1
|
Liu WS, Lu ZM, Pu XH, Li XY, Zhang HQ, Zhang ZZ, Zhang XY, Shi T, Jiang XH, Zhou JS, Zhou X, Xin ZY, Li MG, Yuan J, Chen CM, Zhang XW, Gao J, Li M. A dendritic cell-recruiting, antimicrobial blood clot hydrogel for melanoma recurrence prevention and infected wound management. Biomaterials 2025; 313:122776. [PMID: 39236629 DOI: 10.1016/j.biomaterials.2024.122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Surgical resection, the mainstay for melanoma treatment, faces challenges due to high tumor recurrence rates and complex postoperative wound healing. Chronic inflammation from residual disease and the risk of secondary infections impede healing. We introduce an innovative, injectable hydrogel system that integrates a multifaceted therapeutic approach. The hydrogel, crosslinked by calcium ions with sodium alginate, encapsulates a blood clot rich in dendritic cells (DCs) chemoattractants and melanoma cell-derived nanovesicles (NVs), functioning as a potent immunostimulant. This in situ recruitment strategy overcomes the limitations of subcutaneous tumor vaccine injections and more effectively achieves antitumor immunity. Additionally, the hydrogel incorporates Chlorella extracts, enhancing its antimicrobial properties to prevent wound infections and promote healing. One of the key findings of our research is the dual functionality of Chlorella extracts; they not only expedite the healing process of infected wounds but also increase the hydrogel's ability to stimulate an antitumor immune response. Given the patient-specific nature of the blood clot and NVs, our hydrogel system offers customizable solutions for individual postoperative requirements. This personalized approach is highlighted by our study, which demonstrates the synergistic impact of the composite hydrogel on preventing melanoma recurrence and hastening wound healing, potentially transforming postsurgical melanoma management.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China; School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Xiao-Hui Pu
- School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Xin-Ying Li
- Department of Laboratory & Diagnosis, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Hui-Qi Zhang
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China; School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zhuan-Zhuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xin-Yi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Te Shi
- Department of Gastroenterology, People's Liberation Army of China Naval Medical Center, Shanghai, 200052, People's Republic of China
| | - Xiang-He Jiang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Jing-Sheng Zhou
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Xuan Zhou
- School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zhong-Yuan Xin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Mei-Gui Li
- School of Pharmacy, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jing Yuan
- Department of Pediatrics, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Xiao-Wei Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
2
|
Nunes M, Vlok M, Proal A, Kell DB, Pretorius E. Data-independent LC-MS/MS analysis of ME/CFS plasma reveals a dysregulated coagulation system, endothelial dysfunction, downregulation of complement machinery. Cardiovasc Diabetol 2024; 23:254. [PMID: 39014464 PMCID: PMC11253362 DOI: 10.1186/s12933-024-02315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/16/2024] [Indexed: 07/18/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic condition that is characterized by unresolved fatigue, post-exertion symptom exacerbation (PESE), cognitive dysfunction, orthostatic intolerance, and other symptoms. ME/CFS lacks established clinical biomarkers and requires further elucidation of disease mechanisms. A growing number of studies demonstrate signs of hematological and cardiovascular pathology in ME/CFS cohorts, including hyperactivated platelets, endothelial dysfunction, vascular dysregulation, and anomalous clotting processes. To build on these findings, and to identify potential biomarkers that can be related to pathophysiology, we measured differences in protein expression in platelet-poor plasma (PPP) samples from 15 ME/CFS study participants and 10 controls not previously infected with SARS-CoV-2, using DIA LC-MS/MS. We identified 24 proteins that are significantly increased in the ME/CFS group compared to the controls, and 21 proteins that are significantly downregulated. Proteins related to clotting processes - thrombospondin-1 (important in platelet activation), platelet factor 4, and protein S - were differentially expressed in the ME/CFS group, suggestive of a dysregulated coagulation system and abnormal endothelial function. Complement machinery was also significantly downregulated, including C9 which forms part of the membrane attack complex. Additionally, we identified a significant upregulation of lactotransferrin, protein S100-A9, and an immunoglobulin variant. The findings from this experiment further implicate the coagulation and immune system in ME/CFS, and bring to attention the pathology of or imposed on the endothelium. This study highlights potential systems and proteins that require further research with regards to their contribution to the pathogenesis of ME/CFS, symptom manifestation, and biomarker potential, and also gives insight into the hematological and cardiovascular risk for ME/CFS individuals affected by diabetes mellitus.
Collapse
Affiliation(s)
- Massimo Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa
| | - Mare Vlok
- Central Analytical Facility: Mass Spectrometry, Stellenbosch University, Tygerberg Campus, Room 6054, Clinical Building, Francie Van Zijl Drive Tygerberg, Cape Town, 7505, South Africa
| | - Amy Proal
- PolyBio Research Foundation, 7900 SE 28th ST, Suite 412, Mercer Island, DC, 98040, USA
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa.
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Chemitorvet 200, 2800, Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, 7602, South Africa.
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
3
|
Abd El Monsef AG, El Zohairy NF, Hassan MF, Salem SM, Gouda AA, Mansour MK, Alkhaldi AAM, Alzaylaee H, Elmahallawy EK. Effects of prebiotic (lactoferrin) and diclazuril on broiler chickens experimentally infected with Eimeria tenella. Front Vet Sci 2024; 11:1416459. [PMID: 39036795 PMCID: PMC11258017 DOI: 10.3389/fvets.2024.1416459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Avian coccidiosis presents a significant challenge to the poultry industry in Egypt, highlighting the urgent need for validating new drug targets offering promising prospects for the development of advanced anticoccidials. Although numerous reports highlight the activity of lactoferrin (LF) against various microorganisms, its potential against Eimeria has not been explored. The present study evaluated the potential anticoccidial effect of LF and diclazuril in broiler chickens experimentally infected with Eimeria tenella. Methods A total of 100 one-day-old broiler chicks were divided into five equal groups (20 each) as follows: Group 1 (G1) served as the normal healthy control group, Group 2 (G2) consisted of chickens infected with 1 × 105 sporulated E. tenella oocysts at 14 days of age, Group 3 (G3) comprised infected chickens treated with diclazuril (0.5 mL/L in drinking water) for 3 days successively, Group 4 (G4) included infected chickens treated with LF (at a dose of 250 mg/kg of diet) from one day of age until the end of the study, and Group 5 (G5) comprised infected chickens treated with both LF and diclazuril. Results The positive control group (G2) experienced significant reductions in body weight (BW), BW gain, serum glucose, lipase, amylase, total antioxidant capacity, several hematological indices, and total proteins, along with alterations in various antioxidant enzymes. Conversely, serum levels of aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Alkaline phosphatases (ALP), urea, creatinine, nitric oxide, mean corpuscular volume (MCV), White blood cells (WBCs), heterophils, alpha 2, beta 1, and liver contents of malondialdehyde were elevated in this group. Moreover, higher oocyst counts and lesion scores, along with histopathological alterations, were observed in G2. Remarkably, treatment with diclazuril and/or LF demonstrated potent antioxidant and anticoccidial effects, resulting in reduced shedding of oocysts, lesion scores, and lymphocytic infiltrates in the cecum. Additionally, these treatments improved the antioxidant and immune systems in chickens and restored all histopathological changes reported in the infected non-treated group (G2). Conclusion This study offers novel perspectives on the potential anticoccidial effects of the combination of LF and diclazuril in broiler chickens infected with E. tenella, highlighting the potential synergistic actions of LF in treating poultry coccidiosis.
Collapse
Affiliation(s)
- Asmaa G. Abd El Monsef
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig Branch, Zagazig, Egypt
| | - Nermin F. El Zohairy
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig Branch, Zagazig, Egypt
| | - Marwa F. Hassan
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Sanaa M. Salem
- Department of Pathology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig Branch, Zagazig, Egypt
| | - Asmaa Aboelabbas Gouda
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mogda K. Mansour
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | | | - Hind Alzaylaee
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
4
|
Bülow S, Ederer KU, Holzinger JM, Zeller L, Werner M, Toelge M, Pfab C, Hirsch S, Göpferich F, Hiergeist A, Berberich-Siebelt F, Gessner A. Bactericidal/permeability-increasing protein instructs dendritic cells to elicit Th22 cell response. Cell Rep 2024; 43:113929. [PMID: 38457343 DOI: 10.1016/j.celrep.2024.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/01/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
Neutrophil-derived bactericidal/permeability-increasing protein (BPI) is known for its bactericidal activity against gram-negative bacteria and neutralization of lipopolysaccharide. Here, we define BPI as a potent activator of murine dendritic cells (DCs). As shown in GM-CSF-cultured, bone-marrow-derived cells (BMDCs), BPI induces a distinct stimulation profile including IL-2, IL-6, and tumor necrosis factor expression. Conventional DCs also respond to BPI, while M-CSF-cultivated or peritoneal lavage macrophages do not. Subsequent to BPI stimulation of BMDCs, CD4+ T cells predominantly secrete IL-22 and, when naive, preferentially differentiate into T helper 22 (Th22) cells. Congruent with the tissue-protective properties of IL-22 and along with impaired IL-22 induction, disease severity is significantly increased during dextran sodium sulfate-induced colitis in BPI-deficient mice. Importantly, physiological diversification of intestinal microbiota fosters BPI-dependent IL-22 induction in CD4+ T cells derived from mesenteric lymph nodes. In conclusion, BPI is a potent activator of DCs and consecutive Th22 cell differentiation with substantial relevance in intestinal homeostasis.
