1
|
Shariati A, Kashi M, Chegini Z, Hosseini SM. Antibiotics-free compounds for managing carbapenem-resistant bacteria; a narrative review. Front Pharmacol 2024; 15:1467086. [PMID: 39355778 PMCID: PMC11442292 DOI: 10.3389/fphar.2024.1467086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Carbapenem-resistant (CR) Gram-negative bacteria have become a significant public health problem in the last decade. In recent years, the prevalence of CR bacteria has increased. The resistance to carbapenems could result from different mechanisms such as loss of porin, penicillin-binding protein alteration, carbapenemase, efflux pump, and biofilm community. Additionally, genetic variations like insertion, deletion, mutation, and post-transcriptional modification of corresponding coding genes could decrease the susceptibility of bacteria to carbapenems. In this regard, scientists are looking for new approaches to inhibit CR bacteria. Using bacteriophages, natural products, nanoparticles, disulfiram, N-acetylcysteine, and antimicrobial peptides showed promising inhibitory effects against CR bacteria. Additionally, the mentioned compounds could destroy the biofilm community of CR bacteria. Using them in combination with conventional antibiotics increases the efficacy of antibiotics, decreases their dosage and toxicity, and resensitizes CR bacteria to antibiotics. Therefore, in the present review article, we have discussed different aspects of non-antibiotic approaches for managing and inhibiting the CR bacteria and various methods and procedures used as an alternative for carbapenems against these bacteria.
Collapse
Affiliation(s)
- Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Milad Kashi
- Student research committee, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Manole CG, Voiculescu VM, Soare C, Ceafalan LC, Gherghiceanu M, Hinescu ME. Skin Telocytes Could Fundament the Cellular Mechanisms of Wound Healing in Platelet-Rich Plasma Administration. Cells 2024; 13:1321. [PMID: 39195210 DOI: 10.3390/cells13161321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
For more than 40 years, autologous platelet concentrates have been used in clinical medicine. Since the first formula used, namely platelet-rich plasma (PRP), other platelet concentrates have been experimented with, including platelet-rich fibrin and concentrated growth factor. Platelet concentrates have three standard characteristics: they act as scaffolds, they serve as a source of growth factors and cytokines, and they contain live cells. PRP has become extensively used in regenerative medicine for the successful treatment of a variety of clinical (non-)dermatological conditions like alopecies, acne scars, skin burns, skin ulcers, muscle, cartilage, and bone repair, and as an adjuvant in post-surgery wound healing, with obvious benefits in terms of functionality and aesthetic recovery of affected tissues/organs. These indications were well documented, and a large amount of evidence has already been published supporting the efficacy of this method. The primordial principle behind minimally invasive PRP treatments is the usage of the patient's own platelets. The benefits of the autologous transplantation of thrombocytes are significant, representing a fast and economic method that requires only basic equipment and training, and it is biocompatible, thus being a low risk for the patient (infection and immunological reactions can be virtually disregarded). Usually, the structural benefits of applying PRP are attributed to fibroblasts only, as they are considered the most numerous cell population within the interstitium. However, this apparent simplistic explanation is still eluding those different types of interstitial cells (distinct from fibroblasts) that are residing within stromal tissue, e.g., telocytes (TCs). Moreover, dermal TCs have an already documented potential in angiogenesis (extra-cutaneous, but also within skin), and their implication in skin recovery in a few dermatological conditions was attested and described ultrastructurally and immunophenotypically. Interestingly, PRP biochemically consists of a series of growth factors, cytokines, and other molecules, to which TCs have also proven to have a positive expression. Thus, it is attractive to hypothesize and to document any tissular collaboration between cutaneous administered PRP and local dermal TCs in skin recovery/repair/regeneration. Therefore, TCs could be perceived as the missing link necessary to provide a solid explanation of the good results achieved by administering PRP in skin-repairing processes.
Collapse
Affiliation(s)
- Catalin G Manole
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M Voiculescu
- Department of Oncological Dermatology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihail E Hinescu
- Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
3
|
Hauser KA, Garvey CN, Crow RS, Hossainey MRH, Howard DT, Ranganathan N, Gentry LK, Yaparla A, Kalia N, Zelle M, Jones EJ, Duttargi AN, Rollins-Smith LA, Muletz-Wolz CR, Grayfer L. Amphibian mast cells serve as barriers to chytrid fungus infections. eLife 2024; 12:RP92168. [PMID: 39082933 PMCID: PMC11290838 DOI: 10.7554/elife.92168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controlling Bd, yet almost nothing is known about the roles of skin-resident immune cells in anti-Bd defenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin. Accordingly, we investigated the roles of Xenopus laevis frog mast cells during Bd infections. Our findings indicate that enrichment of X. laevis skin mast cells confers anti-Bd protection and ameliorates the inflammation-associated skin damage caused by Bd infection. This includes a significant reduction in infiltration of Bd-infected skin by neutrophils, promoting mucin content within cutaneous mucus glands, and preventing Bd-mediated changes to skin microbiomes. Mammalian mast cells are known for their production of the pleiotropic interleukin-4 (IL4) cytokine and our findings suggest that the X. laevis IL4 plays a key role in manifesting the effects seen following cutaneous mast cell enrichment. Together, this work underscores the importance of amphibian skin-resident immune cells in anti-Bd defenses and illuminates a novel avenue for investigating amphibian host-chytrid pathogen interactions.
Collapse
Affiliation(s)
- Kelsey A Hauser
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Christina N Garvey
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Ryley S Crow
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Muhammad RH Hossainey
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Dustin T Howard
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Netra Ranganathan
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Lindsey K Gentry
- Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology InstituteWashingtonUnited States
| | - Amulya Yaparla
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Namarta Kalia
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Mira Zelle
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Elizabeth J Jones
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown UniversityWashingtonUnited States
| | - Anju N Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown UniversityWashingtonUnited States
| | - Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology, and of Pediatrics, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology InstituteWashingtonUnited States
| | - Leon Grayfer
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| |
Collapse
|
4
|
Suárez Vázquez TA, López López N, Salinas Carmona MC. MASTer cell: chief immune modulator and inductor of antimicrobial immune response. Front Immunol 2024; 15:1360296. [PMID: 38638437 PMCID: PMC11024470 DOI: 10.3389/fimmu.2024.1360296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
Mast cells have long been recognized for their involvement in allergic pathology through the immunoglobulin E (IgE)-mediated degranulation mechanism. However, there is growing evidence of other "non-canonical" degranulation mechanisms activated by certain pathogen recognition receptors. Mast cells release several mediators, including histamine, cytokines, chemokines, prostaglandins, and leukotrienes, to initiate and enhance inflammation. The chemical nature of activating stimuli influences receptors, triggering mechanisms for the secretion of formed and new synthesized mediators. Mast cells have more than 30 known surface receptors that activate different pathways for direct and indirect activation by microbes. Different bacterial strains stimulate mast cells through various ligands, initiating the innate immune response, which aids in clearing the bacterial burden. Mast cell interactions with adaptative immune cells also play a crucial role in infections. Recent publications revealed another "non-canonical" degranulation mechanism present in tryptase and chymase mast cells in humans and connective tissue mast cells in mice, occurring through the activation of the Mas-related G protein-coupled receptor (MRGPRX2/b2). This receptor represents a new therapeutic target alongside antibiotic therapy. There is an urgent need to reconsider and redefine the biological role of these MASTer cells of innate immunity, extending beyond their involvement in allergic pathology.
Collapse
Affiliation(s)
| | | | - Mario César Salinas Carmona
- Department of Immunology, School of Medicine and Dr. Jose Eleuterio Gonzalez University Hospital, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
5
|
Yu Y, Cui Y, Song B. The cooperation between orf virus and Staphylococcus aureus leads to intractable lesions in skin infection. Front Cell Infect Microbiol 2024; 13:1213694. [PMID: 38259972 PMCID: PMC10800892 DOI: 10.3389/fcimb.2023.1213694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/31/2023] [Indexed: 01/24/2024] Open
Abstract
A large amount of evidence shows that different kinds of microorganisms can jointly cope with environmental pressures including cell hosts. For example, in many cases, it has been found that secondary or mixed infection of animals caused by ORFV (an epitheliophilic Parapoxvirus) and bacteria (such as Staphylococcus aureus or Streptococcus) shows a mutual aid mode that indirectly leads to the deterioration of the disease. However, the lack of research on the co-pathogenic mechanism, including how to hijack and destroy the cell host in the pathological microenvironment, has hindered the in-depth understanding of the pathogenic process and consequences of this complex infection and the development of clinical treatment methods. Here, we summarized the current strategies of trapping cell hosts together, based on the previously defined ORFV-Host (O-H) system. The opportunistic invasion of S. aureus destroyed the delicate dynamic balance of the O-H, thus aggravating tissue damage through bacterial products (mediated by Agr), even causing sepsis or inducing cytokine storms. In fact, the virus products from its adaptive regulatory system (VARS) weaken the immune attacks and block molecular pathways, so that S. aureus can settle there more smoothly, and the toxins can penetrate into local tissues more quickly. This paper focuses on the main challenges faced by cell hosts in dealing with mixed infection, which provides a starting point for us to deal with this disease in the future.
Collapse
Affiliation(s)
- Yongzhong Yu
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yudong Cui
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Baifen Song
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
7
|
Mihele DM, Nistor PA, Bruma G, Mitran CI, Mitran MI, Condrat CE, Tovaru M, Tampa M, Georgescu SR. Mast Cell Activation Syndrome Update-A Dermatological Perspective. J Pers Med 2023; 13:1116. [PMID: 37511729 PMCID: PMC10381535 DOI: 10.3390/jpm13071116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Mast cells (MCs) are infamous for their role in potentially fatal anaphylaxis reactions. In the last two decades, a more complex picture has emerged, as it has become obvious that MCs are much more than just IgE effectors of anaphylaxis. MCs are defenders against a host of infectious and toxic aggressions (their interactions with other components of the immune system are not yet fully understood) and after the insult has ended, MCs continue to play a role in inflammation regulation and tissue repair. Unfortunately, MC involvement in pathology is also significant. Apart from their role in allergies, MCs can proliferate clonally to produce systemic mastocytosis. They have also been implicated in excessive fibrosis, keloid scaring, graft rejection and chronic inflammation, especially at the level of the skin and gut. In recent years, the term MC activation syndrome (MCAS) was proposed to account for symptoms caused by MC activation, and clear diagnostic criteria have been defined. However, not all authors agree with these criteria, as some find them too restrictive, potentially leaving much of the MC-related pathology unaccounted for. Here, we review the current knowledge on the physiological and pathological roles of MCs, with a dermatological emphasis, and discuss the MCAS classification.
