1
|
Wu J, Bloch N, Chang AY, Bhavsar R, Wang Q, Crawford A, DiLillo DJ, Vazzana K, Mohrs K, Dudgeon D, Patel S, Ahmed H, Garg V, Amatulli M, Antao OQ, Yan Y, Wang S, Ramos W, Krueger P, Adler C, Ni M, Wei Y, Guo C, Macdonald L, Huang T, Ullman E, Hermann A, Yancopoulos GD, Murphy AJ, Davis S, Olson WC, Lin JC, Smith E, Zhang T. A PD-1-targeted, receptor-masked IL-2 immunocytokine that engages IL-2Rα strengthens T cell-mediated anti-tumor therapies. Cell Rep Med 2024; 5:101747. [PMID: 39326410 PMCID: PMC11513833 DOI: 10.1016/j.xcrm.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
The clinical use of interleukin-2 (IL-2) for cancer immunotherapy is limited by severe toxicity. Emerging IL-2 therapies with reduced IL-2 receptor alpha (IL-2Rα) binding aim to mitigate toxicity and regulatory T cell (Treg) expansion but have had limited clinical success. Here, we show that IL-2Rα engagement is critical for the anti-tumor activity of systemic IL-2 therapy. A "non-α" IL-2 mutein induces systemic expansion of CD8+ T cells and natural killer (NK) cells over Tregs but exhibits limited anti-tumor efficacy. We develop a programmed cell death protein 1 (PD-1)-targeted, receptor-masked IL-2 immunocytokine, PD1-IL2Ra-IL2, which attenuates systemic IL-2 activity while maintaining the capacity to engage IL-2Rα on PD-1+ T cells. Mice treated with PD1-IL2Ra-IL2 show no systemic toxicities observed with unmasked IL-2 treatment yet achieve robust tumor growth control. Furthermore, PD1-IL2Ra-IL2 can be effectively combined with other T cell-mediated immunotherapies to enhance anti-tumor responses. These findings highlight the therapeutic potential of PD1-IL2Ra-IL2 as a targeted, receptor-masked, and "α-maintained" IL-2 therapy for cancer.
Collapse
Affiliation(s)
- Jiaxi Wu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA.
| | - Nicolin Bloch
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aaron Y Chang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Qingqing Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Katja Mohrs
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Supriya Patel
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Hassan Ahmed
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Vidur Garg
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Olivia Q Antao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yuetian Yan
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Shunhai Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Willy Ramos
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Pamela Krueger
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Chunguang Guo
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Lynn Macdonald
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Erica Ullman
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aynur Hermann
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | - Samuel Davis
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - John C Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Eric Smith
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Tong Zhang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
2
|
Leonard EK, Tomala J, Gould JR, Leff MI, Lin JX, Li P, Porter MJ, Johansen ER, Thompson L, Cao SD, Hou S, Henclova T, Huliciak M, Sargunas PR, Fabilane CS, Vaněk O, Kovar M, Schneider B, Raimondi G, Leonard WJ, Spangler JB. Engineered cytokine/antibody fusion proteins improve IL-2 delivery to pro-inflammatory cells and promote antitumor activity. JCI Insight 2024; 9:e173469. [PMID: 39115939 PMCID: PMC11457862 DOI: 10.1172/jci.insight.173469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Progress in cytokine engineering is driving therapeutic translation by overcoming these proteins' limitations as drugs. The IL-2 cytokine is a promising immune stimulant for cancer treatment but is limited by its concurrent activation of both pro-inflammatory immune effector cells and antiinflammatory regulatory T cells, toxicity at high doses, and short serum half-life. One approach to improve the selectivity, safety, and longevity of IL-2 is complexing with anti-IL-2 antibodies that bias the cytokine toward immune effector cell activation. Although this strategy shows potential in preclinical models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multiprotein drug and concerns regarding complex stability. Here, we introduced a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine toward immune effector cells. We optimized IC construction and engineered the cytokine/antibody affinity to improve immune bias. We demonstrated that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared with natural IL-2, both alone and combined with immune checkpoint inhibitors. Moreover, therapeutic efficacy was observed without inducing toxicity. This work presents a roadmap for the design and translation of cytokine/antibody fusion proteins.
Collapse
Affiliation(s)
- Elissa K. Leonard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jakub Tomala
- Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec, Czech Republic
- Department of Chemical & Biomolecular Engineering and
| | - Joseph R. Gould
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael I. Leff
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Peng Li
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mitchell J. Porter
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Eric R. Johansen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ladaisha Thompson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Shenda Hou
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tereza Henclova
- Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Maros Huliciak
- Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec, Czech Republic
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Charina S. Fabilane
- Program in Molecular Biophysics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bohdan Schneider
- Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Giorgio Raimondi
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery
| | - Warren J. Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering and
- Translational Tissue Engineering Center
- Department of Oncology
- Bloomberg-Kimmel Institute for Cancer Immunotherapy
- Sidney Kimmel Comprehensive Cancer Center; and
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Honing DY, Luiten RM, Matos TR. Regulatory T Cell Dysfunction in Autoimmune Diseases. Int J Mol Sci 2024; 25:7171. [PMID: 39000278 PMCID: PMC11241405 DOI: 10.3390/ijms25137171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs), a suppressive subpopulation of T cells, are potent mediators of peripheral tolerance, responsible for immune homeostasis. Many autoimmune diseases exhibit disruptions in Treg function or quantity, resulting in an imbalance between protective and pathogenic immune cells. Selective expansion or manipulation of Tregs is a promising therapeutic approach for autoimmune diseases. However, the extensive diversity of Treg subpopulations and the multiple approaches used for Treg identification leads to high complexity, making it difficult to develop a successful treatment capable of modulating Tregs. In this review, we describe the suppressive mechanisms, subpopulations, classification, and identification methodology for Tregs, and their role in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Dionne Y Honing
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Rosalie M Luiten
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Tiago R Matos
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Sanofi, 1105 BP Amsterdam, The Netherlands
| |
Collapse
|
4
|
Yoon S, Park S, Jung SE, Lee C, Kim WK, Choi ID, Ko G. Fermented Milk Containing Lacticaseibacillus rhamnosus SNU50430 Modulates Immune Responses and Gut Microbiota in Antibiotic-Treated Mice. J Microbiol Biotechnol 2024; 34:1299-1306. [PMID: 38755001 PMCID: PMC11239404 DOI: 10.4014/jmb.2401.01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Antibiotics are used to control infectious diseases. However, adverse effects of antibiotics, such as devastation of the gut microbiota and enhancement of the inflammatory response, have been reported. Health benefits of fermented milk are established and can be enhanced by the addition of probiotic strains. In this study, we evaluated effects of fermented milk containing Lacticaseibacillus rhamnosus (L. rhamnosus) SNUG50430 in a mouse model with antibiotic treatment. Fermented milk containing 2 × 105 colony-forming units of L. rhamnosus SNUG50430 was administered to six week-old female BALB/c mice for 1 week. Interleukin (IL)-10 levels in colon samples were significantly increased (P < 0.05) compared to water-treated mice, whereas interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) were decreased, of mice treated with fermented milk containing L. rhamnosus SNUG50430-antibiotics-treated (FM+LR+Abx-treated) mice. Phylum Firmicutes composition in the gut was restored and the relative abundances of several bacteria, including the genera Coprococcus and Lactobacillus, were increased in FM+LR+Abx-treated mice compared to PBS+Abx-treated mice. Interestingly, abundances of genus Coprococcus and Lactobacillus were positively correlated with IL-5 and IL-10 levels (P < 0.05) in colon samples and negative correlated with IFN-γ and TNF-α levels in serum samples (P < 0.001). Acetate and butyrate were increased in mice with fermented milk and fecal microbiota of FM+LR+Abx-treated mice were highly enriched with butyrate metabolism pathway compared to water-treated mice (P < 0.05). Thus, fermented milk containing L. rhamnosus SNUG50430 was shown to ameliorate adverse health effects caused by antibiotics through modulating immune responses and the gut microbiota.
Collapse
Affiliation(s)
- Sunghyun Yoon
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - SungJun Park
- N-Bio, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs, Inc., Seoul 08826, Republic of Korea
- weBiom Inc., Seoul 08826, Republic of Korea
| | - Seong Eun Jung
- R&BD Center, hy Co., Ltd., Yongin 17086, Republic of Korea
| | - Cheonghoon Lee
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Woon-Ki Kim
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Dong Choi
- R&BD Center, hy Co., Ltd., Yongin 17086, Republic of Korea
| | - GwangPyo Ko
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- N-Bio, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs, Inc., Seoul 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Ma Y, Jiang T, Zhu X, Xu Y, Wan K, Zhang T, Xie M. Efferocytosis in dendritic cells: an overlooked immunoregulatory process. Front Immunol 2024; 15:1415573. [PMID: 38835772 PMCID: PMC11148234 DOI: 10.3389/fimmu.2024.1415573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tangxing Jiang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Zhu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yizhou Xu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Wan
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingxuan Zhang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miaorong Xie
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Liston A, Pasciuto E, Fitzgerald DC, Yshii L. Brain regulatory T cells. Nat Rev Immunol 2024; 24:326-337. [PMID: 38040953 DOI: 10.1038/s41577-023-00960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/03/2023]
Abstract
The brain, long thought to be isolated from the peripheral immune system, is increasingly recognized to be integrated into a systemic immunological network. These conduits of immune-brain interaction and immunosurveillance processes necessitate the presence of complementary immunoregulatory mechanisms, of which brain regulatory T cells (Treg cells) are likely a key facet. Treg cells represent a dynamic population in the brain, with continual influx, specialization to a brain-residency phenotype and relatively rapid displacement by newly incoming cells. In addition to their functions in suppressing adaptive immunity, an emerging view is that Treg cells in the brain dampen down glial reactivity in response to a range of neurological insults, and directly assist in multiple regenerative and reparative processes during tissue pathology. The utility and malleability of the brain Treg cell population make it an attractive therapeutic target across the full spectrum of neurological conditions, ranging from neuroinflammatory to neurodegenerative and even psychiatric diseases. Therapeutic modalities currently under intense development include Treg cell therapy, IL-2 therapy to boost Treg cell numbers and multiple innovative approaches to couple these therapeutics to brain delivery mechanisms for enhanced potency. Here we review the state of the art of brain Treg cell knowledge together with the potential avenues for future integration into medical practice.