Collapse
Affiliation(s)
- Sigrid Bülow
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Katharina U Ederer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jonas M Holzinger
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lisa Zeller
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Maren Werner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christina Pfab
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Sarah Hirsch
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Franziska Göpferich
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | | | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Bisutti V, Vanzin A, Pegolo S, Toscano A, Gianesella M, Sturaro E, Schiavon S, Gallo L, Tagliapietra F, Giannuzzi D, Cecchinato A. Effect of intramammary infection and inflammation on milk protein profile assessed at the quarter level in Holstein cows. J Dairy Sci 2024; 107:1413-1426. [PMID: 37863294 DOI: 10.3168/jds.2023-23818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
In this study we wanted to investigate the associations between naturally occurring subclinical intramammary infection (IMI) caused by different etiological agents (i.e., Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, and Prototheca spp.), in combination with somatic cell count (SCC), on the detailed milk protein profile measured at the individual mammary gland quarter. An initial bacteriological screening (time 0; T0) conducted on individual composite milk from 450 Holstein cows reared in 3 herds, was performed to identify cows with subclinical IMI. We identified 78 infected animals which were followed up at the quarter level at 2 different sampling times: T1 and T2, 2 and 6 wk after T0, respectively. A total of 529 quarter samples belonging to the previously selected animals were collected at the 2 sampling points and analyzed with a reversed phase HPLC (RP-HPLC) validated method. Specifically, we identified and quantified 4 caseins (CN), namely αS1-CN, αS2-CN, κ-CN, and β-CN, and 3 whey protein fractions, namely β-lactoglobulin, α-lactalbumin, and lactoferrin (LF), which were later expressed both quantitatively (g/L) and qualitatively (as a percentage of the total milk nitrogen content, % N). Data were analyzed with a hierarchical linear mixed model with the following fixed effects: days in milk (DIM), parity, herd, SCC, bacteriological status (BACT), and the SCC × BACT interaction. The random effect of individual cow, nested within herd, DIM and parity was used as the error term for the latter effects. Both IMI (i.e., BACT) and SCC significantly reduced the proportion of β-CN and αS1-CN, ascribed to the increased activity of both milk endogenous and microbial proteases. Less evident alterations were found for whey proteins, except for LF, which being a glycoprotein with direct and undirect antimicrobial activity, increased both with IMI and SCC, suggesting its involvement in the modulation of both the innate and adaptive immune response. Finally, increasing SCC in the positive samples was associated with a more marked reduction of total caseins at T1, and αS1-CN at T2, suggesting a synergic effect of infection and inflammation, more evident at high SCC. In conclusion, our work helps clarify the behavior of protein fractions at quarter level in animals having subclinical IMI. The inflammation status driven by the increase in SCC, rather the infection, was associated with the most significant changes, suggesting that the activity of endogenous proteolytic enzymes related to the onset of inflammation might have a pivotal role in directing the alteration of the milk protein profile.
Collapse
Affiliation(s)
- V Bisutti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - A Vanzin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - S Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy.
| | - A Toscano
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - M Gianesella
- Department of Animal Medicine, Productions and Health, University of Padua, 35020, Legnaro (PD), Italy
| | - E Sturaro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - S Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - L Gallo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - F Tagliapietra
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - D Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| |
Collapse
|
6
|
Pasinato A, Fama M, Tripepi G, Egan CG, Baraldi E. Lactoferrin in the Prevention of Recurrent Respiratory Infections in Preschool Children: A Prospective Randomized Study. CHILDREN (BASEL, SWITZERLAND) 2024; 11:249. [PMID: 38397361 PMCID: PMC10887729 DOI: 10.3390/children11020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Few studies have evaluated the effect of bovine lactoferrin (bLf) on reducing respiratory infections in preschool children. This randomized controlled trial evaluated the effect of bLf in preschool children with recurrent respiratory infections. Participants were randomly assigned bLf (n = 25) or control (n = 25). Outcomes included respiratory infection episodes (RIEs), symptom duration, school absence and medication. Fifty children aged 4.2 ± 0.1 years were included. During the active 4-month phase, median number of RIEs was reduced by 50% in the bLf group [1-episode, interquartile range (IQR): 0-2] vs. control (2, IQR: 1-3; p = 0.02). The proportion of participants with >3 RIEs was significantly lower in bLf (n = 1, 4%) vs. control (n = 7, 28%) with 80% lower odds of upper RIEs in the bLf arm (odds ratio: 0.20, 95% CI:0.06-0.74, p = 0.015). The duration of symptoms (3 vs. 6, p = 0.009) and days absent from school (3 vs. 6, p = 0.15) were lower in the active arm. Over the 2-month follow-up, no significant differences were observed between groups for infection episodes, symptom duration or school absence. However, bLf-treated children received significantly less corticosteroids over the entire 6-month study period (32% vs. 60%; p = 0.047). bLf supplementation significantly reduced the frequency and duration of RIEs in children with decreased corticosteroid use.
Collapse
Affiliation(s)
- Angela Pasinato
- Società Italiana Cure Pediatriche Primarie (SICuPP), Veneto Region, 20126 Milano, Italy; (A.P.); (M.F.)
| | - Mario Fama
- Società Italiana Cure Pediatriche Primarie (SICuPP), Veneto Region, 20126 Milano, Italy; (A.P.); (M.F.)
| | - Giovanni Tripepi
- National Research Council (CNR), Ospedali Riuniti, 89124 Reggio Calabria, Italy;
| | | | - Eugenio Baraldi
- Dipartimento di Salute della Donna e del Bambino, Azienda Ospedale-Università di Padova, 35128 Padova, Italy
| |
Collapse
|
7
|
Gwozdzinski L, Pieniazek A, Gwozdzinski K. Factors Influencing Venous Remodeling in the Development of Varicose Veins of the Lower Limbs. Int J Mol Sci 2024; 25:1560. [PMID: 38338837 PMCID: PMC10855638 DOI: 10.3390/ijms25031560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
One of the early symptoms of chronic venous disease (CVD) is varicose veins (VV) of the lower limbs. There are many etiological environmental factors influencing the development of chronic venous insufficiency (CVI), although genetic factors and family history of the disease play a key role. All these factors induce changes in the hemodynamic in the venous system of the lower limbs leading to blood stasis, hypoxia, inflammation, oxidative stress, proteolytic activity of matrix metalloproteinases (MMPs), changes in microcirculation and, consequently, the remodeling of the venous wall. The aim of this review is to present current knowledge on CVD, including the pathophysiology and mechanisms related to vein wall remodeling. Particular emphasis has been placed on describing the role of inflammation and oxidative stress and the involvement of extracellular hemoglobin as pathogenetic factors of VV. Additionally, active substances used in the treatment of VV were discussed.
Collapse
Affiliation(s)
- Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Krzysztof Gwozdzinski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
8
|
Ashraf MF, Zubair D, Bashir MN, Alagawany M, Ahmed S, Shah QA, Buzdar JA, Arain MA. Nutraceutical and Health-Promoting Potential of Lactoferrin, an Iron-Binding Protein in Human and Animal: Current Knowledge. Biol Trace Elem Res 2024; 202:56-72. [PMID: 37059920 PMCID: PMC10104436 DOI: 10.1007/s12011-023-03658-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Lactoferrin is a natural cationic iron-binding glycoprotein of the transferrin family found in bovine milk and other exocrine secretions, including lacrimal fluid, saliva, and bile. Lactoferrin has been investigated for its numerous powerful influences, including anticancer, anti-inflammatory, anti-oxidant, anti-osteoporotic, antifungal, antibacterial, antiviral, immunomodulatory, hepatoprotective, and other beneficial health effects. Lactoferrin demonstrated several nutraceutical and pharmaceutical potentials and have a significant impact on improving the health of humans and animals. Lactoferrin plays a critical role in keeping the normal physiological homeostasis associated with the development of pathological disorders. The current review highlights the medicinal value, nutraceutical role, therapeutic application, and outstanding favorable health sides of lactoferrin, which would benefit from more exploration of this glycoprotein for the design of effective medicines, drugs, and pharmaceuticals for safeguarding different health issues in animals and humans.
Collapse
Affiliation(s)
| | - Dawood Zubair
- Iqraa Medical Complex, Johar Town Lahore, Punjab, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Shabbir Ahmed
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan.
| |
Collapse
|
9
|
Marín-Prida J, Rodríguez-Ulloa A, Besada V, Llopiz-Arzuaga A, Batista NV, Hernández-González I, Pavón-Fuentes N, Marciano Vieira ÉL, Falcón-Cama V, Acosta EF, Martínez-Donato G, Cervantes-Llanos M, Lingfeng D, González LJ, Fernández-Massó JR, Guillén-Nieto G, Pentón-Arias E, Amaral FA, Teixeira MM, Pentón-Rol G. The effects of Phycocyanobilin on experimental arthritis involve the reduction in nociception and synovial neutrophil infiltration, inhibition of cytokine production, and modulation of the neuronal proteome. Front Immunol 2023; 14:1227268. [PMID: 37936684 PMCID: PMC10627171 DOI: 10.3389/fimmu.2023.1227268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction The antinociceptive and pharmacological activities of C-Phycocyanin (C-PC) and Phycocyanobilin (PCB) in the context of inflammatory arthritis remain unexplored so far. In the present study, we aimed to assess the protective actions of these compounds in an experimental mice model that replicates key aspects of human rheumatoid arthritis. Methods Antigen-induced arthritis (AIA) was established by intradermal injection of methylated bovine serum albumin in C57BL/6 mice, and one hour before the antigen challenge, either C-PC (2, 4, or 8 mg/kg) or PCB (0.1 or 1 mg/kg) were administered intraperitoneally. Proteome profiling was also conducted on glutamate-exposed SH-SY5Y neuronal cells to evaluate the PCB impact on this key signaling pathway associated with nociceptive neuronal sensitization. Results and discussion C-PC and PCB notably ameliorated hypernociception, synovial neutrophil infiltration, myeloperoxidase activity, and the periarticular cytokine concentration of IFN-γ, TNF-α, IL-17A, and IL-4 dose-dependently in AIA mice. In addition, 1 mg/kg PCB downregulated the gene expression for T-bet, RORγ, and IFN-γ in the popliteal lymph nodes, accompanied by a significant reduction in the pathological arthritic index of AIA mice. Noteworthy, neuronal proteome analysis revealed that PCB modulated biological processes such as pain, inflammation, and glutamatergic transmission, all of which are involved in arthritic pathology. Conclusions These findings demonstrate the remarkable efficacy of PCB in alleviating the nociception and inflammation in the AIA mice model and shed new light on mechanisms underlying the PCB modulation of the neuronal proteome. This research work opens a new avenue to explore the translational potential of PCB in developing a therapeutic strategy for inflammation and pain in rheumatoid arthritis.