Collapse
Affiliation(s)
- Dana Mihaela Mihele
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Paul Andrei Nistor
- Internal Medicine Department, Emergency University Hospital Bucharest, 169 Independence Blvd, 050098 Bucharest, Romania
| | - Gabriela Bruma
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Madalina Irina Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Mihaela Tovaru
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Mircea Tampa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Simona Roxana Georgescu
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| |
Collapse
|
8
|
Nakatsuji T, Brinton SL, Cavagnero KJ, O'Neill AM, Chen Y, Dokoshi T, Butcher AM, Osuoji OC, Shafiq F, Espinoza JL, Dupont CL, Hata TR, Gallo RL. Competition between skin antimicrobial peptides and commensal bacteria in type 2 inflammation enables survival of S. aureus. Cell Rep 2023; 42:112494. [PMID: 37167061 DOI: 10.1016/j.celrep.2023.112494] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
During inflammation, the skin deploys antimicrobial peptides (AMPs) yet during allergic inflammation it becomes more susceptible to Staphylococcus aureus. To understand this contradiction, single-cell sequencing of Il4ra-/- mice combined with skin microbiome analysis reveals that lower production of AMPs from interleukin-4 receptor α (IL-4Rα) activation selectively inhibits survival of antibiotic-producing strains of coagulase-negative Staphylococcus (CoNS). Diminished AMPs under conditions of T helper type 2 (Th2) inflammation enable expansion of CoNS strains without antibiotic activity and increase Staphylococcus aureus (S. aureus), recapitulating the microbiome on humans with atopic dermatitis. This response is rescued in Camp-/- mice or after topical steroids, since further inhibition of AMPs enables survival of antibiotic-producing CoNS strains. In conditions of Th17 inflammation, a higher expression of host AMPs is sufficient to directly inhibit S. aureus survival. These results show that antimicrobials produced by the host and commensal bacteria each act to control S. aureus on the skin.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Samantha L Brinton
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kellen J Cavagnero
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alan M O'Neill
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Yang Chen
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Anna M Butcher
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Olive C Osuoji
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Faiza Shafiq
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Josh L Espinoza
- Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | | - Tissa R Hata
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Di Nardo A, Chang YL, Alimohammadi S, Masuda-Kuroki K, Wang Z, Sriram K, Insel PA. Mast cell tolerance in the skin microenvironment to commensal bacteria is controlled by fibroblasts. Cell Rep 2023; 42:112453. [PMID: 37120813 DOI: 10.1016/j.celrep.2023.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023] Open
Abstract
Activation and degranulation of mast cells (MCs) is an essential aspect of innate and adaptive immunity. Skin MCs, the most exposed to the external environment, are at risk of quickly degranulating with potentially severe consequences. Here, we define how MCs assume a tolerant phenotype via crosstalk with dermal fibroblasts (dFBs) and how this phenotype reduces unnecessary inflammation when in contact with beneficial commensal bacteria. We explore the interaction of human MCs (HMCs) and dFBs in the human skin microenvironment and test how this interaction controls MC inflammatory response by inhibiting the nuclear factor κB (NF-κB) pathway. We show that the extracellular matrix hyaluronic acid, as the activator of the regulatory zinc finger (de)ubiquitinating enzyme A20/tumor necrosis factor α-induced protein 3 (TNFAIP3), is responsible for the reduced HMC response to commensal bacteria. The role of hyaluronic acid as an anti-inflammatory ligand on MCs opens new avenues for the potential treatment of inflammatory and allergic disorders.
Collapse
Affiliation(s)
- Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| | - Yu-Ling Chang
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Shahrzad Alimohammadi
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Kana Masuda-Kuroki
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Krishna Sriram
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Paul A Insel
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Roque-Borda CA, Bento da Silva P, Rodrigues MC, Di Filippo LD, Duarte JL, Chorilli M, Vicente EF, Garrido SS, Rogério Pavan F. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem 2022; 241:114640. [PMID: 35970075 DOI: 10.1016/j.ejmech.2022.114640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil; Universidad Católica de Santa María, Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Brazil
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, CEP 17602-496, Brazil
| | - Saulo Santesso Garrido
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, CEP 14801-902, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil.
| |
Collapse
|
11
|
Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases. Nat Rev Immunol 2022; 22:294-308. [PMID: 34611316 DOI: 10.1038/s41577-021-00622-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Mast cells have crucial roles in allergic and other inflammatory diseases. Preclinical approaches provide circumstantial evidence for mast cell involvement in many diseases, but these studies have major limitations - for example, there is still a lack of suitable mouse models for some mast cell-driven diseases such as urticaria. Some approaches for studying mast cells are invasive or can induce severe reactions, and very few mediators or receptors are specific for mast cells. Recently, several drugs that target human mast cells have been developed. These include monoclonal antibodies and small molecules that can specifically inhibit mast cell degranulation via key receptors (such as FcεRI), that block specific signal transduction pathways involved in mast cell activation (for example, BTK), that silence mast cells via inhibitory receptors (such as Siglec-8) or that reduce mast cell numbers and prevent their differentiation by acting on the mast/stem cell growth factor receptor KIT. In this Review, we discuss the existing and emerging therapies that target mast cells, and we consider how these treatments can help us to understand mast cell functions in disease.
Collapse
|
12
|
Cutaneous Wound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediators Inflamm 2022; 2022:5344085. [PMID: 35509434 PMCID: PMC9061066 DOI: 10.1155/2022/5344085] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/22/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Skin wounds and compromised wound healing are major concerns for the public. Although skin wound healing has been studied for decades, the molecular and cellular mechanisms behind the process are still not completely clear. The systemic responses to trauma involve the body’s inflammatory and immunomodulatory cellular and humoral networks. Studies over the years provided essential insights into a complex and dynamic immunity during the cutaneous wound healing process. This review will focus on innate cell populations involved in the initial phase of this orchestrated process, including innate cells from both the skin and the immune system.
Collapse
|
13
|
Skin immunity: dissecting the complex biology of our body's outer barrier. Mucosal Immunol 2022; 15:551-561. [PMID: 35361906 DOI: 10.1038/s41385-022-00505-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Our skin contributes critically to health via its role as a barrier tissue, carefully regulating passage of key substrates while also providing defense against exogenous threats. Immunological processes are integral to almost every skin function and paramount to our ability to live symbiotically with skin commensal microbes and other environmental stimuli. While many parallels can be drawn to immunobiology at other mucosal sites, skin immunity demonstrates unique features that relate to its distinct topography, chemical composition and microbial ecology. Here we provide an overview of skin as an immune organ, with reference to the broader context of mucosal immunology. We review paradigms of innate as well as adaptive immune function and highlight how skin-specific structures such as hair follicles and sebaceous glands interact and contribute to these processes. Finally, we highlight for the mucosal immunology community a few emerging areas of interest for the skin immunity field moving forward.
Collapse
|
14
|
Donnelly E, de Water JV, Luckhart S. Malaria-induced bacteremia as a consequence of multiple parasite survival strategies. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100036. [PMID: 34841327 PMCID: PMC8610325 DOI: 10.1016/j.crmicr.2021.100036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Globally, malaria continues to be an enormous public health burden, with concomitant parasite-induced damage to the gastrointestinal (GI) barrier resulting in bacteremia-associated morbidity and mortality in both adults and children. Infected red blood cells sequester in and can occlude the GI microvasculature, ultimately leading to disruption of the tight and adherens junctions that would normally serve as a physical barrier to translocating enteric bacteria. Mast cell (MC) activation and translocation to the GI during malaria intensifies damage to the physical barrier and weakens the immunological barrier through the release of enzymes and factors that alter the host response to escaped enteric bacteria. In this context, activated MCs release Th2 cytokines, promoting a balanced Th1/Th2 response that increases local and systemic allergic inflammation while protecting the host from overwhelming Th1-mediated immunopathology. Beyond the mammalian host, recent studies in both the lab and field have revealed an association between a Th2-skewed host response and success of parasite transmission to mosquitoes, biology that is evocative of parasite manipulation of the mammalian host. Collectively, these observations suggest that malaria-induced bacteremia may be, in part, an unintended consequence of a Th2-shifted host response that promotes parasite survival and transmission. Future directions of this work include defining the factors and mechanisms that precede the development of bacteremia, which will enable the development of biomarkers to simplify diagnostics, the identification of therapeutic targets to improve patient outcomes and better understanding of the consequences of clinical interventions to transmission blocking strategies.
Collapse
Affiliation(s)
- Erinn Donnelly
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Judy Van de Water
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Shirley Luckhart
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| |
Collapse
|
15
|
Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action. Int J Mol Sci 2021; 22:ijms222011172. [PMID: 34681833 PMCID: PMC8538224 DOI: 10.3390/ijms222011172] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
The rapid rise of multidrug-resistant (MDR) bacteria has once again caused bacterial infections to become a global health concern. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), offer a viable solution to these pathogens due to their diverse mechanisms of actions, which include direct killing as well as immunomodulatory properties (e.g., anti-inflammatory activity). HDPs may hence provide a more robust treatment of bacterial infections. In this review, the advent of and the mechanisms that lead to antibiotic resistance will be described. HDP mechanisms of antibacterial and immunomodulatory action will be presented, with specific examples of how the HDP aurein 2.2 and a few of its derivatives, namely peptide 73 and cG4L73, function. Finally, resistance that may arise from a broader use of HDPs in a clinical setting and methods to improve biocompatibility will be briefly discussed.