Collapse
Affiliation(s)
- Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Emanuela Pasciuto
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Center for Molecular Neurology, VIB, Antwerp, Belgium.
| | - Denise C Fitzgerald
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | - Lidia Yshii
- Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Phoon YP, Lopes JE, Pfannenstiel LW, Marcela Diaz-Montero C, Tian YF, Ernstoff MS, Funchain P, Ko JS, Winquist R, Losey HC, Melenhorst JJ, Gastman BR. Autologous human preclinical modeling of melanoma interpatient clinical responses to immunotherapeutics. J Immunother Cancer 2024; 12:e008066. [PMID: 38604813 PMCID: PMC11015209 DOI: 10.1136/jitc-2023-008066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Despite recent advances in immunotherapy, a substantial population of late-stage melanoma patients still fail to achieve sustained clinical benefit. Lack of translational preclinical models continues to be a major challenge in the field of immunotherapy; thus, more optimized translational models could strongly influence clinical trial development. To address this unmet need, we designed a preclinical model reflecting the heterogeneity in melanoma patients' clinical responses that can be used to evaluate novel immunotherapies and synergistic combinatorial treatment strategies. Using our all-autologous humanized melanoma mouse model, we examined the efficacy of a novel engineered interleukin 2 (IL-2)-based cytokine variant immunotherapy. METHODS To study immune responses and antitumor efficacy for human melanoma tumors, we developed an all-autologous humanized melanoma mouse model using clinically annotated, matched patient tumor cells and peripheral blood mononuclear cells (PBMCs). After inoculating immunodeficient NSG mice with patient tumors and an adoptive cell transfer of autologous PBMCs, mice were treated with anti-PD-1, a novel investigational engineered IL-2-based cytokine (nemvaleukin), or recombinant human IL-2 (rhIL-2). The pharmacodynamic effects and antitumor efficacy of these treatments were then evaluated. We used tumor cells and autologous PBMCs from patients with varying immunotherapy responses to both model the diversity of immunotherapy efficacy observed in the clinical setting and to recapitulate the heterogeneous nature of melanoma. RESULTS Our model exhibited long-term survival of engrafted human PBMCs without developing graft-versus-host disease. Administration of an anti-PD-1 or nemvaleukin elicited antitumor responses in our model that were patient-specific and were found to parallel clinical responsiveness to checkpoint inhibitors. An evaluation of nemvaleukin-treated mice demonstrated increased tumor-infiltrating CD4+ and CD8+ T cells, preferential expansion of non-regulatory T cell subsets in the spleen, and significant delays in tumor growth compared with vehicle-treated controls or mice treated with rhIL-2. CONCLUSIONS Our model reproduces differential effects of immunotherapy in melanoma patients, capturing the inherent heterogeneity in clinical responses. Taken together, these data demonstrate our model's translatability for novel immunotherapies in melanoma patients. The data are also supportive for the continued clinical investigation of nemvaleukin as a novel immunotherapeutic for the treatment of melanoma.
Collapse
Affiliation(s)
- Yee Peng Phoon
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Claudia Marcela Diaz-Montero
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ye F Tian
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Pauline Funchain
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | - Jan Joseph Melenhorst
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian R Gastman
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Radi H, Ferdosi-Shahandashti E, Kardar GA, Hafezi N. An Updated Review of Interleukin-2 Therapy in Cancer and Autoimmune Diseases. J Interferon Cytokine Res 2024; 44:143-157. [PMID: 38421721 DOI: 10.1089/jir.2023.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Interleukin-2 (IL-2) is a cytokine that acts in dual and paradoxical ways in the immunotherapy of cancers and autoimmune diseases. Numerous clinical trial studies have shown that the use of different doses of this cytokine in various autoimmune diseases, transplantations, and cancers has resulted in therapeutic success. However, side effects of varying severity have been observed in patients. In recent years, to prevent these side effects, IL-2 has been engineered to bind more specifically to its receptors on the cell surface, decreasing IL-2 toxicities in patients. In this review article, we focus on some recent clinical trial studies and analyze them to determine the appropriate dose of IL-2 drug with the least toxicities. In addition, we discuss the engineering performed on IL-2, which shows that engineered IL-2 increases the specificity function of IL-2 and decreases its adverse effects.
Collapse
Affiliation(s)
- Hale Radi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Gholam Ali Kardar
- National Institute for Genetic Engineering and Biotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Hafezi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Ptacin JL, Ma L, Caffaro CE, Acuff NV, Germar K, Severy P, Qu Y, Vela JL, Cai X, San Jose KM, Aerni HR, Chen DB, Esche E, Ismaili TK, Herman R, Pavlova Y, Pena MJ, Nguyen J, Koriazova LK, Shawver LK, Joseph IB, Mooney J, Peakman M, Milla ME. A CD25-biased interleukin-2 for autoimmune therapy engineered via a semi-synthetic organism. COMMUNICATIONS MEDICINE 2024; 4:58. [PMID: 38532017 DOI: 10.1038/s43856-024-00485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Natural cytokines are poorly suited as therapeutics for systemic administration due to suboptimal pharmacological and pharmacokinetic (PK) properties. Recombinant human interleukin-2 (rhIL-2) has shown promise for treatment of autoimmune (AI) disorders yet exhibits short systemic half-life and opposing immune responses that negate an appropriate therapeutic index. METHODS A semi-synthetic microbial technology platform was used to engineer a site-specifically pegylated form of rhIL-2 with enhanced PK, specificity for induction of immune-suppressive regulatory CD4 + T cells (Tregs), and reduced stimulation of off-target effector T and NK cells. A library of rhIL-2 molecules was constructed with single site-specific, biorthogonal chemistry-compatible non-canonical amino acids installed near the interface where IL-2 engages its cognate receptor βγ (IL-2Rβγ) signaling complex. Biorthogonal site-specific pegylation and functional screening identified variants that retained engagement of the IL-2Rα chain with attenuated potency at the IL-2Rβγ complex. RESULTS Phenotypic screening in mouse identifies SAR444336 (SAR'336; formerly known as THOR-809), rhIL-2 pegylated at H16, as a potential development candidate that specifically expands peripheral CD4+ Tregs with upregulation of markers that correlate with their suppressive function including FoxP3, ICOS and Helios, yet minimally expands CD8 + T or NK cells. In non-human primate, administration of SAR'336 also induces dose-dependent expansion of Tregs and upregulated suppressive markers without significant expansion of CD8 + T or NK cells. SAR'336 administration reduces inflammation in a delayed-type hypersensitivity mouse model, potently suppressing CD4+ and CD8 + T cell proliferation. CONCLUSION SAR'336 is a specific Treg activator, supporting its further development for the treatment of AI diseases.
Collapse
Affiliation(s)
- Jerod L Ptacin
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Lina Ma
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Carolina E Caffaro
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Nicole V Acuff
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | | | - Peter Severy
- Sanofi, 350 Water St., Cambridge, MA, 02141, USA
| | - Yanyan Qu
- Sanofi, 350 Water St., Cambridge, MA, 02141, USA
| | | | - Xinming Cai
- Sanofi, 350 Water St., Cambridge, MA, 02141, USA
| | - Kristine M San Jose
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Hans R Aerni
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - David B Chen
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Ean Esche
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Taylor K Ismaili
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Rob Herman
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Yelena Pavlova
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Michael J Pena
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Jasmine Nguyen
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Lilia K Koriazova
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Laura K Shawver
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Ingrid B Joseph
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Jill Mooney
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Mark Peakman
- Sanofi, 350 Water St., Cambridge, MA, 02141, USA
| | - Marcos E Milla
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA.
| |
Collapse
|
10
|
Shouse AN, LaPorte KM, Malek TR. Interleukin-2 signaling in the regulation of T cell biology in autoimmunity and cancer. Immunity 2024; 57:414-428. [PMID: 38479359 PMCID: PMC11126276 DOI: 10.1016/j.immuni.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 05/26/2024]
Abstract
Interleukin-2 (IL-2) is a critical cytokine for T cell peripheral tolerance and immunity. Here, we review how IL-2 interaction with the high-affinity IL-2 receptor (IL-2R) supports the development and homeostasis of regulatory T cells and contributes to the differentiation of helper, cytotoxic, and memory T cells. A critical element for each T cell population is the expression of CD25 (Il2rα), which heightens the receptor affinity for IL-2. Signaling through the high-affinity IL-2R also reinvigorates CD8+ exhausted T (Tex) cells in response to checkpoint blockade. We consider the molecular underpinnings reflecting how IL-2R signaling impacts these various T cell subsets and the implications for enhancing IL-2-dependent immunotherapy of autoimmunity, other inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Acacia N Shouse
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kathryn M LaPorte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
11
|
Lin Y, Wang X, Qin Y, Wang C, Zhou T, Zhang L, Su L, Ren W, Liao C. A single-agent fusion of human IL-2 and anti-IL-2 antibody that selectively expands regulatory T cells. Commun Biol 2024; 7:299. [PMID: 38461332 PMCID: PMC10925001 DOI: 10.1038/s42003-024-05987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
The occurrence of many autoimmune diseases takes root on the disrupted balance among Treg cells, Teff cells, etc. Low-dose interleukin-2 (IL-2) cytokine demonstrates promising clinical efficacy in the expansion of Treg cells and the treatment of autoimmune diseases. However, its clinical application is hindered by the small therapeutic index and short half-life. Previous studies have shown that non-covalent complex of human IL-2 and anti-IL-2 antibody biases cytokine activity towards Treg cells and extends IL-2's half-life. The clinical translation of such complex is non-trivial. In this study, we discover an anti-human IL-2 antibody and engineer a covalently-linked single-agent fusion of human IL-2 and its antibody that selectively expands Treg cells and exhibits superior disease control activity in animal models of ulcerative colitis and systemic lupus erythematosus, with proper safety profile and good developability. These studies pave the road for its clinical development in diverse autoimmune diseases.
Collapse
Affiliation(s)
- Yuan Lin
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Xue Wang
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Yuhao Qin
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Chengpan Wang
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Tang Zhou
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Long Zhang
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Lu Su
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Wenming Ren
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Cheng Liao
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China.
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China.
| |
Collapse
|
12
|
Tomasovic LM, Liu K, VanDyke D, Fabilane CS, Spangler JB. Molecular Engineering of Interleukin-2 for Enhanced Therapeutic Activity in Autoimmune Diseases. BioDrugs 2024; 38:227-248. [PMID: 37999893 PMCID: PMC10947368 DOI: 10.1007/s40259-023-00635-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The interleukin-2 (IL-2) cytokine plays a crucial role in regulating immune responses and maintaining immune homeostasis. Its immunosuppressive effects have been harnessed therapeutically via administration of low cytokine doses. Low-dose IL-2 has shown promise in the treatment of various autoimmune and inflammatory diseases; however, the clinical use of IL-2 is complicated by its toxicity, its pleiotropic effects on both immunostimulatory and immunosuppressive cell subsets, and its short serum half-life, which collectively limit the therapeutic window. As a result, there remains a considerable need for IL-2-based autoimmune disease therapies that can selectively target regulatory T cells with minimal off-target binding to immune effector cells in order to prevent cytokine-mediated toxicities and optimize therapeutic efficacy. In this review, we discuss exciting advances in IL-2 engineering that are empowering the development of novel therapies to treat autoimmune conditions. We describe the structural mechanisms of IL-2 signaling, explore current applications of IL-2-based compounds as immunoregulatory interventions, and detail the progress and challenges associated with clinical adoption of IL-2 therapies. In particular, we focus on protein engineering approaches that have been employed to optimize the regulatory T-cell bias of IL-2, including structure-guided or computational design of cytokine mutants, conjugation to polyethylene glycol, and the development of IL-2 fusion proteins. We also consider future research directions for enhancing the translational potential of engineered IL-2-based therapies. Overall, this review highlights the immense potential to leverage the immunoregulatory properties of IL-2 for targeted treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Luke M Tomasovic
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathy Liu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek VanDyke
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Charina S Fabilane
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
13
|
Lansberry TR, Stabler CL. Immunoprotection of cellular transplants for autoimmune type 1 diabetes through local drug delivery. Adv Drug Deliv Rev 2024; 206:115179. [PMID: 38286164 PMCID: PMC11140763 DOI: 10.1016/j.addr.2024.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune condition that results in the destruction of insulin-secreting β cells of the islets of Langerhans. Allogeneic islet transplantation could be a successful treatment for T1DM; however, it is limited by the need for effective, permanent immunosuppression to prevent graft rejection. Upon transplantation, islets are rejected through non-specific, alloantigen specific, and recurring autoimmune pathways. Immunosuppressive agents used for islet transplantation are generally successful in inhibiting alloantigen rejection, but they are suboptimal in hindering non-specific and autoimmune pathways. In this review, we summarize the challenges with cellular immunological rejection and therapeutics used for islet transplantation. We highlight agents that target these three immune rejection pathways and how to package them for controlled, local delivery via biomaterials. Exploring macro-, micro-, and nano-scale immunomodulatory biomaterial platforms, we summarize their advantages, challenges, and future directions. We hypothesize that understanding their key features will help identify effective platforms to prevent islet graft rejection. Outcomes can further be translated to other cellular therapies beyond T1DM.