Collapse
Affiliation(s)
- Javier Marín-Prida
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Arielis Rodríguez-Ulloa
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Vladimir Besada
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co. Ltd, Yongzhou, China
| | - Alexey Llopiz-Arzuaga
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Department of Cellular Engineering and Biocatalysis , Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | - Nathália Vieira Batista
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Nancy Pavón-Fuentes
- Immunochemical Department, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | - Érica Leandro Marciano Vieira
- Translational Psychoneuroimmunology Group, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Viviana Falcón-Cama
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| | - Emilio F. Acosta
- Department of Characterization, Center for Advanced Studies of Cuba, Havana, Cuba
| | - Gillian Martínez-Donato
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Majel Cervantes-Llanos
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Dai Lingfeng
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co. Ltd, Yongzhou, China
| | - Luis J. González
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Gerardo Guillén-Nieto
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| | - Eduardo Pentón-Arias
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| | - Flávio Almeida Amaral
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giselle Pentón-Rol
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| |
Collapse
|
10
|
Wang J, Yang N, Vogel HJ. Lactoferrin, a Great Wall of host-defence? Biometals 2023; 36:385-390. [PMID: 37171688 PMCID: PMC10127966 DOI: 10.1007/s10534-023-00502-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 05/13/2023]
Affiliation(s)
- Jianhua Wang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs; Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Na Yang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs; Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
11
|
Giannaccare G, Comis S, Jannuzzi V, Camposampiero D, Ponzin D, Cambria S, Santocono M, Pallozzi Lavorante N, Del Noce C, Scorcia V, Traverso CE, Vagge A. Effect of Liposomal-Lactoferrin-Based Eye Drops on the Conjunctival Microflora of Patients Undergoing Cataract Surgery. Ophthalmol Ther 2023; 12:1315-1326. [PMID: 36826753 PMCID: PMC10011268 DOI: 10.1007/s40123-023-00673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION Postoperative endophthalmitis is typically caused by the patient's conjunctival bacterial flora. Povidone iodine solution (5%) is used perioperatively to obtain periocular and ocular antisepsis. However, an adjunctive prophylaxis procedure could further help control the conjunctival microbial load. Considering the increase in antibiotic resistance, a progressive shift toward alternative methods would be desirable. Somilux® eye drops (Alfa Intes, lactoferrin-based eye drops) are medical devices containing liposomal lactoferrin (LF). This study evaluates the effects on conjunctival microflora of LF-based eye drops used in the preoperative phase in patients scheduled for cataract surgery. METHODS LF-based eye drops or a vehicle solution (water solution) were instilled 4 times a day starting 3 days before cataract surgery. Before the therapy (T0) and at the time of surgery (T1), a conjunctival swab was performed in both eyes and processed to detect microbial growth, microbiological isolation, and species identification. The outcome was the quantification and characterization of the local microbial flora before and after using LF-based or vehicle-based eye drops. Safety of the treatments was also evaluated. RESULTS 88 eyes of 44 patients (mean [± SD] age 75 [± 12.6] years) were enrolled. At baseline, 54 conjunctival swabs showed only saprophytic flora, 27 showed only potential pathogenic flora, and seven showed both of them. LF-based eye drops reduced the proportion of potentially pathogenic bacteria (36% at T0 vs. 9% at T1, p = 0.008) compared with the vehicle (41% at T0 vs. 55% at T1, p = 0.302) without altering the physiological ocular microbial composition. No adverse events have been reported. CONCLUSION Our findings provide a novel contribution to the scientific knowledge on the role of LF in the ophthalmic field, supporting the use of LF-based eye drops as a safe and selective treatment to improve the ocular surface physiological defenses and control the bacterial ocular surface contamination prior to cataract surgery.
Collapse
Affiliation(s)
- Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Sofia Comis
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | | | | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | | | | | - Nicola Pallozzi Lavorante
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Università degli Studi di Genova, DiNOGMI, Clinica Oculistica, Genoa, Italy
| | - Chiara Del Noce
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Università degli Studi di Genova, DiNOGMI, Clinica Oculistica, Genoa, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Carlo E Traverso
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Università degli Studi di Genova, DiNOGMI, Clinica Oculistica, Genoa, Italy
| | - Aldo Vagge
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Università degli Studi di Genova, DiNOGMI, Clinica Oculistica, Genoa, Italy
| |
Collapse
|
12
|
Ohradanova-Repic A, Praženicová R, Gebetsberger L, Moskalets T, Skrabana R, Cehlar O, Tajti G, Stockinger H, Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics 2023; 15:1056. [PMID: 37111542 PMCID: PMC10146187 DOI: 10.3390/pharmaceutics15041056] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Praženicová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tetiana Moskalets
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Ondrej Cehlar
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Gabor Tajti
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| |
Collapse
|
13
|
Acanthamoeba castellanii Genotype T4: Inhibition of Proteases Activity and Cytopathic Effect by Bovine Apo-Lactoferrin. Microorganisms 2023; 11:microorganisms11030708. [PMID: 36985284 PMCID: PMC10059889 DOI: 10.3390/microorganisms11030708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Acanthamoeba castellanii genotype T4 is a clinically significant free-living amoeba that causes granulomatous amoebic encephalitis and amoebic keratitis in human beings. During the initial stages of infection, trophozoites interact with various host immune responses, such as lactoferrin (Lf), in the corneal epithelium, nasal mucosa, and blood. Lf plays an important role in the elimination of pathogenic microorganisms, and evasion of the innate immune response is crucial in the colonization process. In this study, we describe the resistance of A. castellanii to the microbicidal effect of bovine apo-lactoferrin (apo-bLf) at different concentrations (25, 50, 100, and 500 µM). Acanthamoeba castellanii trophozoites incubated with apo-bLf at 500 µM for 12 h maintained 98% viability. Interestingly, despite this lack of effect on viability, our results showed that the apo-bLf inhibited the cytopathic effect of A. castellanii in MDCK cells culture, and analysis of amoebic proteases by zymography showed significant inhibition of cysteine and serine proteases by interaction with the apo-bLf. From these results, we conclude that bovine apo-Lf influences the activity of A. castellanii secretion proteases, which in turn decreases amoebic cytopathic activity.
Collapse
|
14
|
Wu W, Xu M, Qiao B, Huang T, Guo H, Zhang N, Zhou L, Li M, Tan Y, Zhang M, Xie X, Shuai X, Zhang C. Nanodroplet-enhanced sonodynamic therapy potentiates immune checkpoint blockade for systemic suppression of triple-negative breast cancer. Acta Biomater 2023; 158:547-559. [PMID: 36539109 DOI: 10.1016/j.actbio.2022.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Immune checkpoint blockade (ICB) has shown great promise in treating various advanced malignancies including triple-negative breast cancer (TNBC). However, only limited number of patients could benefit from it due to the low immune response rate caused by insufficient matured dendritic cells (DCs) and inadequate tumor infiltration of cytotoxic T lymphocytes (CTLs). Here, we report a combination therapeutic strategy which integrates STING pathway activation, hypoxia relief and sonodynamic therapy (SDT) with anti-PD-L1 therapy to improve the therapeutic outcome. The synthesized nanodroplet consisted of a O2-filled Perfluorohexane (PFH) core and a lipid membrane carrying sonosensitizer IR-780 and STING agonist Vadimezan (DMXAAs). It released O2 inside the hypoxic tumor tissue, thereby enhancing SDT which relied on O2 to generate cytotoxic reactive oxygen species (ROS). The co-delivered STING agonist DMXAAs promoted the maturation and tumor antigen cross-presenting of DCs for priming of CTLs. Moreover, SDT induced immunogenic cell death (ICD) of tumor to release abundant tumor-associated antigens, which increased tumor immunogenicity to promote tumor infiltration of CTLs. Consequently, not only a robust adaptive immune response was elicited but also the immunologically "cold" TNBC was turned "hot" to enable a potent anti-PD-L1 therapy. The nanodroplet demonstrated strong efficacy to systemically suppress TNBC growth and mimic distant tumor in vivo. STATEMENT OF SIGNIFICANCE: Only a limited number of triple-negative breast cancer (TNBC) patients can benefit from immune checkpoint blockade therapy due to its low immune response rate caused by insufficient matured DCs and inadequate tumor infiltration of cytotoxic T lymphocytes (CTLs). Interestingly, compelling evidence has shown that sonodynamic therapy (SDT) not only directly kills cancer cells but also elicits immunogenic cell death (ICD), which promotes tumor infiltration of cytotoxic T lymphocytes to transform an immunosuppressive "cold" tumor into a "hot" one. However, the hypoxic tumor microenvironment severely restricts the therapeutic efficiency of SDT, wherein, oxygen is indispensable in the process of ROS generation. Here, we report an O2-filled nanodroplet-enhanced sonodynamic therapy that significantly potentiated immune checkpoint blockade for systemic suppression of TNBC.
Collapse
Affiliation(s)
- Wenxin Wu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Qiao
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tongyi Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanling Guo
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Luyao Zhou
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Manying Li
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Tan
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minru Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Chunyang Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Bert S, Nadkarni S, Perretti M. Neutrophil-T cell crosstalk and the control of the host inflammatory response. Immunol Rev 2023; 314:36-49. [PMID: 36326214 PMCID: PMC10952212 DOI: 10.1111/imr.13162] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While fundamental in their innate role in combating infection and responding to injury, neutrophils are emerging as key modulators of adaptive immune responses. Such functions are attained via both soluble and nonsoluble effectors that enable at least two major downstream outcomes: first, to mediate and control acute inflammatory responses and second, to regulate adaptive immunity and ultimately promoting the development and maintenance of immune tolerance either by releasing immuno-modulatory factors, including cytokines, or by directly interacting with cells of the adaptive immune system. Herein, we review these novel properties of neutrophils and redefine the pathophysiological functions of these fascinating multi-tasking cells, exploring the different mechanisms through which neutrophils are able to either enhance and orchestrate T cell pro-inflammatory responses or inhibit T cell activity to maintain immune tolerance.
Collapse
Affiliation(s)
- Serena Bert
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Suchita Nadkarni
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Mauro Perretti
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
16
|
Wu Y, Yuan M, Wang C, Chen Y, Zhang Y, Zhang J. T lymphocyte cell: A pivotal player in lung cancer. Front Immunol 2023; 14:1102778. [PMID: 36776832 PMCID: PMC9911803 DOI: 10.3389/fimmu.2023.1102778] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Lung cancer is responsible for the leading cause of cancer-related death worldwide, which lacks effective therapies. In recent years, accumulating evidence on the understanding of the antitumor activity of the immune system has demonstrated that immunotherapy is one of the powerful alternatives in lung cancer therapy. T cells are the core of cellular immunotherapy, which are critical for tumorigenesis and the treatment of lung cancer. Based on the different expressions of surface molecules and functional points, T cells can be subdivided into regulatory T cells, T helper cells, cytotoxic T lymphocytes, and other unconventional T cells, including γδ T cells, nature killer T cells and mucosal-associated invariant T cells. Advances in our understanding of T cells' functional mechanism will lead to a number of clinical trials on the discovery and development of new treatment strategies. Thus, we summarize the biological functions and regulations of T cells on tumorigenesis, progression, metastasis, and prognosis in lung cancer. Furthermore, we discuss the current advancements of technologies and potentials of T-cell-oriented therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Meng Yuan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chenlin Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanfei Chen
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yan Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
17
|
Estefanía M, Aldana G, Marianela M, Agustina LC, José MM, Fabián P, Sergio G. Lactoferrin affects in vitro and in vivo fertilization and implantation in rats. Biometals 2022; 36:575-585. [PMID: 36326924 DOI: 10.1007/s10534-022-00460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Lactoferrin (LF) is present in the oviduct, reduces in vitro gamete interaction, and affects sperm capacitation parameters in humans. Our aim was to investigate LF actions on further stages of the reproductive process in the Wistar rat model. Motile sperm were obtained from cauda epididymis to assess LF binding by direct immunofluorescence and LF effect on acrosome reaction (AR) using a Coomassie blue staining. After ovarian hyperstimulation of female rats, oocytes were surgically recovered and coincubated with motile sperm and different doses of LF to estimate the in vitro fertilization (IVF) rate. To evaluate the LF effect on pregnancy and embryo implantation, female rats (80 days old) were placed with males and received daily intraperitoneal injections of LF during one complete estrous cycle (pregnancy experiments) or during the first 8 gestational days (implantation experiments). The number of pregnant females and live born pups was recorded after labor. Moreover, the number of implantation sites was registered during the implantation period. LF was able to bind to the sperm head, midpiece, and tail. 10 and 100 μg/ml LF stimulated the AR but reduced the IVF rate. The administration of 100 and 200 mg/kg LF significantly decreased the number of implantation sites and the litter size, whereas 100 mg/kg LF declined the pregnancy rate. The results suggest that LF might interfere with the reproductive process, possibly interfering with gamete interaction or inducing a premature AR; nevertheless, the mechanisms involved are yet to be elucidated.