Collapse
|
16
|
Voss M, Kotrba J, Gaffal E, Katsoulis-Dimitriou K, Dudeck A. Mast Cells in the Skin: Defenders of Integrity or Offenders in Inflammation? Int J Mol Sci 2021; 22:ijms22094589. [PMID: 33925601 PMCID: PMC8123885 DOI: 10.3390/ijms22094589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are best-known as key effector cells of immediate-type allergic reactions that may even culminate in life-threatening anaphylactic shock syndromes. However, strategically positioned at the host–environment interfaces and equipped with a plethora of receptors, MCs also play an important role in the first-line defense against pathogens. Their main characteristic, the huge amount of preformed proinflammatory mediators embedded in secretory granules, allows for a rapid response and initiation of further immune effector cell recruitment. The same mechanism, however, may account for detrimental overshooting responses. MCs are not only detrimental in MC-driven diseases but also responsible for disease exacerbation in other inflammatory disorders. Focusing on the skin as the largest immune organ, we herein review both beneficial and detrimental functions of skin MCs, from skin barrier integrity via host defense mechanisms to MC-driven inflammatory skin disorders. Moreover, we emphasize the importance of IgE-independent pathways of MC activation and their role in sustained chronic skin inflammation and disease exacerbation.
Collapse
Affiliation(s)
- Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Johanna Kotrba
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Konstantinos Katsoulis-Dimitriou
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
- Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
17
|
Magrone T, Magrone M, Jirillo E. Mast Cells as a Double Edged Sword in Immunity: Disorders of Mast Cell Activation and Therapeutic Management. Second of Two Parts. Endocr Metab Immune Disord Drug Targets 2021; 20:670-686. [PMID: 31789136 DOI: 10.2174/1871530319666191202121644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) bear many receptors that allow them to respond to a variety of exogenous and endogenous stimuli. However, MC function is dual since they can initiate pathological events or protect the host against infectious challenges. The role of MCs in disease will be analyzed in a broad sense, describing cellular and molecular mechanisms related to their involvement in auto-inflammatory diseases, asthma, autoimmune diseases and cancer. On the other hand, their protective role in the course of bacterial, fungal and parasitic infections will also be illustrated. As far as treatment of MC-derived diseases is concerned, allergen immunotherapy as well as other attempts to reduce MC-activation will be outlined according to the recent data. Finally, in agreement with current literature and our own data polyphenols have been demonstrated to attenuate type I allergic reactions and contact dermatitis in response to nickel. The use of polyphenols in these diseases will be discussed also in view of MC involvement.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
18
|
Agier J, Brzezińska-Błaszczyk E, Witczak P, Kozłowska E, Żelechowska P. The impact of TLR7 agonist R848 treatment on mast cell phenotype and activity. Cell Immunol 2021; 359:104241. [PMID: 33158544 DOI: 10.1016/j.cellimm.2020.104241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/21/2023]
Abstract
Bearing in mind that mast cell contribution to viral clearance is still not fully understood, in this study, we evaluated the effect of Toll-like receptor (TLR)7 viral single-stranded ribonucleic acid (ssRNA) mimic ligand, namely resiquimod (R)848, on mast cell phenotype and activity. We demonstrated that rat peritoneal mast cells exhibit surface and intracellular expression of ssRNA-specific TLR7 molecule, and that mimic ligand switches the self-expression of this receptor. We also detected other proteins associated with the cellular antiviral response: interferon-alpha receptor 1 (IFNAR1), interferon-gamma receptor 1 (IFNGR1), and major histocompatibility complex I (MHC I). Moreover, we showed that R848 caused the decrease of all molecule's expression after prolonged incubation. Interestingly, we found that R848 induced the increase of high-affinity IgE receptor (FcεRI) expression. Finally, we documented that TLR7 ligand-stimulated mast cells synthesize/release interferon (IFN)-α and -β, tumor necrosis factor (TNF), and chemokines CCL3, CXCL8, as well as pro-inflammatory lipid mediators. Our findings confirm that mast cells may respond to TLR7 ligand by altering their phenotype and synthesizing mediators and could serve as active participants in the antiviral immune response.
Collapse
Affiliation(s)
- Justyna Agier
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Piotr Witczak
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Paulina Żelechowska
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
19
|
Guevara MA, Lu J, Moore RE, Chambers SA, Eastman AJ, Francis JD, Noble KN, Doster RS, Osteen KG, Damo SM, Manning SD, Aronoff DM, Halasa NB, Townsend SD, Gaddy JA. Vitamin D and Streptococci: The Interface of Nutrition, Host Immune Response, and Antimicrobial Activity in Response to Infection. ACS Infect Dis 2020; 6:3131-3140. [PMID: 33170652 DOI: 10.1021/acsinfecdis.0c00666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Streptococcus species are common causes of human infection. These Gram-positive, encapsulated bacterial pathogens infect diverse anatomic spaces, leading to infections including skin and soft tissue infection, endocarditis, pneumonia, meningitis, sinusitis, otitis media, chorioamnionitis, sepsis, and even death. Risk for streptococcal infection is highest in low- and middle-income countries where micronutrient deficiency is common. Epidemiological data reveal that vitamin D deficiency is associated with enhanced risk of streptococcal infection and cognate disease outcomes. Additionally, vitamin D improves antibacterial defenses by stimulating innate immune processes such as phagocytosis and enhancing production of reactive oxygen species (oxidative burst) and antimicrobial peptides (including cathelicidin and lactoferrin), which are important for efficient killing of bacteria. This review presents the most recent published work that studies interactions between the micronutrient vitamin D, the host immune system, and pathogenic streptococci as well as comparisons with other relevant infection models.
Collapse
Affiliation(s)
- Miriam A. Guevara
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Rebecca E. Moore
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Schuyler A. Chambers
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alison J. Eastman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jamisha D. Francis
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Kristen N. Noble
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Ryan S. Doster
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Kevin G. Osteen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee 37212, United States
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Steven M. Damo
- Department of Chemistry, Fisk University, Nashville, Tennessee 37208, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - David M. Aronoff
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Natasha B. Halasa
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee 37212, United States
| |
Collapse
|
20
|
de Almeida AD, Silva IS, Fernandes-Braga W, LimaFilho ACM, Florentino ROM, Barra A, de Oliveira Andrade L, Leite MF, Cassali GD, Klein A. A role for mast cells and mast cell tryptase in driving neutrophil recruitment in LPS-induced lung inflammation via protease-activated receptor 2 in mice. Inflamm Res 2020; 69:1059-1070. [PMID: 32632517 DOI: 10.1007/s00011-020-01376-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/04/2020] [Accepted: 07/02/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE This study aims to investigate the role of protease-activated receptor (PAR) 2 and mast cell (MC) tryptase in LPS-induced lung inflammation and neutrophil recruitment in the lungs of C57BL/6 mice. METHODS C57BL/6 mice were pretreated with the PAR2 antagonist ENMD-1068, compound 48/80 or aprotinin prior to intranasal instillation of MC tryptase or LPS. Blood leukocytes, C-X-C motif chemokine ligand (CXCL) 1 production leukocytes recovered from bronchoalveolar lavage fluid (BALF), and histopathological analysis of the lung were evaluated 4 h later. Furthermore, we performed experiments to determine intracellular calcium signaling in RAW 264.7 cells stimulated with LPS in the presence or absence of a protease inhibitor cocktail or ENMD-1068 and evaluated PAR2 expression in the lungs of LPS-treated mice. RESULTS Pharmacological blockade of PAR2 or inhibition of proteases reduced neutrophils recovered in BALF and LPS-induced calcium signaling. PAR2 blockade impaired LPS-induced lung inflammation, PAR2 expression in the lung and CXCL1 release in BALF, and increased circulating blood neutrophils. Intranasal instillation of MC tryptase increased the number of neutrophils recovered in BALF, and MC depletion with compound 48/80 impaired LPS-induced neutrophil migration. CONCLUSION Our study provides, for the first time, evidence of a pivotal role for MCs and MC tryptase in neutrophil migration, lung inflammation and macrophage activation triggered by LPS, by a mechanism dependent on PAR2 activation.
Collapse
Affiliation(s)
- Aline Dias de Almeida
- Laboratory of Pain and Inflammation, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Irismara Sousa Silva
- Laboratory of Pain and Inflammation, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio Carlos Melo LimaFilho
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - R Odrigo Machado Florentino
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ayslan Barra
- Laboratory of Pain and Inflammation, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Luciana de Oliveira Andrade
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M Fátima Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geovanni Dantas Cassali
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André Klein
- Laboratory of Pain and Inflammation, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-010, Brazil.
| |
Collapse
|
21
|
Chompunud Na Ayudhya C, Roy S, Thapaliya M, Ali H. Roles of a Mast Cell-Specific Receptor MRGPRX2 in Host Defense and Inflammation. J Dent Res 2020; 99:882-890. [PMID: 32392433 DOI: 10.1177/0022034520919107] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mast cells are multifunctional immune cells that are found most abundantly at host-environment interfaces, such as the skin, respiratory tract, and oral/gastrointestinal mucosa. Not surprisingly, mast cells act as sentinel cells that sense microbial attacks and initiate a protective immune response and promote healing. Although mast cells share many features with other innate immune effector cells, such as neutrophils and macrophages, they uniquely interact closely with blood vessels and release an extensive set of mediators for the recruitment of innate and adaptive immune cells. A novel human G protein-coupled receptor (GPCR), known as Mas-related GPCR-X2 (MRGPRX2, mouse ortholog, MrgprB2), has recently been identified, which is expressed on mast cells but not neutrophils and macrophages. Interestingly, activation of MrgprB2 by bacteria-derived quorum-sensing peptides inhibits bacterial growth, prevents biofilm formation, and leads to the recruitment of neutrophils to effectively clear bacteria. Furthermore, host defense antimicrobial peptides and small-molecule peptide mimetics also activate mast cells via MRGPRX2/B2. MrgprB2-mediated activation of local mast cells also clears cutaneous bacterial infection, promotes healing, and protects against reinfection. In addition to their role in host defense, mast cells contribute to a number of chronic inflammatory diseases such as periodontitis, neurogenic inflammation, and inflammatory pain likely via the activation of MRGPRX2. In this review, we discuss the roles of MRGPRX2/B2 in the clearance of bacterial infection, wound healing, periodontal disease, neurogenic inflammation, and inflammatory pain. We propose that harnessing mast cells' host defense and immunomodulatory properties via the activation of MRGPRX2 may lead to novel approaches for the treatment of drug-resistant bacterial infections. On the other hand, increased MRGPRX2 expression on mast cells and their inappropriate activation may contribute to periodontitis, neurogenic inflammation, and inflammatory pain. Thus, targeting MRGPRX2 could provide novel approaches to modulate these conditions.
