1
|
Borelli A, Santamaria JC, Zamit C, Apert C, Chevallier J, Pierre P, Argüello RJ, Spinelli L, Irla M. Lymphotoxin limits Foxp3 + regulatory T cell development from Foxp3 lo precursors via IL-4 signaling. Nat Commun 2024; 15:6976. [PMID: 39143070 PMCID: PMC11324892 DOI: 10.1038/s41467-024-51164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Treg) are critical players of immune tolerance that develop in the thymus via two distinct developmental pathways involving CD25+Foxp3- and CD25-Foxp3lo precursors. However, the mechanisms regulating the recently identified Foxp3lo precursor pathway remain unclear. Here, we find that the membrane-bound lymphotoxin α1β2 (LTα1β2) heterocomplex is upregulated during Treg development upon TCR/CD28 and IL-2 stimulation. We show that Lta expression limits the maturational development of Treg from Foxp3lo precursors by regulating their proliferation, survival, and metabolic profile. Transgenic reporter mice and transcriptomic analyses further reveal that medullary thymic epithelial cells (mTEC) constitute an unexpected source of IL-4. We demonstrate that LTα1β2-lymphotoxin β receptor-mediated interactions with mTEC limit Treg development by down-regulating IL-4 expression in mTEC. Collectively, our findings identify the lymphotoxin axis as the first inhibitory checkpoint of thymic Treg development that fine-tunes the Foxp3lo Treg precursor pathway by limiting IL-4 availability.
Collapse
Affiliation(s)
- Alexia Borelli
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Jérémy C Santamaria
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Cloé Zamit
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Cécile Apert
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-University Toulouse III, Toulouse, France
- Microenvironment & Immunity Unit, Institut Pasteur, Paris, France
| | - Jessica Chevallier
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Philippe Pierre
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Rafael J Argüello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Lionel Spinelli
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Magali Irla
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
2
|
de Greef PC, Njeru SN, Benz C, Fillatreau S, Malissen B, Agenès F, de Boer RJ, Kirberg J. The TCR assigns naive T cells to a preferred lymph node. SCIENCE ADVANCES 2024; 10:eadl0796. [PMID: 39047099 PMCID: PMC11268406 DOI: 10.1126/sciadv.adl0796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Naive T cells recirculate between the spleen and lymph nodes where they mount immune responses when meeting dendritic cells presenting foreign antigen. As this may happen anywhere, naive T cells ought to visit all lymph nodes. Here, deep sequencing almost-complete TCR repertoires led to a comparison of different lymph nodes within and between individual mice. We find strong evidence for a deterministic CD4/CD8 lineage choice and a consistent spatial structure. Specifically, some T cells show a preference for one or multiple lymph nodes, suggesting that their TCR interacts with locally presented (self-)peptides. These findings are mirrored in TCR-transgenic mice showing localized CD69 expression, retention, and cell division. Thus, naive T cells intermittently sense antigenically dissimilar niches, which is expected to affect their homeostatic competition.
Collapse
MESH Headings
- Animals
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Mice, Transgenic
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Peter C. de Greef
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | | | - Claudia Benz
- Division of Immunology, Paul-Ehrlich-Institut, IMG53, Langen, Germany
| | - Simon Fillatreau
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Fabien Agenès
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
- Inserm, Délégation Régionale Auvergne Rhône Alpes, 69500 Bron, France
| | - Rob J. de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Jörg Kirberg
- Division of Immunology, Paul-Ehrlich-Institut, IMG53, Langen, Germany
| |
Collapse
|
3
|
Dittmar DJ, Pielmeier F, Strieder N, Fischer A, Herbst M, Stanewsky H, Wenzl N, Röseler E, Eder R, Gebhard C, Schwarzfischer-Pfeilschifter L, Albrecht C, Herr W, Edinger M, Hoffmann P, Rehli M. Donor regulatory T cells rapidly adapt to recipient tissues to control murine acute graft-versus-host disease. Nat Commun 2024; 15:3224. [PMID: 38622133 PMCID: PMC11018811 DOI: 10.1038/s41467-024-47575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
The adoptive transfer of regulatory T cells is a promising strategy to prevent graft-versus-host disease after allogeneic bone marrow transplantation. Here, we use a major histocompatibility complex-mismatched mouse model to follow the fate of in vitro expanded donor regulatory T cells upon migration to target organs. Employing comprehensive gene expression and repertoire profiling, we show that they retain their suppressive function and plasticity after transfer. Upon entering non-lymphoid tissues, donor regulatory T cells acquire organ-specific gene expression profiles resembling tissue-resident cells and activate hallmark suppressive and cytotoxic pathways, most evidently in the colon, when co-transplanted with graft-versus-host disease-inducing conventional T cells. Dominant T cell receptor clonotypes overlap between organs and across recipients and their relative abundance correlates with protection efficacy. Thus, this study reveals donor regulatory T cell selection and adaptation mechanisms in target organs and highlights protective features of Treg to guide the development of improved graft-versus-host disease prevention strategies.
Collapse
Affiliation(s)
- David J Dittmar
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
- BioNTech SE, 82061, Neuried, Germany
| | - Franziska Pielmeier
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | | | - Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Michael Herbst
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
- Institute of Experimental Immunology, Research Unit Tumorimmunology, University of Zurich, Zurich, Switzerland
| | - Hanna Stanewsky
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Niklas Wenzl
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany
| | - Eveline Röseler
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany
| | - Rüdiger Eder
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Claudia Gebhard
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany
| | | | - Christin Albrecht
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany.
| | - Petra Hoffmann
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany.
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
- Leibniz Institute for Immunotherapy, 93053, Regensburg, Germany.
| |
Collapse
|
4
|
Goldsmith C, Thevin V, Fesneau O, Matias MI, Perrault J, Abid AH, Taylor N, Dardalhon V, Marie JC, Hernandez-Vargas H. Single-Molecule DNA Methylation Reveals Unique Epigenetic Identity Profiles of T Helper Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1029-1039. [PMID: 38284984 PMCID: PMC11002815 DOI: 10.4049/jimmunol.2300091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Both identity and plasticity of CD4 T helper (Th) cells are regulated in part by epigenetic mechanisms. However, a method that reliably and readily profiles DNA base modifications is still needed to finely study Th cell differentiation. Cytosine methylation in CpG context (5mCpG) and cytosine hydroxymethylation (5hmCpG) are DNA modifications that identify stable cell phenotypes, but their potential to characterize intermediate cell transitions has not yet been evaluated. To assess transition states in Th cells, we developed a method to profile Th cell identity using Cas9-targeted single-molecule nanopore sequencing. Targeting as few as 10 selected genomic loci, we were able to distinguish major in vitro polarized murine T cell subtypes, as well as intermediate phenotypes, by their native DNA 5mCpG patterns. Moreover, by using off-target sequences, we were able to infer transcription factor activities relevant to each cell subtype. Detection of 5mCpG and 5hmCpG was validated on intestinal Th17 cells escaping transforming growth factor β control, using single-molecule adaptive sampling. A total of 21 differentially methylated regions mapping to the 10-gene panel were identified in pathogenic Th17 cells relative to their nonpathogenic counterpart. Hence, our data highlight the potential to exploit native DNA methylation profiling to study physiological and pathological transition states of Th cells.
Collapse
Affiliation(s)
- Chloe Goldsmith
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon, The French League Against Cancer Certified Team, INSERM U1052, CNRS UMR 5286, Léon Bérard Centre and University of Lyon, Lyon, France
| | - Valentin Thevin
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon, The French League Against Cancer Certified Team, INSERM U1052, CNRS UMR 5286, Léon Bérard Centre and University of Lyon, Lyon, France
| | - Olivier Fesneau
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon, The French League Against Cancer Certified Team, INSERM U1052, CNRS UMR 5286, Léon Bérard Centre and University of Lyon, Lyon, France
| | - Maria I Matias
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Julie Perrault
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Ali Hani Abid
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon, The French League Against Cancer Certified Team, INSERM U1052, CNRS UMR 5286, Léon Bérard Centre and University of Lyon, Lyon, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD
| | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Julien C Marie
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon, The French League Against Cancer Certified Team, INSERM U1052, CNRS UMR 5286, Léon Bérard Centre and University of Lyon, Lyon, France
| | - Hector Hernandez-Vargas
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon, The French League Against Cancer Certified Team, INSERM U1052, CNRS UMR 5286, Léon Bérard Centre and University of Lyon, Lyon, France
- Genomics Consulting, Bron, France
| |
Collapse
|
5
|
Durand A, Bonilla N, Level T, Ginestet Z, Lombès A, Guichard V, Germain M, Jacques S, Letourneur F, Do Cruzeiro M, Marchiol C, Renault G, Le Gall M, Charvet C, Le Bon A, Martin B, Auffray C, Lucas B. Type 1 interferons and Foxo1 down-regulation play a key role in age-related T-cell exhaustion in mice. Nat Commun 2024; 15:1718. [PMID: 38409097 PMCID: PMC10897180 DOI: 10.1038/s41467-024-45984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Foxo family transcription factors are critically involved in multiple processes, such as metabolism, quiescence, cell survival and cell differentiation. Although continuous, high activity of Foxo transcription factors extends the life span of some species, the involvement of Foxo proteins in mammalian aging remains to be determined. Here, we show that Foxo1 is down-regulated with age in mouse T cells. This down-regulation of Foxo1 in T cells may contribute to the disruption of naive T-cell homeostasis with age, leading to an increase in the number of memory T cells. Foxo1 down-regulation is also associated with the up-regulation of co-inhibitory receptors by memory T cells and exhaustion in aged mice. Using adoptive transfer experiments, we show that the age-dependent down-regulation of Foxo1 in T cells is mediated by T-cell-extrinsic cues, including type 1 interferons. Taken together, our data suggest that type 1 interferon-induced Foxo1 down-regulation is likely to contribute significantly to T-cell dysfunction in aged mice.
Collapse
Affiliation(s)
- Aurélie Durand
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Nelly Bonilla
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Théo Level
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Zoé Ginestet
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Amélie Lombès
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Vincent Guichard
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Mathieu Germain
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Sébastien Jacques
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Franck Letourneur
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Marcio Do Cruzeiro
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Carmen Marchiol
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Gilles Renault
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Morgane Le Gall
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Céline Charvet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Agnès Le Bon
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Bruno Martin
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Cédric Auffray
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Bruno Lucas
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.
| |
Collapse
|
6
|
Joachim A, Aussel R, Gélard L, Zhang F, Mori D, Grégoire C, Villazala Merino S, Gaya M, Liang Y, Malissen M, Malissen B. Defective LAT signalosome pathology in mice mimics human IgG4-related disease at single-cell level. J Exp Med 2023; 220:e20231028. [PMID: 37624388 PMCID: PMC10457416 DOI: 10.1084/jem.20231028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Mice with a loss-of-function mutation in the LAT adaptor (LatY136F) develop an autoimmune and type 2 inflammatory disorder called defective LAT signalosome pathology (DLSP). We analyzed via single-cell omics the trajectory leading to LatY136F DLSP and the underlying CD4+ T cell diversification. T follicular helper cells, CD4+ cytotoxic T cells, activated B cells, and plasma cells were found in LatY136F spleen and lung. Such cell constellation entailed all the cell types causative of human IgG4-related disease (IgG4-RD), an autoimmune and inflammatory condition with LatY136F DLSP-like histopathological manifestations. Most previously described T cell-mediated autoimmune manifestations require persistent TCR input. In contrast, following their first engagement by self-antigens, the autoreactive TCR expressed by LatY136F CD4+ T cells hand over their central role in T cell activation to CD28 costimulatory molecules. As a result, all subsequent LatY136F DLSP manifestations, including the production of autoantibodies, solely rely on CD28 engagement. Our findings elucidate the etiology of the LatY136F DLSP and qualify it as a model of IgG4-RD.
Collapse
Affiliation(s)
- Anais Joachim
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Rudy Aussel
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Léna Gélard
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
| | - Fanghui Zhang
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- School of Laboratory Medicine, Henan Key Laboratory for Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Daiki Mori
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
| | - Claude Grégoire
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Sergio Villazala Merino
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Mauro Gaya
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Yinming Liang
- School of Laboratory Medicine, Henan Key Laboratory for Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Marie Malissen
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
- Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Bernard Malissen
- Aix Marseille Université, INSERM, CNRS, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Centre d’Immunophénomique, INSERM, CNRS, Aix Marseille Université, Marseille, France
- Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Nicola Candia AJ, Garcia Fallit M, Peña Agudelo JA, Pérez Küper M, Gonzalez N, Moreno Ayala MA, De Simone E, Giampaoli C, Casares N, Seilicovich A, Lasarte JJ, Zanetti FA, Candolfi M. Targeting FOXP3 Tumor-Intrinsic Effects Using Adenoviral Vectors in Experimental Breast Cancer. Viruses 2023; 15:1813. [PMID: 37766222 PMCID: PMC10537292 DOI: 10.3390/v15091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The regulatory T cell master transcription factor, Forkhead box P3 (Foxp3), has been detected in cancer cells; however, its role in breast tumor pathogenesis remains controversial. Here we assessed Foxp3 tumor intrinsic effects in experimental breast cancer using a Foxp3 binder peptide (P60) that impairs Foxp3 nuclear translocation. Cisplatin upregulated Foxp3 expression in HER2+ and triple-negative breast cancer (TNBC) cells. Foxp3 inhibition with P60 enhanced chemosensitivity and reduced cell survival and migration in human and murine breast tumor cells. We also developed an adenoviral vector encoding P60 (Ad.P60) that efficiently transduced breast tumor cells, reduced cell viability and migration, and improved the cytotoxic response to cisplatin. Conditioned medium from transduced breast tumor cells contained lower levels of IL-10 and improved the activation of splenic lymphocytes. Intratumoral administration of Ad.P60 in breast-tumor-bearing mice significantly reduced tumor infiltration of Tregs, delayed tumor growth, and inhibited the development of spontaneous lung metastases. Our results suggest that Foxp3 exerts protumoral intrinsic effects in breast cancer cells and that gene-therapy-mediated blockade of Foxp3 could constitute a therapeutic strategy to improve the response of these tumors to standard treatment.