Collapse
Affiliation(s)
- Massa Estefanía
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Gola Aldana
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Moriconi Marianela
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Lo Celso Agustina
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Madariaga María José
- Area of Morphology, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Pelusa Fabián
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Ghersevich Sergio
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina.
| |
Collapse
|
18
|
Wang X, Zhang J, Hu Y, Zhao X, Wang Z, Zhang W, Liang J, Yu W, Tian T, Zhou H, Li J, Liu S, Zhao J, Jin Z, Wei W, Guo Z. Multi-Omics Analysis Reveals the Unexpected Immune Regulatory Effects of Arsenene Nanosheets in Tumor Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45137-45148. [PMID: 36166745 DOI: 10.1021/acsami.2c10743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Arsenene, a two-dimensional (2D) monoelemental layered nanosheet composed of arsenic, was recently reported to feature outstanding anticancer activities. However, the specific biological mechanism of action remains unknown. In this work, we extensively analyzed the mechanism of arsenene in vivo and in vitro and discovered the unexpected immune regulatory capability of arsenene for the first time. Analysis of cell phenotypes in tumor microenvironment by single-cell RNA sequencing revealed that arsenene remodeled the tumor microenvironment by recruiting a high proportion of anticancer immune cells to eliminate the tumor. Mechanistically, arsenene significantly activated T cell receptor signaling pathways to produce antitumor immune cells while inhibiting DNA replication and TCA cycle pathways of tumor cells in vivo. Further proteomic analysis on tumor cells revealed that arsenene induced reactive oxygen species production and oxidative stress damage by targeting thioredoxin TXNL1. The overloaded reactive oxygen species (ROS) further triggered endoplasmic reticulum stress responses to release damage-associated molecular patterns (DAMPs) and "eat-me" signals from dying tumor cells, leading to the activation of antigen-presenting processes to induce the subsequent effector tumor-specific CD8+ T cell immune responses. This unexpected discovery indicated for the first time that 2D inorganic nanomaterials could effectively activate direct anticancer immune responses, suggesting arsenene as a promising candidate nanomedicine for future cancer immunotherapy.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing 210000, China
- Nanjing MetalGene Biotechnology Co., Ltd., Jiangbei New Area, Nanjing 210000, China
| | - Jingyi Zhang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Hu
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinyang Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhicheng Wang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Zhang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Junchuan Liang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenhao Yu
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian Tian
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Zhou
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Li
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Nanjing MetalGene Biotechnology Co., Ltd., Jiangbei New Area, Nanjing 210000, China
| | - Shengjin Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing 210000, China
| | - Zhong Jin
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wei
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Life Sciences, Nanjing University, Nanjing 210023, China
- Nanjing MetalGene Biotechnology Co., Ltd., Jiangbei New Area, Nanjing 210000, China
| | - Zijian Guo
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Shenzhen Research Institute of Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing 210000, China
- Nanjing MetalGene Biotechnology Co., Ltd., Jiangbei New Area, Nanjing 210000, China
| |
Collapse
|
19
|
Krzyzowska M, Janicka M, Tomaszewska E, Ranoszek-Soliwoda K, Celichowski G, Grobelny J, Szymanski P. Lactoferrin-Conjugated Nanoparticles as New Antivirals. Pharmaceutics 2022; 14:pharmaceutics14091862. [PMID: 36145610 PMCID: PMC9504495 DOI: 10.3390/pharmaceutics14091862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Lactoferrin is an iron-binding glycoprotein with multiple functions in the body. Its activity against a broad spectrum of both DNA and RNA viruses as well as the ability to modulate immune responses have made it of interest in the pharmaceutical and food industries. The mechanisms of its antiviral activity include direct binding to the viruses or its receptors or the upregulation of antiviral responses by the immune system. Recently, much effort has been devoted to the use of nanotechnology in the development of new antivirals. In this review, we focus on describing the antiviral mechanisms of lactoferrin and the possible use of nanotechnology to construct safe and effective new antiviral drugs.
Collapse
Affiliation(s)
- Malgorzata Krzyzowska
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
- Correspondence:
| | - Martyna Janicka
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland
| | - Katarzyna Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland
| | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland
| | - Jarosław Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland
| | - Pawel Szymanski
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
20
|
Lei H, Kim JH, Son S, Chen L, Pei Z, Yang Y, Liu Z, Cheng L, Kim JS. Immunosonodynamic Therapy Designed with Activatable Sonosensitizer and Immune Stimulant Imiquimod. ACS NANO 2022; 16:10979-10993. [PMID: 35723442 DOI: 10.1021/acsnano.2c03395] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sonodynamic therapy (SDT) has garnered extensive attention as a noninvasive treatment for deep tumors. Furthermore, imiquimod (R837), an FDA-approved toll-like receptor 7 agonist, is commonly used in clinical settings as an immune adjuvant. We prepared an activatable sonodynamic sensitizer platform (MR) based on glutathione-sensitive disulfide bonds linking Leu-MB, the reduced form of methylene blue (MB), and R837 to achieve efficient combinatory SDT and immunotherapy for tumors without harming normal tissues. We also used the amphiphilic polymer C18PMH-PEG to create self-assembled MB-R837-PEG (MRP) nanoparticles for immunosonodynamic therapy (iSDT). iSDT is a cancer treatment that combines activatable SDT and immunotherapy. Our iSDT demonstrated an excellent sonodynamic effect only at the tumor site, demonstrating high specificity in killing tumor cells when compared to SDT reported in the literature. The iSDT improves its tumor-killing effect by inducing an immune response, which is accomplished by secreted immune adjuvants in the tumor site. MRP was selectively activated by glutathione in the tumor microenvironment to release MB and R837, exhibiting excellent antitumor sonodynamic and immune responses. In addition, when combined with an α-PD-L1 antibody for immune checkpoint blockade, this therapy effectively inhibited tumor metastasis. Furthermore, mice treated with iSDT and α-PD-L1 antibody did not develop tumors even after tumor reinoculation, indicating that long-term immune memory was achieved. The concept of sonodynamic sensitizer preparation as a next-generation iSDT based on a noninvasive synergistic therapeutic modality applicable in the near future is presented in this study.
Collapse
Affiliation(s)
- Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Subin Son
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Hafkamp FMJ, Taanman-Kueter EWM, van Capel TMM, Kormelink TG, de Jong EC. Vitamin D3 Priming of Dendritic Cells Shifts Human Neutrophil-Dependent Th17 Cell Development to Regulatory T Cells. Front Immunol 2022; 13:872665. [PMID: 35874744 PMCID: PMC9301463 DOI: 10.3389/fimmu.2022.872665] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Vitamin D3 (VD3) is a potential adjuvant for use in tolerogenic vaccine formulations that target dendritic cells (DCs) for the treatment of chronic inflammatory disorders, e.g., autoimmune diseases. These disorders are often associated with enhanced activity of IL-17-producing T helper 17 (Th17) cells which develop in a DC-driven and neutrophil-dependent fashion. Here, we investigated the effect of VD3 on Candida albicans-specific human T-cell differentiation, since C. albicans is a model pathogen for Th17 cell development. VD3 priming of DCs restricted neutrophil-dependent Th17 cell development and neutrophil-independent Th1 cell formation from naive CD4+ T cells. In line with this, the production of Th1/Th17-polarizing cytokines IL-12 and IL-23 by DCs was reduced by VD3 priming. Development of both FoxP3+CD127lowCD25+ Tregs and IL-10-producing T cells was significantly enhanced in VD3-primed conditions, even in the presence of neutrophils. ICOS+ Tregs, major IL-10 producers, CD69+FoxP3+, and TIGIT+FoxP3+ Tregs were significantly induced by VD3 priming as well. Our data support the potential use of VD3 as an adjuvant to induce tolerance in the treatment of autoimmune disorders, including those in which neutrophils are involved in pathogenesis, since we show that Treg development is enhanced by VD3 even in the presence of neutrophils, while Th17 cell development is restricted.
Collapse
|
22
|
Hadjigol S, Shah BA, O’Brien-Simpson NM. The 'Danse Macabre'-Neutrophils the Interactive Partner Affecting Oral Cancer Outcomes. Front Immunol 2022; 13:894021. [PMID: 35784290 PMCID: PMC9243430 DOI: 10.3389/fimmu.2022.894021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, tremendous advances in the prevention, diagnosis, and treatment of cancer have taken place. However for head and neck cancers, including oral cancer, the overall survival rate is below 50% and they remain the seventh most common malignancy worldwide. These cancers are, commonly, aggressive, genetically complex, and difficult to treat and the delay, which often occurs between early recognition of symptoms and diagnosis, and the start of treatment of these cancers, is associated with poor prognosis. Cancer development and progression occurs in concert with alterations in the surrounding stroma, with the immune system being an essential element in this process. Despite neutrophils having major roles in the pathology of many diseases, they were thought to have little impact on cancer development and progression. Recent studies are now challenging this notion and placing neutrophils as central interactive players with other immune and tumor cells in affecting cancer pathology. This review focuses on how neutrophils and their sub-phenotypes, N1, N2, and myeloid-derived suppressor cells, both directly and indirectly affect the anti-tumor and pro-tumor immune responses. Emphasis is placed on what is currently known about the interaction of neutrophils with myeloid innate immune cells (such as dendritic cells and macrophages), innate lymphoid cells, natural killer cells, and fibroblasts to affect the tumor microenvironment and progression of oral cancer. A better understanding of this dialog will allow for improved therapeutics that concurrently target several components of the tumor microenvironment, increasing the possibility of constructive and positive outcomes for oral cancer patients. For this review, PubMed, Web of Science, and Google Scholar were searched for manuscripts using keywords and combinations thereof of "oral cancer, OSCC, neutrophils, TANs, MDSC, immune cells, head and neck cancer, and tumor microenvironment" with a focus on publications from 2018 to 2021.