Collapse
Affiliation(s)
- C Chompunud Na Ayudhya
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S Roy
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Thapaliya
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Ali
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Patras KA, Coady A, Babu P, Shing SR, Ha AD, Rooholfada E, Brandt SL, Geriak M, Gallo RL, Nizet V. Host Cathelicidin Exacerbates Group B Streptococcus Urinary Tract Infection. mSphere 2020; 5:e00932-19. [PMID: 32321824 PMCID: PMC7178553 DOI: 10.1128/msphere.00932-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Group B Streptococcus (GBS) causes frequent urinary tract infection (UTI) in susceptible populations, including individuals with type 2 diabetes and pregnant women; however, specific host factors responsible for increased GBS susceptibility in these populations are not well characterized. Here, we investigate cathelicidin, a cationic antimicrobial peptide, known to be critical for defense during UTI with uropathogenic Escherichia coli (UPEC). We observed a loss of antimicrobial activity of human and mouse cathelicidins against GBS and UPEC in synthetic urine and no evidence for increased cathelicidin resistance in GBS urinary isolates. Furthermore, we found that GBS degrades cathelicidin in a protease-dependent manner. Surprisingly, in a UTI model, cathelicidin-deficient (Camp-/-) mice showed decreased GBS burdens and mast cell recruitment in the bladder compared to levels in wild-type (WT) mice. Pharmacologic inhibition of mast cells reduced GBS burdens and histamine release in WT but not Camp-/- mice. Streptozotocin-induced diabetic mice had increased bladder cathelicidin production and mast cell recruitment at 24 h postinfection with GBS compared to levels in nondiabetic controls. We propose that cathelicidin is an important immune regulator but ineffective antimicrobial peptide against GBS in urine. Combined, our findings may in part explain the increased frequency of GBS UTI in diabetic and pregnant individuals.IMPORTANCE Certain populations such as diabetic individuals are at increased risk for developing urinary tract infections (UTI), although the underlying reasons for this susceptibility are not fully known. Additionally, diabetics are more likely to become infected with certain types of bacteria, such as group B Streptococcus (GBS). In this study, we find that an antimicrobial peptide called cathelicidin, which is thought to protect the bladder from infection, is ineffective in controlling GBS and alters the type of immune cells that migrate to the bladder during infection. Using a mouse model of diabetes, we observe that diabetic mice are more susceptible to GBS infection even though they also have more infiltrating immune cells and increased production of cathelicidin. Taken together, our findings identify this antimicrobial peptide as a potential contributor to increased susceptibility of diabetic individuals to GBS UTI.
Collapse
Affiliation(s)
- Kathryn A Patras
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Alison Coady
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Priyanka Babu
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Samuel R Shing
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Albert D Ha
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Emma Rooholfada
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Stephanie L Brandt
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | | | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
23
|
The Response of Tissue Mast Cells to TLR3 Ligand Poly(I:C) Treatment. J Immunol Res 2020; 2020:2140694. [PMID: 32185237 PMCID: PMC7060451 DOI: 10.1155/2020/2140694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 12/18/2022] Open
Abstract
Mast cells (MCs) are found mainly at the anatomical sites exposed to the external environment; thus, they are localized close to blood vessels, lymphatic vessels, and a multitude of immune cells. Moreover, those cells can recognize invading pathogens through a range of surface molecules known as pathogen recognition receptors (PRRs), mainly Toll-like receptors (TLRs). MCs are extensively engaged in the control and clearance of bacterial infections, but much less is known about their contribution to antiviral host response as well as pathomechanisms of virus-induced diseases. In the study, we employed in vivo differentiated mature tissue mast cells freshly isolated from rat peritoneal cavity. Here, we demonstrated that rat peritoneal mast cells (rPMCs) express viral dsRNA-specific TLR3 molecule (intracellularly and on the cell surface) as well as other proteins associated with cellular antiviral response: IRF3, type I and II IFN receptors, and MHC I. We found that exposure of rPMCs to viral dsRNA mimic, i.e., poly(I:C), induced transient upregulation of surface TLR3 (while temporarily decreased TLR3 intracellular expression), type II IFN receptor, and MHC I. TLR3 ligand-stimulated rPMCs did not degranulate but generated and/or released type I IFNs (IFN-α and IFNβ) as well as proinflammatory lipid mediators (cysLTs), cytokines (TNF, IL-1β), and chemokines (CCL3, CXCL8). We documented that rPMC priming with poly(I:C) did not affect FcεRI-dependent degranulation. However, their costimulation with TLR3 agonist and anti-IgE led to a significant increase in cysLT and TNF secretion. Our findings confirm that MCs may serve as active participants in the antiviral immune response. Presented data on modulated FcεRI-mediated MC secretion of mediators upon poly(I:C) treatment suggests that dsRNA-type virus infection could influence the severity of allergic reactions.
Collapse
|
24
|
Liu C, Ouyang W, Xia J, Sun X, Zhao L, Xu F. Tumor Necrosis Factor-α Is Required for Mast Cell-Mediated Host Immunity Against Cutaneous Staphylococcus aureus Infection. J Infect Dis 2019; 218:64-74. [PMID: 29741644 DOI: 10.1093/infdis/jiy149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/17/2018] [Indexed: 01/09/2023] Open
Abstract
Background Mast cells (MCs) play a key role in immune process response to invading pathogens. Methods This study assessed the involvement of MCs in controlling Staphylococcus aureus infection in a cutaneous infection model of MC-deficient (KitW-sh/W-sh) mice. Results KitW-sh/W-sh mice developed significantly larger skin lesions after the cutaneous S. aureus challenge, when compared to wild-type (WT) mice, while MC dysfunction reduced the inflammation response to S. aureus. The levels of tumor necrosis factor (TNF)-α in skin tissues were significantly decreased in KitW-sh/W-sh mice upon infection. Moreover, the exogenous administration of MCs or recombinant TNF-α effectively restored the immune response against S. aureus in KitW-sh/W-sh mice via the recruitment of neutrophils to the infected site. These results indicate that the effects of MC deficiency are largely attributed to the decrease in production of TNF-α in cutaneous S. aureus infection. In addition, S. aureus-induced MC activation was dependent on the c-kit receptor-activated phosphoinositide 3-kinase (PI3K)/AKT/P65-nuclear factor (NF-κB) pathway, which was confirmed by treatment with Masitinib (a c-kit receptor inhibitor), Wortmannin (a PI3K inhibitor), and pyrrolidine dithiocarbamate (a NF-κB inhibitor), respectively. Conclusions The present study identifies the critical role of MCs in the host defense against S. aureus infection.
Collapse
Affiliation(s)
- Chao Liu
- Department of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Ouyang
- Department of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyan Xia
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoru Sun
- Department of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Liying Zhao
- Department of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
von Beek C, Waern I, Eriksson J, Melo FR, Robinson C, Waller AS, Sellin ME, Guss B, Pejler G. Streptococcal sagA activates a proinflammatory response in mast cells by a sublytic mechanism. Cell Microbiol 2019; 21:e13064. [PMID: 31155820 PMCID: PMC6771685 DOI: 10.1111/cmi.13064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/10/2019] [Accepted: 05/26/2019] [Indexed: 01/21/2023]
Abstract
Mast cells are implicated in the innate proinflammatory immune defence against bacterial insult, but the mechanisms through which mast cells respond to bacterial encounter are poorly defined. Here, we addressed this issue and show that mast cells respond vividly to wild type Streptococcus equi by up‐regulating a panel of proinflammatory genes and by secreting proinflammatory cytokines. However, this response was completely abrogated when the bacteria lacked expression of sagA, whereas the lack of a range of other potential virulence genes (seeH, seeI, seeL, seeM, hasA, seM, aroB, pyrC, and recA) had no effect on the amplitude of the mast cell responses. The sagA gene encodes streptolysin S, a lytic toxin, and we next showed that the wild type strain but not a sagA‐deficient mutant induced lysis of mast cells. To investigate whether host cell membrane perturbation per se could play a role in the activation of the proinflammatory response, we evaluated the effects of detergent‐ and pneumolysin‐dependent lysis on mast cells. Indeed, exposure of mast cells to sublytic concentrations of all these agents resulted in cytokine responses of similar amplitudes as those caused by wild type streptococci. This suggests that sublytic membrane perturbation is sufficient to trigger full‐blown proinflammatory signalling in mast cells. Subsequent analysis showed that the p38 and Erk1/2 signalling pathways had central roles in the proinflammatory response of mast cells challenged by either sagA‐expressing streptococci or detergent. Altogether, these findings suggest that sagA‐dependent mast cell membrane perturbation is a mechanism capable of activating the innate immune response upon bacterial challenge.