Collapse
Affiliation(s)
- T R Lansberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - C L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Immunology and Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
14
|
Lokau J, Petasch LM, Garbers C. The soluble IL-2 receptor α/CD25 as a modulator of IL-2 function. Immunology 2024; 171:377-387. [PMID: 38037265 DOI: 10.1111/imm.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
The pleiotropic cytokine interleukin-2 (IL-2) is an integral regulator of healthy and pathological immune responses, with the most important role in regulating the homeostasis of regulatory T cells. IL-2 signalling involves three distinct receptors: The IL-2 receptor α (IL-2Rα/CD25), IL-2Rβ, and IL-2Rγ/γc . While IL-2Rβ and γc are essential for signal transduction, IL-2Rα regulates the affinity of the receptor complex towards IL-2. A soluble form of the IL-2Rα (sIL-2Rα) is present in the blood of healthy individuals and increased under various pathological conditions. Although it is known that the sIL-2Rα retains its ability to bind IL-2, it is not fully understood how this molecule affects IL-2 function and thus immune responses. Here, we summarize the current knowledge on the generation and function of the sIL-2Rα. We describe the molecular mechanisms leading to sIL-2Rα generation and discuss the different IL-2 modulating functions that have been attributed to the sIL-2Rα. Finally, we describe attempts to utilize the sIL-2Rα as a therapeutic tool.
Collapse
Affiliation(s)
- Juliane Lokau
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Lynn M Petasch
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Efe O, Gassen RB, Morena L, Ganchiku Y, Al Jurdi A, Lape IT, Ventura-Aguiar P, LeGuern C, Madsen JC, Shriver Z, Babcock GJ, Borges TJ, Riella LV. A humanized IL-2 mutein expands Tregs and prolongs transplant survival in preclinical models. J Clin Invest 2024; 134:e173107. [PMID: 38426492 PMCID: PMC10904054 DOI: 10.1172/jci173107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Long-term organ transplant survival remains suboptimal, and life-long immunosuppression predisposes transplant recipients to an increased risk of infection, malignancy, and kidney toxicity. Promoting the regulatory arm of the immune system by expanding Tregs may allow immunosuppression minimization and improve long-term graft outcomes. While low-dose IL-2 treatment can expand Tregs, it has a short half-life and off-target expansion of NK and effector T cells, limiting its clinical applicability. Here, we designed a humanized mutein IL-2 with high Treg selectivity and a prolonged half-life due to the fusion of an Fc domain, which we termed mIL-2. We showed selective and sustainable Treg expansion by mIL-2 in 2 murine models of skin transplantation. This expansion led to donor-specific tolerance through robust increases in polyclonal and antigen-specific Tregs, along with enhanced Treg-suppressive function. We also showed that Treg expansion by mIL-2 could overcome the failure of calcineurin inhibitors or costimulation blockade to prolong the survival of major-mismatched skin grafts. Validating its translational potential, mIL-2 induced a selective and sustainable in vivo Treg expansion in cynomolgus monkeys and showed selectivity for human Tregs in vitro and in a humanized mouse model. This work demonstrated that mIL-2 can enhance immune regulation and promote long-term allograft survival, potentially minimizing immunosuppression.
Collapse
Affiliation(s)
- Orhan Efe
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| | | | - Leela Morena
- Center for Transplantation Sciences, Department of Surgery
| | | | - Ayman Al Jurdi
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| | | | | | | | - Joren C. Madsen
- Center for Transplantation Sciences, Department of Surgery
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| |
Collapse
|
16
|
Wang X, Liu Z, Wang D, Zhang Y, Zhang H, Xue F, Wang X, Tang Z, Han X. Immunoswitch Nanomodulators Enable Active Targeting and Selective Proliferation of Regulatory T Cells for Multiple Sclerosis Therapy. ACS NANO 2024; 18:770-782. [PMID: 38113242 DOI: 10.1021/acsnano.3c09225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Interleukin-2 (IL-2) used in multiple sclerosis (MS) therapy modulates the balance between regulatory T (Treg) cells and effector T (Teff) cells. However, the off-target activation of Teff cells by IL-2 limits its clinical application. Therefore, a rapidly prepared immunoswitch nanomodulator termed aT-IL2C NPs was developed, which specifically recognized Treg cells with high TIGIT expression thanks to the presence of an anti-TIGIT and an IL-2/JES6-1 complex (IL2C) being delivered to Treg cells but not to Teff cells with low TIGIT expression. Then, IL2C released IL-2 due to the specific expression of the high-affinity IL-2 receptor on Treg cells, thus enabling the active targeting and selective proliferation of Treg cells. Moreover, the anti-TIGIT of aT-IL2C NPs selectively inhibited the proliferation of Teff cells while leaving the proliferation of Treg cells unaffected. In addition, since the IL-2 receptor on Teff cells had medium-affinity, the IL2C hardly released IL-2 to Teff cells, thus enabling the inhibition of Teff cell proliferation. The treatment of experimental autoimmune encephalomyelitis (EAE) mice with aT-IL2C NPs ameliorated the severity of the EAE and restored white matter integrity. Collectively, this work described a potential promising agent for effective MS therapy.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Zhilin Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Di Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| | - Yingyu Zhang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| | - Honglei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Fuxin Xue
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Xuemei Han
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| |
Collapse
|
17
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
18
|
Niederlova V, Tsyklauri O, Kovar M, Stepanek O. IL-2-driven CD8 + T cell phenotypes: implications for immunotherapy. Trends Immunol 2023; 44:890-901. [PMID: 37827864 PMCID: PMC7615502 DOI: 10.1016/j.it.2023.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
The therapeutic potential of interleukin (IL)-2 in cancer treatment has been known for decades, yet its widespread adoption in clinical practice remains limited. Recently, chimeric proteins of an anti-PD-1 antibody and suboptimal IL-2 variants were shown to stimulate potent antitumor and antiviral immunity by inducing unique effector CD8+ T cells in mice. A similar subset of cytotoxic T cells is induced by depletion of regulatory T cells (Tregs), suggesting IL-2 sequestration as a major mechanism through which regulatory T cells suppress activated CD8+ T cells. Here, we present our view of how IL-2-based biologicals can boost the antitumor response at a cellular level, and propose that the role of Tregs following such treatments may have been previously overestimated.
Collapse
Affiliation(s)
- Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
19
|
Sharma P, Arora A. Basic Understanding of Liver Transplant Immunology. J Clin Exp Hepatol 2023; 13:1091-1102. [PMID: 37975047 PMCID: PMC10643508 DOI: 10.1016/j.jceh.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/14/2023] [Indexed: 11/19/2023] Open
Abstract
The liver is a specialized organ and plays an important role in our immune system. The liver constitutes parenchymal cells which are hepatocytes and cholangiocytes (60-80%) and non-parenchymal cells like liver sinusoidal endothelial cells (LSECs), hepatic satellite/Ito cells, Kupffer cells, neutrophils, mononuclear cells, T and B lymphocytes (conventional and non-conventional), natural killer cells, and natural killer T (NKT) cells. The liver mounts a rapid and strong immune response, under unfavorable conditions and acts as an immune tolerance to a variety of non-pathogenic antigens. This delicate and dynamic interaction between different kinds of immune cells in the liver maintains a balance between immune screening and immune tolerance. The liver allografts are privileged immunologically; however, allograft rejection is not uncommon and is classified as cell or antibody-mediated. Advancements in transplant immunology help in the prevention of allografts rejection by immune reactions of the host thus leading to better graft and host survival. Fewer patients may not require immunosuppression due to systemic donor-specific T-cell tolerance. The liver tolerance mechanism is poorly studied, and LSEC and unconventional lymphocytes play an important role that dampens T cell response either by inducing apoptosis of cells or inhibiting co-stimulatory pathways. Newer cell-based therapy based on Treg, dendritic cells, and mesenchymal stromal cells will probably change the future of immunosuppression. Various invasive and non-invasive biomarkers and artificial intelligence have also been investigated to predict graft survival, post-transplant complications, and immunotolerance in the future.
Collapse
Affiliation(s)
- Praveen Sharma
- Department of Gastroenterology, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil Arora
- Department of Gastroenterology and Hepatology, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
20
|
Lykhopiy V, Malviya V, Humblet-Baron S, Schlenner SM. "IL-2 immunotherapy for targeting regulatory T cells in autoimmunity". Genes Immun 2023; 24:248-262. [PMID: 37741949 PMCID: PMC10575774 DOI: 10.1038/s41435-023-00221-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
FOXP3+ regulatory T cells (Treg) are indispensable for immune homoeostasis and for the prevention of autoimmune diseases. Interleukin-2 (IL-2) signalling is critical in all aspects of Treg biology. Consequences of defective IL-2 signalling are insufficient numbers or dysfunction of Treg and hence autoimmune disorders in human and mouse. The restoration and maintenance of immune homoeostasis remain central therapeutic aims in the field of autoimmunity. Historically, broadly immunosuppressive drugs with serious side-effects have been used for the treatment of autoimmune diseases or prevention of organ-transplant rejection. More recently, ex vivo expanded or in vivo stimulated Treg have been shown to induce effective tolerance in clinical trials supporting the clinical benefit of targeting natural immunosuppressive mechanisms. Given the central role of exogenous IL-2 in Treg homoeostasis, a new and promising focus in drug development are IL-2-based approaches for in vivo targeted expansion of Treg or for enhancement of their suppressive activity. In this review, we summarise the role of IL-2 in Treg biology and consequences of dysfunctional IL-2 signalling pathways. We then examine evidence of efficacy of IL-2-based biological drugs targeting Treg with specific focus on therapeutic candidates in clinical trials and discuss their limitations.