Collapse
Affiliation(s)
- Alejandro J. Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Matías Garcia Fallit
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina
| | - Jorge A. Peña Agudelo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Melanie Pérez Küper
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Mariela A. Moreno Ayala
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Emilio De Simone
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina
| | - Carla Giampaoli
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina
| | - Noelia Casares
- Program Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA, CUN), 31008 Pamplona, Spain; (N.C.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Juan José Lasarte
- Program Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA, CUN), 31008 Pamplona, Spain; (N.C.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Flavia A. Zanetti
- Instituto de Ciencia y Tecnología “Dr. Cesar Milstein”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo C1440FFX, Buenos Aires, Argentina;
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| |
Collapse
|
8
|
Ménoret S, Tesson L, Remy S, Gourain V, Sérazin C, Usal C, Guiffes A, Chenouard V, Ouisse LH, Gantier M, Heslan JM, Fourgeux C, Poschmann J, Guillonneau C, Anegon I. CD4 + and CD8 + regulatory T cell characterization in the rat using a unique transgenic Foxp3-EGFP model. BMC Biol 2023; 21:8. [PMID: 36635667 PMCID: PMC9837914 DOI: 10.1186/s12915-022-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Regulatory T cells (Treg) in diverse species include CD4+ and CD8+ T cells. In all species, CD8+ Treg have been only partially characterized and there is no rat model in which CD4+ and CD8+ FOXP3+ Treg are genetically tagged. RESULTS We generated a Foxp3-EGFP rat transgenic line in which FOXP3 gene was expressed and controlled EGFP. CD4+ and CD8+ T cells were the only cells that expressed EGFP, in similar proportion as observed with anti-FOXP3 antibodies and co-labeled in the same cells. CD4+EGFP+ Treg were 5-10 times more frequent than CD8+EGFP+ Treg. The suppressive activity of CD4+ and CD8+ Treg was largely confined to EGFP+ cells. RNAseq analyses showed similarities but also differences among CD4+ and CD8+ EGFP+ cells and provided the first description of the natural FOXP3+CD8+ Treg transcriptome. In vitro culture of CD4+ and CD8+ EGFP- cells with TGFbeta and IL-2 generated induced EGFP+ Treg. CD4+ and CD8+ EGFP+ Treg were expanded upon in vivo administration of a low dose of IL-2. CONCLUSIONS This new and unique rat line constitutes a useful model to identify and isolate viable CD4+ and CD8+ FOXP3+ Treg. Additionally, it allows to identify molecules expressed in CD8+ Treg that may allow to better define their phenotype and function not only in rats but also in other species.
Collapse
Affiliation(s)
- Séverine Ménoret
- grid.277151.70000 0004 0472 0371Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, F-44000 Nantes, France ,grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Laurent Tesson
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Séverine Remy
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Victor Gourain
- grid.277151.70000 0004 0472 0371Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, F-44000 Nantes, France
| | - Céline Sérazin
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Claire Usal
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Aude Guiffes
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Vanessa Chenouard
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Malika Gantier
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Jean-Marie Heslan
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Cynthia Fourgeux
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Jeremie Poschmann
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Carole Guillonneau
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Ignacio Anegon
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| |
Collapse
|
9
|
Msallam R, Malissen B, Launay P, Blank U, Gautier G, Davoust J. Mast Cell Interaction with Foxp3 + Regulatory T Cells Occur in the Dermis after Initiation of IgE-Mediated Cutaneous Anaphylaxis. Cells 2022; 11:3055. [PMID: 36231017 PMCID: PMC9564058 DOI: 10.3390/cells11193055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mast cells (MCs) are well-known for their role in IgE-mediated cutaneous anaphylactic responses, but their regulatory functions in the skin are still under intense scrutiny. Using a Red MC and Basophil reporter (RMB) mouse allowing red fluorescent detection and diphtheria toxin mediated depletion of MCs, we investigated the interaction of MCs, Foxp3+ regulatory T lymphocytes (Tregs) and Langerhans cells (LCs) during passive cutaneous anaphylaxis (PCA) responses. Using intravital imaging we show that MCs are sessile at homeostasis and during PCA. Breeding RMB mice with Langerin-eGFP mice revealed that dermal MCs do not interact with epidermal-localized LCs, the latter showing constant sprouting of their dendrites at homeostasis and during PCA. When bred with Foxp3-eGFP mice, we found that, although a few Foxp3+ Tregs are present at homeostasis, many Tregs transiently infiltrated the skin during PCA. While their velocity during PCA was not altered, Tregs increased the duration of their contact time with MCs compared to PCA-control mice. Antibody-mediated depletion of Tregs had no effect on the intensity of PCA. Hence, the observed increase in Treg numbers and contact time with MCs, regardless of an effect on the intensity of PCA responses, suggests an anti-inflammatory role dedicated to prevent further MC activation.
Collapse
Affiliation(s)
- Rasha Msallam
- Institut Necker Enfants Malades, Centre National de la Recherche Scientifique UMR 8253, Université Paris Cité, Institute National de la Santé et de la Recherche Médicale U1151, 75020 Paris, France
| | - Bernard Malissen
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Pierre Launay
- Laboratoire d’Excellence Inflamex, Centre de Recherche sur l’Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, 75018 Paris, France
| | - Ulrich Blank
- Laboratoire d’Excellence Inflamex, Centre de Recherche sur l’Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, 75018 Paris, France
| | - Gregory Gautier
- Laboratoire d’Excellence Inflamex, Centre de Recherche sur l’Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, 75018 Paris, France
| | - Jean Davoust
- Institut Necker Enfants Malades, Centre National de la Recherche Scientifique UMR 8253, Université Paris Cité, Institute National de la Santé et de la Recherche Médicale U1151, 75020 Paris, France
- UVSQ, INSERM, END-ICAP, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
10
|
Nishiyama N, Nakahashi-Oda C, Shibuya A. Interferon-β promotes the survival and function of induced regulatory T cells. Cytokine 2022; 158:156009. [PMID: 36049243 DOI: 10.1016/j.cyto.2022.156009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022]
Abstract
Type I interferons (IFNs) are pleiotropic cytokines and impact various immune cells, including regulatory T cells (Treg cells). The effect of type-I IFNs on the development and function of Treg cells is quite controversial. Here we induced Treg cells (iTreg cells) from naïve CD4+ T cells in vitro in the presence or absence of IFN-β to elucidate its direct effect on the induction of iTreg cells. We found that IFN-β suppressed the proliferation of iTreg cells but enhanced their expression of anti-apoptotic genes Bcl-2 and Mcl-1 during the development of iTreg cells. We also found that IFN-β promoted suppression of conventional T cell proliferation by iTreg cells. These results suggest that IFN-β promotes the survival and immunomodulatory function of iTreg cells.
Collapse
Affiliation(s)
- Nanako Nishiyama
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Innovative Drug Discovery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Innovative Drug Discovery, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
11
|
Charaix J, Borelli A, Santamaria JC, Chasson L, Giraud M, Sergé A, Irla M. Recirculating Foxp3 + regulatory T cells are restimulated in the thymus under Aire control. Cell Mol Life Sci 2022; 79:355. [PMID: 35678896 PMCID: PMC11071703 DOI: 10.1007/s00018-022-04328-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
Thymically-derived Foxp3+ regulatory T cells (Treg) critically control immunological tolerance. These cells are generated in the medulla through high affinity interactions with medullary thymic epithelial cells (mTEC) expressing the Autoimmune regulator (Aire). Recent advances have revealed that thymic Treg contain not only developing but also recirculating cells from the periphery. Although Aire is implicated in the generation of Foxp3+ Treg, its role in the biology of recirculating Treg remains elusive. Here, we show that Aire regulates the suppressive signature of recirculating Treg independently of the remodeling of the medullary 3D organization throughout life where Treg reside. Accordingly, the adoptive transfer of peripheral Foxp3+ Treg in AireKO recipients led to an impaired suppressive signature upon their entry into the thymus. Furthermore, recirculating Treg from AireKO mice failed to attenuate the severity of multiorgan autoimmunity, demonstrating that their suppressive function is altered. Using bone marrow chimeras, we reveal that mTEC-specific expression of Aire controls the suppressive signature of recirculating Treg. Finally, mature mTEC lacking Aire were inefficient in stimulating peripheral Treg both in polyclonal and antigen-specific co-culture assays. Overall, this study demonstrates that Aire confers to mTEC the ability to restimulate recirculating Treg, unravelling a novel function for this master regulator in Treg biology.
Collapse
Affiliation(s)
- Jonathan Charaix
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Alexia Borelli
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Jérémy C Santamaria
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Lionel Chasson
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Matthieu Giraud
- Center for Research in Transplantation and Translational Immunology, UMR 1064, INSERM, Nantes Université, 44000, Nantes, France
| | - Arnauld Sergé
- Turing Centre for Living Systems, Laboratoire adhésion inflammation (LAI), CNRS, INSERM, Aix-Marseille University, 13288, Marseille, France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France.
| |
Collapse
|
12
|
Georgiev H, Papadogianni G, Bernhardt G. Identification of Follicular T Cells in the Gut. Methods Mol Biol 2022; 2380:85-95. [PMID: 34802124 DOI: 10.1007/978-1-0716-1736-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Humoral adaptive immune responses trigger the establishment of plasma B cells secreting antibodies of various isotypes that bind antigen specifically and with high affinity. Moreover, memory B cells will be generated. To accomplish this, B cells need assistance from a special subset of CD4 T cells, the so called follicular T cells that differentiate from naïve T cells in the course of the immune response. Therefore, the study of follicular T cells is of primordial interest when investigating the molecular and cellular determinants of adaptive immune responses. This is done by direct analysis of the cells isolated from mice following an immunological challenge but in many instances such analyses must involve follow-up studies in cell culture requiring living cells. Especially, in vitro experimentation necessitates isolation and sorting of follicular T cells. However, follicular T cells are generally difficult to handle because they are prone to apoptosis and cell death. This is particularly evident when dealing with follicular T cells residing in the gut since we observed that isolation and processing from murine gut notoriously results in very high loss rates when compared for example to cells obtained from immunized peripheral lymph nodes. To bypass these limitations, we developed a protocol that allows for efficient isolation of intact follicular T cells. The protocol introduced here illustrates isolation and handling of follicular T cells using murine Peyer's Patches as an example because they constantly harbor significant amounts of these cells.
Collapse
Affiliation(s)
- Hristo Georgiev
- Institute of immunology, Hannover Medical School, Hannover, Germany.
| | | | - Günter Bernhardt
- Institute of immunology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
13
|
Ashouri JF, Lo W, Nguyen TTT, Shen L, Weiss A. ZAP70, too little, too much can lead to autoimmunity*. Immunol Rev 2021; 307:145-160. [PMID: 34923645 PMCID: PMC8986586 DOI: 10.1111/imr.13058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/21/2022]
Abstract
Establishing both central and peripheral tolerance requires the appropriate TCR signaling strength to discriminate self‐ from agonist‐peptide bound to self MHC molecules. ZAP70, a cytoplasmic tyrosine kinase, directly interacts with the TCR complex and plays a central and requisite role in TCR signaling in both thymocytes and peripheral T cells. By studying ZAP70 hypomorphic mutations in mice and humans with a spectrum of hypoactive or hyperactive activities, we have gained insights into mechanisms of central and peripheral tolerance. Interestingly, both hypoactive and hyperactive ZAP70 can lead to the development of autoimmune diseases, albeit through distinct mechanisms. Immature thymocytes and mature T cells rely on normal ZAP70 function to complete their development in the thymus and to modulate T cell responses in the periphery. Hypoactive ZAP70 function compromises key developmental checkpoints required to establish central tolerance, allowing thymocytes with potentially self‐reactive TCRs a greater chance to escape negative selection. Such ‘forbidden clones’ may escape into the periphery and may pose a greater risk for autoimmune disease development since they may not engage negative regulatory mechanisms as effectively. Hyperactive ZAP70 enhances thymic negative selection but some thymocytes will, nonetheless, escape negative selection and have greater sensitivity to weak and self‐ligands. Such cells must be controlled by mechanisms involved in anergy, expansion of Tregs, and upregulation of inhibitory receptors or signaling molecules. However, such potentially autoreactive cells may still be able to escape control by peripheral negative regulatory constraints. Consistent with findings in Zap70 mutants, the signaling defects in at least one ZAP70 substrate, LAT, can also lead to autoimmune disease. By dissecting the similarities and differences among mouse models of patient disease or mutations in ZAP70 that affect TCR signaling strength, we have gained insights into how perturbed ZAP70 function can lead to autoimmunity. Because of our work and that of others on ZAP70, it is likely that perturbations in other molecules affecting TCR signaling strength will be identified that also overcome tolerance mechanisms and cause autoimmunity. Delineating these molecular pathways could lead to the development of much needed new therapeutic targets in these complex diseases.