Collapse
Affiliation(s)
- Christopher von Beek
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jens Eriksson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fabio Rabelo Melo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carl Robinson
- Department of Bacteriology, Animal Health Trust, Newmarket, UK
| | - Andrew S Waller
- Department of Bacteriology, Animal Health Trust, Newmarket, UK
| | - Mikael E Sellin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Bengt Guss
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
26
|
Varricchi G, Rossi FW, Galdiero MR, Granata F, Criscuolo G, Spadaro G, de Paulis A, Marone G. Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. Int Arch Allergy Immunol 2019; 179:247-261. [PMID: 31137021 DOI: 10.1159/000500088] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022] Open
Abstract
Mast cells are immune cells which have a widespread distribution in nearly all tissues. These cells and their mediators are canonically viewed as primary effector cells in allergic disorders. However, in the last years, mast cells have gained recognition for their involvement in several physiological and pathological conditions. They are highly heterogeneous immune cells displaying a constellation of surface receptors and producing a wide spectrum of inflammatory and immunomodulatory mediators. These features enable the cells to act as sentinels in harmful situations as well as respond to metabolic and immune changes in their microenvironment. Moreover, they communicate with many immune and nonimmune cells implicated in several immunological responses. Although mast cells contribute to host responses in experimental infections, there is no satisfactory model to study how they contribute to infection outcome in humans. Mast cells modulate physiological and pathological angiogenesis and lymphangiogenesis, but their role in tumor initiation and development is still controversial. Cardiac mast cells store and release several mediators that can exert multiple effects in the homeostatic control of different cardiometabolic functions. Although mast cells and their mediators have been simplistically associated with detrimental roles in allergic disorders, there is increasing evidence that they can also have homeostatic or protective roles in several pathophysiological processes. These findings may reflect the functional heterogeneity of different subsets of mast cells.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy, .,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy, .,World Allergy Organization (WAO) Center of Excellence, Naples, Italy, .,Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Naples, Italy,
| |
Collapse
|
27
|
Lipocalin 2: A New Antimicrobial in Mast Cells. Int J Mol Sci 2019; 20:ijms20102380. [PMID: 31091692 PMCID: PMC6566617 DOI: 10.3390/ijms20102380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
Mast cells (MCs) play a significant role in the innate immune defense against bacterial infection through the release of cytokines and antimicrobial peptides. However, their antimicrobial function is still only partially described. We therefore hypothesized that MCs express additional antimicrobial peptides. In this study, we used FANTOM 5 transcriptome data to identify for the first time that MCs express lipocalin 2 (LCN2), a known inhibitor of bacterial growth. Using MCs derived from mice which were deficient in LCN2, we showed that this antimicrobial peptide is an important component of the MCs' antimicrobial activity against Escherichia coli (E. coli). Since sphingosine-1-phosphate receptors (S1PRs) on MCs are known to regulate their function during infections, we hypothesized that S1P could activate LCN2 production in MCs. Using an in vitro assay, we demonstrated that S1P enhances MCs antimicrobial peptide production and increases the capacity of MCs to directly kill S. aureus and E. coli via an LCN2 release. In conclusion, we showed that LCN2 is expressed by MCs and plays a role in their capacity to inhibit bacterial growth.
Collapse
|
28
|
Yang J, Wang J, Zhang X, Qiu Y, Yan J, Sun S, He Y, Yin Y, Xu W. Mast cell degranulation impairs pneumococcus clearance in mice via IL-6 dependent and TNF-α independent mechanisms. World Allergy Organ J 2019; 12:100028. [PMID: 31044024 PMCID: PMC6479162 DOI: 10.1016/j.waojou.2019.100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
Background Mast cells participate in immune responses by releasing potent immune system modifiers via degranulation. Due to currently reported controversial roles of mast cells in Streptococcus pneumoniae infections, this study aimed to determine the role and mechanism of mast cells in clearing S. pneumoniae in mice. Methods In vivo mouse model of mast cell degranulation established by administration of C48/80 was evaluated for the influences of mast cell degranulation on bacterial colonization and inflammation. In vitro model was established to observe the influences of mast cell degranulation on phagocytic and bactericidal functions of neutrophils and macrophages. IL-6 null and TNF-α null mice on the C57BL/6 background were used to investigate the effects of inflammatory factors released by mast cell degranulation on bacterial clearance. Results Mast cell degranulation increased IL-6 and TNF-α levels and immune cell numbers in nasal lavage fluid, and inhibited the bactericidal function of macrophages and neutrophils in vitro. It decreased the number of neutrophils and macrophages recruited to respiratory tract after S. pneumoniae challenge and inhibited the clearance of S. pneumoniae in mice. After pretreatment with C48/80, S. pneumoniae loads were significantly lower in IL-6 null mice than in wild type mice, while no differences were observed between TNF-α null and wild type mice. Conclusions Mast cell degranulation can cause inflammation and impair immune cell recruitment to respiratory tract after S. pneumoniae challenge. Products of mast cell degranulation including IL-6 decreased the bactericidal function of neutrophils and macrophages. Through these mechanisms, mast cell degranulation inhibited clearance of S. pneumoniae in mice.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jichao Wang
- Department of Clinical Laboratory, Chongqing Hospital for Women and Children, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yulan Qiu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jurong Yan
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Si Sun
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Alkanfari I, Freeman KB, Roy S, Jahan T, Scott RW, Ali H. Small-Molecule Host-Defense Peptide Mimetic Antibacterial and Antifungal Agents Activate Human and Mouse Mast Cells via Mas-Related GPCRs. Cells 2019; 8:cells8040311. [PMID: 30987258 PMCID: PMC6523814 DOI: 10.3390/cells8040311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/18/2022] Open
Abstract
Host-defense peptides (HDPs) have an important therapeutic potential against microbial infections but their metabolic instability and cellular cytotoxicity have limited their utility. To overcome these limitations, we utilized five small-molecule, nonpeptide HDP mimetics (smHDPMs) and tested their effects on cytotoxicity, antimicrobial activity, and mast cell (MC) degranulation. None of the smHDPMs displayed cytotoxicity against mouse 3T3 fibroblasts or human transformed liver HepG2 cells. However, one compound had both antifungal and antibacterial activity. Surprisingly, all five compounds induced degranulation in a human MC line, LAD2, and this response was substantially reduced in Mas-related G protein-coupled receptor (GPCR)-X2 (MRGPRX2)-silenced cells. Furthermore, all five compounds induced degranulation in RBL-2H3 cells expressing MRGPRX2 but this response was abolished in cells expressing naturally occurring loss-of-function missense variants G165E (rs141744602) and D184H (rs372988289). Mrgprb2 is the likely mouse ortholog of human MRGPRX2, which is expressed in connective tissue MCs (CTMCs) such as cutaneous and peritoneal MCs (PMCs). All five smHDPMs induced degranulation in wild-type PMCs but not in cells derived from Mrgprb2−/− mice. These findings suggest that smHDPMs could serve as novel targets for the treatment of drug-resistant fungal and bacterial infections because of their ability to harness CTMCs’ host defense functions.
Collapse
Affiliation(s)
- Ibrahim Alkanfari
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.
| | - Katie B Freeman
- Fox Chase Chemical Diversity Center, Doylestown, PA 18902, USA.
| | - Saptarshi Roy
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.
| | - Tahsin Jahan
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.
| | - Richard W Scott
- Fox Chase Chemical Diversity Center, Doylestown, PA 18902, USA.
| | - Hydar Ali
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Liu C, Yang L, Han Y, Ouyang W, Yin W, Xu F. Mast cells participate in regulation of lung-gut axis during Staphylococcus aureus pneumonia. Cell Prolif 2019; 52:e12565. [PMID: 30729611 PMCID: PMC6496676 DOI: 10.1111/cpr.12565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
Objectives The lung‐gut axis is known to be involved in the pathogenesis of Staphylococcus aureus pneumonia. However, the underlying mechanisms remain unclear. We examined the role of pulmonary mast cells (MCs) in the regulation of the lung‐gut axis during S. aureus pneumonia. Materials and Methods We created a mouse model of S. aureus pneumonia using MC‐deficient mice (KitW‐sh/W‐sh) and examined the level of inflammation, bacterial burden, expression of cathelicidin‐related antimicrobial peptide (CRAMP) and composition of the gut microbiota. We further evaluated anti‐bacterial immunity by administering bone marrow MCs (BMMCs) or CRAMP into the lungs of KitW‐sh/W‐sh mice. Results After S. aureus challenge, the MC‐deficient mice, compared with wild‐type (WT) mice, displayed attenuated lung inflammation, decreased expression of CRAMP, higher bacterial lung load and disturbance of the intestinal microbiota. Adoptive transfer of BMMCs into the lung effectively reconstituted the host defence against S. aureus in KitW‐sh/W‐sh mice, thus resulting in recovery of S. aureus pneumonia‐induced intestinal dysfunction. Similarly, exogenous administration of CRAMP significantly enhanced anti‐bacterial immunity in the lungs of MC‐deficient mice. Conclusions This study provides evidence for the involvement of MCs in the regulation of the lung‐gut axis during S. aureus pneumonia.
Collapse
Affiliation(s)
- Chao Liu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Yang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Han
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yin
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev 2019; 99:665-706. [PMID: 30475656 PMCID: PMC6442927 DOI: 10.1152/physrev.00067.2017] [Citation(s) in RCA: 1291] [Impact Index Per Article: 258.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Nina Kosaric
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Clark A Bonham
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
32
|
Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta. Biosci Rep 2018; 38:BSR20180687. [PMID: 30341242 PMCID: PMC6265620 DOI: 10.1042/bsr20180687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/11/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Infection with helminth parasites evokes a complex cellular response in the host, where granulocytes (i.e. eosinophils, basophils and mast cells (MCs)) feature prominently. In addition to being used as markers of helminthic infections, MCs have been implicated in worm expulsion since animals defective in c-kit signaling, which results in diminished MC numbers, can have delayed worm expulsion. The role of MCs in the rejection of the rat tapeworm, Hymenolepsis diminuta, from the non-permissive mouse host is not known. MC-deficient mice display a delay in the expulsion of H. diminuta that is accompanied by a less intense splenic Th2 response, as determined by in vitro release of interleukin (IL)-4, IL-5 and IL-13 cytokines. Moreover, worms retrieved from MC-deficient mice were larger than those from wild-type (WT) mice. Assessment of gut-derived IL-25, IL-33, thymic stromal lymphopoietin revealed lower levels in uninfected MC-deficient mice compared with WT, suggesting a role for MCs in homeostatic control of these cytokines: differences in these gut cytokines between the mouse strains were not observed after infection with H. diminuta. Finally, mice infected with H. diminuta display less severe dinitrobenzene sulphonic acid (DNBS)-induced colitis, and this beneficial effect of the worm was unaltered in MC-deficient mice challenged with DNBS, as assessed by a macroscopic disease score. Thus, while MCs are not essential for rejection of H. diminuta from mice, their absence slows the kinetics of expulsion allowing the development of greater worm biomass prior to successful rejection of the parasitic burden.