Collapse
Affiliation(s)
- Valentina Lykhopiy
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
- argenx BV, Industriepark Zwijnaarde 7, 9052, Ghent, Belgium
| | - Vanshika Malviya
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Susan M Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Wobma H, Kapadia M, Kim HT, Alvarez-Calderon F, Baumeister SHC, Duncan C, Forrest S, Gorfinkel L, Huang J, Lehmann LE, Li H, Schwartz M, Koreth J, Ritz J, Kean LS, Whangbo JS. Real-world experience with low-dose IL-2 for children and young adults with refractory chronic graft-versus-host disease. Blood Adv 2023; 7:4647-4657. [PMID: 37603347 PMCID: PMC10448423 DOI: 10.1182/bloodadvances.2023009729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
The majority of patients with chronic graft-versus-host disease (cGVHD) are steroid refractory (SR), creating a need for safe and effective therapies. Subcutaneous low-dose interleukin-2 (LD IL-2), which preferentially expands CD4+ regulatory T cells (Tregs), has been evaluated in 5 clinical trials at our center with partial responses (PR) in ∼50% of adults and 82% of children by week 8. We now report additional real-world experience with LD IL-2 in 15 children and young adults. We conducted a retrospective chart review of patients with SR-cGVHD at our center who received LD IL-2 from August 2016 to July 2022 not on a research trial. The median age at start of LD IL-2 was 10.4 years (range, 1.2-23.2 years) at a median of 234 days from cGVHD diagnosis (range, 11-542 days). Patients had a median of 2.5 (range, 1-3) active organs at LD IL-2 start and received a median of 3 (range, 1-5) prior therapies. The median duration of LD IL-2 therapy was 462 days (range, 8-1489 days). Most patients received 1 × 106 IU/m2 per day. There were no serious adverse effects. The overall response rate in 13 patients who received >4 weeks of therapy was 85% (complete response, n = 5; PR, n = 6) with responses in diverse organs. Most patients significantly weaned corticosteroids. Tregs preferentially expanded with a median peak fold increase of 2.8 in the ratio of Tregs to CD4+ conventional T cells (range, 2.0-19.8) by 8 weeks on therapy. LD IL-2 is a well-tolerated, steroid-sparing agent with a high response rate in children and young adults with SR-cGVHD.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children’s Hospital, Boston, MA
| | - Malika Kapadia
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Haesook T. Kim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Francesca Alvarez-Calderon
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Susanne H. C. Baumeister
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Christine Duncan
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Suzanne Forrest
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Lev Gorfinkel
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer Huang
- Division of Immunology, Boston Children’s Hospital, Boston, MA
| | - Leslie E. Lehmann
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Hojun Li
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Marc Schwartz
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - John Koreth
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Leslie S. Kean
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer S. Whangbo
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
22
|
LaPorte KM, Hernandez R, Santos Savio A, Malek TR. Robust IL-2-dependent antitumor immunotherapy requires targeting the high-affinity IL-2R on tumor-specific CD8 + T cells. J Immunother Cancer 2023; 11:e006611. [PMID: 37270181 PMCID: PMC10255137 DOI: 10.1136/jitc-2022-006611] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Development of interleukin (IL)-2-dependent antitumor responses focus on targeting the intermediate affinity IL-2R to stimulate memory-phenotypic CD8+ T and natural killer (NK) cells while minimizing regulatory T cell (Treg) expansion. However, this approach may not effectively engage tumor-specific T effector cells. Since tumor-antigen specific T cells upregulate the high-affinity IL-2R, we tested an IL-2 biologic, mouse IL-2/CD25, with selectivity toward the high-affinity IL-2R to support antitumor responses to tumors that vary in their immunogenicity. METHODS Mice were first implanted with either CT26, MC38, B16.F10, or 4T1 and after a tumor mass developed, they were treated with high-dose (HD) mouse (m)IL-2/CD25 alone or in combination with anti-programmed cell death protein-1 (PD-1) checkpoint blockade. Tumor growth was monitored and in parallel the immune signature in the tumor microenvironment (TME) was determined by a combination of multiparameter flow cytometry, functional assays, and enumeration of tumor-reactive T cells. RESULTS We show that HD mIL-2/CD25, which preferentially stimulates the high-affinity IL-2R, but not IL-2/anti-IL-2 complexes with preferential activity toward the intermediate-affinity IL-2R, supports vigorous antitumor responses to immunogenic tumors as a monotherapy that were enhanced when combined with anti-PD-1. Treatment of CT26-bearing mice with HD mIL-2/CD25 led to a high CD8+:Treg ratio in the TME, increased frequency and function of tumor-specific CD8+ T effector cells with a less exhausted phenotype, and antitumor memory responses. CONCLUSIONS Targeting the high-affinity IL-2R on tumor-specific T cells with HD mIL-2/CD25 alone or with PD-1 blockade supports antitumor responses, where the resulting memory response may afford long-term protection against tumor re-emergence.
Collapse
Affiliation(s)
- Kathryn M LaPorte
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rosmely Hernandez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alicia Santos Savio
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
23
|
Qureshi FM, Panzer JK, Põder J, Malek TR, Caicedo A. Immunotherapy With Low-Dose IL-2/CD25 Prevents β-Cell Dysfunction and Dysglycemia in Prediabetic NOD Mice. Diabetes 2023; 72:769-780. [PMID: 36939730 PMCID: PMC10202767 DOI: 10.2337/db22-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/15/2023] [Indexed: 03/21/2023]
Abstract
Low-dose IL-2 is a promising immunotherapy in clinical trials for treating type 1 diabetes. A new IL-2 analog, IL-2/CD25 fusion protein, has been shown to more efficiently delay or prevent diabetes in NOD mice by expanding the population of activated regulatory T cells. This therapy is intended for use before clinical diagnosis, in the early stages of type 1 diabetes progression. During this prediabetic period, there is a chronic decline in β-cell function that has long-term implications for disease pathogenesis. Yet, to date, the effects of IL-2/CD25 on β-cell function have not been evaluated. In this study, we treated prediabetic NOD mice with low-dose mouse IL-2/CD25 over 5 weeks and determined its impact on β-cell function. This treatment limited the progressive impairment of glucose tolerance and insulin secretion typical of the later stages of prediabetes. Intracellular Ca2+ responses to glucose in β-cells became more robust and synchronous, indicating that changing the local immune cell infiltrate with IL-2/CD25 preserved β-cell function even after treatment cessation. Our study thus provides mechanistic insight and serves as a steppingstone for future research using low-dose IL-2/CD25 immunotherapy in patients. ARTICLE HIGHLIGHTS Immunotherapies such as IL-2/CD25 are known to prevent or delay diabetes. However, their impact on individual β-cell function is not yet understood. Female NOD mice progress from stage 1 to 2 pre-type 1 diabetes between 12 and 17 weeks. Treatment with mouse IL-2 (mIL-2)/CD25 prevents this progression even after treatment cessation. Individual β-cell function (measured via intracellular Ca2+ responses to glucose) declines during the pathogenesis of type 1 diabetes. Treatment with mIL-2/CD25 therapy limits β-cell dysfunction, and function continues to improve after treatment cessation. Insulin secretion is improved with mIL-2/CD25 therapy.
Collapse
Affiliation(s)
- Farhan M. Qureshi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Molecular, Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL
| | - Julia K. Panzer
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Janika Põder
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Thomas R. Malek
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Department of Molecular, Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
24
|
Harris F, Berdugo YA, Tree T. IL-2-based approaches to Treg enhancement. Clin Exp Immunol 2023; 211:149-163. [PMID: 36399073 PMCID: PMC10019135 DOI: 10.1093/cei/uxac105] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/12/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Immune homeostasis is heavily dependent on the action of regulatory T cells (Tregs) which act to suppress the activation of many immune cell types including autoreactive conventional T cells. A body of evidence has shown that Tregs are intrinsically defective in many common autoimmune diseases, and gene polymorphisms which increase the susceptibility of autoimmune disease development have implicated the interleukin-2 (IL-2) signaling pathway as a key dysregulated mechanism. IL-2 is essential for Treg function and survival, and Tregs are highly sensitive to low levels of this cytokine in their environment. This review will revisit the rationale behind using low-dose IL-2 as a therapy to treat autoimmune diseases and evaluate the outcomes of trials to date. Furthermore, novel engineered IL-2 therapies with increased Treg specificity have shown promise in pre-clinical studies and human clinical trials for some agents have begun. Future studies will determine whether low-dose IL-2 or engineered IL-2 therapies can change the course of autoimmune and inflammatory diseases in patients.
Collapse
Affiliation(s)
- Ffion Harris
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Yoana Arroyo Berdugo
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Timothy Tree
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
- National Institute of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust, King’s College London, London, UK
| |
Collapse
|
25
|
McCallion O, Bilici M, Hester J, Issa F. Regulatory T-cell therapy approaches. Clin Exp Immunol 2023; 211:96-107. [PMID: 35960852 PMCID: PMC10019137 DOI: 10.1093/cei/uxac078] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) have enormous therapeutic potential to treat a variety of immunopathologies characterized by aberrant immune activation. Adoptive transfer of ex vivo expanded autologous Tregs continues to progress through mid- to late-phase clinical trials in several disease spaces and has generated promising preliminary safety and efficacy signals to date. However, the practicalities of this strategy outside of the clinical trial setting remain challenging. Here, we review the current landscape of regulatory T-cell therapy, considering emergent approaches and technologies presenting novel ways to engage Tregs, and reflect on the progress necessary to deliver their therapeutic potential to patients.
Collapse
Affiliation(s)
- Oliver McCallion
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Merve Bilici
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Correspondence. Fadi Issa, Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
26
|
Malla R, Adem M, Chakraborty A. Complexity and diversity of FOXP3 isoforms: Novel insights into the regulation of the immune response in metastatic breast cancer. Int Immunopharmacol 2023; 118:110015. [PMID: 36931171 DOI: 10.1016/j.intimp.2023.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
FOXP3 is a key transcription factor in the regulation of immune responses, and recent studies have uncovered the complexity and diversity of FOXP3 isoforms in various cancers, including metastatic breast cancers (mBCs). It has dual role in the tumor microenvironment of mBCs. This review aims to provide novel insights into the complexity and diversity of FOXP3 isoforms in the regulation of the immune response in breast cancer. We discuss the molecular mechanisms underlying the function of FOXP3 isoforms, including their interaction with other proteins, regulation of gene expression, and impact on the immune system. We also highlight the importance of understanding the role of FOXP3 isoforms in breast cancer and the potential for using them as therapeutic targets. This review highlights the crucial role of FOXP3 isoforms in the regulation of the immune response in breast cancer and underscores the need for further research to fully comprehend their complex and diverse functions.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Meghapriya Adem
- Department of Biotechnology, Sri Padmavathi Mahila Visvavidhyalayam, Tirupati 517502, Andhra Pradesh, India
| | - Anindita Chakraborty
- Radiation Biology Laboratory, UGC-DAE-CSR, Kolkata Centere, Kolkata 700098, West Bengal, India
| |
Collapse
|
27
|
Research advances on targeted-Treg therapies on immune-mediated kidney diseases. Autoimmun Rev 2023; 22:103257. [PMID: 36563769 DOI: 10.1016/j.autrev.2022.103257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The primary function of regulatory T cells (Tregs) is blocking the pathogenic immunological response mediated by autoreactive cells, establishing and maintaining immune homeostasis in tissues. Kidney diseases are often caused by Immune imbalance, including alloimmune graft damage after renal transplantation, direct immune-mediated kidney diseases like membranous nephropathy (MN) and anti-glomerular basement membrane (anti-GBM) glomerulonephritis, as well as indirect immune-mediated ones like Anti-neutrophil cytoplasmic antibody-associated vasculitis (AAVs), IgA nephropathy (IgAN) and lupus nephritis (LN). Treg cells are deficient numerically and/or functionally in those kidney diseases. Targeted-Treg therapies, including adoptive Tregs transfer therapy and low-dose IL-2 therapy, have begun to thrive in treating autoimmune diseases in recent years. However, the clinical use of targeted Treg-therapies is rarely mentioned in those kidney diseases above except for kidney transplantation. This article mainly discusses the newest progressions of targeted-Treg therapies in those specific examples of immune-mediated kidney diseases. Meanwhile, we also reviewed the main factors that affect Treg development and differentiation, hoping to inspire new strategies to develop target Tregs-therapies. Lastly, we emphasize the significant impediments and prospects to the clinical translation of target-Treg therapy. We advocate for more preclinical and clinical studies on target Tregs-therapies to decipher Tregs in those diseases.