Collapse
Affiliation(s)
- Judith F. Ashouri
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Wan‐Lin Lo
- Division of Microbiology and Immunology Department of Pathology University of Utah Salt Lake City Utah USA
| | - Trang T. T. Nguyen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Lin Shen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Arthur Weiss
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
- Howard Hughes Medical Institute University of California, San Francisco San Francisco California USA
| |
Collapse
|
14
|
Matias MI, Yong CS, Foroushani A, Goldsmith C, Mongellaz C, Sezgin E, Levental KR, Talebi A, Perrault J, Rivière A, Dehairs J, Delos O, Bertand-Michel J, Portais JC, Wong M, Marie JC, Kelekar A, Kinet S, Zimmermann VS, Levental I, Yvan-Charvet L, Swinnen JV, Muljo SA, Hernandez-Vargas H, Tardito S, Taylor N, Dardalhon V. Regulatory T cell differentiation is controlled by αKG-induced alterations in mitochondrial metabolism and lipid homeostasis. Cell Rep 2021; 37:109911. [PMID: 34731632 PMCID: PMC10167917 DOI: 10.1016/j.celrep.2021.109911] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/18/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Suppressive regulatory T cell (Treg) differentiation is controlled by diverse immunometabolic signaling pathways and intracellular metabolites. Here we show that cell-permeable α-ketoglutarate (αKG) alters the DNA methylation profile of naive CD4 T cells activated under Treg polarizing conditions, markedly attenuating FoxP3+ Treg differentiation and increasing inflammatory cytokines. Adoptive transfer of these T cells into tumor-bearing mice results in enhanced tumor infiltration, decreased FoxP3 expression, and delayed tumor growth. Mechanistically, αKG leads to an energetic state that is reprogrammed toward a mitochondrial metabolism, with increased oxidative phosphorylation and expression of mitochondrial complex enzymes. Furthermore, carbons from ectopic αKG are directly utilized in the generation of fatty acids, associated with lipidome remodeling and increased triacylglyceride stores. Notably, inhibition of either mitochondrial complex II or DGAT2-mediated triacylglyceride synthesis restores Treg differentiation and decreases the αKG-induced inflammatory phenotype. Thus, we identify a crosstalk between αKG, mitochondrial metabolism and triacylglyceride synthesis that controls Treg fate.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cells, Cultured
- Cytokines/genetics
- Cytokines/metabolism
- Diacylglycerol O-Acyltransferase/metabolism
- Energy Metabolism/drug effects
- Fibrosarcoma/genetics
- Fibrosarcoma/immunology
- Fibrosarcoma/metabolism
- Fibrosarcoma/therapy
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Homeostasis
- Humans
- Immunotherapy, Adoptive
- Ketoglutaric Acids/pharmacology
- Lipid Metabolism/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Phenotype
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Mice
Collapse
Affiliation(s)
- Maria I Matias
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Carmen S Yong
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Amir Foroushani
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Chloe Goldsmith
- Cancer Research Center of Lyon, University Lyon 1, Inserm/ CNRS, Labex DEVweCAN, Lyon France
| | - Cédric Mongellaz
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, Leuven, Belgium
| | - Julie Perrault
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Anais Rivière
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, Leuven, Belgium
| | - Océane Delos
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France; I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Justine Bertand-Michel
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France; I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Jean-Charles Portais
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Madeline Wong
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Julien C Marie
- Cancer Research Center of Lyon, University Lyon 1, Inserm/ CNRS, Labex DEVweCAN, Lyon France
| | - Ameeta Kelekar
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | | | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, Leuven, Belgium
| | - Stefan A Muljo
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Hector Hernandez-Vargas
- Cancer Research Center of Lyon, University Lyon 1, Inserm/ CNRS, Labex DEVweCAN, Lyon France
| | - Saverio Tardito
- Cancer Research UK, Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Pediatric Oncology Branch, NCI, CCR, NIH, Bethesda, MD, USA.
| | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
15
|
Lainé A, Labiad O, Hernandez-Vargas H, This S, Sanlaville A, Léon S, Dalle S, Sheppard D, Travis MA, Paidassi H, Marie JC. Regulatory T cells promote cancer immune-escape through integrin αvβ8-mediated TGF-β activation. Nat Commun 2021; 12:6228. [PMID: 34711823 PMCID: PMC8553942 DOI: 10.1038/s41467-021-26352-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Presence of TGFβ in the tumor microenvironment is one of the most relevant cancer immune-escape mechanisms. TGFβ is secreted in an inactive form, and its activation within the tumor may depend on different cell types and mechanisms than its production. Here we show in mouse melanoma and breast cancer models that regulatory T (Treg) cells expressing the β8 chain of αvβ8 integrin (Itgβ8) are the main cell type in the tumors that activates TGFβ, produced by the cancer cells and stored in the tumor micro-environment. Itgβ8 ablation in Treg cells impairs TGFβ signalling in intra-tumoral T lymphocytes but not in the tumor draining lymph nodes. Successively, the effector function of tumor infiltrating CD8+ T lymphocytes strengthens, leading to efficient control of tumor growth. In cancer patients, anti-Itgβ8 antibody treatment elicits similar improved cytotoxic T cell activation. Thus, this study reveals that Treg cells work in concert with cancer cells to produce bioactive-TGFβ and to create an immunosuppressive micro-environment.
Collapse
Affiliation(s)
- Alexandra Lainé
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Université Lyon 1, 69373, Lyon, France
| | - Ossama Labiad
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Université Lyon 1, 69373, Lyon, France
| | - Hector Hernandez-Vargas
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Université Lyon 1, 69373, Lyon, France
| | - Sébastien This
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007, Lyon, France
| | - Amélien Sanlaville
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Université Lyon 1, 69373, Lyon, France
| | - Sophie Léon
- Plateforme Ex-Vivo, Département de Recherche Translationnelle et d'Innovation, Centre Léon Bérard, Lyon, France
| | - Stéphane Dalle
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Université Lyon 1, 69373, Lyon, France
- Department of Dermatology, Claude Bernard Université Lyon 1, Centre Hospitalier Lyon Sud, 69495, Pierre Bénite, France
| | - Dean Sheppard
- University of California San Francisco, San Francisco, CA, USA
| | - Mark A Travis
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
- Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Helena Paidassi
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007, Lyon, France
| | - Julien C Marie
- Tumor Escape Resistance and Immunity department, Cancer Research Center of Lyon INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Université Lyon 1, 69373, Lyon, France.
| |
Collapse
|
16
|
Dinur-Schejter Y, Zaidman I, Mor-Shaked H, Stepensky P. The Clinical Aspect of Adaptor Molecules in T Cell Signaling: Lessons Learnt From Inborn Errors of Immunity. Front Immunol 2021; 12:701704. [PMID: 34456914 PMCID: PMC8397411 DOI: 10.3389/fimmu.2021.701704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
Adaptor molecules lack enzymatic and transcriptional activities. Instead, they exert their function by linking multiple proteins into intricate complexes, allowing for transmitting and fine-tuning of signals. Many adaptor molecules play a crucial role in T-cell signaling, following engagement of the T-cell receptor (TCR). In this review, we focus on Linker of Activation of T cells (LAT) and SH2 domain-containing leukocyte protein of 76 KDa (SLP-76). Monogenic defects in these adaptor proteins, with known roles in T-cell signaling, have been described as the cause of human inborn errors of immunity (IEI). We describe the current knowledge based on defects in cell lines, murine models and human patients. Germline mutations in Adhesion and degranulation adaptor protein (ADAP), have not resulted in a T-cell defect.
Collapse
Affiliation(s)
- Yael Dinur-Schejter
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center, Jerusalem, Israel.,Allergy and Clinical Immunology Unit, Hadassah Ein-Kerem Medical Center, Jerusalem, Israel
| | - Irina Zaidman
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Monique and Jacques Roboh Department of Genetic Research, Hadassah Ein Kerem Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center, Jerusalem, Israel
| |
Collapse
|
17
|
Lancien M, Bienvenu G, Salle S, Gueno L, Feyeux M, Merieau E, Remy S, Even A, Moreau A, Molle A, Fourgeux C, Coulon F, Beriou G, Bouchet-Delbos L, Chiffoleau E, Kirstetter P, Chan S, Kerfoot SM, Abdu Rahiman S, De Simone V, Matteoli G, Boncompain G, Perez F, Josien R, Poschmann J, Cuturi MC, Louvet C. Dendritic Cells Require TMEM176A/B Ion Channels for Optimal MHC Class II Antigen Presentation to Naive CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:421-435. [PMID: 34233909 DOI: 10.4049/jimmunol.2000498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
Intracellular ion fluxes emerge as critical actors of immunoregulation but still remain poorly explored. In this study, we investigated the role of the redundant cation channels TMEM176A and TMEM176B (TMEM176A/B) in retinoic acid-related orphan receptor γt+ cells and conventional dendritic cells (DCs) using germline and conditional double knockout mice. Although Tmem176a/b appeared surprisingly dispensable for the protective function of Th17 and group 3 innate lymphoid cells in the intestinal mucosa, we found that they were required in conventional DCs for optimal Ag processing and presentation to CD4+ T cells. Using a real-time imaging method, we show that TMEM176A/B accumulate in dynamic post-Golgi vesicles preferentially linked to the late endolysosomal system and strongly colocalize with HLA-DM. Taken together, our results suggest that TMEM176A/B ion channels play a direct role in the MHC class II compartment of DCs for the fine regulation of Ag presentation and naive CD4+ T cell priming.
Collapse
Affiliation(s)
- Melanie Lancien
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Geraldine Bienvenu
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Sonia Salle
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Lucile Gueno
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Magalie Feyeux
- Nantes Université, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France
| | - Emmanuel Merieau
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Severine Remy
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Amandine Even
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Aurelie Moreau
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Alice Molle
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Cynthia Fourgeux
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Flora Coulon
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Gaelle Beriou
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Laurence Bouchet-Delbos
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Elise Chiffoleau
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Peggy Kirstetter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Saeed Abdu Rahiman
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Veronica De Simone
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Gaelle Boncompain
- Dynamique de l'Organisation Intra-Cellulaire, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Franck Perez
- Dynamique de l'Organisation Intra-Cellulaire, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Regis Josien
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Maria Cristina Cuturi
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Cedric Louvet
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France;
| |
Collapse
|
18
|
Lo WL, Weiss A. Adapting T Cell Receptor Ligand Discrimination Capability via LAT. Front Immunol 2021; 12:673196. [PMID: 33936119 PMCID: PMC8085316 DOI: 10.3389/fimmu.2021.673196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Self- and non-self ligand discrimination is a core principle underlying T cell-mediated immunity. Mature αβ T cells can respond to a foreign peptide ligand presented by major histocompatibility complex molecules (pMHCs) on antigen presenting cells, on a background of continuously sensed self-pMHCs. How αβ T cells can properly balance high sensitivity and high specificity to foreign pMHCs, while surrounded by a sea of self-peptide ligands is not well understood. Such discrimination cannot be explained solely by the affinity parameters of T cell antigen receptor (TCR) and pMHC interaction. In this review, we will discuss how T cell ligand discrimination may be molecularly defined by events downstream of the TCR-pMHC interaction. We will discuss new evidence in support of the kinetic proofreading model of TCR ligand discrimination, and in particular how the kinetics of specific phosphorylation sites within the adaptor protein linker for activation of T cells (LAT) determine the outcome of TCR signaling. In addition, we will discuss emerging data regarding how some kinases, including ZAP-70 and LCK, may possess scaffolding functions to more efficiently direct their kinase activities.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
19
|
O'Brien SA, Zhu M, Zhang W. Spontaneous Differentiation of T Follicular Helper Cells in LATY136F Mutant Mice. Front Immunol 2021; 12:656817. [PMID: 33912184 PMCID: PMC8072119 DOI: 10.3389/fimmu.2021.656817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
Mice with a mutation at the LAT-PLCγ1 binding site (Y136) have a defect in thymocyte development due to dampened TCR signaling. CD4+ T cells that do reach the periphery are hyper-activated and skewed to Th2. Over time, these mice develop an autoimmune-like syndrome, characterize by overproduction of Th2 cytokines, T cell infiltration into various organs, and B cell activation, isotype switching, and autoantibody production. In this study, we examined IL4 production by CD4+ T cells in the LATY136F mice using the KN2 reporter mice, in which human CD2 expression marks T cells that are actively producing IL4 protein. We showed that these mice had spontaneous Tfh differentiation. Despite the fact that the majority of CD4+ T cells were skewed to Th2 and were GATA3+, only a small subset of them were actively secreting IL4. These T cells were Tfh cells that expressed BCL6 and were localized to B cell-rich germinal centers within the spleen. Interestingly, these Tfh cells expressed high levels of both BCL6 and GATA3. By using LAT conditional knockout mice that inducibly express only the LATY136F allele, we further showed that Tfh cell differentiation was likely the result of defective LAT-PLCγ1 signaling in the periphery. In addition, B cells were required for spontaneous development of Tfh cells and uncontrolled T cell expansion in these mice. Together, these results indicated a novel role for tonic LAT-PLCγ1 signaling in modulating Tfh cell differentiation during development of autoimmune syndrome.