Collapse
|
33
|
Mast cells as protectors of health. J Allergy Clin Immunol 2018; 144:S4-S18. [PMID: 30468774 DOI: 10.1016/j.jaci.2018.10.054] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs), which are well known for their effector functions in TH2-skewed allergic and also autoimmune inflammation, have become increasingly acknowledged for their role in protection of health. It is now clear that they are also key modulators of immune responses at interface organs, such as the skin or gut. MCs can prime tissues for adequate inflammatory responses and cooperate with dendritic cells in T-cell activation. They also regulate harmful immune responses in trauma and help to successfully orchestrate pregnancy. This review focuses on the beneficial effects of MCs on tissue homeostasis and elimination of toxins or venoms. MCs can enhance pathogen clearance in many bacterial, viral, and parasitic infections, such as through Toll-like receptor 2-triggered degranulation, secretion of antimicrobial cathelicidins, neutrophil recruitment, or provision of extracellular DNA traps. The role of MCs in tumors is more ambiguous; however, encouraging new findings show they can change the tumor microenvironment toward antitumor immunity when adequately triggered. Uterine tissue remodeling by α-chymase (mast cell protease [MCP] 5) is crucial for successful embryo implantation. MCP-4 and the tryptase MCP-6 emerge to be protective in central nervous system trauma by reducing inflammatory damage and excessive scar formation, thereby protecting axon growth. Last but not least, proteases, such as carboxypeptidase A, released by FcεRI-activated MCs detoxify an increasing number of venoms and endogenous toxins. A better understanding of the plasticity of MCs will help improve these advantageous effects and hint at ways to cut down detrimental MC actions.
Collapse
|
34
|
Agier J, Różalska S, Wiktorska M, Żelechowska P, Pastwińska J, Brzezińska-Błaszczyk E. The RLR/NLR expression and pro-inflammatory activity of tissue mast cells are regulated by cathelicidin LL-37 and defensin hBD-2. Sci Rep 2018; 8:11750. [PMID: 30082780 PMCID: PMC6079022 DOI: 10.1038/s41598-018-30289-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022] Open
Abstract
Considering the significance of mast cells (MCs) in the course of various physiological and pathological processes, and the pivotal role of endogenous molecules, i.e., cathelicidins and defensins as multifunctional modulators, the study examines the constitutive and cathelicidin LL-37/defensin hBD-2-induced expression of certain NLRs and RLRs, i.e., NOD1, NOD2, and RIG-I, in fully-mature tissue MCs, and the impact of LL-37 and hBD-2 on MC pro-inflammatory activity. All experiments were carried out in vitro on freshly-isolated peritoneal (P)MCs. qRT-PCR, western blotting, flow cytometry, and confocal microscopy were used to evaluate both constitutive and LL-37/hBD-2-induced expression of NOD1, NOD2, and RIG-I receptors. ROS was determined using H2DCFDA, and Boyden microchamber assay was used to define the migratory response. Standard techniques assessed histamine, cysLT, and chemokine generation. PMCs express NOD1, NOD2, and RIG-I constitutively. LL-37 and hBD-2 enhance the expression and induce translocation of the studied receptors and directly activate the pro-inflammatory and migratory responses of PMCs. Observations demonstrate that LL-37 and hBD-2 might augment MC capability and sensitivity to NLR and RLR ligands and strengthen the role of MCs in inflammation.
Collapse
Affiliation(s)
- Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Wiktorska
- Department of Molecular Cell Mechanisms, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Joanna Pastwińska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
35
|
An overview of mast cell pattern recognition receptors. Inflamm Res 2018; 67:737-746. [PMID: 29909493 PMCID: PMC6096630 DOI: 10.1007/s00011-018-1164-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/20/2018] [Accepted: 06/14/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mast cells (MCs) are long-lived immune cells of the connective tissue which play a key role in development and amplification of inflammatory process initiated inter alia by allergic reactions or microbial infections. They reside in strategic locations in the body that are notably exposed to deleterious factors disturbing homeostasis, which enables them to become one of the first-line defense strategy. MCs have developed a wide range of various mechanisms to deal with invading intruders and harmful endogenic factors. Those include storage and synthesis with a subsequent release of inflammatory mediators, forming of MC-extracellular traps, and phagocytosis. FINDINGS Particularly, important role in microbial sensing is achieved due to the presence of different pattern recognition receptors (PRRs). The best-described receptors are Toll-like receptors activated by different pathogen- and damage-associated molecular patterns. However, MCs express also C-type lectin receptors specialized in antifungal defense, NOD-like receptors detecting bacterial peptidoglycans, and RIG-like receptors relevant in viral sensing. CONCLUSION This review will focus on the current knowledge of PRRs expressed within different types of MCs.
Collapse
|
36
|
Campillo-Navarro M, Leyva-Paredes K, Donis-Maturano L, Rodríguez-López GM, Soria-Castro R, García-Pérez BE, Puebla-Osorio N, Ullrich SE, Luna-Herrera J, Flores-Romo L, Sumano-López H, Pérez-Tapia SM, Estrada-Parra S, Estrada-García I, Chacón-Salinas R. Mycobacterium tuberculosis Catalase Inhibits the Formation of Mast Cell Extracellular Traps. Front Immunol 2018; 9:1161. [PMID: 29892297 PMCID: PMC5985745 DOI: 10.3389/fimmu.2018.01161] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis is one of the leading causes of human morbidity and mortality. Mycobacterium tuberculosis (Mtb) employs different strategies to evade and counterattack immune responses persisting for years. Mast cells are crucial during innate immune responses and help clear infections via inflammation or by direct antibacterial activity through extracellular traps (MCETs). Whether Mtb induce MCETs production is unknown. In this study, we report that viable Mtb did not induce DNA release by mast cells, but heat-killed Mtb (HK-Mtb) did. DNA released by mast cells after stimulation with HK-Mtb was complexed with histone and tryptase. MCETs induced with PMA and HK-Mtb were unable to kill live Mtb bacilli. Mast cells stimulated with HK-Mtb induced hydrogen peroxide production, whereas cells stimulated with viable Mtb did not. Moreover, MCETs induction by HK-Mtb was dependent of NADPH oxidase activity, because its blockade resulted in a diminished DNA release by mast cells. Interestingly, catalase-deficient Mtb induced a significant production of hydrogen peroxide and DNA release by mast cells, indicating that catalase produced by Mtb prevents MCETs release by degrading hydrogen peroxide. Our findings show a new strategy employed by Mtb to overcome the immune response through inhibiting MCETs formation, which could be relevant during early stages of infection.
Collapse
Affiliation(s)
- Marcia Campillo-Navarro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, UNAM, México City, Mexico
| | - Kahiry Leyva-Paredes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Luis Donis-Maturano
- Department of Cell Biology, Cinvestav, Instituto Politécnico Nacional, México City, Mexico
| | - Gloria M Rodríguez-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Blanca Estela García-Pérez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Nahum Puebla-Osorio
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephen E Ullrich
- Department of Immunology, The Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,The University of Texas Graduate School of Biological Sciences at Houston, Houston, TX, United States
| | - Julieta Luna-Herrera
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Leopoldo Flores-Romo
- Department of Cell Biology, Cinvestav, Instituto Politécnico Nacional, México City, Mexico
| | - Héctor Sumano-López
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, UNAM, México City, Mexico
| | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Iris Estrada-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| |
Collapse
|
37
|
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol 2018; 9:281. [PMID: 29643807 PMCID: PMC5882822 DOI: 10.3389/fphar.2018.00281] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Günther Weindl
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
38
|
Abstract
Mast cells are hematopoietic progenitor-derived, granule-containing immune cells that are widely distributed in tissues that interact with the external environment, such as the skin and mucosal tissues. It is well-known that mast cells are significantly involved in IgE-mediated allergic reactions, but because of their location, it has also been long hypothesized that mast cells can act as sentinel cells that sense pathogens and initiate protective immune responses. Using mast cell or mast cell protease-deficient murine models, recent studies by our groups and others indicate that mast cells have pleiotropic regulatory roles in immunological responses against pathogens. In this review, we discuss studies that demonstrate that mast cells can either promote host resistance to infections caused by bacteria and fungi or contribute to dysregulated immune responses that can increase host morbidity and mortality. Overall, these studies indicate that mast cells can influence innate immune responses against bacterial and fungal infections via multiple mechanisms. Importantly, the contribution of mast cells to infection outcomes depends in part on the infection model, including the genetic approach used to assess the influence of mast cells on host immunity, hence highlighting the complexity of mast cell biology in the context of innate immune responses.
Collapse
Affiliation(s)
- Adrian M Piliponsky
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Luigina Romani
- Pathology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Center of functional genomics (C.U.R.Ge.F.), Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
39
|
Clark M, Kim J, Etesami N, Shimamoto J, Whalen RV, Martin G, Okumura CYM. Group A Streptococcus Prevents Mast Cell Degranulation to Promote Extracellular Trap Formation. Front Immunol 2018; 9:327. [PMID: 29535718 PMCID: PMC5835080 DOI: 10.3389/fimmu.2018.00327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/06/2018] [Indexed: 12/30/2022] Open
Abstract
The resurgence of Group A Streptococcus (GAS) infections in the past two decades has been a rising major public health concern. Due to a large number of GAS infections occurring in the skin, mast cells (MCs), innate immune cells known to localize to the dermis, could play an important role in controlling infection. MCs can exert their antimicrobial activities either early during infection, by degranulation and release of antimicrobial proteases and the cathelicidin-derived antimicrobial peptide LL-37, or by forming antibacterial MC extracellular traps (MCETs) in later stages of infection. We demonstrate that MCs do not directly degranulate in response to GAS, reducing their ability to control bacterial growth in early stages of infection. However, MC granule components are highly cytotoxic to GAS due to the pore-forming activity of LL-37, while MC granule proteases do not significantly affect GAS viability. We therefore confirmed the importance of MCETs by demonstrating their capacity to reduce GAS survival. The data therefore suggests that LL-37 from MC granules become embedded in MCETs, and are the primary effector molecule by which MCs control GAS infection. Our work underscores the importance of a non-traditional immune effector cell, utilizing a non-conventional mechanism, in the defense against an important human pathogen.