Collapse
|
28
|
Ménoret S, Tesson L, Remy S, Gourain V, Sérazin C, Usal C, Guiffes A, Chenouard V, Ouisse LH, Gantier M, Heslan JM, Fourgeux C, Poschmann J, Guillonneau C, Anegon I. CD4 + and CD8 + regulatory T cell characterization in the rat using a unique transgenic Foxp3-EGFP model. BMC Biol 2023; 21:8. [PMID: 36635667 PMCID: PMC9837914 DOI: 10.1186/s12915-022-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Regulatory T cells (Treg) in diverse species include CD4+ and CD8+ T cells. In all species, CD8+ Treg have been only partially characterized and there is no rat model in which CD4+ and CD8+ FOXP3+ Treg are genetically tagged. RESULTS We generated a Foxp3-EGFP rat transgenic line in which FOXP3 gene was expressed and controlled EGFP. CD4+ and CD8+ T cells were the only cells that expressed EGFP, in similar proportion as observed with anti-FOXP3 antibodies and co-labeled in the same cells. CD4+EGFP+ Treg were 5-10 times more frequent than CD8+EGFP+ Treg. The suppressive activity of CD4+ and CD8+ Treg was largely confined to EGFP+ cells. RNAseq analyses showed similarities but also differences among CD4+ and CD8+ EGFP+ cells and provided the first description of the natural FOXP3+CD8+ Treg transcriptome. In vitro culture of CD4+ and CD8+ EGFP- cells with TGFbeta and IL-2 generated induced EGFP+ Treg. CD4+ and CD8+ EGFP+ Treg were expanded upon in vivo administration of a low dose of IL-2. CONCLUSIONS This new and unique rat line constitutes a useful model to identify and isolate viable CD4+ and CD8+ FOXP3+ Treg. Additionally, it allows to identify molecules expressed in CD8+ Treg that may allow to better define their phenotype and function not only in rats but also in other species.
Collapse
Affiliation(s)
- Séverine Ménoret
- grid.277151.70000 0004 0472 0371Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, F-44000 Nantes, France ,grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Laurent Tesson
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Séverine Remy
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Victor Gourain
- grid.277151.70000 0004 0472 0371Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, F-44000 Nantes, France
| | - Céline Sérazin
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Claire Usal
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Aude Guiffes
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Vanessa Chenouard
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Malika Gantier
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Jean-Marie Heslan
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Cynthia Fourgeux
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Jeremie Poschmann
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Carole Guillonneau
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Ignacio Anegon
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| |
Collapse
|
29
|
VanDyke D, Iglesias M, Tomala J, Young A, Smith J, Perry JA, Gebara E, Cross AR, Cheung LS, Dykema AG, Orcutt-Jahns BT, Henclová T, Golias J, Balolong J, Tomasovic LM, Funda D, Meyer AS, Pardoll DM, Hester J, Issa F, Hunter CA, Anderson MS, Bluestone JA, Raimondi G, Spangler JB. Engineered human cytokine/antibody fusion proteins expand regulatory T cells and confer autoimmune disease protection. Cell Rep 2022; 41:111478. [PMID: 36261022 PMCID: PMC9631798 DOI: 10.1016/j.celrep.2022.111478] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/12/2022] Open
Abstract
Low-dose human interleukin-2 (hIL-2) treatment is used clinically to treat autoimmune disorders due to the cytokine's preferential expansion of immunosuppressive regulatory T cells (Tregs). However, off-target immune cell activation and short serum half-life limit the clinical potential of IL-2 treatment. Recent work showed that complexes comprising hIL-2 and the anti-hIL-2 antibody F5111 overcome these limitations by preferentially stimulating Tregs over immune effector cells. Although promising, therapeutic translation of this approach is complicated by the need to optimize dosing ratios and by the instability of the cytokine/antibody complex. We leverage structural insights to engineer a single-chain hIL-2/F5111 antibody fusion protein, termed F5111 immunocytokine (IC), which potently and selectively activates and expands Tregs. F5111 IC confers protection in mouse models of colitis and checkpoint inhibitor-induced diabetes mellitus. These results provide a roadmap for IC design and establish a Treg-biased immunotherapy that could be clinically translated for autoimmune disease treatment.
Collapse
Affiliation(s)
- Derek VanDyke
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Marcos Iglesias
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jakub Tomala
- Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec 252 50, Czech Republic
| | - Arabella Young
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California San Francisco, San Francisco, CA 94143, USA; Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jennifer Smith
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joseph A Perry
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Gebara
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Amy R Cross
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Laurene S Cheung
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Arbor G Dykema
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Brian T Orcutt-Jahns
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tereza Henclová
- Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec 252 50, Czech Republic
| | - Jaroslav Golias
- Institute of Microbiology of the Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Jared Balolong
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Luke M Tomasovic
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - David Funda
- Institute of Microbiology of the Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Aaron S Meyer
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Fadi Issa
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Christopher A Hunter
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California San Francisco, San Francisco, CA 94143, USA; Sonoma Biotherapeutics, South San Francisco, CA 94080, USA
| | - Giorgio Raimondi
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
30
|
Hernandez R, Põder J, LaPorte KM, Malek TR. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat Rev Immunol 2022; 22:614-628. [PMID: 35217787 DOI: 10.1038/s41577-022-00680-w] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
Abstract
Preclinical studies of the T cell growth factor activity of IL-2 resulted in this cytokine becoming the first immunotherapy to be approved nearly 30 years ago by the US Food and Drug Administration for the treatment of cancer. Since then, we have learnt the important role of IL-2 in regulating tolerance through regulatory T cells (Treg cells) besides promoting immunity through its action on effector T cells and memory T cells. Another pivotal event in the history of IL-2 research was solving the crystal structure of IL-2 bound to its tripartite receptor, which spurred the development of cell type-selective engineered IL-2 products. These new IL-2 analogues target Treg cells to counteract the dysregulated immune system in the context of autoimmunity and inflammatory disorders or target effector T cells, memory T cells and natural killer cells to enhance their antitumour responses. IL-2 biologics have proven to be effective in preclinical studies and clinical assessment of some is now underway. These studies will soon reveal whether engineered IL-2 biologics are truly capable of harnessing the IL-2-IL-2 receptor pathway as effective monotherapies or combination therapies for autoimmunity and cancer.
Collapse
Affiliation(s)
- Rosmely Hernandez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Janika Põder
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kathryn M LaPorte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
31
|
Immune Infiltration-Related ceRNA Network Revealing Potential Biomarkers for Prognosis of Head and Neck Squamous Cell Carcinoma. DISEASE MARKERS 2022; 2022:1014347. [PMID: 36097539 PMCID: PMC9463596 DOI: 10.1155/2022/1014347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a frequently lethal malignancy, and the mortality is considerably high. The tumor microenvironment (TME) has been identified as a critical participation in cancer development, treatment, and prognosis. However, competing endogenous RNA (ceRNA) networks grouping with immune/stromal scores of HNSCC patients need to be further illustrated. Therefore, our study aimed to provide clues for searching promising prognostic markers of TME in HNSCC. Materials and Methods ESTIMATE algorithm was used to calculate immune scores and stromal scores of the enrolled HNSCC patients. Differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified by comparing the expression difference between high and low immune/stromal scores. Then, a ceRNA network and protein-protein interaction (PPI) network were constructed for selecting hub regulators. In addition, survival analysis was performed to access the association between immune scores, stromal scores, and differentially expressed RNAs in the ceRNA network and the overall survival (OS) of HNSCC patients. Then, the GSE65858 datasets from Gene Expression Omnibus (GEO) database was used for verification. At last, the difference between the clinical characteristics and immune cell infiltration in different expression groups of IL10RA, PRF1, and IL2RA was analyzed. Results Survival analysis showed a better OS in the high immune score group, and then we constructed a ceRNA network composed of 97 DEGs, 79 DELs and 22 DEMs. Within the ceRNA network, FOXP3, IL10RA, STAT5A, PRF1, IL2RA, miR-148a-3p, miR-3065-3p, and lncRNAs, including CXCR2P1, HNRNPA1P21, CTA-384D8.36, and IGHV1OR15-2, were closely correlated with the OS of HNSCC patients. Especially, using the data from GSE65858, we successfully verified that IL10RA, PRF1, and IL2RA were not only significantly upregulated in patients high immune scores, but also their high expressions were associated with longer survival time. In addition, stratified analysis showed that PRF1 and IL2RA might be involved in the mechanism of tumor progress. Conclusion In conclusion, we constructed a ceRNA network related to the TME of HNSCC, which provides candidates for therapeutic intervention and prognosis evaluation.
Collapse
|
32
|
Uslu M, Albayrak E, Kocabaş F. Competitive inhibition of IL-2/IL-2R has a dual effect on HSC ex vivo expansion and IL-2R (CD25) content. Int Immunopharmacol 2022; 110:109035. [PMID: 35834953 DOI: 10.1016/j.intimp.2022.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Interleukin-2 (IL-2) and its receptor play a pivotal role in the regulation of immune response and possess both immune-regulatory and immune-stimulatory functions. As a cytokine of lymphoid cells, the role of IL-2 has been revealed in hematopoietic stem cell (HSC) maintenance and proper hematopoiesis. Here, we investigated that small molecule Ro 26-4550 trifluoroacetate (Ro) mediated competitive inhibition of IL-2 and its receptor alpha subunit (IL-2Rα) throughout ex vivo culture. Ro treatment induced murine and human ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs). Ro treated HSPCs sustained self-renewal ability and low apoptotic activity. As a competitive inhibitor of IL-2/IL-2Rα interaction, Ro small molecule induced human HSPCs to entry into cell cycle. The proliferation of bone marrow mesenchymal stem cells (MSC) and fibroblasts were also highly increased post treatment. Besides, Ro treatment enhanced IL-2Rα (CD25) expression independent of IL-2 administration in human mPB-derived HSPCs and BM-derived HSPCs. Increased IL-2Rα (CD25) expression in BM-HSPCs was associated with the increase in the CD4+CD25+ T cell population. Xenotransplantation of immunodeficient mice with ex vivo expanded human CD34+ cells after Ro treatment revealed an efficient multi-lineage reconstitution in the recipient. These findings shed light on the role of IL-2/IL-2Rα interaction in HSC expansion, in vivo and in vitro HSC self-renewal ability and repopulation capacity as well as a possible mean for the induction of CD25 expressing cells in hematopoietic compartments.
Collapse
Affiliation(s)
- Merve Uslu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye; Johns Hopkins All Children's Hospital, USA
| | - Esra Albayrak
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye; Center of Stem Cell Research and Application, Ondokuz Mayıs University, Samsun, Türkiye
| | - Fatih Kocabaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye.
| |
Collapse
|
33
|
Norville K, Skrombolas D, Ferry SL, Kearns N, Frelinger JG. A Protease Activatable Interleukin-2 Fusion Protein Engenders Antitumor Immune Responses by Interferon Gamma-Dependent and Interferon Gamma-Independent Mechanisms. J Interferon Cytokine Res 2022; 42:316-328. [PMID: 35834651 DOI: 10.1089/jir.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokines are powerful mediators of immune responses and some, such as interleukin-2 (IL-2), have achieved dramatic responses as cancer immunotherapies. Unfortunately, systemic administration often results in deleterious side effects, prompting exploration of strategies to localize cytokine activity to the tumor microenvironment (TME). To this end, we constructed an IL-2/IL2Ra fusion protein (IL-2FP) with an MMP2/9-specific cleavage site, designed to exploit the dysregulated protease activity in the TME to selectively activate IL-2 in the tumor. To determine if TME protease activity is sufficient to cleave the FP and if FP activity is due to specific cleavage, we created Colon 38 tumor cell lines expressing similar levels of IL-2FPs with either a functional cleavage site [H11(cs-1FP)] or a scrambled, noncleavable sequence [H2(scramFP)]. H11(cs-1FP) tumors demonstrated reduced tumor growth, characterized by regressions not observed in H2(scramFP) tumors. Analysis through qRT-PCR, flow cytometry, and immunohistochemistry indicate robust CD8 responses in the H11(cs-1FP) tumors. Interferon gamma (IFNg) knockout mice revealed that the immune effects of the cleavable FP are mediated through both IFNg-dependent and IFNg-independent mechanisms. Collectively, these data suggest that matrix metalloproteinases (MMPs) in the TME can cleave the IL-2FP specifically, thus enhancing an antitumor response, and provide a rationale for further developing this approach.