Collapse
Affiliation(s)
- Sara Hadjigol
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| | | | - Neil M. O’Brien-Simpson
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
23
|
Tajbakhsh A, Yousefi F, Abedi SM, Rezaee M, Savardashtaki A, Teng Y, Sahebkar A. The cross-talk between soluble "Find me" and "Keep out" signals as an initial step in regulating efferocytosis. J Cell Physiol 2022; 237:3113-3126. [PMID: 35578547 DOI: 10.1002/jcp.30770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
The rapid clearance of apoptotic cells (ACs), known as efferocytosis, prompts the inhibition of inflammatory responses and autoimmunity and maintains homeostatic cell turnover by controlling the release of intracellular contents. The fast clearance of ACs requires professional and nonprofessional phagocytic cells that can accurately and promptly recognize ACs and migrate towards them. Cells undergoing apoptosis alarm their presence by releasing special soluble chemotactic factors, such as lactoferrin, that act as "Find me," "Keep out," or "Stay away" signals to recruit phagocytic cells, such as macrophages or prevent granulocyte migration. Efferocytosis effectively serves to prevent damage-associated molecular pattern release and secondary necrosis and inhibit inflammation/autoimmunity at the very first step. Since less attention has been given to the cross-talk and balance of "Find me" and "Keep out" signals released from ACs in efferocytosis, we set out to investigate the current knowledge of the roles of "Find me" and "Keep out" signals in the efferocytosis process.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh M Abedi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amir Savardashtaki
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Depatment of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Mahmud Z, Rahman A, Mishu ID, Kabir Y. Mechanistic insights into the interplays between neutrophils and other immune cells in cancer development and progression. Cancer Metastasis Rev 2022; 41:405-432. [PMID: 35314951 DOI: 10.1007/s10555-022-10024-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Cancer is considered a major public health concern worldwide and is characterized by an uncontrolled division of abnormal cells. The human immune system recognizes cancerous cells and induces innate immunity to destroy those cells. However, sustained tumors may protect themselves by developing immune escape mechanisms through multiple soluble and cellular mediators. Neutrophils are the most plenteous leukocytes in the human blood and are crucial for immune defense in infection and inflammation. Besides, neutrophils emancipate the antimicrobial contents, secrete different cytokines or chemokines, and interact with other immune cells to combat and successfully kill cancerous cells. Conversely, many clinical and experimental studies signpost that being a polarized and heterogeneous population with plasticity, neutrophils, particularly their subpopulations, act as a modulator of cancer development by promoting tumor metastasis, angiogenesis, and immunosuppression. Studies also suggest that tumor infiltrating macrophages, neutrophils, and other innate immune cells support tumor growth and survival. Additionally, neutrophils promote tumor cell invasion, migration and intravasation, epithelial to mesenchymal transition, survival of cancer cells in the circulation, seeding, and extravasation of tumor cells, and advanced growth and development of cancer cells to form metastases. In this manuscript, we describe and review recent studies on the mechanisms for neutrophil recruitment, activation, and their interplay with different immune cells to promote their pro-tumorigenic functions. Understanding the detailed mechanisms of neutrophil-tumor cell interactions and the concomitant roles of other immune cells will substantially improve the clinical utility of neutrophils in cancer and eventually may aid in the identification of biomarkers for cancer prognosis and the development of novel therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Atiqur Rahman
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
25
|
Nguyen TK, Niaz Z, Kruzel ML, Actor JK. Recombinant Human Lactoferrin Reduces Inflammation and Increases Fluoroquinolone Penetration to Primary Granulomas During Mycobacterial Infection of C57Bl/6 Mice. Arch Immunol Ther Exp (Warsz) 2022; 70:9. [PMID: 35226195 PMCID: PMC8922470 DOI: 10.1007/s00005-022-00648-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022]
Abstract
Infection with Mycobacterium tuberculosis (Mtb) results in the primary formation of a densely packed inflammatory foci that limits entry of therapeutic agents into pulmonary sites where organisms reside. No current therapeutic regimens exist that modulate host immune responses to permit increased drug penetration to regions of pathological damage during tuberculosis disease. Lactoferrin is a natural iron-binding protein previously demonstrated to modulate inflammation and granuloma cohesiveness, while maintaining control of pathogenic burden. Studies were designed to examine recombinant human lactoferrin (rHLF) to modulate histological progression of Mtb-induced pathology in a non-necrotic model using C57Bl/6 mice. The rHLF was oral administered at times corresponding to initiation of primary granulomatous response, or during granuloma maintenance. Treatment with rHLF demonstrated significant reduction in size of primary inflammatory foci following Mtb challenge, and permitted penetration of ofloxacin fluoroquinolone therapeutic to sites of pathological disruption where activated (foamy) macrophages reside. Increased drug penetration was accompanied by retention of endothelial cell integrity. Immunohistochemistry revealed altered patterns of M1-like and M2-like phenotypic cell localization post infectious challenge, with increased presence of M2-like markers found evenly distributed throughout regions of pulmonary inflammatory foci in rHLF-treated mice.
Collapse
Affiliation(s)
- Thao K.T. Nguyen
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA,The University of Texas MD Anderson Cancer Center – UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zainab Niaz
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Marian L. Kruzel
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Jeffrey K. Actor
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| |
Collapse
|
26
|
Schwäbe FV, Happonen L, Ekestubbe S, Neumann A. Host Defense Peptides LL-37 and Lactoferrin Trigger ET Release from Blood-Derived Circulating Monocytes. Biomedicines 2022; 10:biomedicines10020469. [PMID: 35203676 PMCID: PMC8962388 DOI: 10.3390/biomedicines10020469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Neutrophils are commonly regarded as the first line of immune response during infection or in tissue injury-induced inflammation. The rapid influx of these cells results in the release of host defense proteins (HDPs) or formation of neutrophil extracellular traps (NETs). As a second wave during inflammation or infection, circulating monocytes arrive at the site. Earlier studies showed that HDPs LL-37 and Lactoferrin (LTF) activate monocytes while neutrophil elastase facilitates the formation of extracellular traps (ETs) in monocytes. However, the knowledge about the impact of HDPs on monocytes remains sparse. In the present study, we investigated the effect of LL-37 and LTF on blood-derived CD14+ monocytes. Both HDPs triggered a significant release of TNFα, nucleosomes, and monocyte ETs. Microscopic analysis indicated that ET formation by LL-37 depends on storage-operated calcium entry (SOCE), mitogen-activated protein kinase (MAPK), and ERK1/2, whereas the LTF-mediated ET release is not affected by any of the here used inhibitors. Quantitative proteomics mass spectrometry analysis of the neutrophil granular content (NGC) revealed a high abundance of Lactoferrin. The stimulation of CD14+ monocytes with NGC resulted in a significant secretion of TNFα and nucleosomes, and the formation of monocyte ETs. The findings of this study provide new insight into the complex interaction of HDPs, neutrophils, and monocytes during inflammation.
Collapse
|
27
|
Safina I, Childress LT, Myneni SR, Vang KB, Biris AS. Cell-Biomaterial Constructs for Wound Healing and Skin Regeneration. Drug Metab Rev 2022; 54:63-94. [PMID: 35129408 DOI: 10.1080/03602532.2021.2025387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Over the years, conventional skin grafts, such as full-thickness, split-thickness, and pre-sterilized grafts from human or animal sources, have been at the forefront of skin wound care. However, these conventional grafts are associated with major challenges, including supply shortage, rejection by the immune system, and disease transmission following transplantation. Due to recent progress in nanotechnology and material sciences, advanced artificial skin grafts-based on the fundamental concepts of tissue engineering-are quickly evolving for wound healing and regeneration applications, mainly because they can be uniquely tailored to meet the requirements of specific injuries. Despite tremendous progress in tissue engineering, many challenges and uncertainties still face skin grafts in vivo, such as how to effectively coordinate the interaction between engineered biomaterials and the immune system to prevent graft rejection. Furthermore, in-depth studies on skin regeneration at the molecular level are lacking; as a consequence, the development of novel biomaterial-based systems that interact with the skin at the core level has also been slow. This review will discuss 1) the biological aspects of wound healing and skin regeneration, 2) important characteristics and functions of biomaterials for skin regeneration applications, and 3) synthesis and applications of common biomaterials for skin regeneration. Finally, the current challenges and future directions of biomaterial-based skin regeneration will be addressed.
Collapse
Affiliation(s)
- Ingrid Safina
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Luke T Childress
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Srinivas R Myneni
- Department of Periodontology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Kieng Bao Vang
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| |
Collapse
|
28
|
Liu N, Feng G, Zhang X, Hu Q, Sun S, Sun J, Sun Y, Wang R, Zhang Y, Wang P, Li Y. The Functional Role of Lactoferrin in Intestine Mucosal Immune System and Inflammatory Bowel Disease. Front Nutr 2021; 8:759507. [PMID: 34901112 PMCID: PMC8655231 DOI: 10.3389/fnut.2021.759507] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), is one of the main types of intestinal inflammatory diseases with intestine mucosal immune disorder. Intestine mucosal immune system plays a remarkable and important role in the etiology and pathogenesis of IBD. Therefore, understanding the intestine mucosal immune mechanism is a key step to develop therapeutic interventions for IBD. Intestine mucosal immune system and IBD are influenced by various factors, such as inflammation, gut permeability, gut microbiota, and nutrients. Among these factors, emerging evidence show that nutrients play a key role in inflammation activation, integrity of intestinal barrier, and immune cell modulation. Lactoferrin (LF), an iron-binding glycoprotein belonging to transferrin family, is a dietary bioactive component abundantly found in mammalian milk. Notably, LF has been reported to perform diverse biological functions including antibacterial activity, anti-inflammatory activity, intestinal barrier protection, and immune cell modulation, and is involved in maintaining intestine mucosal immune homeostasis. The improved understanding of the properties of LF in intestine mucosal immune system and IBD will facilitate its application in nutrition, clinical medicine, and health. Herein, this review outlines the recent advancements on LF as a potential therapeutic intervention for IBD associated with intestine mucosal immune system dysfunction. We hope this review will provide a reference for future studies and lay a theoretical foundation for LF-based therapeutic interventions for IBD by understanding the particular effects of LF on intestine mucosal immune system.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Gang Feng
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Xiaoying Zhang
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Qingjuan Hu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Jiaqi Sun
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Presti S, Manti S, Parisi GF, Papale M, Barbagallo IA, Li Volti G, Leonardi S. Lactoferrin: Cytokine Modulation and Application in Clinical Practice. J Clin Med 2021; 10:jcm10235482. [PMID: 34884183 PMCID: PMC8658270 DOI: 10.3390/jcm10235482] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple properties of lactoferrin have been reported in the literature so far. Decades of in vitro and in vivo studies have demonstrated the important antimicrobial, anti-inflammatory, anti-oxidant, and immunomodulating properties. It suggests the use of lactoferrin as an effective and safe option for the treatment of several common disorders. Herein, we show the applications of lactoferrin in clinical practice, highlighting its evidence-based capacities for the treatment of heterogeneous disorders, such as allergic, gastrointestinal, and respiratory diseases, and hematologic, oncologic, gynecologic, dermatologic, and dental disorders. Moreover, the widespread use of lactoferrin in neonatology is summarized here. As a result of its antiviral properties, lactoferrin has also been proposed as a valid option for the treatment for COVID-19 patients. Here, the uses of lactoferrin in clinical practice as a new, safe, and evidence-based treatment for many types of disorders are summarized.