Collapse
Affiliation(s)
- Mary Clark
- Department of Biology, Occidental College, Los Angeles, CA, United States
| | - Jessica Kim
- Department of Biology, Occidental College, Los Angeles, CA, United States
| | - Neelou Etesami
- Department of Biology, Occidental College, Los Angeles, CA, United States
| | | | - Ryan V. Whalen
- Department of Biology, Occidental College, Los Angeles, CA, United States
| | - Gary Martin
- Department of Biology, Occidental College, Los Angeles, CA, United States
| | | |
Collapse
|
40
|
Stunova A, Vistejnova L. Dermal fibroblasts—A heterogeneous population with regulatory function in wound healing. Cytokine Growth Factor Rev 2018; 39:137-150. [DOI: 10.1016/j.cytogfr.2018.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
|
41
|
Ali H. Emerging Roles for MAS-Related G Protein-Coupled Receptor-X2 in Host Defense Peptide, Opioid, and Neuropeptide-Mediated Inflammatory Reactions. Adv Immunol 2017; 136:123-162. [PMID: 28950944 DOI: 10.1016/bs.ai.2017.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) are tissue-resident immune cells that contribute to host defense but are best known for their roles in allergic and inflammatory diseases. In humans, MCs are divided into two subtypes based on the protease content of their secretory granules. Thus, human lung MCs contain only tryptase and are known as MCT, whereas skin MCs contain both tryptase and chymase and are known as MCTC. Patients with severe asthma display elevated MCs in the lung, which undergo phenotypic change from MCT to MCTC. Although the human genome contains four Mas related G protein coupled receptor X (MRGPRX) genes, an important feature of MCTC is that they selectively express MRGPRX2. It is activated by antimicrobial host defense peptides such as human β-defensins and the cathelicidin LL-37 and likely contributes to host defense. MRGPRX2 is also a receptor for the neuropeptide substance P, major basic protein, eosinophil peroxidase, opioids, and many FDA-approved cationic drugs. Increased expression of MRGPRX2 or enhanced downstream signaling likely contributes to chronic inflammatory diseases such as rosacea, atopic dermatitis, chronic urticaria, and severe asthma. In this chapter, I will discuss the expression profile and function of MRGPRX1-4 and review the emerging roles of MRGPRX2 on host defense, chronic inflammatory diseases, and drug-induced pseudoallergic reactions. I will also examine the novel aspects of MRGPRX2 signaling in MCs as it related to degranulation and review the mechanisms of its regulation.
Collapse
Affiliation(s)
- Hydar Ali
- University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States.
| |
Collapse
|
42
|
Bernard Q, Wang Z, Di Nardo A, Boulanger N. Interaction of primary mast cells with Borrelia burgdorferi (sensu stricto): role in transmission and dissemination in C57BL/6 mice. Parasit Vectors 2017; 10:313. [PMID: 28655322 PMCID: PMC5488306 DOI: 10.1186/s13071-017-2243-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Background Borrelia burgdorferi (sensulato), the causative agent of Lyme borreliosis is a bacterium transmitted by hard ticks, Ixodes spp. Bacteria are injected into the host skin during the tick blood meal with tick saliva. There, Borrelia and saliva interact together with skin cells such as keratinocytes, fibroblasts, mast cells and other specific immune cells before disseminating to target organs. Methods To study the role of mast cells in the transmission of Lyme borreliosis, we isolated mouse primary mast cells from bone marrow and incubated them in the presence of Borrelia burgdorferi (sensu stricto) and tick salivary gland extract. We further analyzed their potential role in vivo, in a mouse model of deficient in mast cells (Kitwsh−/− mice). Results To our knowledge, we report here for the first time the bacteria ability to induce the inflammatory response of mouse primary mast cells. We show that OspC, a major surface lipoprotein involved in the early transmission of Borrelia, induces the degranulation of primary mast cells but has a limited effect on the overall inflammatory response of these cells. In contrast, whole bacteria have an opposite effect. We also show that mast cell activation is significantly inhibited by tick salivary gland extract. Finally, we demonstrate that mast cells are likely not the only host cells involved in the early transmission and dissemination of Borrelia since the use of mast cell deficient Kitwsh−/− mice shows a limited impact on these two processes in the context of this mouse genetic background. Conclusions The absence of mast cells did not change the replication rate of Borrelia in the skin. However, in the absence of mast cells, Borrelia dissemination to the joints was faster. Mast cells do not control skin bacterial proliferation during primary infection and the establishment of the primary infection, as shown in the C57BL/6 mouse model studied. Nevertheless, the Borrelia induced cytotokine modulation on mast cells might be involved in long term and/or repeated infections and protect from Lyme borreliosis due to the development of a hypersensitivity to tick saliva. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2243-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quentin Bernard
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France.,Present address: Department of Veterinary Medicine, University of Maryland, College Park, USA
| | - Zhenping Wang
- Department of Dermatology, University of California, San Diego, USA
| | - Anna Di Nardo
- Department of Dermatology, University of California, San Diego, USA
| | - Nathalie Boulanger
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France. .,Centre National de Reference Borrelia, Centre Hospitalier Universitaire, Strasbourg, France.
| |
Collapse
|
43
|
Igawa S, Di Nardo A. Skin microbiome and mast cells. Transl Res 2017; 184:68-76. [PMID: 28390799 PMCID: PMC5538027 DOI: 10.1016/j.trsl.2017.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/30/2022]
Abstract
Microbiotas in the skin have high levels of diversity at the species level, but low phylum-level diversity. The human skin microbiota is composed predominantly of Gram-positive bacteria especially Actinobacteria, which are the dominant bacterial phylum on the skin. Lipoteichoic acid (LTA) is a major constituent of the cell wall of Gram-positive bacteria and is therefore abundant in the skin microbiome. Recent studies have shown that LTA, and other bacterial products, permeates the whole skin and comes into contact with epidermal and dermal cells, including mast cells (MCs), with the potential of stimulating MC toll-like receptors (TLRs). MCs express a variety of pattern recognition receptors, including TLRs, on their cell surface in order to detect bacteria. Recent publications suggest that the skin microbiome has influence on MC migration, localization and maturation in the skin. Germ free (no microbiome) animals possess an underdeveloped immune system and immature MCs. Despite much research done on skin microbiota and many papers describing skin interaction with "the good microbiota", there is still controversy regarding how mast cells, communicate with surface bacteria. The present review intends to quell the controversy by illuminating the communication mechanism between bacteria and MCs.
Collapse
Affiliation(s)
- Satomi Igawa
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan; Department of Dermatology, University of California, San Diego, La Jolla, Calif
| | - Anna Di Nardo
- Department of Dermatology, University of California, San Diego, La Jolla, Calif.
| |
Collapse
|
44
|
Nakatsuji T, Chen TH, Two AM, Chun KA, Narala S, Geha RS, Hata TR, Gallo RL. Staphylococcus aureus Exploits Epidermal Barrier Defects in Atopic Dermatitis to Trigger Cytokine Expression. J Invest Dermatol 2016; 136:2192-2200. [PMID: 27381887 PMCID: PMC5103312 DOI: 10.1016/j.jid.2016.05.127] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/09/2016] [Accepted: 05/22/2016] [Indexed: 01/24/2023]
Abstract
Patients with atopic dermatitis (AD) have an abnormal skin barrier and are frequently colonized by S. aureus. In this study we investigated if S. aureus penetrates the epidermal barrier of subjects with AD and sought to understand the mechanism and functional significance of this entry. S. aureus was observed to be more abundant in the dermis of lesional skin from AD patients. Bacterial entry past the epidermis was observed in cultured human skin equivalents and in mice but was found to be increased in the skin of cathelicidin knockout and ovalbumin-sensitized filaggrin mutant mice. S. aureus penetration through the epidermis was dependent on bacterial viability and protease activity, because killed bacteria and a protease-null mutant strain of S. aureus were unable to penetrate. Entry of S. aureus directly correlated with increased expression of IL-4, IL-13, IL-22, thymic stromal lymphopoietin, and other cytokines associated with AD and with decreased expression of cathelicidin. These data illustrate how abnormalities of the epidermal barrier in AD can alter the balance of S. aureus entry into the dermis and provide an explanation for how such dermal dysbiosis results in increased inflammatory cytokines and exacerbation of disease.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Department of Dermatology, University of California-San Diego, California, USA
| | - Tiffany H Chen
- Department of Dermatology, University of California-San Diego, California, USA
| | - Aimee M Two
- Department of Dermatology, University of California-San Diego, California, USA
| | - Kimberly A Chun
- Department of Dermatology, University of California-San Diego, California, USA
| | - Saisindhu Narala
- Department of Dermatology, University of California-San Diego, California, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tissa R Hata
- Department of Dermatology, University of California-San Diego, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California-San Diego, California, USA.
| |
Collapse
|
45
|
Buri MV, Dias CC, Barbosa CMV, Nogueira-Pedro A, Ribeiro-Filho AC, Miranda A, Paredes-Gamero EJ. Gomesin acts in the immune system and promotes myeloid differentiation and monocyte/macrophage activation in mouse. Peptides 2016; 85:41-45. [PMID: 27614284 DOI: 10.1016/j.peptides.2016.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/03/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022]
Abstract
Due to the cytotoxic effect of antimicrobial peptides (AMP) against several microorganism and tumor cells has been proposed their association with the immune system. However, just a few reports have shown this relationship. In this study, mice were treated with gomesin, a β-hairpin AMP that exhibit high cytotoxicity against bacterial and tumor cells. Different effects in the immune system were observed, such as, decrease of CD3+ in T lymphocytes (Control: 17.7±1.4%; Gomesin: 7.67±1.2%) and in hematopoietic progenitors and increase of hematopoietic stem cell (Control: 0.046±0.004%; Gomesin: 0.067±0.003%), B220+ B lymphocytes (Control: 38.63±1.5%; Gomesin: 47.83±0.48%), and Mac-1+F4/80+ macrophages (Control: 11.76±3.4%; Gomesin: 27.13±4.0%). Additionally, macrophage increase was accompanied by an increase of macrophage phagocytosis (Control 20.85±1.53; Gomesin 31.32±1 Geometric mean), interleukin 6 (Control: 47.24±1.9ng/mL; Gomesin: 138.68±33.68ng/mL) and monocyte chemoattractant protein-1 (Control: 0.872±0.093ng/mL; Gomesin: 1.83±0.067ng/mL). Thus, this report showed immunomodulatory activity of gomesin in the immune system of mice.