Collapse
Affiliation(s)
- Karli Norville
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Denise Skrombolas
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Shannon L Ferry
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Nolan Kearns
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - John G Frelinger
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
34
|
Copsel SN, Wolf D, Pfeiffer B, Barreras H, Perez VL, Levy RB. Recipient Tregs: Can They Be Exploited for Successful Hematopoietic Stem Cell Transplant Outcomes? Front Immunol 2022; 13:932527. [PMID: 35799783 PMCID: PMC9253768 DOI: 10.3389/fimmu.2022.932527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023] Open
Abstract
Human and mouse CD4+FoxP3+ T cells (Tregs) comprise non-redundant regulatory compartments which maintain self-tolerance and have been found to be of potential therapeutic usefulness in autoimmune disorders and transplants including allogeneic hematopoietic stem cell transplantation (allo-HSCT). There is substantial literature interrogating the application of donor derived Tregs for the prevention of graft versus host disease (GVHD). This Mini-Review will focus on the recipient's Tregs which persist post-transplant. Although treatment in patients with low dose IL-2 months post-HSCT are encouraging, manipulating Tregs in recipients early post-transplant is challenging, in part likely an indirect consequence of damage to the microenvironment required to support Treg expansion of which little is understood. This review will discuss the potential for manipulating recipient Tregs in vivo prior to and after HSCT (fusion proteins, mAbs). Strategies that would circumvent donor/recipient peripheral blood harvest, cell culture and ex-vivo Treg expansion will be considered for the translational application of Tregs to improve HSCT outcomes.
Collapse
Affiliation(s)
- Sabrina N. Copsel
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL, United States
| | - Dietlinde Wolf
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL, United States
| | - Brent Pfeiffer
- Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| | - Henry Barreras
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL, United States
| | - Victor L. Perez
- Foster Center for Ocular Immunology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Robert B. Levy
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL, United States,Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL, United States,Department of Ophthalmology, University of Miami School of Medicine, Miami, FL, United States,*Correspondence: Robert B. Levy,
| |
Collapse
|
35
|
New insights for regulatory T cell in lupus nephritis. Clin Exp Rheumatol 2022; 21:103134. [PMID: 35690245 DOI: 10.1016/j.autrev.2022.103134] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
Lupus nephritis (LN) is a complicated autoimmune disease marked by out-of-balance of immunological reactivity and immune tolerance. With the advance of immunotherapy in human disease, regulatory T (Treg) cells serve a crucial function in immune tolerance regulation and are characterized with suppression function as one of the most important research hotspots for autoimmunity diseases. In recent years, Treg cells have shown the robust potential for treatment to autoimmunity diseases like type I diabetic mellitus and rheumatoid arthritis. However, Treg cell therapy is poorly understood for LN patients. This review aims to summarize new insights for Treg-targeting techniques in LN patients. The current data regarding the biology features of Treg cells in LN patients is discussed. The propotion of Treg cells in LN patients have contradictory results regarding the use of different molecular markers. Forkhead box protein 3 (FOXP3) are hallmarks for control function of Treg cells. Treg cells can directly or indirectly target T cells and B cells by playing supressive role. The molecular targets for Treg cells in LN patients includes gene variants, miRNAs, and inflammatory related factors. Based on the current knowledge of Treg cell biology, several therapeutic strategies could be used to treat LN: cell transplantation, low dose IL-2 treatment, drugs target the balance of Treg and type 17 T helper (Th17) cells, and Chinese medicine.
Collapse
|
36
|
Moro A, Gao Z, Wang L, Yu A, Hsiung S, Ban Y, Yan A, Sologon CM, Chen XS, Malek TR. Dynamic transcriptional activity and chromatin remodeling of regulatory T cells after varied duration of interleukin-2 receptor signaling. Nat Immunol 2022; 23:802-813. [PMID: 35449416 PMCID: PMC9106907 DOI: 10.1038/s41590-022-01179-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Regulatory T (Treg) cells require (interleukin-2) IL-2 for their homeostasis by affecting their proliferation, survival and activation. Here we investigated transcriptional and epigenetic changes after acute, periodic and persistent IL-2 receptor (IL-2R) signaling in mouse peripheral Treg cells in vivo using IL-2 or the long-acting IL-2-based biologic mouse IL-2-CD25. We show that initially IL-2R-dependent STAT5 transcription factor-dependent pathways enhanced gene activation, chromatin accessibility and metabolic reprogramming to support Treg cell proliferation. Unexpectedly, at peak proliferation, less accessible chromatin prevailed and was associated with Treg cell contraction. Restimulation of IL-2R signaling after contraction activated signature IL-2-dependent genes and others associated with effector Treg cells, whereas genes associated with signal transduction were downregulated to somewhat temper expansion. Thus, IL-2R-dependent Treg cell homeostasis depends in part on a shift from more accessible chromatin and expansion to less accessible chromatin and contraction. Mouse IL-2-CD25 supported greater expansion and a more extensive transcriptional state than IL-2 in Treg cells, consistent with greater efficacy to control autoimmunity.
Collapse
Affiliation(s)
- Alejandro Moro
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Zhen Gao
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Lily Wang
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miami, FL, USA
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Aixin Yu
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Sunnie Hsiung
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Aimin Yan
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Corneliu M Sologon
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - X Steven Chen
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA.
| |
Collapse
|
37
|
Heluany CS, Scharf P, Schneider AH, Donate PB, Dos Reis Pedreira Filho W, de Oliveira TF, Cunha FQ, Farsky SHP. Toxic mechanisms of cigarette smoke and heat-not-burn tobacco vapor inhalation on rheumatoid arthritis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151097. [PMID: 34695477 DOI: 10.1016/j.scitotenv.2021.151097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Tobacco combustion exposure worsens rheumatoid arthritis (RA). Non-combustible tobacco devices, as heat-not-burn tobacco (HNBT), are emerging as harm reduction to smokers by releasing nicotine and lower combustible tobacco products. Nevertheless, HNBT toxicity remains unclear. Hence, here we investigated the impacts of the tobacco combustible product (cigarette smoke; CS) or HNBT vapor exposures on antigen-induced arthritis (AIA) in C57BL/6 mice. Animals were exposed to airflow, HNBT vapor, or CS during 1 h/twice a day, under the Health Canada Intense (HCI) smoking regime, between days 14 to 20 after the first immunization. At day 21, 16 h after the last exposures, mice were i.a. challenged and the AIA effects were evaluated 24 h later. CS- or HNBT-exposed mice presented equivalent blood nicotine levels. CS exposure worsened articular symptoms, pulmonary inflammation, and expression of lung metallothioneins. Nevertheless, CS or HNBT exposures reduced lymphoid organs' cellularity, splenocyte proliferation and IL-2 secretion. Additional in vitro CS or HNBT exposures confirmed the harmful effects on splenocytes, which were partially mediated by the activation of nicotine/α7nAchR pathway. Associated, data demonstrate the toxic mechanisms of CS or HNBT inhalation at HCI regime on RA, and highlight that further investigations are fundamental to assure the toxicity of emerging tobacco products on the immune system during specific challenges.
Collapse
Affiliation(s)
- Cintia Scucuglia Heluany
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Pablo Scharf
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | | | - Paula Barbim Donate
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | | | - Tiago Franco de Oliveira
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil.
| |
Collapse
|
38
|
Site-specific PEGylation of interleukin-2 enhances immunosuppression via the sustained activation of regulatory T cells. Nat Biomed Eng 2021; 5:1288-1305. [PMID: 34580438 DOI: 10.1038/s41551-021-00797-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
The preferential activation of regulatory T (Treg) cells by interleukin-2 (IL-2), which selectively binds to the trimeric IL-2 receptor (IL-2R) on Treg cells, makes this cytokine a promising therapeutic for the treatment of autoimmune diseases. However, IL-2 has a narrow therapeutic window and a short half-life. Here, we show that the pharmacokinetics and half-life of IL-2 can be substantially improved by orthogonally conjugating the cytokine to poly(ethylene glycol) (PEG) moieties via a copper-free click reaction through the incorporation of azide-bearing amino acids at defined sites. Subcutaneous injection of a PEGylated IL-2 that optimally induced sustained Treg-cell activation and expansion over a wide range of doses through highly selective binding to trimeric IL-2R led to enhanced therapeutic efficacy in mouse models of lupus, collagen-induced arthritis and graft-versus-host disease without compromising the immune defences of the host against viral infection. Site-specific PEGylation could be used more generally to engineer cytokines with improved therapeutic performance for the treatment of autoimmune diseases.
Collapse
|
39
|
Hefazi M, Bolivar-Wagers S, Blazar BR. Regulatory T Cell Therapy of Graft-versus-Host Disease: Advances and Challenges. Int J Mol Sci 2021; 22:9676. [PMID: 34575843 PMCID: PMC8469916 DOI: 10.3390/ijms22189676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
Graft-versus-host disease (GVHD) is the leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Immunomodulation using regulatory T cells (Tregs) offers an exciting option to prevent and/or treat GVHD as these cells naturally function to maintain immune homeostasis, can induce tolerance following HSCT, and have a tissue reparative function. Studies to date have established a clinical safety profile for polyclonal Tregs. Functional enhancement through genetic engineering offers the possibility of improved potency, specificity, and persistence. In this review, we provide the most up to date preclinical and clinical data on Treg cell therapy with a particular focus on GVHD. We discuss the different Treg subtypes and highlight the pharmacological and genetic approaches under investigation to enhance the application of Tregs in allo-HSCT. Lastly, we discuss the remaining challenges for optimal clinical translation and provide insights as to future directions of the field.
Collapse
Affiliation(s)
- Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| |
Collapse
|
40
|
Hernandez R, LaPorte KM, Hsiung S, Santos Savio A, Malek TR. High-dose IL-2/CD25 fusion protein amplifies vaccine-induced CD4 + and CD8 + neoantigen-specific T cells to promote antitumor immunity. J Immunother Cancer 2021; 9:jitc-2021-002865. [PMID: 34475132 PMCID: PMC8413969 DOI: 10.1136/jitc-2021-002865] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Immunization with tumor neoantigens is a promising vaccine approach to promote antitumor immunity due to their high immunogenicity, lack of expression in normal tissue, and preferential induction of tumor neoantigen-specific T cells, which are central mediators of the anti-cancer response. A drawback to targeting tumor neoantigen-specific T cells is that these cells are found at a low frequency in patients with cancer, limiting their therapeutic benefit. Interleukin-2 (IL-2) promotes expansion and persistence of tumor-reactive T cells. However, its clinical use has been hampered by toxicities arising from its multiple cellular targets. Thus, new engineered IL-2 receptor (IL-2R) agonists with distinctive cell type selectivity have been designed to harness the potential of IL-2 for tumor immunotherapy. METHODS We investigated the potential to amplify neoantigen-specific CD4+ and CD8+ T cell immune responses to promote antitumor immunity through vaccination with tumor neoantigens. Following T cell receptor (TCR)-mediated induction of the high-affinity IL-2R on these T cells, amplification of the neoantigen-specific T cell response was achieved using a high dose of the mouse IL-2/CD25 (mIL-2/CD25) fusion protein, an IL-2R agonist with more favorable pharmacokinetics and pharmacodynamics than IL-2 and selectivity toward the high-affinity IL-2R. RESULTS Administration of a high dose of mIL-2/CD25 shortly after antigen-dependent induction of the high-affinity IL-2R amplified the numbers and function of TCR transgenic tumor-reactive tyrosinase-related protein-1 (TRP-1) CD4+ T cells, leading to antitumor immunity to B16-F10 melanoma. This approach was adapted to amplify endogenous polyclonal B16-F10 neoantigen-specific T cells. Maximal expansion of these cells required prime/boost neoantigen vaccinations, where mIL-2/CD25 was optimal when administered only after the boosting steps. The ensuing mIL-2/CD25-driven immune response supported antitumor immunity to B16-F10 and was more effective than treatment with a similar amount of IL-2. Optimal antitumor effects required amplification of CD4+ and CD8+ neoantigen-specific T cells. High-dose mIL-2/CD25 supported a tumor microenvironment with higher numbers of CD4+ and CD8+ T effectors cells with increased granzyme B expression and importantly a more robust expansion of neoantigen-specific T cells. CONCLUSION These results indicate that neoantigen-based vaccines are optimized by potentiating IL-2R signaling in CD4+ and CD8+ neoantigen-reactive T cells by using high-dose mIL-2/CD25, leading to more effective tumor clearance.