Collapse
Affiliation(s)
- Santiago Presti
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95121 Catania, Italy; (S.P.); (S.M.); (G.F.P.); (M.P.); (S.L.)
| | - Sara Manti
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95121 Catania, Italy; (S.P.); (S.M.); (G.F.P.); (M.P.); (S.L.)
| | - Giuseppe Fabio Parisi
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95121 Catania, Italy; (S.P.); (S.M.); (G.F.P.); (M.P.); (S.L.)
| | - Maria Papale
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95121 Catania, Italy; (S.P.); (S.M.); (G.F.P.); (M.P.); (S.L.)
| | | | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95121 Catania, Italy
- Correspondence: ; Tel.: +39-095-4781157
| | - Salvatore Leonardi
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95121 Catania, Italy; (S.P.); (S.M.); (G.F.P.); (M.P.); (S.L.)
| |
Collapse
|
30
|
Llewellyn HP, Arat S, Gao J, Wen J, Xia S, Kalabat D, Oziolor E, Virgen-Slane R, Affolter T, Ji C. T cells and monocyte-derived myeloid cells mediate immunotherapy-related hepatitis in a mouse model. J Hepatol 2021; 75:1083-1095. [PMID: 34242700 DOI: 10.1016/j.jhep.2021.06.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/14/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Immune checkpoint inhibitors (ICIs) are associated with immune-related adverse events (irAEs) which are more severe when ICIs are used in combination. We aimed to use a mouse model to elucidate the molecular mechanisms of immune-related hepatitis, one of the common irAEs associated with ICIs. METHODS Immune phenotyping and molecular profiling were performed on Pdcd1-/- mice treated with anti-CTLA4 and/or the IDO1 inhibitor epacadostat or a 4-1BB agonistic antibody. RESULTS ICI combination-induced hepatitis and 4-1BB agonist-mediated hepatitis share similar features yet maintain distinct immune signatures. Both were characterized by an expansion of periportal infiltrates and pan-zonal inflammation albeit with different morphologic characteristics. In both cases, infiltrates were predominantly CD4+ and CD8+ T cells with upregulated T-cell activation markers, ICOS and CD44. Depletion of CD8+ T cells abolished ICI-mediated hepatitis. Single-cell transcriptomics revealed that the hepatitis induced by combination ICIs is associated with a robust immune activation signature in all subtypes of T cells and T helper 1 skewing. Expression profiling revealed a central role for IFNγ and liver monocyte-derived macrophages in promoting a pro-inflammatory T-cell response to ICI combination and 4-1BB agonism. CONCLUSION We developed a novel mouse model which offers significant value in yielding deeper mechanistic insight into immune-mediated liver toxicity associated with various immunotherapies. LAY SUMMARY Hepatitis is one of the common immune-related adverse events in cancer patients receiving immune checkpoint inhibitor (ICI) therapy. The mechanisms of ICI-induced hepatitis are not well understood. In this paper, we identify key molecular mechanisms mediating immune intracellular crosstalk between liver T cells and macrophages in response to ICI in a mouse model.
Collapse
Affiliation(s)
- Heather P Llewellyn
- Global Biomarkers, Drug Safety Research and Development (DSRD), La Jolla, CA, USA
| | - Seda Arat
- Global Pathology and Investigative Toxicology, DSRD, Groton, CT, USA
| | - Jingjin Gao
- Oncology Research Unit, Pfizer, La Jolla, CA, USA
| | - Ji Wen
- Oncology Research Unit, Pfizer, La Jolla, CA, USA
| | - Shuhua Xia
- Global Pathology and Investigative Toxicology, DSRD, Groton, CT, USA
| | - Dalia Kalabat
- Global Pathology and Investigative Toxicology, DSRD, Groton, CT, USA
| | - Elias Oziolor
- Global Pathology and Investigative Toxicology, DSRD, Groton, CT, USA
| | - Richard Virgen-Slane
- Global Biomarkers, Drug Safety Research and Development (DSRD), La Jolla, CA, USA
| | | | - Changhua Ji
- Regulatory and Immunosafety Strategy, DSRD, Pfizer, La Jolla, CA, USA.
| |
Collapse
|
31
|
Hafkamp FMJ, Groot Kormelink T, de Jong EC. Targeting DCs for Tolerance Induction: Don't Lose Sight of the Neutrophils. Front Immunol 2021; 12:732992. [PMID: 34675923 PMCID: PMC8523850 DOI: 10.3389/fimmu.2021.732992] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic inflammatory disorders (CID), such as autoimmune diseases, are characterized by overactivation of the immune system and loss of immune tolerance. T helper 17 (Th17) cells are strongly associated with the pathogenesis of multiple CID, including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. In line with the increasingly recognized contribution of innate immune cells to the modulation of dendritic cell (DC) function and DC-driven adaptive immune responses, we recently showed that neutrophils are required for DC-driven Th17 cell differentiation from human naive T cells. Consequently, recruitment of neutrophils to inflamed tissues and lymph nodes likely creates a highly inflammatory loop through the induction of Th17 cells that should be intercepted to attenuate disease progression. Tolerogenic therapy via DCs, the central orchestrators of the adaptive immune response, is a promising strategy for the treatment of CID. Tolerogenic DCs could restore immune tolerance by driving the development of regulatory T cells (Tregs) in the periphery. In this review, we discuss the effects of the tolerogenic adjuvants vitamin D3 (VD3), corticosteroids (CS), and retinoic acid (RA) on both DCs and neutrophils and their potential interplay. We briefly summarize how neutrophils shape DC-driven T-cell development in general. We propose that, for optimization of tolerogenic DC therapy for the treatment of CID, both DCs for tolerance induction and the neutrophil inflammatory loop should be targeted while preserving the potential Treg-enhancing effects of neutrophils.
Collapse
Affiliation(s)
| | | | - Esther C. de Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Rathi A, Jadhav SB, Shah N. A Randomized Controlled Trial of the Efficacy of Systemic Enzymes and Probiotics in the Resolution of Post-COVID Fatigue. MEDICINES (BASEL, SWITZERLAND) 2021; 8:47. [PMID: 34564089 PMCID: PMC8472462 DOI: 10.3390/medicines8090047] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Muscle fatigue and cognitive disturbances persist in patients after recovery from acute COVID-19 disease. However, there are no specific treatments for post-COVID fatigue. Objective: To evaluate the efficacy and safety of the health supplements ImmunoSEB (systemic enzyme complex) and ProbioSEB CSC3 (probiotic complex) in patients suffering from COVID-19 induced fatigue. A randomized, multicentric, double blind, placebo-controlled trial was conducted in 200 patients with a complaint of post-COVID fatigue. The test arm (n = 100) received the oral supplements for 14 days and the control arm (n = 100) received a placebo. Treatment efficacy was compared using the Chalder Fatigue scale (CFQ-11), at various time points from days 1 to 14. The supplemental treatment resulted in resolution of fatigue in a greater percentage of subjects in the test vs. the control arm (91% vs. 15%) on day 14. Subjects in the test arm showed a significantly greater reduction in total as well as physical and mental fatigue scores at all time points vs. the control arm. The supplements were well tolerated with no adverse events reported. This study demonstrates that a 14 days supplementation of ImmunoSEB + ProbioSEB CSC3 resolves post-COVID-19 fatigue and can improve patients' functional status and quality of life.
Collapse
Affiliation(s)
- Abhijit Rathi
- Food Application and Development Laboratory, Advanced Enzymes Technologies Ltd., Louiswadi, Thane 400604, India;
| | - Swati B. Jadhav
- Food Application and Development Laboratory, Advanced Enzymes Technologies Ltd., Louiswadi, Thane 400604, India;
| | - Neha Shah
- Pulmonary Fibrosis Now, Chino, CA 91710, USA;
| |
Collapse
|
33
|
Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 signal for combined photothermal therapy and cancer immunotherapy. Biomaterials 2021; 275:120964. [PMID: 34147721 DOI: 10.1016/j.biomaterials.2021.120964] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/16/2022]
Abstract
CD47, overexpressed on kinds of tumor cells, activates a "don't eat me" signal through binding to signal regulatory protein α (SIRPα), leading to immune escape from the mononuclear phagocyte system (MPS). It is also a huge challenge to deliver therapeutic drugs to the tumor sites due to the short retention time in blood, poor targeting of tumor cells and accelerated clearance by MPS. Herein, we designed a hybrid therapeutic nanovesicles, named as hGLV, by fusing gene-engineered exosomes with drug-loaded thermosensitive liposomes. We demonstrated that the CD47-overexpressed hGLV exhibited the long blood circulation and improved the macrophages-mediated the phagocytosis of tumor cells by blocking CD47 signal. Moreover, the resulted hGLV could remarkably target the homologous tumor in mice, achieving the preferential accumulation at the tumor sites. Importantly, hGLV loading the photothermal agent could achieve the excellent photothermal therapy (PTT) under laser irradiation after the intravenous injection, completely eliminating the tumors, leading to immunogenic cell death and generating substantial tumor-associated antigens, which could promote the maturation of immature dendritic cells with the help of the co-encapsulated immune adjuvant to trigger strong immune responses. Generally, the hybrid nanovesicles based on CD47 immune check point blockade can be a promising platform for the drug delivery in cancer treatment.
Collapse
|
34
|
Lindford A, Juteau S, Jaks V, Klaas M, Lagus H, Vuola J, Kankuri E. Case Report: Unravelling the Mysterious Lichtenberg Figure Skin Response in a Patient With a High-Voltage Electrical Injury. Front Med (Lausanne) 2021; 8:663807. [PMID: 34179045 PMCID: PMC8226253 DOI: 10.3389/fmed.2021.663807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
We describe a case of Lichtenberg Figures (LFs) following an electrical injury from a high-voltage switchgear in a 47 year-old electrician. LFs, also known as ferning pattern or keraunographic markings, are a pathognomonic skin sign for lightning strike injuries. Their true pathophysiology has remained a mystery and only once before described following an electical injury. The aim was to characterise the tissue response of LFs by performing untargeted non-labelled proteomics and immunohistochemistry on paraffin-embedded sections of skin biopsies taken from the area of LFs at presentation and at 3 months follow-up. Our results demonstrated an increase in dermal T-cells and greatly increased expression of the iron-binding glycoprotein lactoferrin by keratinocytes and lymphocytes. These changes in the LF-affected skin were associated with extravasation of red blood cells from dermal vessels. Our results provide an initial molecular and cellular insight into the tissue response associated with LFs.
