPGRP6. It is demonstrated that the PGRP6 in grass carp has a role in binding PGN, in inhibiting the growth of intracellular bacteria, and in activating NF-κB, as well as in regulating innate immune genes.
Collapse
Affiliation(s)
- Jun Hua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Jiang W, Yin Y, Zhou Y, He G, Qi Y. Isolation and characterization of peptidoglycan recognition protein 1 from antler base of sika deer (Cervus nippon). Int J Biol Macromol 2013; 64:313-8. [PMID: 24360898 DOI: 10.1016/j.ijbiomac.2013.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022]
Abstract
Peptidoglycan recognition proteins (PGRPs) are secreted innate immunity pattern recognition molecules. In this study, a new peptidoglycan recognition protein 1 named cnPGRP1 was isolated from an antler base of sika deer Cervus nippon. The antler base antimicrobial proteins (AAP) were subjected to consecutive chromatographic methods connected to Sephadex G-25 gel filtration column (CM) anion-exchange column, and RP-HPLC. The molecular weight of cnPGRP1 was 17.2 kDa under SDS-PAGE, and peptide mass fingerprint analysis by MALDI-TOF-MS as peptidoglycan recognition protein 1 matched to Dasypus novemcinctus. The matched amino acids sequences were RLYEIIQKWPHYRA. Both Gram-positive and Gram-negative bacteria can be killed by cnPGRP1 in the 50-250 μg/mL range through in vitro. Furthermore, cnPGRP1 has been found to bind Gram-positive bacteria, Gram-negative bacteria, and even fungus.
Collapse
Affiliation(s)
- Wei Jiang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China
| | - Yongguang Yin
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Yajun Zhou
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China
| | - Guidan He
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China
| | - Yue Qi
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China
| |
Collapse
|