Collapse
Affiliation(s)
- Rosmely Hernandez
- Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kathryn M LaPorte
- Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sunnie Hsiung
- Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alicia Santos Savio
- Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Thomas R Malek
- Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
41
|
Uricoli B, Birnbaum LA, Do P, Kelvin JM, Jain J, Costanza E, Chyong A, Porter CC, Rafiq S, Dreaden EC. Engineered Cytokines for Cancer and Autoimmune Disease Immunotherapy. Adv Healthc Mater 2021; 10:e2002214. [PMID: 33690997 PMCID: PMC8651077 DOI: 10.1002/adhm.202002214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Cytokine signaling is critical to a range of biological processes including cell development, tissue repair, aging, and immunity. In addition to acting as key signal mediators of the immune system, cytokines can also serve as potent immunotherapies with more than 20 recombinant products currently Food and Drug Administration (FDA)-approved to treat conditions including hepatitis, multiple sclerosis, arthritis, and various cancers. Yet despite their biological importance and clinical utility, cytokine immunotherapies suffer from intrinsic challenges that limit their therapeutic potential including poor circulation, systemic toxicity, and low tissue- or cell-specificity. In the past decade in particular, methods have been devised to engineer cytokines in order to overcome such challenges and here, the myriad strategies are reviewed that may be employed in order to improve the therapeutic potential of cytokine and chemokine immunotherapies with applications in cancer and autoimmune disease therapy, as well as tissue engineering and regenerative medicine. For clarity, these strategies are collected and presented as they vary across size scales, ranging from single amino acid substitutions, to larger protein-polymer conjugates, nano/micrometer-scale particles, and macroscale implants. Together, this work aims to provide readers with a timely view of the field of cytokine engineering with an emphasis on early-stage therapeutic approaches.
Collapse
Affiliation(s)
- Biaggio Uricoli
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Lacey A. Birnbaum
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Priscilla Do
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - James M. Kelvin
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Juhi Jain
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, GA 30322, USA
| | - Emma Costanza
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Andrew Chyong
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Christopher C. Porter
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology at Emory University School of Medicine
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Erik C. Dreaden
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
42
|
Xie JH, Zhang Y, Loubeau M, Mangan P, Heimrich E, Tovar C, Zhou X, Madia P, Doyle M, Dudhgaonkar S, Rudra A, Subramani S, Young J, Salter-Cid L, Malek TR, Struthers M. Mouse IL-2/CD25 Fusion Protein Induces Regulatory T Cell Expansion and Immune Suppression in Preclinical Models of Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2021; 207:34-43. [PMID: 34108258 DOI: 10.4049/jimmunol.2100078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is associated with an IL-2-deficient state, with regulatory T cells (Tregs) showing diminished immune regulatory capacity. A low dose of IL-2 has shown encouraging clinical benefits in SLE patients; however, its clinical utility is limited because of the requirement of daily injections and the observation of increase in proinflammatory cytokines and in non-Tregs. We recently showed that a fusion protein of mouse IL-2 and mouse IL-2Rα (CD25), joined by a noncleavable linker, was effective in treating diabetes in NOD mice by selectively inducing Treg expansion. In this report, we show that mouse IL-2 (mIL-2)/CD25 at doses up to 0.5 mg/kg twice a week induced a robust Treg expansion without showing signs of increase in the numbers of NK, CD4+Foxp3-, or CD8+ T cells or significant increase in proinflammatory cytokines. In both NZB × NZW and MRL/lpr mice, mIL-2/CD25 at 0.2-0.4 mg/kg twice a week demonstrated efficacy in inducing Treg expansion, CD25 upregulation, and inhibiting lupus nephritis based on the levels of proteinuria, autoantibody titers, and kidney histology scores. mIL-2/CD25 was effective even when treatment was initiated at the time when NZB × NZW mice already showed signs of advanced disease. Furthermore, we show coadministration of prednisolone, which SLE patients commonly take, did not interfere with the ability of mIL-2/CD25 to expand Tregs. The prednisolone and mIL-2/CD25 combination treatment results in improvements in most of the efficacy readouts relative to either monotherapy alone. Taken together, our results support further evaluation of IL-2/CD25 in the clinic for treating immune-mediated diseases such as SLE.
Collapse
Affiliation(s)
- Jenny H Xie
- Department of Discovery Biology, Bristol Myers Squibb, Princeton, NJ;
| | - Yifan Zhang
- Department of Discovery Biology, Bristol Myers Squibb, Princeton, NJ
| | - Martine Loubeau
- Department of Discovery Biology, Bristol Myers Squibb, Princeton, NJ
| | - Paul Mangan
- Department of Discovery Biology, Bristol Myers Squibb, Princeton, NJ
| | | | - Christian Tovar
- Department of Discovery Biology, Bristol Myers Squibb, Princeton, NJ
| | - Xiadi Zhou
- Department of Discovery Biology, Bristol Myers Squibb, Princeton, NJ
| | - Priyanka Madia
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Princeton, NJ
| | - Michael Doyle
- Department of Discovery Protein Science, Bristol Myers Squibb, Princeton, NJ
| | - Shailesh Dudhgaonkar
- Biocon-Bristol Myers Squibb Research and Development Center, Syngene International Ltd., Bangalore, India; and
| | - Anjuman Rudra
- Biocon-Bristol Myers Squibb Research and Development Center, Syngene International Ltd., Bangalore, India; and
| | - Siva Subramani
- Biocon-Bristol Myers Squibb Research and Development Center, Syngene International Ltd., Bangalore, India; and
| | - James Young
- Department of Discovery Biology, Bristol Myers Squibb, Princeton, NJ
| | - Luisa Salter-Cid
- Department of Discovery Biology, Bristol Myers Squibb, Princeton, NJ
| | - Thomas R Malek
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Coral Gables, FL
| | - Mary Struthers
- Department of Discovery Biology, Bristol Myers Squibb, Princeton, NJ;
| |
Collapse
|
43
|
Hsu EJ, Cao X, Moon B, Bae J, Sun Z, Liu Z, Fu YX. A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy. Nat Commun 2021; 12:2768. [PMID: 33986267 PMCID: PMC8119481 DOI: 10.1038/s41467-021-22980-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/02/2021] [Indexed: 02/03/2023] Open
Abstract
As a potent lymphocyte activator, interleukin-2 (IL-2) is an FDA-approved treatment for multiple metastatic cancers. However, its clinical use is limited by short half-life, low potency, and severe in vivo toxicity. Current IL-2 engineering strategies exhibit evidence of peripheral cytotoxicity. Here, we address these issues by engineering an IL-2 prodrug (ProIL2). We mask the activity of a CD8 T cell-preferential IL-2 mutein/Fc fusion protein with IL2 receptor beta linked to a tumor-associated protease substrate. ProIL2 restores activity after cleavage by tumor-associated enzymes, and preferentially activates inside tumors, where it expands antigen-specific CD8 T cells. This significantly reduces IL-2 toxicity and mortality without compromising antitumor efficacy. ProIL2 also overcomes resistance of cancers to immune checkpoint blockade. Lastly, neoadjuvant ProIL2 treatment can eliminate metastatic cancer through an abscopal effect. Taken together, our approach presents an effective tumor targeting therapy with reduced toxicity.
Collapse
Affiliation(s)
- Eric J Hsu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xuezhi Cao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Benjamin Moon
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Joonbeom Bae
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhichen Sun
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhida Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yang-Xin Fu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
44
|
Moorman CD, Sohn SJ, Phee H. Emerging Therapeutics for Immune Tolerance: Tolerogenic Vaccines, T cell Therapy, and IL-2 Therapy. Front Immunol 2021; 12:657768. [PMID: 33854514 PMCID: PMC8039385 DOI: 10.3389/fimmu.2021.657768] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases affect roughly 5-10% of the total population, with women affected more than men. The standard treatment for autoimmune or autoinflammatory diseases had long been immunosuppressive agents until the advent of immunomodulatory biologic drugs, which aimed at blocking inflammatory mediators, including proinflammatory cytokines. At the frontier of these biologic drugs are TNF-α blockers. These therapies inhibit the proinflammatory action of TNF-α in common autoimmune diseases such as rheumatoid arthritis, psoriasis, ulcerative colitis, and Crohn's disease. TNF-α blockade quickly became the "standard of care" for these autoimmune diseases due to their effectiveness in controlling disease and decreasing patient's adverse risk profiles compared to broad-spectrum immunosuppressive agents. However, anti-TNF-α therapies have limitations, including known adverse safety risk, loss of therapeutic efficacy due to drug resistance, and lack of efficacy in numerous autoimmune diseases, including multiple sclerosis. The next wave of truly transformative therapeutics should aspire to provide a cure by selectively suppressing pathogenic autoantigen-specific immune responses while leaving the rest of the immune system intact to control infectious diseases and malignancies. In this review, we will focus on three main areas of active research in immune tolerance. First, tolerogenic vaccines aiming at robust, lasting autoantigen-specific immune tolerance. Second, T cell therapies using Tregs (either polyclonal, antigen-specific, or genetically engineered to express chimeric antigen receptors) to establish active dominant immune tolerance or T cells (engineered to express chimeric antigen receptors) to delete pathogenic immune cells. Third, IL-2 therapies aiming at expanding immunosuppressive regulatory T cells in vivo.
Collapse
Affiliation(s)
| | | | - Hyewon Phee
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
45
|
Català-Senent JF, Hidalgo MR, Berenguer M, Parthasarathy G, Malhi H, Malmierca-Merlo P, de la Iglesia-Vayá M, García-García F. Hepatic steatosis and steatohepatitis: a functional meta-analysis of sex-based differences in transcriptomic studies. Biol Sex Differ 2021; 12:29. [PMID: 33766130 PMCID: PMC7995602 DOI: 10.1186/s13293-021-00368-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Previous studies have described sex-based differences in the epidemiological and clinical patterns of non-alcoholic fatty liver disease (NAFLD); however, we understand relatively little regarding the underlying molecular mechanisms. Herein, we present the first systematic review and meta-analysis of NAFLD transcriptomic studies to identify sex-based differences in the molecular mechanisms involved during the steatosis (NAFL) and steatohepatitis (NASH) stages of the disease. Methods Transcriptomic studies in the Gene Expression Omnibus database were systematically reviewed following the PRISMA statement guidelines. For each study, NAFL and NASH in premenopausal women and men were compared using a dual strategy: gene-set analysis and pathway activity analysis. Finally, the functional results of all studies were integrated into a meta-analysis. Results We reviewed a total of 114 abstracts and analyzed seven studies that included 323 eligible patients. The meta-analyses identified significantly altered molecular mechanisms between premenopausal women and men, including the overrepresentation of genes associated with DNA regulation, vinculin binding, interleukin-2 responses, negative regulation of neuronal death, and the transport of ions and cations in premenopausal women. In men, we discovered the overrepresentation of genes associated with the negative regulation of interleukin-6 and the establishment of planar polarity involved in neural tube closure. Conclusions Our meta-analysis of transcriptomic data provides a powerful approach to identify sex-based differences in NAFLD. We detected differences in relevant biological functions and molecular terms between premenopausal women and men. Differences in immune responsiveness between men and premenopausal women with NAFLD suggest that women possess a more immune tolerant milieu, while men display an impaired liver regenerative response. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13293-021-00368-1.