Collapse
Affiliation(s)
- Sarah A O'Brien
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|
20
|
Gaborit BJ, Roquilly A, Louvet C, Sadek A, Tessoulin B, Broquet A, Jacqueline C, Vourc'h M, Chaumette T, Chauveau M, Asquier A, Bourdiol A, Le Mabecque V, Davieau M, Caillon J, Boutoille D, Coulpier F, Lemoine S, Ronin E, Poschmann J, Salomon BL, Asehnoune K. Regulatory T Cells Expressing Tumor Necrosis Factor Receptor Type 2 Play a Major Role in CD4+ T-Cell Impairment During Sepsis. J Infect Dis 2021; 222:1222-1234. [PMID: 32697326 DOI: 10.1093/infdis/jiaa225] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/01/2020] [Indexed: 01/08/2023] Open
Abstract
Sepsis causes inflammation-induced immunosuppression with lymphopenia and alterations of CD4+ T-cell functions that renders the host prone to secondary infections. Whether and how regulatory T cells (Treg) are involved in this postseptic immunosuppression is unknown. We observed in vivo that early activation of Treg during Staphylococcus aureus sepsis induces CD4+ T-cell impairment and increases susceptibility to secondary pneumonia. The tumor necrosis factor receptor 2 positive (TNFR2pos) Treg subset endorsed the majority of effector immunosuppressive functions, and TNRF2 was particularly associated with activation of genes involved in cell cycle and replication in Treg, probably explaining their maintenance. Blocking or deleting TNFR2 during sepsis decreased the susceptibility to secondary infection. In humans, our data paralleled those in mice; the expression of CTLA-4 was dramatically increased in TNFR2pos Treg after culture in vitro with S. aureus. Our findings describe in vivo mechanisms underlying sepsis-induced immunosuppression and identify TNFR2pos Treg as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Benjamin J Gaborit
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France.,Department of Infectious Diseases, University Hospital of Nantes, CIC, INSERM, Nantes, France
| | - Antoine Roquilly
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France.,Surgical Intensive Care Unit, Hotel Dieu, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Cédric Louvet
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France
| | - Abderrahmane Sadek
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Department of Biology, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| | - Benoit Tessoulin
- Service d'Hématologie, INSERM U1232, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Alexis Broquet
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France
| | - Cédric Jacqueline
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France
| | - Mickael Vourc'h
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France.,Surgical Intensive Care Unit, Hotel Dieu, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Tanguy Chaumette
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France
| | - Marie Chauveau
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France.,Department of Infectious Diseases, University Hospital of Nantes, CIC, INSERM, Nantes, France
| | - Antoine Asquier
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France.,Department of Infectious Diseases, University Hospital of Nantes, CIC, INSERM, Nantes, France
| | - Alexandre Bourdiol
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France.,Surgical Intensive Care Unit, Hotel Dieu, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Virginie Le Mabecque
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France
| | - Marion Davieau
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France
| | - Jocelyne Caillon
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France
| | - David Boutoille
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France.,Department of Infectious Diseases, University Hospital of Nantes, CIC, INSERM, Nantes, France
| | - Fanny Coulpier
- Institut de Biologie , École Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres, Paris, France
| | - Sophie Lemoine
- Institut de Biologie , École Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres, Paris, France
| | - Emilie Ronin
- Centre d'Immunologie et des Maladies Infectieuses, CNRS, INSERM, Sorbonne Université, Paris, France
| | - Jérémie Poschmann
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France
| | - Benoit L Salomon
- Centre d'Immunologie et des Maladies Infectieuses, CNRS, INSERM, Sorbonne Université, Paris, France
| | - Karim Asehnoune
- EA3826 Thérapeutiques Anti-Infectieuses, Institut de Recherche en Santé 2 Nantes Biotech, Université de Nantes, Nantes, France.,Surgical Intensive Care Unit, Hotel Dieu, Centre Hospitalier Universitaire de Nantes, Nantes, France
| |
Collapse
|
21
|
Permanyer M, Bošnjak B, Glage S, Friedrichsen M, Floess S, Huehn J, Patzer GE, Odak I, Eckert N, Zargari R, Ospina-Quintero L, Georgiev H, Förster R. Efficient IL-2R signaling differentially affects the stability, function, and composition of the regulatory T-cell pool. Cell Mol Immunol 2021; 18:398-414. [PMID: 33408345 PMCID: PMC8027001 DOI: 10.1038/s41423-020-00599-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/14/2020] [Indexed: 01/10/2023] Open
Abstract
Signaling via interleukin-2 receptor (IL-2R) is a requisite for regulatory T (Treg) cell identity and function. However, it is not completely understood to what degree IL-2R signaling is required for Treg cell homeostasis, lineage stability and function in both resting and inflammatory conditions. Here, we characterized a spontaneous mutant mouse strain endowed with a hypomorphic Tyr129His variant of CD25, the α-chain of IL-2R, which resulted in diminished receptor expression and reduced IL-2R signaling. Under noninflammatory conditions, Cd25Y129H mice harbored substantially lower numbers of peripheral Treg cells with stable Foxp3 expression that prevented the development of spontaneous autoimmune disease. In contrast, Cd25Y129H Treg cells failed to efficiently induce immune suppression and lost lineage commitment in a T-cell transfer colitis model, indicating that unimpaired IL-2R signaling is critical for Treg cell function in inflammatory environments. Moreover, single-cell RNA sequencing of Treg cells revealed that impaired IL-2R signaling profoundly affected the balance of central and effector Treg cell subsets. Thus, partial loss of IL-2R signaling differentially interferes with the maintenance, heterogeneity, and suppressive function of the Treg cell pool.
Collapse
Affiliation(s)
- Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
| | | | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Nadine Eckert
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Razieh Zargari
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Hristo Georgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
22
|
Zhang H, Xia W, Liang C, Wang X, Zhi L, Guo C, Niu Z, Zhu W. VEGF165b and its mutant demonstrate immunomodulatory, not merely anti-angiogenic functions, in tumor-bearing mice. Mol Immunol 2020; 122:132-140. [PMID: 32353584 DOI: 10.1016/j.molimm.2020.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
A great deal of evidence has shown that anti-angiogenic molecules and antibodies targeting the VEGF-A/VEGFRs signal pathway can also reverse tumor-induced immunosuppression to an extent. VEGF165b, an anti-angiogenic VEGF-A isoform, has demonstrated capacity as an efficacious anti-tumor therapy in mice as an anti-angiogenic agent. However, whether VEGF165b also plays an immunomodulatory role in anti-tumor field remains unclear. mVEGF165b effect on regulatory T cells (Tregs) in vitro were evaluated using flow cytometry and Cell Counting Kit-8 (CCK-8) methods. Its effects on Tregs (or Foxp3 expressing cells) and myeloid-derived suppressor cells (MDSCs) were analyzed in vivo using flow cytometry and immunostaining techniques. In this study, we found VEGF165b and its mutant (its half-life in plasma was extended 10 times while retaining its bioactivity; the VEGF165b mutant is called mVEGF165b for short) inhibited the proliferation of Tregs in vitro. In addition, mVEGF165b dramatically inhibited the accumulation of MDSCs and Tregs (or Foxp3 expressing cells) in the spleen and tumor in tumor-bearing mice. In conclusion, our findings demonstrated for the first time that VEGF165b and its mutant has immunoregulatory functions. It may be used as a potential immunomodulatory agent, beyond its anti-angiogenic capacities, in cancer therapies.
Collapse
Affiliation(s)
- Huiyong Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China.
| | - Wenjiao Xia
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Chen Liang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Xiaoyin Wang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Zhiyuan Niu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China.
| |
Collapse
|
23
|
Lubrano di Ricco M, Ronin E, Collares D, Divoux J, Grégoire S, Wajant H, Gomes T, Grinberg-Bleyer Y, Baud V, Marodon G, Salomon BL. Tumor necrosis factor receptor family costimulation increases regulatory T-cell activation and function via NF-κB. Eur J Immunol 2020; 50:972-985. [PMID: 32012260 PMCID: PMC7383872 DOI: 10.1002/eji.201948393] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 01/06/2023]
Abstract
Several drugs targeting members of the TNF superfamily or TNF receptor superfamily (TNFRSF) are widely used in medicine or are currently being tested in therapeutic trials. However, their mechanism of action remains poorly understood. Here, we explored the effects of TNFRSF co-stimulation on murine Foxp3+ regulatory T cell (Treg) biology, as they are pivotal modulators of immune responses. We show that engagement of TNFR2, 4-1BB, GITR, and DR3, but not OX40, increases Treg proliferation and survival. Triggering these TNFRSF in Tregs induces similar changes in gene expression patterns, suggesting that they engage common signal transduction pathways. Among them, we identified a major role of canonical NF-κB. Importantly, TNFRSF co-stimulation improves the ability of Tregs to suppress colitis. Our data demonstrate that stimulation of discrete TNFRSF members enhances Treg activation and function through a shared mechanism. Consequently, therapeutic effects of drugs targeting TNFRSF or their ligands may be mediated by their effect on Tregs.
Collapse
Affiliation(s)
- Martina Lubrano di Ricco
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Emilie Ronin
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Davi Collares
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire NF-κB, Différenciation et Cancer, Paris, France
| | - Jordane Divoux
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sylvie Grégoire
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Harald Wajant
- Division Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Tomás Gomes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Yenkel Grinberg-Bleyer
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Labex DEVweCAN, Centre Léon Bérard, Lyon, France
| | - Véronique Baud
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire NF-κB, Différenciation et Cancer, Paris, France
| | - Gilles Marodon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
24
|
Ronin E, Lubrano di Ricco M, Vallion R, Divoux J, Kwon HK, Grégoire S, Collares D, Rouers A, Baud V, Benoist C, Salomon BL. The NF-κB RelA Transcription Factor Is Critical for Regulatory T Cell Activation and Stability. Front Immunol 2019; 10:2487. [PMID: 31749798 PMCID: PMC6842949 DOI: 10.3389/fimmu.2019.02487] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/04/2019] [Indexed: 01/01/2023] Open
Abstract
Regulatory T cells (Tregs) play a major role in immune homeostasis and in the prevention of autoimmune diseases. It has been shown that c-Rel is critical in Treg thymic differentiation, but little is known on the role of NF-κB on mature Treg biology. We thus generated mice with a specific knockout of RelA, a key member of NF-κB, in Tregs. These mice developed a severe autoimmune syndrome with multi-organ immune infiltration and high activation of lymphoid and myeloid cells. Phenotypic and transcriptomic analyses showed that RelA is critical in the acquisition of the effector Treg state independently of surrounding inflammatory environment. Unexpectedly, RelA-deficient Tregs also displayed reduced stability and cells that had lost Foxp3 produced inflammatory cytokines. Overall, we show that RelA is critical for Treg biology as it promotes both the generation of their effector phenotype and the maintenance of their identity.
Collapse
Affiliation(s)
- Emilie Ronin
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Martina Lubrano di Ricco
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Romain Vallion
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Jordane Divoux
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Ho-Keun Kwon
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Sylvie Grégoire
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Davi Collares
- Laboratoire NF-κB, Differentiation and Cancer, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Angéline Rouers
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Véronique Baud
- Laboratoire NF-κB, Differentiation and Cancer, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Benoit L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
25
|
Wakamatsu E, Omori H, Tabata Y, Akieda Y, Watanabe S, Ogawa S, Abe R. CD28 co-stimulation is dispensable for the steady state homeostasis of intestinal regulatory T cells. Int Immunol 2019; 30:171-180. [PMID: 29425339 DOI: 10.1093/intimm/dxy013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
It is well-established that CD28 co-stimulation is required for the development and the proliferation of thymus-derived regulatory T cells (tTregs). Meanwhile, the role of CD28 co-stimulation in the homeostasis of peripherally derived Tregs (pTregs) remains unclear. To clarify this issue, we analyzed Tregs in small and large intestines (SI and LI), the principle sites of pTreg development. Interestingly, and different from in the thymus, Tregs were abundant in the intestines of CD28-/- mice, and most of them were phenotypically pTregs. We showed that CD28-/- naive T cells differentiated into pTregs in the LI after oral exposure to antigens and that CD28-/- pTregs in the LI had the same highly proliferative activity as CD28+/- cells. CD28-/- pTregs acquired these Treg-specific features at transcriptional and epigenetics levels. On the other hand, some immune suppressive molecules were down-regulated in CD28-/- pTregs. Correspondingly, the suppressive activity of CD28-/- pTregs was weaker than CD28+/+ cells. These results indicate that the homeostasis of pTregs in the intestines is maintained even in the absence of CD28, whereas CD28 is required for the maximal suppressive activity of intestinal pTregs.