Collapse
Affiliation(s)
- Andrew Lindford
- Department of Plastic Surgery, Helsinki Burn Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Susanna Juteau
- Department of Pathology, Haartman Institute, University of Helsinki and Helsinki University Hospital Diagnostic Center, HUSLAB, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Helsinki Wound Healing Centre, Helsinki University Hospital, Helsinki, Finland
| | - Jyrki Vuola
- Department of Plastic Surgery, Helsinki Burn Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Zimecki M, Actor JK, Kruzel ML. The potential for Lactoferrin to reduce SARS-CoV-2 induced cytokine storm. Int Immunopharmacol 2021; 95:107571. [PMID: 33765614 PMCID: PMC7953442 DOI: 10.1016/j.intimp.2021.107571] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic is a serious global health threat caused by severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). Symptoms of COVID-19 are highly variable with common hyperactivity of immune responses known as a "cytokine storm". In fact, this massive release of inflammatory cytokines into in the pulmonary alveolar structure is a main cause of mortality during COVID-19 infection. Current management of COVID-19 is supportive and there is no common clinical protocol applied to suppress this pathological state. Lactoferrin (LF), an iron binding protein, is a first line defense protein that is present in neutrophils and excretory fluids of all mammals, and is well recognized for its role in maturation and regulation of immune system function. Also, due to its ability to sequester free iron, LF is known to protect against insult-induced oxidative stress and subsequent "cytokine storm" that results in dramatic necrosis within the affected tissue. Review of the literature strongly suggests utility of LF to silence the "cytokine storm", giving credence to both prophylactic and therapeutic approaches towards combating COVID-19 infection.
Collapse
Affiliation(s)
- Michał Zimecki
- The Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jeffrey K Actor
- University of Texas, Health Science Center Houston, Texas, USA.
| | - Marian L Kruzel
- University of Texas, Health Science Center Houston, Texas, USA
| |
Collapse
|
36
|
Morales-Primo AU, Becker I, Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles. Int Rev Immunol 2021; 41:253-274. [PMID: 34036897 DOI: 10.1080/08830185.2021.1921174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophil extracellular traps (NETs) are a defense mechanism against pathogens. They are composed of DNA and various proteins and have the ability to hinder microbial spreading and survival. However, NETs are not only related to infections but also participate in sterile inflammatory events. In addition to DNA, NETs contain histones, serine proteases, cytoskeletal proteins and antimicrobial peptides, all of which have immunomodulatory properties that can augment or decrease the inflammatory response. Extracellular localization of these molecules alerts the immune system of cellular damage, which is triggered by recognition of damage-associated molecular patterns (DAMPs) through specific pattern recognition receptors. However, not all of these molecules are DAMPs and may have other immunophysiological properties in the extracellular space. The release of NETs can lead to production of pro-inflammatory cytokines (due to TLR2/4/9 and inflammasome activation), the destruction of the extracellular matrix, activation of serine proteases and of matrix metallopeptidases (MMPs), modulation of cellular proliferation, induction of cellular migration and adhesion, promotion of thrombogenesis and angiogenesis and disruption of epithelial and endothelial permeability. Understanding the dynamics of NET-associated molecules, either individually or synergically, will help to unravel their role in inflammatory events and open novel perspectives for potential therapeutic targets. We here review molecules contained within NETS and their immunophysiological roles.
Collapse
Affiliation(s)
- Abraham U Morales-Primo
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Ingeborg Becker
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| |
Collapse
|
37
|
Chéneau C, Eichholz K, Tran TH, Tran TTP, Paris O, Henriquet C, Bajramovic JJ, Pugniere M, Kremer EJ. Lactoferrin Retargets Human Adenoviruses to TLR4 to Induce an Abortive NLRP3-Associated Pyroptotic Response in Human Phagocytes. Front Immunol 2021; 12:685218. [PMID: 34093588 PMCID: PMC8173049 DOI: 10.3389/fimmu.2021.685218] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
Despite decades of clinical and preclinical investigations, we still poorly grasp our innate immune response to human adenoviruses (HAdVs) and their vectors. In this study, we explored the impact of lactoferrin on three HAdV types that are being used as vectors for vaccines. Lactoferrin is a secreted globular glycoprotein that influences direct and indirect innate immune response against a range of pathogens following a breach in tissue homeostasis. The mechanism by which lactoferrin complexes increases HAdV uptake and induce maturation of human phagocytes is unknown. We show that lactoferrin redirects HAdV types from species B, C, and D to Toll-like receptor 4 (TLR4) cell surface complexes. TLR4-mediated internalization of the HAdV-lactoferrin complex induced an NLRP3-associated response that consisted of cytokine release and transient disruption of plasma membrane integrity, without causing cell death. These data impact our understanding of HAdV immunogenicity and may provide ways to increase the efficacy of HAdV-based vectors/vaccines.
Collapse
Affiliation(s)
- Coraline Chéneau
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Karsten Eichholz
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Tuan Hiep Tran
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Thi Thu Phuong Tran
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Océane Paris
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Corinne Henriquet
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université Montpellier, Institut Régional du Cancer, Montpellier, France
| | | | - Martine Pugniere
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université Montpellier, Institut Régional du Cancer, Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
38
|
Muñoz-Prieto A, Escribano D, Contreras-Aguilar MD, Horvatić A, Guillemin N, Jacobsen S, Cerón JJ, Mrljak V. Tandem Mass Tag (TMT) Proteomic Analysis of Saliva in Horses with Acute Abdominal Disease. Animals (Basel) 2021; 11:ani11051304. [PMID: 33946607 PMCID: PMC8147179 DOI: 10.3390/ani11051304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary This study shows for the first time the variation of the salivary proteome in horses with acute abdominal disease (AAD) compared with healthy horses through a high-throughput proteomic approach. A total of 118 proteins were identified, and 17 showed significant changes between the two groups. The changes observed in proteins were closely related to an impaired primary immune defense and antimicrobial capacity in the mucosa, and one salivary protein (lactoferrin) was successfully verified. These results may increase the background and knowledge of saliva composition in horses with AAD and further understanding of the physiopathological changes occurring in the organism in this disease. Abstract The aim of this study was to investigate the changes in the salivary proteome in horses with acute abdominal disease (AAD) using a tandem mass tags (TMT)-based proteomic approach. The saliva samples from eight horses with AAD were compared with six healthy horses in the proteomic study. Additionally, saliva samples from eight horses with AAD and eight controls were used to validate lactoferrin (LF) in saliva. The TMT analysis quantified 118 proteins. Of these, 17 differed significantly between horses with AAD and the healthy controls, 11 being downregulated and 6 upregulated. Our results showed the downregulation of gamma-enteric smooth muscle actin (ACTA2), latherin isoform X1, and LF. These proteins could be closely related to an impaired primary immune defense and antimicrobial capacity in the mucosa. In addition, there was an upregulation of mucin 19 (MUC19) and the serine protease inhibitor Kazal-type 5 (SPINK5) associated with a protective effect during inflammation. The proteins identified in our study could have the potential to be novel biomarkers for diagnosis or monitoring the physiopathology of the disease, especially LF, which decreased in the saliva of horses with AAD and was successfully measured using a commercially available immunoassay.
Collapse
Affiliation(s)
- Alberto Muñoz-Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (A.M.-P.); (N.G.); (V.M.)
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 30100 Murcia, Spain; (D.E.); (M.D.C.-A.)
| | - María Dolores Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 30100 Murcia, Spain; (D.E.); (M.D.C.-A.)
| | - Anita Horvatić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia;
| | - Nicolas Guillemin
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (A.M.-P.); (N.G.); (V.M.)
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Veterinary School of Medicine, Sektion Medicine and Surgery, University of Copenhagen, Hoejbakkegaard Allé 5, DK-2630 Taastrup, Denmark;
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 30100 Murcia, Spain; (D.E.); (M.D.C.-A.)
- Correspondence:
| | - Vladimir Mrljak
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (A.M.-P.); (N.G.); (V.M.)
| |
Collapse
|
39
|
Habib HM, Ibrahim S, Zaim A, Ibrahim WH. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother 2021; 136:111228. [PMID: 33454595 PMCID: PMC7836924 DOI: 10.1016/j.biopha.2021.111228] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Iron overload is increasingly implicated as a contributor to the pathogenesis of COVID-19. Indeed, several of the manifestations of COVID-19, such as inflammation, hypercoagulation, hyperferritinemia, and immune dysfunction are also reminiscent of iron overload. Although iron is essential for all living cells, free unbound iron, resulting from iron dysregulation and overload, is very reactive and potentially toxic due to its role in the generation of reactive oxygen species (ROS). ROS react with and damage cellular lipids, nucleic acids, and proteins, with consequent activation of either acute or chronic inflammatory processes implicated in multiple clinical conditions. Moreover, iron-catalyzed lipid damage exerts a direct causative effect on the newly discovered nonapoptotic cell death known as ferroptosis. Unlike apoptosis, ferroptosis is immunogenic and not only leads to amplified cell death but also promotes a series of reactions associated with inflammation. Iron chelators are generally safe and are proven to protect patients in clinical conditions characterized by iron overload. There is also an abundance of evidence that iron chelators possess antiviral activities. Furthermore, the naturally occurring iron chelator lactoferrin (Lf) exerts immunomodulatory as well as anti-inflammatory effects and can bind to several receptors used by coronaviruses thereby blocking their entry into host cells. Iron chelators may consequently be of high therapeutic value during the present COVID-19 pandemic.
Collapse
Affiliation(s)
- Hosam M Habib
- Functional Foods and Nutraceuticals Laboratory (FFNL), Dairy Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Sahar Ibrahim
- Weldon School of Biomedical Engineering, Purdue University, USA
| | - Aamnah Zaim
- Weldon School of Biomedical Engineering, Purdue University, USA
| | - Wissam H Ibrahim
- Office of Institutional Effectiveness, United Arab Emirates University, P. O. Box 15551, Al Ain, UAE.
| |
Collapse
|
40
|
Sienkiewicz M, Jaśkiewicz A, Tarasiuk A, Fichna J. Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit Rev Food Sci Nutr 2021; 62:6016-6033. [PMID: 33685299 DOI: 10.1080/10408398.2021.1895063] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (LF), a glycoprotein found in mucosal secretions, is characterized by a wide range of functions, including immunomodulatory and anti-inflammatory activities. Moreover, several investigations confirmed that LF displays high effectiveness against multiple bacteria and viruses and may be regarded as a potential inhibitor of enveloped viruses, such as presently prevailing SARS-CoV-2. In our review, we discuss available studies about LF functions and bioavailability of different LF forms in in vitro and in vivo models. Moreover, we characterize the potential benefits and side effects of LF use; we also briefly summarize the latest clinical trials examining LF application. Finally, we point potential role of LF in inflammatory bowel disease and indicate its use as a marker for disease severity.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Jaśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
41
|
Melt Electrospinning of Polymers: Blends, Nanocomposites, Additives and Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melt electrospinning has been developed in the last decade as an eco-friendly and solvent-free process to fill the gap between the advantages of solution electrospinning and the need of a cost-effective technique for industrial applications. Although the benefits of using melt electrospinning compared to solution electrospinning are impressive, there are still challenges that should be solved. These mainly concern to the improvement of polymer melt processability with reduction of polymer degradation and enhancement of fiber stability; and the achievement of a good control over the fiber size and especially for the production of large scale ultrafine fibers. This review is focused in the last research works discussing the different melt processing techniques, the most significant melt processing parameters, the incorporation of different additives (e.g., viscosity and conductivity modifiers), the development of polymer blends and nanocomposites, the new potential applications and the use of drug-loaded melt electrospun scaffolds for biomedical applications.