Collapse
Affiliation(s)
- Marcus V Buri
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020, São Paulo, SP, Brazil
| | - Carol C Dias
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020, São Paulo, SP, Brazil
| | - Christiano M V Barbosa
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020, São Paulo, SP, Brazil
| | - Amanda Nogueira-Pedro
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020, São Paulo, SP, Brazil
| | - Antonio C Ribeiro-Filho
- Centro Interdisciplinar de Investigação Bioquı́mica, Universidade de Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP, Brazil
| | - Antonio Miranda
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020, São Paulo, SP, Brazil.
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, 04044-020, São Paulo, SP, Brazil; Centro Interdisciplinar de Investigação Bioquı́mica, Universidade de Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP, Brazil.
| |
Collapse
|
46
|
Subramanian H, Gupta K, Ali H. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J Allergy Clin Immunol 2016; 138:700-710. [PMID: 27448446 DOI: 10.1016/j.jaci.2016.04.051] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/21/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Mast cells (MCs), which are granulated tissue-resident cells of hematopoietic lineage, contribute to vascular homeostasis, innate/adaptive immunity, and wound healing. However, MCs are best known for their roles in allergic and inflammatory diseases, such as anaphylaxis, food allergy, rhinitis, itch, urticaria, atopic dermatitis, and asthma. In addition to the high-affinity IgE receptor (FcεRI), MCs express numerous G protein-coupled receptors (GPCRs), which are the largest group of membrane receptor proteins and the most common targets of drug therapy. Antimicrobial host defense peptides, neuropeptides, major basic protein, eosinophil peroxidase, and many US Food and Drug Administration-approved peptidergic drugs activate human MCs through a novel GPCR known as Mas-related G protein-coupled receptor X2 (MRGPRX2; formerly known as MrgX2). Unique features of MRGPRX2 that distinguish it from other GPCRs include their presence both on the plasma membrane and intracellular sites and their selective expression in MCs. In this article we review the possible roles of MRGPRX2 on host defense, drug-induced anaphylactoid reactions, neurogenic inflammation, pain, itch, and chronic inflammatory diseases, such as urticaria and asthma. We propose that host defense peptides that kill microbes directly and activate MCs through MRGPRX2 could serve as novel GPCR targets to modulate host defense against microbial infection. Furthermore, mAbs or small-molecule inhibitors of MRGPRX2 could be developed for the treatment of MC-dependent allergic and inflammatory disorders.
Collapse
Affiliation(s)
- Hariharan Subramanian
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pa
| | - Kshitij Gupta
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pa
| | - Hydar Ali
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pa.
| |
Collapse
|
47
|
Möllerherm H, von Köckritz-Blickwede M, Branitzki-Heinemann K. Antimicrobial Activity of Mast Cells: Role and Relevance of Extracellular DNA Traps. Front Immunol 2016; 7:265. [PMID: 27486458 PMCID: PMC4947581 DOI: 10.3389/fimmu.2016.00265] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/22/2016] [Indexed: 01/08/2023] Open
Abstract
Mast cells (MCs) have been shown to release their nuclear DNA and subsequently form mast cell extracellular traps (MCETs) comparable to neutrophil extracellular traps, which are able to entrap and kill various microbes. The formation of extracellular traps is associated with the disruption of the nuclear membrane, which leads to mixing of nuclear compounds with granule components and causes the death of the cell, a process called ETosis. The question arises why do MCs release MCETs although they are very well known as multifunctional long-living sentinel cells? MCs are known to play a role during allergic reactions and certain parasitic infections. Nonetheless, they are also critical components of the early host innate immune response to bacterial and fungal pathogens: MCs contribute to the initiation of the early immune response by recruiting effector cells including neutrophils and macrophages by locally releasing inflammatory mediators, such as TNF-α. Moreover, various studies demonstrate that MCs are able to eliminate microbes through intracellular as well as extracellular antimicrobial mechanisms, including MCET formation similar to that of professional phagocytes. Recent literature leads to the suggestion that MCET formation is not the result of a passive release of DNA and granule proteins during cellular disintegration, but rather an active and controlled process in response to specific stimulation, which contributes to the innate host defense. This review will discuss the different known aspects of the antimicrobial activities of MCs with a special focus on MCETs, and their role and relevance during infection and inflammation.
Collapse
Affiliation(s)
- Helene Möllerherm
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover , Hanover , Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, Hanover, Germany; Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine Hannover, Hanover, Germany
| | - Katja Branitzki-Heinemann
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover , Hanover , Germany
| |
Collapse
|
48
|
Johnzon CF, Rönnberg E, Pejler G. The Role of Mast Cells in Bacterial Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:4-14. [DOI: 10.1016/j.ajpath.2015.06.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 01/21/2023]
|
49
|
LaRock CN, Döhrmann S, Todd J, Corriden R, Olson J, Johannssen T, Lepenies B, Gallo RL, Ghosh P, Nizet V. Group A Streptococcal M1 Protein Sequesters Cathelicidin to Evade Innate Immune Killing. Cell Host Microbe 2015; 18:471-7. [PMID: 26468750 PMCID: PMC4636435 DOI: 10.1016/j.chom.2015.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/06/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022]
Abstract
The antimicrobial peptide LL-37 is generated upon proteolytic cleavage of cathelicidin and limits invading pathogens by directly targeting microbial membranes as well as stimulating innate immune cell function. However, some microbes evade LL-37-mediated defense. Notably, group A Streptococcus (GAS) strains belonging to the hypervirulent M1T1 serogroup are more resistant to human LL-37 than other GAS serogroups. We show that the GAS surface-associated M1 protein sequesters and neutralizes LL-37 antimicrobial activity through its N-terminal domain. M1 protein also binds the cathelicidin precursor hCAP-18, preventing its proteolytic maturation into antimicrobial forms. Exogenous M1 protein rescues M1-deficient GAS from killing by neutrophils and within neutrophil extracellular traps and neutralizes LL-37 chemotactic properties. M1 also binds murine cathelicidin, and its virulence contribution in a murine model of necrotizing skin infection is largely driven by its ability to neutralize this host defense peptide. Thus, cathelicidin resistance is essential for the pathogenesis of hyperinvasive M1T1 GAS.
Collapse
Affiliation(s)
- Christopher N LaRock
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Simon Döhrmann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jordan Todd
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ross Corriden
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Olson
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Timo Johannssen
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Richard L Gallo
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
50
|
Gendrin C, Vornhagen J, Ngo L, Whidbey C, Boldenow E, Santana-Ufret V, Clauson M, Burnside K, Galloway DP, Adams Waldorf KM, Piliponsky AM, Rajagopal L. Mast cell degranulation by a hemolytic lipid toxin decreases GBS colonization and infection. SCIENCE ADVANCES 2015; 1:e1400225. [PMID: 26425734 PMCID: PMC4584422 DOI: 10.1126/sciadv.1400225] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/04/2015] [Indexed: 05/08/2023]
Abstract
Ascending infection of microbes from the lower genital tract into the amniotic cavity increases the risk of preterm birth, stillbirth, and newborn infections. Host defenses that are critical for preventing ascending microbial infection are not completely understood. Group B Streptococcus (GBS) are Gram-positive bacteria that frequently colonize the lower genital tract of healthy women but cause severe infections during pregnancy, leading to preterm birth, stillbirth, or early-onset newborn infections. We recently described that the GBS pigment is hemolytic, and increased pigment expression promotes GBS penetration of human placenta. Here, we show that the GBS hemolytic pigment/lipid toxin and hyperpigmented GBS strains induce mast cell degranulation, leading to the release of preformed and proinflammatory mediators. Mast cell-deficient mice exhibit enhanced bacterial burden, decreased neutrophil mobilization, and decreased immune responses during systemic GBS infection. In a vaginal colonization model, hyperpigmented GBS strains showed increased persistence in mast cell-deficient mice compared to mast cell-proficient mice. Consistent with these observations, fewer rectovaginal GBS isolates from women in their third trimester of pregnancy were hyperpigmented/hyperhemolytic. Our work represents the first example of a bacterial hemolytic lipid that induces mast cell degranulation and emphasizes the role of mast cells in limiting genital colonization by hyperpigmented GBS.
Collapse
Affiliation(s)
- Claire Gendrin
- Department of Pediatric Infectious Diseases, University of Washington, Seattle, WA 98101, USA
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Jay Vornhagen
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Lisa Ngo
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Christopher Whidbey
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Erica Boldenow
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | - Morgan Clauson
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington, Seattle, WA 98101, USA
| | - Dionne P. Galloway
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | | | - Adrian M. Piliponsky
- Department of Pediatric Infectious Diseases, University of Washington, Seattle, WA 98101, USA
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of Washington, Seattle, WA 98101, USA
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|