Collapse
Affiliation(s)
- Ei Wakamatsu
- Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan.,Department of Immunology, Tokyo Medical University, Shinjuku, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Omori
- Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
| | - Yuki Tabata
- Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
| | - Yuki Akieda
- Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
| | - Shiho Watanabe
- Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
| | - Shuhei Ogawa
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
| | - Ryo Abe
- Division of Immunobiology, Tokyo University of Science, Yamazaki, Noda City, Chiba, Japan
| |
Collapse
|
26
|
Richardson JR, Armbruster NS, Günter M, Biljecki M, Klenk J, Heumos S, Autenrieth SE. PSM Peptides From Community-Associated Methicillin-Resistant Staphylococcus aureus Impair the Adaptive Immune Response via Modulation of Dendritic Cell Subsets in vivo. Front Immunol 2019; 10:995. [PMID: 31134074 PMCID: PMC6524657 DOI: 10.3389/fimmu.2019.00995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) are key players of the immune system and thus a target for immune evasion by pathogens. We recently showed that the virulence factors phenol-soluble-modulins (PSMs) produced by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains induce tolerogenic DCs upon Toll-like receptor activation via the p38-CREB-IL-10 pathway in vitro. Here, we addressed the hypothesis that S. aureus PSMs disturb the adaptive immune response via modulation of DC subsets in vivo. Using a systemic mouse infection model we found that S. aureus reduced the numbers of splenic DC subsets, mainly CD4+ and CD8+ DCs independently of PSM secretion. S. aureus infection induced upregulation of the C-C motif chemokine receptor 7 (CCR7) on the surface of all DC subsets, on CD4+ DCs in a PSM-dependent manner, together with increased expression of MHCII, CD86, CD80, CD40, and the co-inhibitory molecule PD-L2, with only minor effects of PSMs. Moreover, PSMs increased IL-10 production in the spleen and impaired TNF production by CD4+ DCs. Besides, S. aureus PSMs reduced the number of CD4+ T cells in the spleen, whereas CD4+CD25+Foxp3+ regulatory T cells (Tregs) were increased. In contrast, Th1 and Th17 priming and IFN-γ production by CD8+ T cells were impaired by S. aureus PSMs. Thus, PSMs from highly virulent S. aureus strains modulate the adaptive immune response in the direction of tolerance by affecting DC functions.
Collapse
Affiliation(s)
| | - Nicole S Armbruster
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Manina Günter
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Michelle Biljecki
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Juliane Klenk
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Simon Heumos
- Quantitative Biology Center, University of Tübingen, Tübingen, Germany
| | - Stella E Autenrieth
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Mondini M, Loyher PL, Hamon P, Gerbé de Thoré M, Laviron M, Berthelot K, Clémenson C, Salomon BL, Combadière C, Deutsch E, Boissonnas A. CCR2-Dependent Recruitment of Tregs and Monocytes Following Radiotherapy Is Associated with TNFα-Mediated Resistance. Cancer Immunol Res 2019; 7:376-387. [PMID: 30696630 DOI: 10.1158/2326-6066.cir-18-0633] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/16/2018] [Accepted: 01/22/2019] [Indexed: 11/16/2022]
Abstract
Radiotherapy (RT) represents one of the main anticancer approaches for the treatment of solid tumors. Beyond the expected direct effects of RT on tumor cells, evidence supporting the importance of an immune response to RT is growing. The balance between RT-mediated immunogenic and tolerogenic activity is ill-defined and deserves more attention. Herein, a murine model of head and neck squamous cell carcinoma was used to demonstrate that RT upregulated CCL2 chemokine production in tumor cells, leading to a CCR2-dependent accumulation of tumor necrosis factor alpha (TNFα)-producing monocytes and CCR2+ regulatory T cells (Treg). This corecruitment was associated with a TNFα-dependent activation of Tregs, dampening the efficacy of RT. Our results highlight an unexpected cross-talk between innate and adaptive immune system components and indicate CCL2/CCR2 and TNFα as potential clinical candidates to counterbalance the radioprotective action of monocyte-derived cells and Tregs, paving the way for potent combined radioimmunotherapies.
Collapse
Affiliation(s)
- Michele Mondini
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif, France. .,INSERM, U1030, Labex LERMIT, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Pierre-Louis Loyher
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Pauline Hamon
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif, France.,INSERM, U1030, Labex LERMIT, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Marine Gerbé de Thoré
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif, France.,INSERM, U1030, Labex LERMIT, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marie Laviron
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Kevin Berthelot
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif, France.,INSERM, U1030, Labex LERMIT, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Céline Clémenson
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif, France.,INSERM, U1030, Labex LERMIT, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Benoit L Salomon
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Christophe Combadière
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Eric Deutsch
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif, France.,INSERM, U1030, Labex LERMIT, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Gustave Roussy, Université Paris-Saclay, Département de Radiothérapie, DHU TORINO, Villejuif, France
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France.
| |
Collapse
|
28
|
Pierucci-Alves F, Midura-Kiela MT, Fleming SD, Schultz BD, Kiela PR. Transforming Growth Factor Beta Signaling in Dendritic Cells Is Required for Immunotolerance to Sperm in the Epididymis. Front Immunol 2018; 9:1882. [PMID: 30166986 PMCID: PMC6105693 DOI: 10.3389/fimmu.2018.01882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/30/2018] [Indexed: 01/16/2023] Open
Abstract
The epididymis exhibits a less restrictive physical blood–tissue barrier than the testis and, while numerous immunosuppressive factors have been identified in the latter, no mechanisms for epididymal immunotolerance have been identified to date. Therefore, data are currently insufficient to explain how the immune system tolerates the extremely large load of novel antigens expressed on sperm, which become present in the male body after puberty, i.e., long after central tolerance was established. This study tested the hypothesis that transforming growth factor beta (TGFβ) signaling in dendritic cells (DCs) is required for immunotolerance to sperm located in the epididymis, and that male mice lacking TGFβ signaling in DCs would develop severe epididymal inflammation. To test this, we employed adult Tgfbr2ΔDC males, which exhibit a significant reduction of Tgfbr2 expression and TGFβ signaling in DCs, as reported previously. Results show that Tgfbr2ΔDC males exhibit sperm-specific immune response and severe epididymal leukocytosis. This phenotype is consistent with epididymal loss of immunotolerance to sperm and suggests that TGFβ signaling in DCs is a factor required for a non-inflammatory steady state in the epididymis, and therefore for male tract homeostasis and function.
Collapse
Affiliation(s)
| | | | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Bruce D Schultz
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Pawel R Kiela
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
29
|
Wakamatsu E, Omori H, Kawano A, Ogawa S, Abe R. Strong TCR stimulation promotes the stabilization of Foxp3 expression in regulatory T cells induced in vitro through increasing the demethylation of Foxp3 CNS2. Biochem Biophys Res Commun 2018; 503:2597-2602. [PMID: 30007439 DOI: 10.1016/j.bbrc.2018.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022]
Abstract
Foxp3 is the master transcriptional regulator of regulatory T cells (Tregs), and the stabilization of Foxp3 expression is regulated by the demethylation of conserved non-coding sequence 2 (CNS2) in the Foxp3 locus. Recent studies have shown that TCR stimulation is required for the demethylation of Foxp3 CNS2 during Treg development. However, the relationship between the strength of TCR stimulation and the demethylation of Foxp3 CNS2 remains unclear. To address this issue, we compared the frequency of demethylation of the Foxp3 CNS2 among in vitro-induced Tregs (iTreg) that had received a range of TCR stimulation during their development. We found that the frequency of demethylation of the Foxp3 CNS2 was increased with increased TCR stimulation strength, whereas CD28 stimulation had only a limited effect. Mechanistically, the binding of Tet2, a member of the TET family of enzymes involved in DNA demethylation, on the Foxp3 CNS2 was increased by strong TCR stimulation. Furthermore, compared with iTreg induced by weak TCR stimulation, iTreg induced by strong TCR stimulation maintained Foxp3 expression both in vitro and in vivo. These data indicate that the strength of TCR stimulation is a key factor for induction of the demethylation of Foxp3 CNS2 and the generation of stable Tregs.
Collapse
Affiliation(s)
- Ei Wakamatsu
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan; Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Hiroki Omori
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Akihisa Kawano
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Shuhei Ogawa
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan.
| |
Collapse
|
30
|
Wakamatsu E, Omori H, Ohtsuka S, Ogawa S, Green JM, Abe R. Regulatory T cell subsets are differentially dependent on CD28 for their proliferation. Mol Immunol 2018; 101:92-101. [PMID: 29909367 DOI: 10.1016/j.molimm.2018.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
Abstract
It is thought that CD28 plays a crucial role in the maintenance of regulatory T cell (Treg) pool size through promoting the development and proliferation of these cells. However, recently we found that the dependency on CD28 co-stimulation for their development is different between Treg subsets, thymus-derived Tregs (tTregs, CD28-dependent) and peripherally-derived Tregs (pTregs, CD28-independent), suggesting that CD28 may also have differential influences on the homeostasis of each Treg subset. Here, we demonstrated that both Treg subsets were reduced in secondary lymphoid organs of CD28 deficient mice, and that this reduction was due to impaired proliferation in both Treg subsets by the intrinsic CD28 defect. However, we found that the massive proliferation of both Treg subsets under lymphopenic condition was regulated by CD28, whereas the proliferative activity of tTregs but not pTregs in the steady state was dependent on CD28. Also, experiments using mutant CD28 knock-in mice revealed that proliferation of pTregs under lymphopenic condition required only the Lck-NFκB pathway of CD28, whereas tTregs required an additional unknown pathway. These findings indicate that the dependency on CD28 for proliferation in each Treg subset differs depending on the environment.
Collapse
Affiliation(s)
- Ei Wakamatsu
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan; Department of Immunology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hiroki Omori
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Shizuka Ohtsuka
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Shuhei Ogawa
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Jonathan M Green
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan.
| |
Collapse
|
31
|
Pappritz K, Savvatis K, Miteva K, Kerim B, Dong F, Fechner H, Müller I, Brandt C, Lopez B, González A, Ravassa S, Klingel K, Diez J, Reinke P, Volk HD, Van Linthout S, Tschöpe C. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis. FASEB J 2018; 32:fj201701408R. [PMID: 29863913 DOI: 10.1096/fj.201701408r] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Regulatory T (Treg) cells offer new therapeutic options for controlling undesired systemic and local immune responses. The aim of the current study was to determine the impact of therapeutic Treg administration on systemic and cardiac inflammation and remodeling in coxsackievirus B3 (CVB3) -induced myocarditis. Therefore, syngeneic Treg cells were applied intravenously in CVB3-infected mice 3 d after infection. Compared with CVB3 + PBS mice, CVB3 + Treg mice exhibited lower left ventricular (LV) chemokine expression, accompanied by reduced cardiac presence of proinflammatory Ly6ChighCCR2highCx3Cr1low monocytes and higher retention of proinflammatory Ly6CmidCCR2highCx3Cr1low monocytes in the spleen. In addition, splenic myelopoiesis was reduced in CVB3 + Treg compared with CVB3 + PBS mice. Coculture of Treg cells with splenocytes isolated from mice 3 d post-CVB3 infection further demonstrated the ability of Treg cells to modulate monocyte differentiation in favor of the anti-inflammatory Ly6ClowCCR2lowCx3Cr1high subset. Treg-mediated immunomodulation was paralleled by lower collagen 1 protein expression and decreased levels of soluble and insoluble collagen in LV of CVB3 + Treg compared with CVB3 + PBS mice. In agreement with these findings, LV systolic and diastolic function was improved in CVB3 + Treg mice compared with CVB3 + PBS mice. In summary, adoptive Treg transfer in the inflammatory phase of viral-induced myocarditis protects the heart against inflammatory damage and fibrosis via modulation of monocyte subsets.-Pappritz, K., Savvatis, K., Miteva, K., Kerim, B., Dong, F., Fechner, H., Müller, I., Brandt, C., Lopez, B., González, A., Ravassa, S., Klingel, K., Diez, J., Reinke, P., Volk, H.-D., Van Linthout, S., Tschöpe, C. Immunomodulation by adoptive regulatory T-cell transfer improves Coxsackievirus B3-induced myocarditis.
Collapse
Affiliation(s)
- Kathleen Pappritz
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Konstantinos Savvatis
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- Inherited Cardiovascular Diseases Unit, Barts Heart Centre, Barts Health National Health Service (NHS) Trust, London, United Kingdom
- William Harvey Research Institute, Queen Mary University London, London, United Kingdom
| | - Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Department of Biomedical Sciences, Humanitas University, Milano, Italy
| | - Bahtiyar Kerim
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Fengquan Dong
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Irene Müller
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Christine Brandt
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Begoña Lopez
- Centre for Applied Medical Research (CIMA), Department of Cardiology and Cardiac Surgery, University of Navarra, Pamplona, Spain
| | - Arantxa González
- Centre for Applied Medical Research (CIMA), Department of Cardiology and Cardiac Surgery, University of Navarra, Pamplona, Spain
| | - Susana Ravassa
- Centre for Applied Medical Research (CIMA), Department of Cardiology and Cardiac Surgery, University of Navarra, Pamplona, Spain
| | - Karin Klingel
- Institute for Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Javier Diez
- Centre for Applied Medical Research (CIMA), Department of Cardiology and Cardiac Surgery, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, Madrid, Spain
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- Department of Nephrology and Intensive Medicine, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
32
|
Nakamura Y, Naito K, Yamashita-Kanemaru Y, Komori D, Hirochika R, Shibuya A, Shibuya K. TX99 Is a Neutralizing Monoclonal Antibody Against Mouse TIGIT. Monoclon Antib Immunodiagn Immunother 2018; 37:105-109. [PMID: 29648914 DOI: 10.1089/mab.2018.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
T cell immunoglobulin and ITIM domains (TIGIT) is an inhibitory immunoreceptor expressed on NK cells, effector and memory T cells, and regulatory T cells (Tregs). The ligands for TIGIT are CD155 (PVR) and CD112 (PVRL2, nectin-2), which are broadly expressed on hematopoietic cells and nonhematopoietic cells. TIGIT negatively regulates antitumor responses, but promotes autoimmune reaction. Although neutralizing anti-human TIGIT mAbs are under clinical trials for cancers, how the blockade of TIGIT interaction with the ligands shows tumor immunity still remains unclear. Although analyses of mouse tumor model using a neutralizing anti-mouse TIGIT (mTIGIT) mAbs should be useful to address this issue, there are limitations to this type of studies due to unavailability of neutralizing anti-mTIGIT mAbs. In this study, we generated five clones of anti-mTIGIT mAbs, designated TX99, TX100, TX103, TX104, and TX105. We show that TX99 and TX100 showed the strongest binding to TIGIT. We also show that TX99 interfered with the interaction between TIGIT and CD155 and increased NK cell-mediated cytotoxicity against CD155-expressing RMA-S cells. Thus, TX99 is a unique neutralizing mAb that can be used for studies of mTIGIT functions.