Collapse
|
42
|
Huang J, Xiao Z, An Y, Han S, Wu W, Wang Y, Guo Y, Shuai X. Nanodrug with dual-sensitivity to tumor microenvironment for immuno-sonodynamic anti-cancer therapy. Biomaterials 2021; 269:120636. [PMID: 33453632 DOI: 10.1016/j.biomaterials.2020.120636] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/17/2020] [Accepted: 12/25/2020] [Indexed: 12/17/2022]
Abstract
Although a combination with photodynamic therapy (PDT) is a potential means to improve the immune checkpoint blockade (ICB)-based anticancer immunotherapy, this strategy is subjected to the extremely poor light penetration in melanoma. Herein, we develop a lipid (LP)-based micellar nanocarrier encapsulating sonosensitizer chlorin e6 (Ce6) in the core, conjugating anti-PD-L1 antibody (aPD-L1) to the interlayer through MMP-2-cleavable peptide, and bearing a PEG coating sheddable at low pH value (≈6.5) of tumor microenvironment. The unique nanocarrier design allows a tumor-targeting delivery to activate the anti-tumor immunity and meanwhile to reduce immune-related adverse effects (irAEs). Moreover, a sonodynamic therapy (SDT) is triggerable by using ultrasonic insonation to produce tumor-killing reactive oxygen species (ROS), thereby bypassing the poor light penetration which restricts PDT in melanoma. A combination of SDT with aPD-L1 immunotherapy effectively promotes tumor infiltration and activation of cytotoxic T cells, which resulted in robust anti-cancer immunity and long-term immune memory to effectively suppress melanoma growth and postoperative recurrence. This strategy for tumor-targeting codelivery of immune checkpoint inhibitors and SDT agents could be readily extended to other tumor types for better immunotherapeutic outcome and reduced irAEs.
Collapse
Affiliation(s)
- Jinsheng Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Zecong Xiao
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongcheng An
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510275, China
| | - Shisong Han
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510275, China
| | - Wei Wu
- Department of Medical Oncology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Yu Guo
- Department of General Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xintao Shuai
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
43
|
Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel) 2020; 12:E3806. [PMID: 33348646 PMCID: PMC7766217 DOI: 10.3390/cancers12123806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| |
Collapse
|
44
|
Chéneau C, Kremer EJ. Adenovirus-Extracellular Protein Interactions and Their Impact on Innate Immune Responses by Human Mononuclear Phagocytes. Viruses 2020; 12:v12121351. [PMID: 33255892 PMCID: PMC7760109 DOI: 10.3390/v12121351] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this review is to highlight how, in a syngeneic system, human mononuclear phagocytes respond to environments containing human adenovirus (HAdV) and soluble extracellular proteins that influence their innate immune response. Soluble extracellular proteins, including immunoglobulins, blood clotting factors, proteins of the complement system, and/or antimicrobial peptides (AMPs) can exert direct effects by binding to a virus capsid that modifies interactions with pattern recognition receptors and downstream signaling. In addition, the presence, generation, or secretion of extracellular proteins can indirectly influence the response to HAdVs via the activation and recruitment of cells at the site of infection.
Collapse
|
45
|
Naidu SAG, Clemens RA, Pressman P, Zaigham M, Davies KJA, Naidu AS. COVID-19 during Pregnancy and Postpartum. J Diet Suppl 2020; 19:78-114. [PMID: 33164606 DOI: 10.1080/19390211.2020.1834047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As the COVID-19 pandemic intensified the global health crisis, the containment of SARS-CoV-2 infection in pregnancies, and the inherent risk of vertical transmission of virus from mother-to-fetus (or neonate) poses a major concern. Most COVID-19-Pregnancy patients showed mild to moderate COVID-19 pneumonia with no pregnancy loss and no congenital transmission of the virus; however, an increase in hypoxia-induced preterm deliveries was apparent. Also, the breastmilk of several mothers with COVID-19 tested negative for the virus. Taken together, the natural barrier function during pregnancy and postpartum seems to deter the SARS-CoV-2 transmission from mother-to-child. This clinical observation warrants to explore the maternal-fetal interface and identify the innate defense factors for prevention and control of COVID-19-Pregnancy. Lactoferrin (LF) is a potent antiviral iron-binding protein present in the maternal-fetal interface. In concert with immune co-factors, maternal-LF modulates chemokine release and lymphocyte migration and amplify host defense during pregnancy. LF levels during pregnancy may resolve hypertension via down-regulation of ACE2; consequently, may limit the membrane receptor access to SARS-CoV-2 for cellular entry. Furthermore, an LF-derived peptide (LRPVAA) has been shown to block ACE receptor activity in vitro. LF may also reduce viral docking and entry into host cells and limit the early phase of COVID-19 infection. An in-depth understanding of LF and other soluble mammalian milk-derived innate antiviral factors may provide insights to reduce co-morbidities and vertical transmission of SARS-CoV-2 infection and may lead to the development of effective nutraceutical supplements.
Collapse
Affiliation(s)
| | - Roger A Clemens
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | | - Mehreen Zaigham
- Department of Obstetrics & Gynecology, Skåne University Hospital, Malmö, Sweden
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, CA, USA.,Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA, USA.,Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
46
|
Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci 2020; 21:E7820. [PMID: 33105656 PMCID: PMC7659937 DOI: 10.3390/ijms21217820] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.
Collapse
Affiliation(s)
| | | | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| | - Valerie R. Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| |
Collapse
|
47
|
Ueda K, Shimizu M, Ohashi A, Murata D, Suzuki T, Kobayashi N, Baba J, Takeuchi T, Shiga Y, Nakamura M, Kagaya S, Sato A. Albumin fusion at the N-terminus or C-terminus of human lactoferrin leads to improved pharmacokinetics and anti-proliferative effects on cancer cell lines. Eur J Pharm Sci 2020; 155:105551. [PMID: 32946958 DOI: 10.1016/j.ejps.2020.105551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/23/2020] [Accepted: 09/12/2020] [Indexed: 12/18/2022]
Abstract
Human lactoferrin (hLF), a soluble factor of the innate immune system, exhibits various biological functions and therefore has potential as a therapeutic protein. However, the clinical applications of hLF are limited by its low stability in blood. We therefore attempted to resolve this by producing recombinant hLF fused to human serum albumin (HSA). Two HSA-fused hLFs with different fusion orientations (hLF-HSA and HSA-hLF) were produced in Chinese hamster ovary (CHO) DG44 cells. hLF-HSA revealed higher thermal stability, resistance to peptic degradation, and stability during the process of cellular uptake and release in an intestinal enterocyte model (Caco-2 cells) than HSA-hLF. The lower stability of HSA-hLF is presumably due to the steric hindrance imposed by HSA fusion to the N-terminus of hLF. Both HSA fusion proteins, especially HSA-hLF, displayed improved pharmacokinetic properties despite the lower protein stability of HSA-hLF. hLF-HSA and HSA-hLF exhibited approximately 3.3- and 20.7-fold longer half-lives (64.0 and 403.6 min), respectively, than holo-rhLF (19.5 min). Both HSA fusion proteins were found to exert enhanced growth inhibition effects on cancer cells in vitro, but not normal cells. Their enhanced growth inhibitory activities were considered to be due to the synergetic effects of hLF and HSA because hLF alone or HSA alone failed to exert such an effect. Altogether, Fusion of HSA to hLF yielded superior pharmacokinetics and anti-proliferative activities against cancer cells. HSA-fused hLF is a novel candidate for further application of hLF as biopharmaceuticals for intravenous administration.
Collapse
Affiliation(s)
- Keisuke Ueda
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Maya Shimizu
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Aimi Ohashi
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Daisuke Murata
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Takuo Suzuki
- Division of Biological Chemistry and Biologicals, National Institute of Health, Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Natsuki Kobayashi
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Junpei Baba
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Takashi Takeuchi
- Department of Veterinary Medicine, Tottori University, Koyama-Minami, Tottori, 680-8553, Japan
| | - Yuki Shiga
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Masao Nakamura
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Shinji Kagaya
- NRL Pharma, Inc., Kawasaki, Kanagawa, 213-0012, Japan
| | - Atsushi Sato
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
48
|
ITLN1 modulates invasive potential and metabolic reprogramming of ovarian cancer cells in omental microenvironment. Nat Commun 2020; 11:3546. [PMID: 32669559 PMCID: PMC7363861 DOI: 10.1038/s41467-020-17383-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/26/2020] [Indexed: 01/04/2023] Open
Abstract
Advanced ovarian cancer usually spreads to the omentum. However, the omental cell-derived molecular determinants modulating its progression have not been thoroughly characterized. Here, we show that circulating ITLN1 has prognostic significance in patients with advanced ovarian cancer. Further studies demonstrate that ITLN1 suppresses lactotransferrin’s effect on ovarian cancer cell invasion potential and proliferation by decreasing MMP1 expression and inducing a metabolic shift in metastatic ovarian cancer cells. Additionally, ovarian cancer-bearing mice treated with ITLN1 demonstrate marked decrease in tumor growth rates. These data suggest that downregulation of mesothelial cell-derived ITLN1 in the omental tumor microenvironment facilitates ovarian cancer progression. Advanced ovarian cancer usually spreads to the omentum. Here, the authors show that circulating intelectin-1 (ITLN1) has prognostic significance in patients with advanced ovarian cancer, and that mesothelial cell-derived ITLN1 in the omental tumor microenvironment suppresses ovarian cancer progression.
Collapse
|
49
|
Carlson SK, Erickson DL, Wilson E. Staphylococcus aureus metal acquisition in the mastitic mammary gland. Microb Pathog 2020; 144:104179. [DOI: 10.1016/j.micpath.2020.104179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022]
|
50
|
Dierick M, Vanrompay D, Devriendt B, Cox E. Lactoferrin, a versatile natural antimicrobial glycoprotein that modulates the host's innate immunity. Biochem Cell Biol 2020; 99:61-65. [PMID: 32585120 DOI: 10.1139/bcb-2020-0080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lactoferrin is a multifunctional protein found in the secretions of mammals. The antimicrobial activity of lactoferrin was the first to be discovered and was assumed to be solely dependent on its iron-chelating ability. However, lactoferrin has been reported to display proteolytic activity towards bacterial virulence factors and to modulate the host defence by stimulating the immune system and balancing pathogen-induced inflammation. Here, we review the current understandings of the antimicrobial effect, interaction with host cells, and innate immune modulation of lactoferrin, and put forward this moonlighting protein as a possible alternative for antibiotics.
Collapse
Affiliation(s)
- Matthias Dierick
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|