Collapse
Affiliation(s)
- Yuho Nakamura
- 1 Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Keisuke Naito
- 1 Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Daisuke Komori
- 1 Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Rei Hirochika
- 1 Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Shibuya
- 1 Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan .,2 Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba , Tsukuba, Japan
| | - Kazuko Shibuya
- 1 Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
33
|
Georgiev H, Ravens I, Papadogianni G, Halle S, Malissen B, Loots GG, Förster R, Bernhardt G. Shared and Unique Features Distinguishing Follicular T Helper and Regulatory Cells of Peripheral Lymph Node and Peyer's Patches. Front Immunol 2018; 9:714. [PMID: 29686684 PMCID: PMC5900012 DOI: 10.3389/fimmu.2018.00714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Follicular helper (TFH) and regulatory (TFR) cells are critical players in managing germinal center (GC) reactions that accomplish effective humoral immune responses. Transcriptome analyses were done comparing gene regulation of TFH and TFR cells isolated from Peyer’s Patches (PP) and immunized peripheral lymph nodes (pLNs) revealing many regulatory patterns common to all follicular cells. However, in contrast to TFH cells, the upregulation or downregulation of many genes was attenuated substantially in pLN TFR cells when compared to those of PP. Additionally, PP but not pLN TFR cells were largely unresponsive to IL2 and expressed Il4 as well as Il21. Together with fundamental differences in gene expression that were found between cells of both compartments this emphasizes specific adaptations of follicular T cell functions to their micro-milieu. Moreover, although GL7 expression distinguishes matured follicular T cells, GL7+ as well as GL7− cells are present in the GC.
Collapse
Affiliation(s)
- Hristo Georgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Georgiev H, Ravens I, Papadogianni G, Malissen B, Förster R, Bernhardt G. Blocking the ART2.2/P2X7-system is essential to avoid a detrimental bias in functional CD4 T cell studies. Eur J Immunol 2018; 48:1078-1081. [PMID: 29508376 DOI: 10.1002/eji.201747420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/06/2018] [Accepted: 02/27/2018] [Indexed: 11/10/2022]
Abstract
Murine T cell subsets differ in their expression level of P2X7. Depending on several parameters like extracellular NAD+ , P2X7 can be ADP-ribosylated rapidly by adjacent ARTC2.2 resulting in susceptibilities to apoptosis to a varying extent. This detrimental effect can be prevented when drugs like KN-62 are present during cell preparations.
Collapse
Affiliation(s)
- Hristo Georgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Terra M, Oberkampf M, Fayolle C, Rosenbaum P, Guillerey C, Dadaglio G, Leclerc C. Tumor-Derived TGFβ Alters the Ability of Plasmacytoid Dendritic Cells to Respond to Innate Immune Signaling. Cancer Res 2018. [PMID: 29523540 DOI: 10.1158/0008-5472.can-17-2719] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A growing number of observations has suggested that plasmacytoid dendritic cells (pDC) play a critical role in tumor biology. In patients, infiltration of tumors by pDCs generally correlates with a poor prognosis, suggesting that pDCs may play an important role in the host-tumor relationship. Here, we analyze the influence of pDCs in solid tumor development using two different tumor models: TC-1 and B16-OVA. Phenotypic and functional gene profiling analysis of tumor-associated pDCs showed that the tumor microenvironment affected their activation status and ability to produce cytokines and chemokines. In addition, tumor cells secreted factors that inhibit the ability of pDCs to produce type I IFN. Among the various cytokines and chemokines produced by the tumor cells, we demonstrate that TGFβ is the main factor responsible for this inhibition. Using a mouse model deficient for pDCs, we also show that pDCs promote TC-1 tumor growth and that natural killer (NK) cells and regulatory T cells are involved in the protumoral effect of pDCs. Overall, our results evidence the cross-talk among pDCs, NK, and regulatory T cells in the promotion of tumor growth and their role in the development of antitumor immune responses.Significance: These findings highlight the importance of pDCs in the cross-talk between tumor cells and the immune system. Cancer Res; 78(11); 3014-26. ©2018 AACR.
Collapse
Affiliation(s)
- Mariana Terra
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,INSERM U1041, Paris, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Marine Oberkampf
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,INSERM U1041, Paris, France
| | - Catherine Fayolle
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,INSERM U1041, Paris, France
| | - Pierre Rosenbaum
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,INSERM U1041, Paris, France
| | - Camille Guillerey
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France.,INSERM U1041, Paris, France
| | - Gilles Dadaglio
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France. .,INSERM U1041, Paris, France
| | - Claude Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, France. .,INSERM U1041, Paris, France
| |
Collapse
|
36
|
Safya H, Mellouk A, Legrand J, Le Gall SM, Benbijja M, Kanellopoulos-Langevin C, Kanellopoulos JM, Bobé P. Variations in Cellular Responses of Mouse T Cells to Adenosine-5'-Triphosphate Stimulation Do Not Depend on P2X7 Receptor Expression Levels but on Their Activation and Differentiation Stage. Front Immunol 2018. [PMID: 29535730 PMCID: PMC5835135 DOI: 10.3389/fimmu.2018.00360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A previous report has shown that regulatory T cells (Treg) were markedly more sensitive to adenosine-5′-triphosphate (ATP) than conventional T cells (Tconv). Another one has shown that Tregs and CD45RBlow Tconvs, but not CD45RBhigh Tconvs, displayed similar high sensitivity to ATP. We have previously reported that CD45RBlow Tconvs expressing B220/CD45RABC molecules in a pre-apoptotic stage are resistant to ATP stimulation due to the loss of P2X7 receptor (P2X7R) membrane expression. To gain a clearer picture on T-cell sensitivity to ATP, we have quantified four different cellular activities triggered by ATP in mouse T cells at different stages of activation/differentiation, in correlation with levels of P2X7R membrane expression. P2X7R expression significantly increases on Tconvs during differentiation from naive CD45RBhighCD44low to effector/memory CD45RBlowCD44high stage. Maximum levels of upregulation are reached on recently activated CD69+ naive and memory Tconvs. Ectonucleotidases CD39 and CD73 expression levels increase in parallel with those of P2X7R. Recently activated CD69+ CD45RBhighCD44low Tconvs, although expressing high levels of P2X7R, fail to cleave homing receptor CD62L after ATP treatment, but efficiently form pores and externalize phosphatidylserine (PS). In contrast, naive CD45RBhighCD44low Tconvs cleave CD62L with high efficiency although they express a lower level of P2X7, thus suggesting that P2X7R levels are not a limiting factor for signaling ATP-induced cellular responses. Contrary to common assumption, P2X7R-mediated cellular activities in mouse Tconvs are not triggered in an all-or-none manner, but depend on their stage of activation/differentiation. Compared to CD45RBlow Tconvs, CD45RBlowFoxp3+ Tregs show significantly higher levels of P2X7R membrane expression and of sensitivity to ATP as evidenced by their high levels of CD62L shedding, pore formation and PS externalization observed after ATP treatment. In summary, the different abilities of ATP-treated Tconvs to form pore or cleave CD62L depending on their activation and differentiation state suggests that P2X7R signaling varies according to the physiological role of T convs during antigen activation in secondary lymphoid organs or trafficking to inflammatory sites.
Collapse
Affiliation(s)
- Hanaa Safya
- UMR1174, INSERM, Université Paris-Sud, Orsay, France
| | - Amine Mellouk
- UMR1174, INSERM, Université Paris-Sud, Orsay, France
| | - Julie Legrand
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Sylvain M Le Gall
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France.,UMR 970, INSERM, Université Paris Descartes, Paris, France
| | - Mohcine Benbijja
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France.,UMR 1012, INSERM, Université Paris-Sud, Le Kremlin Bicêtre, France
| | | | | | - Pierre Bobé
- UMR1174, INSERM, Université Paris-Sud, Orsay, France.,Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| |
Collapse
|
37
|
Arbulo-Echevarria MM, Narbona-Sánchez I, Fernandez-Ponce CM, Vico-Barranco I, Rueda-Ygueravide MD, Dustin ML, Miazek A, Duran-Ruiz MC, García-Cózar F, Aguado E. A Stretch of Negatively Charged Amino Acids of Linker for Activation of T-Cell Adaptor Has a Dual Role in T-Cell Antigen Receptor Intracellular Signaling. Front Immunol 2018; 9:115. [PMID: 29456532 PMCID: PMC5801411 DOI: 10.3389/fimmu.2018.00115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
The adaptor protein linker for activation of T cells (LAT) has an essential role transducing activatory intracellular signals coming from the TCR/CD3 complex. Previous reports have shown that upon T-cell activation, LAT interacts with the tyrosine kinase Lck, leading to the inhibition of its kinase activity. LAT-Lck interaction seemed to depend on a stretch of negatively charged amino acids in LAT. Here, we have substituted this segment of LAT between amino acids 113 and 126 with a non-charged segment and expressed the mutant LAT (LAT-NIL) in J.CaM2 cells in order to analyze TCR signaling. Substitution of this segment in LAT prevented the activation-induced interaction with Lck. Moreover, cells expressing this mutant form of LAT showed a statistically significant increase of proximal intracellular signals such as phosphorylation of LAT in tyrosine residues 171 and 191, and also enhanced ZAP70 phosphorylation approaching borderline statistical significance (p = 0.051). Nevertheless, downstream signals such as Ca2+ influx or MAPK pathways were partially inhibited. Overall, our data reveal that LAT-Lck interaction constitutes a key element regulating proximal intracellular signals coming from the TCR/CD3 complex.
Collapse
Affiliation(s)
- Mikel M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Isaac Narbona-Sánchez
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Cecilia M Fernandez-Ponce
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Inmaculada Vico-Barranco
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | | | - Michael L Dustin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, The University of Oxford, Headington, United Kingdom
| | - Arkadiusz Miazek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mª Carmen Duran-Ruiz
- Department of Biomedicine, Biotechnology and Public Health (Biochemistry), University of Cádiz, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Francisco García-Cózar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| |
Collapse
|
38
|
Durand A, Audemard-Verger A, Guichard V, Mattiuz R, Delpoux A, Hamon P, Bonilla N, Rivière M, Delon J, Martin B, Auffray C, Boissonnas A, Lucas B. Profiling the lymphoid-resident T cell pool reveals modulation by age and microbiota. Nat Commun 2018; 9:68. [PMID: 29302034 PMCID: PMC5754350 DOI: 10.1038/s41467-017-02458-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/01/2017] [Indexed: 01/12/2023] Open
Abstract
Despite being implicated in non-lymphoid tissues, non-recirculating T cells may also exist in secondary lymphoid organs (SLO). However, a detailed characterization of this lymphoid-resident T cell pool has not yet been done. Here we show that a substantial proportion of CD4 regulatory (Treg) and memory (Tmem) cells establish long-term residence in the SLOs of specific pathogen-free mice. Of these SLOs, only T cell residence within Peyer's patches is affected by microbiota. Resident CD4 Treg and CD4 Tmem cells from lymph nodes and non-lymphoid tissues share many phenotypic and functional characteristics. The percentage of resident T cells in SLOs increases considerably with age, with S1PR1 downregulation possibly contributing to this altered homeostasis. Our results thus show that T cell residence is not only a hallmark of non-lymphoid tissues, but can be extended to secondary lymphoid organs.
Collapse
Affiliation(s)
- Aurélie Durand
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Alexandra Audemard-Verger
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Vincent Guichard
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.,Paris Diderot Université, Sorbonne Paris Cité, 75013, Paris, France
| | - Raphaël Mattiuz
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Arnaud Delpoux
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Pauline Hamon
- Pierre et Marie Curie Université (UPMC), Sorbonne Universités, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - Nelly Bonilla
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Matthieu Rivière
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Jérôme Delon
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Bruno Martin
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Cédric Auffray
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Alexandre Boissonnas
- Pierre et Marie Curie Université (UPMC), Sorbonne Universités, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - Bruno Lucas
- Paris Descartes Université, Sorbonne Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.
| |
Collapse
|
39
|
Guichard V, Bonilla N, Durand A, Audemard-Verger A, Guilbert T, Martin B, Lucas B, Auffray C. Calcium-mediated shaping of naive CD4 T-cell phenotype and function. eLife 2017; 6:27215. [PMID: 29239722 PMCID: PMC5747519 DOI: 10.7554/elife.27215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022] Open
Abstract
Continuous contact with self-major histocompatibility complex ligands is essential for the survival of naive CD4 T cells. We have previously shown that the resulting tonic TCR signaling also influences their fate upon activation by increasing their ability to differentiate into induced/peripheral regulatory T cells. To decipher the molecular mechanisms governing this process, we here focus on the TCR signaling cascade and demonstrate that a rise in intracellular calcium levels is sufficient to modulate the phenotype of mouse naive CD4 T cells and to increase their sensitivity to regulatory T-cell polarization signals, both processes relying on calcineurin activation. Accordingly, in vivo calcineurin inhibition leads the most self-reactive naive CD4 T cells to adopt the phenotype of their less self-reactive cell-counterparts. Collectively, our findings demonstrate that calcium-mediated activation of the calcineurin pathway acts as a rheostat to shape both the phenotype and effector potential of naive CD4 T cells in the steady-state. To help protect the body from disease, small immune cells called T lymphocytes move rapidly, searching for signs of infection. These signs are antigens – processed pieces of proteins from invading microbes – that are displayed on the surface of so-called antigen-presenting cells.Before it encounters its specific antigen, a T cell is called naive. After encountering its antigen, the naive T cell activates and then develops into a variety of immune cells, each with a specific activity. These immune cells include so-called peripherally induced regulatory T cells (or “pTreg cells” for short), which, as the name suggests, help to regulate the immune response. In addition to foreign antigens from microbes, antigen-presenting cells display fragments of the body’s own proteins too. All naive T cells recognize some “Self-antigens”, but not as strongly as they recognize foreign antigens. As a naive T cell travels around the body, it repeatedly interacts with antigen-presenting cells that display Self-antigens, which triggers a low level of signaling in the T cell. While this background signaling was known to help the T cell survive, in 2013, researchers reported that: it also makes the T cell more responsive to foreign antigens; and it shapes how these cells will respond when activated. For example, the naive T cells that respond the most to Self-antigens were seen to be much more likely to become pTreg cells when activated than other T cells. Guichard et al. – who include several of the researchers involved in the 2013 work – set out to understand why the most Self-reactive T cells show this bias toward becoming pTreg cells. The experiments used a range of approaches with T cells both in the laboratory and in mice. By looking at which genes were active in the most Self-reactive T cells, Guichard et al. narrowed in on a signaling pathway that involves calcium ions and an enzyme called Calcineurin. Blocking this pathway caused the most Self-reactive T cells to lose their bias, and instead develop in the same way as the least Self-reactive T cells. Guichard et al. propose that the continuous interactions with Self-antigens trigger waves of calcium ions in a naive T cell that shapes its behavior and future development. In a related study, Dong, Othy et al. also conclude that contact with antigen-presenting cells causes calcium signals that shape how the T cells behave. In addition to providing more detail about the inner workings of immune cells, these findings may also have implications in a clinical setting. Calcineurin inhibitors are often used to suppress the immune system in transplant patients to prevent rejection of the transplanted organ. However, it has proved difficult to safely interrupt these therapies even after many years. These new findings may provide a possible explanation for this, by suggesting that the inhibitors may also interfere with the generation of pTreg cells. Without these cells’ regulatory influence, the immune system is unlikely to ever become tolerant of the transplant.
Collapse
Affiliation(s)
- Vincent Guichard
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France.,Paris Diderot Université, Paris, France
| | - Nelly Bonilla
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France
| | - Aurélie Durand
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France
| | | | - Thomas Guilbert
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France
| | - Bruno Martin
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France
| | - Bruno Lucas
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France
| | - Cédric Auffray
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, Paris, France
| |
Collapse
|
40
|
Chaoul N, Tang A, Desrues B, Oberkampf M, Fayolle C, Ladant D, Sainz-Perez A, Leclerc C. Lack of MHC class II molecules favors CD8 + T-cell infiltration into tumors associated with an increased control of tumor growth. Oncoimmunology 2017; 7:e1404213. [PMID: 29399403 PMCID: PMC5790350 DOI: 10.1080/2162402x.2017.1404213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Regulatory T-cells (Tregs) are crucial for the maintenance of immune tolerance and homeostasis as well as for preventing autoimmune diseases, but their impact on the survival of cancer patients remains controversial. In the TC-1 mouse model of human papillomavirus (HPV)-related carcinoma, we have previously demonstrated that the therapeutic efficacy of the CyaA-E7-vaccine, targeting the HPV-E7 antigen, progressively declines with tumor growth, in correlation with increased intratumoral recruitment of Tregs. In the present study, we demonstrated that these TC-1 tumor-infiltrating Tregs were highly activated, with increased expression of immunosuppressive molecules. Both intratumoral effector CD4+ T-cells (Teffs) and Tregs expressed high levels of PD-1, but anti-PD-1 antibody treatment did not impact the growth of the TC-1 tumor nor restore the therapeutic effect of the CyaA-E7 vaccine. To analyze the mechanisms by which Tregs are recruited to the tumor site, we used MHC-II KO mice with drastically reduced numbers of CD4+ effector T-cells. We demonstrated that these mice still had significant numbers of Tregs in their lymphoid organs which were recruited to the tumor. In MHC-II KO mice, the growth of the TC-1 tumor was delayed in correlation with a strong increase in the intratumoral recruitment of CD8+ T-cells. In addition, in mice that spontaneously rejected their tumors, the infiltration of E7-specific CD8+ T-cells was significantly higher than in MHC-II KO mice with a growing tumor. These results demonstrate that tumor-specific CD8+ T-cells can be efficiently activated and recruited in the absence of MHC class II molecules and of CD4+ T-cell help.
Collapse
Affiliation(s)
- Nada Chaoul
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Alexandre Tang
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Belinda Desrues
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Marine Oberkampf
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Catherine Fayolle
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Daniel Ladant
- Département de biologie structurale et de chimie, Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Paris, France.,CNRS, UMR 3528, Paris, France
| | - Alexander Sainz-Perez
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| | - Claude Leclerc
- Département d'immunologie, Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, France.,Inserm U1041, Paris, France
| |
Collapse
|
41
|
Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4. Nat Med 2017; 23:1220-1225. [PMID: 28892065 DOI: 10.1038/nm.4395] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
Malaria, caused by the protozoan Plasmodium, is a devastating mosquito-borne disease with the potential to affect nearly half the world's population. Despite mounting substantial T and B cell responses, humans fail to efficiently control blood-stage malaria or develop sterilizing immunity to reinfections. Although forkhead box P3 (FOXP3)+CD4+ regulatory T (Treg) cells form a part of these responses, their influence remains disputed and their mode of action is unknown. Here we show that Treg cells expand in both humans and mice in blood-stage malaria and interfere with conventional T helper cell responses and follicular T helper (TFH)-B cell interactions in germinal centers. Mechanistically, Treg cells function in a critical temporal window to impede protective immunity through cytotoxic-T-lymphocyte-associated protein-4 (CTLA-4). Targeting Treg cells or CTLA-4 in this precise window accelerated parasite clearance and generated species-transcending immunity to blood-stage malaria in mice. Our study uncovers a critical mechanism of immunosuppression associated with blood-stage malaria that delays parasite clearance and prevents development of potent adaptive immunity to reinfection. These data also reveal a temporally discrete and potentially therapeutically amenable functional role for Treg cells and CTLA-4 in limiting antimalarial immunity.
Collapse
|
42
|
Cabral J, Hanley SA, Gerlach JQ, O'Leary N, Cunningham S, Ritter T, Ceredig R, Joshi L, Griffin MD. Distinctive Surface Glycosylation Patterns Associated With Mouse and Human CD4 + Regulatory T Cells and Their Suppressive Function. Front Immunol 2017; 8:987. [PMID: 28871258 PMCID: PMC5566562 DOI: 10.3389/fimmu.2017.00987] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022] Open
Abstract
Regulatory T-cells (Treg) are essential for maintaining immune homeostasis and tolerance. Surface glycosylation is ubiquitous on mammalian cells and regulates diverse biological processes. While it is currently well accepted that surface glycan expression influences multiple aspects of T-cell function, little is known about the relevance of glycosylation to Treg biology. This study aimed to profile the surface glycosylation characteristics of Treg in various lymphoid compartments of mouse and in human peripheral blood with comparison to non-regulatory, conventional CD4+ T-cells (Tconv). It also sought to determine the relationship between the surface glycosylation characteristics and suppressive potency of Treg. Lectin-based flow cytometric profiling demonstrated that Treg surface glycosylation differs significantly from that of Tconv in the resting state and is further modified by activation stimuli. In mouse, the surface glycosylation profiles of FoxP3+ Treg from spleen and lymph nodes were closely comparable but greater variability was observed for Treg in thymus, bone marrow, and blood. Surface levels of tri/tetra-antennary N-glycans correlated with expression of proteins known to be involved in Treg suppressive functions, including GITR, PD-1, PD-L1, CD73, CTLA-4, and ICOS. In coculture experiments involving purified Treg subpopulations and CD4+ or CD8+ Tconv, higher surface tri/tetra-antennary N-glycans was associated with greater Treg suppressive potency. Enzymatic manipulation of mouse Treg surface glycosylation resulting in a temporary reduction of surface N-glycans significantly reduced Treg capacity to suppress Tconv activation through contact-dependent mechanisms. Overall, these findings demonstrate that Treg have distinctive surface glycan characteristics that show variability across anatomical locations and are modulated by activation events. They also provide evidence of an important role for surface glycosylation in determining Treg phenotype and suppressive potency. These insights may prove relevant to the analysis of Treg in disease settings and to the further development of Treg-based immunotherapies.
Collapse
Affiliation(s)
- Joana Cabral
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Shirley A Hanley
- Flow Cytometry Core Facility, National Centre for Biomedical Engineering Sciences (NCBES), National University of Ireland, Galway, Ireland
| | - Jared Q Gerlach
- Glycoscience Group, National Centre for Biomedical Engineering Sciences (NCBES), National University of Ireland, Galway, Ireland
| | - Neil O'Leary
- HRB Clinical Research Facility, National University of Ireland, Galway, Ireland
| | - Stephen Cunningham
- Glycoscience Group, National Centre for Biomedical Engineering Sciences (NCBES), National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Rhodri Ceredig
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Lokesh Joshi
- Glycoscience Group, National Centre for Biomedical Engineering Sciences (NCBES), National University of Ireland, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
43
|
Hayatsu N, Miyao T, Tachibana M, Murakami R, Kimura A, Kato T, Kawakami E, Endo TA, Setoguchi R, Watarai H, Nishikawa T, Yasuda T, Yoshida H, Hori S. Analyses of a Mutant Foxp3 Allele Reveal BATF as a Critical Transcription Factor in the Differentiation and Accumulation of Tissue Regulatory T Cells. Immunity 2017; 47:268-283.e9. [PMID: 28778586 DOI: 10.1016/j.immuni.2017.07.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/02/2017] [Accepted: 07/10/2017] [Indexed: 12/25/2022]
Abstract
Foxp3 controls the development and function of regulatory T (Treg) cells, but it remains elusive how Foxp3 functions in vivo. Here, we established mouse models harboring three unique missense Foxp3 mutations that were identified in patients with the autoimmune disease IPEX. The I363V and R397W mutations were loss-of-function mutations, causing multi-organ inflammation by globally compromising Treg cell physiology. By contrast, the A384T mutation induced a distinctive tissue-restricted inflammation by specifically impairing the ability of Treg cells to compete with pathogenic T cells in certain non-lymphoid tissues. Mechanistically, repressed BATF expression contributed to these A384T effects. At the molecular level, the A384T mutation altered Foxp3 interactions with its specific target genes including Batf by broadening its DNA-binding specificity. Our findings identify BATF as a critical regulator of tissue Treg cells and suggest that sequence-specific perturbations of Foxp3-DNA interactions can influence specific facets of Treg cell physiology and the immunopathologies they regulate.
Collapse
Affiliation(s)
- Norihito Hayatsu
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Masashi Tachibana
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Ryuichi Murakami
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akihiko Kimura
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Takako Kato
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Eiryo Kawakami
- Laboratory for Disease Systems Modeling, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Kanagawa 230-0045, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Ruka Setoguchi
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Hiroshi Watarai
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takeshi Nishikawa
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Takuwa Yasuda
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Hisahiro Yoshida
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Shohei Hori
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
44
|
Takahashi R, Nakatsukasa H, Shiozawa S, Yoshimura A. SOCS1 Is a Key Molecule That Prevents Regulatory T Cell Plasticity under Inflammatory Conditions. THE JOURNAL OF IMMUNOLOGY 2017; 199:149-158. [PMID: 28550203 DOI: 10.4049/jimmunol.1600441] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
Abstract
We previously showed that regulatory T cells (Tregs) from T cell-specific Socs1-deficient mice (Socs1fl/flLck-Cre+ mice) easily convert into Th1- or Th17-like cells (ex-Tregs), which lose Foxp3 expression and suppressive functions in vivo. Because Tregs in Socs1fl/flLck-Cre+ mice are constantly exposed to a large amount of inflammatory cytokines produced by non-Tregs in vivo, in this study we analyzed Treg-specific Socs1-deficient mice (Socs1fl/flFoxp3YFP-Cre mice). These mice developed dermatitis, splenomegaly, and lymphadenopathy that were much milder than those in Socs1fl/flLck-Cre+ mice. A fate mapping study revealed that Socs1 deficiency accelerated the conversion of Tregs to Foxp3-IFN-γ+ ex-Tregs in the tumor microenvironment and suppressed tumor growth. When transferred into Rag2-/- mice, Tregs from Socs1fl/flLck-Cre+ mice easily lost Foxp3 expression, whereas those from Socs1fl/flFoxp3YFP-Cre mice maintained Foxp3 expression. Although Tregs from Socs1fl/flLck-Cre+ mice produced IFN-γ after a 3-d culture in response to anti-CD3/CD28 Ab stimulation in vitro, Tregs from Socs1fl/flFoxp3YFP-Cre mice did not. This finding suggested that the inflammatory conditions in Socs1fl/flLck-Cre+ mice modified the born nature of Socs1-deficient Tregs. To investigate this mechanism, Tregs from Socs1fl/flFoxp3YFP-Cre mice were cultured with APCs from Socs1fl/flLck-Cre+ mice. These APCs facilitated STAT4 phosphorylation, IFN-γ production, and loss of Foxp3 expression in Tregs from Socs1fl/flFoxp3YFP-Cre mice in an IL-12-dependent manner. The results indicate that Socs1-deficient Tregs tend to convert into ex-Tregs under the inflammatory conditions in which APCs are highly activated, and that SOCS1 could be a useful target for enhancement of anti-tumor immunity.
Collapse
Affiliation(s)
- Reiko Takahashi
- Department of Immunology, Research Institute, Nozaki Tokushukai, Daitou, Osaka 574-0074, Japan; .,Rheumatic Disease Unit, Department of Medicine, Kyushu University Beppu Hospital, Beppu 874-0838, Japan; and.,Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-Ku, Tokyo 160-8582, Japan
| | - Hiroko Nakatsukasa
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-Ku, Tokyo 160-8582, Japan
| | - Shunichi Shiozawa
- Rheumatic Disease Unit, Department of Medicine, Kyushu University Beppu Hospital, Beppu 874-0838, Japan; and
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-Ku, Tokyo 160-8582, Japan
| |
Collapse
|
45
|
Dombrowski Y, O'Hagan T, Dittmer M, Penalva R, Mayoral SR, Bankhead P, Fleville S, Eleftheriadis G, Zhao C, Naughton M, Hassan R, Moffat J, Falconer J, Boyd A, Hamilton P, Allen IV, Kissenpfennig A, Moynagh PN, Evergren E, Perbal B, Williams AC, Ingram RJ, Chan JR, Franklin RJM, Fitzgerald DC. Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci 2017; 20:674-680. [PMID: 28288125 PMCID: PMC5409501 DOI: 10.1038/nn.4528] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/03/2017] [Indexed: 02/08/2023]
Abstract
Regeneration of CNS myelin involves differentiation of oligodendrocytes from oligodendrocyte progenitor cells. In multiple sclerosis, remyelination can fail despite abundant oligodendrocyte progenitor cells, suggesting impairment of oligodendrocyte differentiation. T cells infiltrate the CNS in multiple sclerosis, yet little is known about T cell functions in remyelination. We report that regulatory T cells (Treg) promote oligodendrocyte differentiation and (re)myelination. Treg-deficient mice exhibited substantially impaired remyelination and oligodendrocyte differentiation, which was rescued by adoptive transfer of Treg. In brain slice cultures, Treg accelerated developmental myelination and remyelination, even in the absence of overt inflammation. Treg directly promoted oligodendrocyte progenitor cell differentiation and myelination in vitro. We identified CCN3 as a Treg-derived mediator of oligodendrocyte differentiation and myelination in vitro. These findings reveal a new regenerative function of Treg in the CNS, distinct from immunomodulation. Although the cells were originally named 'Treg' to reflect immunoregulatory roles, this also captures emerging, regenerative Treg functions.
Collapse
Affiliation(s)
- Yvonne Dombrowski
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Thomas O'Hagan
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Marie Dittmer
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Rosana Penalva
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Sonia R Mayoral
- Department of Neurology and Program in Neurosciences, University of California, San Francisco, California, USA
| | - Peter Bankhead
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Samara Fleville
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - George Eleftheriadis
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Chao Zhao
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Clifford Allbutt Building, Cambridge Biomedical Campus, University of Cambridge, UK
| | - Michelle Naughton
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Rachel Hassan
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Jill Moffat
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - John Falconer
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Amanda Boyd
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter Hamilton
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Ingrid V Allen
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Adrien Kissenpfennig
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Paul N Moynagh
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK.,Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Ireland
| | - Emma Evergren
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Bernard Perbal
- Université Côte d'Azur, CNRS, GREDEG, Nice, France.,International CCN Society, Paris, France
| | - Anna C Williams
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Rebecca J Ingram
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Jonah R Chan
- Department of Neurology and Program in Neurosciences, University of California, San Francisco, California, USA
| | - Robin J M Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Clifford Allbutt Building, Cambridge Biomedical Campus, University of Cambridge, UK
| | - Denise C Fitzgerald
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| |
Collapse
|
46
|
Laquinimod enhances central nervous system barrier functions. Neurobiol Dis 2017; 102:60-69. [PMID: 28235673 DOI: 10.1016/j.nbd.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 12/30/2022] Open
Abstract
Laquinimod is currently being tested as a therapeutic drug in multiple sclerosis. However, its exact mechanism of action is still under investigation. Tracking of fluorescently-tagged encephalitogenic T cells during experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, revealed that laquinimod significantly reduces the invasion of pathogenic effector T cells into the CNS tissue. T-cell activation, differentiation and amplification within secondary lymphoid organs after immunization with myelin antigen, their migratory capacity and re-activation within the nervous tissue were either only mildly affected or remained unchanged. Instead, laquinimod directly impacted the functionality of the CNS vasculature. The expression of tight junction proteins p120 and ZO-1 in human brain endothelial cells was up-regulated upon laquinimod treatment, resulting in a significant increase in the transendothelial electrical resistance of confluent monolayers of brain endothelial cells. Similarly, expression of the adhesion molecule activated leukocyte cell adhesion molecule (ALCAM) and inflammatory chemokines CCL2 and IP-10 was suppressed, leading to a significant reduction in the migration of memory TH1 and TH17 lymphocytes across the blood brain barrier (BBB). Our data indicate that laquinimod exerts its therapeutic effects by tightening the BBB and limiting parenchymal invasion of effector T cells, thereby reducing CNS damage.
Collapse
|
47
|
Boschetti G, Kanjarawi R, Bardel E, Collardeau-Frachon S, Duclaux-Loras R, Moro-Sibilot L, Almeras T, Flourié B, Nancey S, Kaiserlian D. Gut Inflammation in Mice Triggers Proliferation and Function of Mucosal Foxp3+ Regulatory T Cells but Impairs Their Conversion from CD4+ T Cells. J Crohns Colitis 2017; 11:105-117. [PMID: 27364948 DOI: 10.1093/ecco-jcc/jjw125] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Regulatory Foxp3+CD4+ T cells [Tregs] have been implicated in the control of colitis in T-cell transfer models, yet their ability to regulate colitis induced by innate immunity and the impact of gut inflammation on their fate and function have been poorly documented. METHODS Colitis was induced by dextran sodium sulphate in DEREG transgenic mice. Tregs ablation and transfer experiments showd that Tregs could limit the severity of colitis in B6 mice. RESULTS Gut inflammation resulted in increased number of Tregs in mesenteric lymph nodes [MLN] and colon lamina propria [LP], although their frequency decreased due to massive concomitant leukocyte infiltration. This coincided at both sites with a dramatic increase in Ki67+ Tregs which retained proliferative capacity. Gut inflammation resulted in enhanced suppressive function of Tregs in colon lamina propria and neuropillin-1- [NRP1-] Treg in MLN. Real-time polymerase chain reaction analysis and flow cytometry [using IL10-egfp-reporter mice] showed that compared with NRP1+ Treg, NRP1- Treg express higher levels of IL-10 transcripts and were enriched in IL10-expressing cells both in the steady state and during colitis. Moreover, Treg conversion in vivo from from naïve CD4+ T cells or Treg precursors was impaired in colitic mice. Finally, gut inflammation caused a decrease in intestinal dendritic cells, affecting both CD103+CD11b+ and CD103+CD11b- subsets and affected their Treg conversion capacity. CONCLUSIONS Together, our data indicate that non-specific colon inflammation triggers proliferation and suppressive function of Tregs in the lamina propria and MLN, but impairs their de novo conversion from CD4+ T cells by intestinal dendritic cells.
Collapse
|
48
|
Wyss L, Stadinski BD, King CG, Schallenberg S, McCarthy NI, Lee JY, Kretschmer K, Terracciano LM, Anderson G, Surh CD, Huseby ES, Palmer E. Affinity for self antigen selects Treg cells with distinct functional properties. Nat Immunol 2016; 17:1093-101. [PMID: 27478940 PMCID: PMC4994872 DOI: 10.1038/ni.3522] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/27/2016] [Indexed: 12/30/2022]
Abstract
The manner in which regulatory T cells (Treg cells) control lymphocyte homeostasis is not fully understood. We identified two Treg cell populations with differing degrees of self-reactivity and distinct regulatory functions. We found that GITR(hi)PD-1(hi)CD25(hi) (Triple(hi)) Treg cells were highly self-reactive and controlled lympho-proliferation in peripheral lymph nodes. GITR(lo)PD-1(lo)CD25(lo) (Triple(lo)) Treg cells were less self-reactive and limited the development of colitis by promoting the conversion of CD4(+) Tconv cells into induced Treg cells (iTreg cells). Although Foxp3-deficient (Scurfy) mice lacked Treg cells, they contained Triple(hi)-like and Triple(lo)-like CD4(+) T cells zsuper> T cells infiltrated the skin, whereas Scurfy Triple(lo)CD4(+) T cells induced colitis and wasting disease. These findings indicate that the affinity of the T cell antigen receptor for self antigen drives the differentiation of Treg cells into distinct subsets with non-overlapping regulatory activities.
Collapse
Affiliation(s)
- Lena Wyss
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Nephrology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Brian D Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Carolyn G King
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sonja Schallenberg
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Nicholas I McCarthy
- MRC Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Jun Young Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Luigi M Terracciano
- Institute of Pathology, Molecular Pathology Division, University Hospital of Basel, Basel, Switzerland
| | - Graham Anderson
- MRC Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ed Palmer
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Nephrology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
49
|
Llitjos JF, Auffray C, Alby-Laurent F, Rousseau C, Merdji H, Bonilla N, Toubiana J, Belaïdouni N, Mira JP, Lucas B, Chiche JD, Pène F. Sepsis-induced expansion of granulocytic myeloid-derived suppressor cells promotes tumour growth through Toll-like receptor 4. J Pathol 2016; 239:473-83. [PMID: 27178223 DOI: 10.1002/path.4744] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/25/2016] [Accepted: 04/27/2016] [Indexed: 02/02/2023]
Abstract
Severe sepsis remains a frequent and dreaded complication in cancer patients. Beyond the often fatal short-term outcome, the long-term sequelae of severe sepsis may also impact directly on the prognosis of the underlying malignancy in survivors. The immune system is involved in all stages of tumour development, in the detection of transforming and dying cells and in the prevention of tumour growth and dissemination. In fact, the profound and sustained immune defects induced by sepsis may constitute a privileged environment likely to favour tumour growth. We investigated the impact of sepsis on malignant tumour growth in a double-hit animal model of polymicrobial peritonitis, followed by subcutaneous inoculation of MCA205 fibrosarcoma cells. As compared to their sham-operated counterparts, post-septic mice exhibited accelerated tumour growth. This was associated with intratumoural accumulation of CD11b(+) Ly6G(high) polymorphonuclear cells (PMNs) that could be characterized as granulocytic myeloid-derived suppressor cells (G-MDSCs). Depletion of granulocytic cells in post-septic mice inhibited the sepsis-enhanced tumour growth. Toll-like receptor (TLR)-4 (Tlr4) and Myd88 deficiencies prevented sepsis-induced expansion of G-MDSCs and tumour growth. Our results demonstrate that the myelosuppressive environment induced by severe bacterial infections promotes malignant tumour growth, and highlight a critical role of CD11b(+) Ly6G(high) G-MDSCs under the control of TLR-dependent signalling. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jean-François Llitjos
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Réanimation Médicale, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cédric Auffray
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Fanny Alby-Laurent
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christophe Rousseau
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hamid Merdji
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nelly Bonilla
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julie Toubiana
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nadia Belaïdouni
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Paul Mira
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Réanimation Médicale, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bruno Lucas
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Daniel Chiche
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Réanimation Médicale, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Frédéric Pène
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Réanimation Médicale, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
50
|
Gubser C, Schmaler M, Rossi SW, Palmer E. Monoclonal regulatory T cells provide insights into T cell suppression. Sci Rep 2016; 6:25758. [PMID: 27210828 PMCID: PMC4876466 DOI: 10.1038/srep25758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/22/2016] [Indexed: 12/28/2022] Open
Abstract
Regulatory T cells (Tregs) have a crucial role in maintaining lymphocyte homeostasis. However an understanding of how Tregs function at a cellular and molecular level has not yet been fully elucidated. Here, we make use of a T cell receptor (TCR) transgenic, Rag−/− mouse expressing a Forkhead-Box-Protein P3 (Foxp3) transgene. This mouse provides a source of monoclonal CD4+ Foxp3+ T cells with a defined specificity. Here we show that monoclonal B3K506 Tregs are functional in vitro and in vivo and clearly require cognate antigen to be suppressive. We further show that the strength of Treg stimulation determines the strength of Treg mediated suppression. Finally we analysed various suppressive mechanisms used by monoclonal Tregs and found that Treg-Tconv proximity is a parameter, which correlates with enhanced suppression.
Collapse
Affiliation(s)
- Céline Gubser
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Mathias Schmaler
- Laboratory of Experimental Immunology, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Simona W Rossi
- Laboratory of Regulatory Immunology Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Ed Palmer
- Departments of Biomedicine and Nephrology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| |
Collapse
|