Collapse
Affiliation(s)
- José F Català-Senent
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center, Valencia, Spain.,Spanish National Bioinformatics Institute, ELIXIR-Spain (INB, ELIXIR-ES), Madrid, Spain
| | - Marta R Hidalgo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center, Valencia, Spain.
| | - Marina Berenguer
- Liver Transplantation and Hepatology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain.,Grupo de Hepatología, Cirugía HBP y Trasplantes, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | | | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Pablo Malmierca-Merlo
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center, Valencia, Spain.,Atos Research & Innovation (ARI), Madrid, Spain
| | - María de la Iglesia-Vayá
- Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitario y Biomédica de la Comunidad Valenciana, Valencia, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center, Valencia, Spain. .,Spanish National Bioinformatics Institute, ELIXIR-Spain (INB, ELIXIR-ES), Madrid, Spain.
| |
Collapse
|
46
|
Lopes JE, Fisher JL, Flick HL, Wang C, Sun L, Ernstoff MS, Alvarez JC, Losey HC. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J Immunother Cancer 2021; 8:jitc-2020-000673. [PMID: 32317293 PMCID: PMC7204809 DOI: 10.1136/jitc-2020-000673] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Interleukin-2 (IL-2) plays a pivotal role in immune homeostasis due to its ability to stimulate numerous lymphocyte subsets including natural killer (NK) cells, effector CD4+ and CD8+ T cells, and regulatory T cells (Tregs). Low concentrations of IL-2 induce signaling through the high-affinity IL-2 receptor (IL-2R) comprised of IL-2Rα, IL-2Rβ, and common γ chain (γc), preferentially expressed on Tregs. Higher concentrations of IL-2 are necessary to induce signaling through the intermediate-affinity IL-2R, composed of IL-2Rβ and γc, expressed on memory CD8+ T cells and NK cells. Recombinant human IL-2 (rhIL-2) is approved for treatment of metastatic melanoma and renal cell carcinoma (RCC), but adverse events including capillary leak syndrome, potentially mediated through interaction with the high-affinity IL-2R, limit its therapeutic use. Furthermore, antitumor efficacy of IL-2 may also be limited by preferential expansion of immunosuppressive Tregs. ALKS 4230 is an engineered fusion protein comprised of a circularly-permuted IL-2 with the extracellular domain of IL-2Rα, designed to selectively activate effector lymphocytes bearing the intermediate-affinity IL-2R. RESULTS ALKS 4230 was equipotent to rhIL-2 in activating human cells bearing the intermediate-affinity IL-2R, and less potent than rhIL-2 on cells bearing the high-affinity IL-2R. As observed in vitro with primary human cells from healthy donors and advanced cancer patients, ALKS 4230 induced greater activation and expansion of NK cells with reduced expansion of Tregs relative to rhIL-2. Similarly, in mice, ALKS 4230 treatment stimulated greater expansion of NK cells and memory-phenotype CD8+ T cells at doses that did not expand or activate Tregs. ALKS 4230 treatment induced significantly lower levels of proinflammatory cytokines, including tumor necrosis factor alpha, interleukin-6, and interferon gamma relative to rhIL-2. Furthermore, ALKS 4230 exhibited superior antitumor efficacy in the mouse B16F10 lung tumor model, where ALKS 4230 could be administered via multiple routes of administration and dosing schedules while achieving equivalent antitumor efficacy. CONCLUSIONS ALKS 4230 exhibited enhanced pharmacokinetic and selective pharmacodynamic properties resulting in both improved antitumor efficacy and lower indices of toxicity relative to rhIL-2 in mice. These data highlight the potential of ALKS 4230 as a novel cancer immunotherapy, and as such, the molecule is being evaluated clinically.
Collapse
Affiliation(s)
- Jared E Lopes
- Research, Alkermes, Inc, Waltham, Massachusetts, USA
| | - Jan L Fisher
- Department of Medicine, The Geisel School of Medicine at Dartmouth and Norris Cotton Cancer Center, Lebanon, New Hampshire, USA
| | | | - Chunhua Wang
- Research, Alkermes, Inc, Waltham, Massachusetts, USA
| | - Lei Sun
- Research, Alkermes, Inc, Waltham, Massachusetts, USA
| | - Marc S Ernstoff
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Juan C Alvarez
- Computational and Structural Chemistry, Merck & Co, Boston, Massachusetts, USA
| | | |
Collapse
|
47
|
Kim J, Lee JY, Park SY, Lee YJ, Kim MS. Crystal structure of human interleukin-2 in complex with TCB2, a new antibody-drug candidate with antitumor activity. Oncoimmunology 2021; 10:1899671. [PMID: 33796411 PMCID: PMC7971329 DOI: 10.1080/2162402x.2021.1899671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/24/2021] [Indexed: 10/31/2022] Open
Abstract
Immunotherapy via interleukin-2 (IL-2) mediated activation of anti-tumor immune response is a promising approach for cancer treatment. The multi-potent cytokine, IL-2 has a central role in immune cell activation and homeostasis. Since IL-2 preferentially activates immunosuppressive T regulatory cells by IL-2Rα dependent manner, blocking IL-2:IL-2Rα interaction is a key to amplify the IL-2 activity in effector T cells toward anti-tumor response. Anti-IL-2 monoclonal antibodies are good candidates to control the IL-2:IL-2Rα interaction. In a previous study, we developed a new IL-2Rα mimetic antibody, TCB2, and showed that the human IL-2(hIL-2):TCB2 complex can stimulate T effector cells specifically and elicit potent anti-cancer immunotherapeutic effect, especially when administered in combination with immune checkpoint inhibitors. To understand the molecular mechanism, we determined the crystal structure of TCB2-Fab in a complex with hIL-2 at 2.5 Å resolution. Our structural analysis reveals that TCB2 binds to the central area of the hIL-2Rα binding region on hIL-2, and binding angle and epitope are different from previously known hIL-2Rα mimicking antibody NARA1 which recognizes the top part of hIL-2. TCB2 binding to hIL-2 also induces an allosteric effect that increases the affinity for the hetero-dimeric hIL-2 receptor, IL-2R(β + γ), on effector T cells.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Jun-Young Lee
- Selecxine, Bio Open Innovation Center #1204, Pohang, Gyeongbuk, Republic of Korea
| | - Suk-Youl Park
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - You Jeong Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Min-Sung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| |
Collapse
|
48
|
Ward NC, Lui JB, Hernandez R, Yu L, Struthers M, Xie J, Santos Savio A, Dwyer CJ, Hsiung S, Yu A, Malek TR. Persistent IL-2 Receptor Signaling by IL-2/CD25 Fusion Protein Controls Diabetes in NOD Mice by Multiple Mechanisms. Diabetes 2020; 69:2400-2413. [PMID: 32843568 PMCID: PMC7576568 DOI: 10.2337/db20-0186] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Low-dose interleukin-2 (IL-2) represents a new therapeutic approach to regulate immune homeostasis to promote immune tolerance in patients with autoimmune diseases, including type 1 diabetes. We have developed a new IL-2-based biologic, an IL-2/CD25 fusion protein, with greatly improved pharmacokinetics and pharmacodynamics when compared with recombinant IL-2 to enhance this type of immunotherapy. In this study, we show that low-dose mouse IL-2/CD25 (mIL-2/CD25), but not an equivalent amount of IL-2, prevents the onset of diabetes in NOD mice and controls diabetes in hyperglycemic mice. mIL-2/CD25 acts not only to expand regulatory T cells (Tregs) but also to increase their activation and migration into lymphoid tissues and the pancreas. Lower incidence of diabetes is associated with increased serum levels of IL-10, a cytokine readily produced by activated Tregs. These effects likely act in concert to lower islet inflammation while increasing Tregs in the remaining inflamed islets. mIL-2/CD25 treatment is also associated with lower anti-insulin autoantibody levels in part by inhibition of T follicular helper cells. Thus, long-acting mIL-2/CD25 represents an improved IL-2 analog that persistently elevates Tregs to maintain a favorable Treg/effector T cell ratio that limits diabetes by expansion of activated Tregs that readily migrate into lymphoid tissues and the pancreas while inhibiting autoantibodies.
Collapse
Affiliation(s)
- Natasha C Ward
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Jen Bon Lui
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Rosmely Hernandez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Mary Struthers
- Immunology Discovery, Bristol-Myers Squibb, Princeton, NJ
| | - Jenny Xie
- Immunology Discovery, Bristol-Myers Squibb, Princeton, NJ
| | - Alicia Santos Savio
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Connor J Dwyer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Sunnie Hsiung
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Aixin Yu
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
49
|
Hernandez R, Toomer KH, Põder J, Santos Savio A, Hsiung S, Malek TR. Sustained IL-2R signaling of limited duration by high-dose mIL-2/mCD25 fusion protein amplifies tumor-reactive CD8 + T cells to enhance antitumor immunity. Cancer Immunol Immunother 2020; 70:909-921. [PMID: 33037893 DOI: 10.1007/s00262-020-02722-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
High-dose IL-2 induces cancer regression but its therapeutic use is limited due to high toxicities resulting from its broad cell targeting. In one strategy to overcome this limitation, IL-2 has been modified to selectively target the intermediate affinity IL-2R that broadly activates memory-phenotypic CD8+ T and NK cells, while minimizing Treg-associated tolerance. In this study, we modeled an alternative strategy to amplify tumor antigen-specific TCR transgenic CD8+ T cells through limited application of a long-acting IL-2 fusion protein, mIL-2/mCD25, which selectively targets the high-affinity IL-2R. Here, mice were vaccinated with a tumor antigen and high-dose mIL-2/mCD25 was applied to coincide with the induction of the high affinity IL-2R on tumor-specific T cells. A single high dose of mIL-2/mCD25, but not an equivalent amount of IL-2, amplified the frequency and function of tumor-reactive CD8+ T effector (Teff) and memory cells. These mIL-2/mCD25-dependent effects relied on distinctive requirements for TLR signals during priming of CD8+ tumor-specific T cells. The mIL-2/mCD25-amplified tumor-reactive effector and memory T cells supported long-lasting antitumor responses to B16-F10 melanoma. This regimen only transiently increased Tregs, yielding a favorable Teff-Treg ratio within the tumor microenvironment. Notably, mIL-2/mCD25 did not increase non-tumor-specific Teff or NK cells within tumors, further substantiating the specificity of mIL-2/mCD25 for tumor antigen-activated T cells. Thus, the selectivity and persistence of mIL-2/mCD25 in conjunction with a tumor vaccine supports antitumor immunity through a mechanism that is distinct from recombinant IL-2 or IL-2-based biologics that target the intermediate affinity IL-2R.
Collapse
Affiliation(s)
- Rosmely Hernandez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Kevin H Toomer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Janika Põder
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Alicia Santos Savio
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Sunnie Hsiung
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
50
|
DeOca KB, Moorman CD, Garcia BL, Mannie MD. Low-Zone IL-2 Signaling: Fusion Proteins Containing Linked CD25 and IL-2 Domains Sustain Tolerogenic Vaccination in vivo and Promote Dominance of FOXP3 + Tregs in vitro. Front Immunol 2020; 11:541619. [PMID: 33072087 PMCID: PMC7538601 DOI: 10.3389/fimmu.2020.541619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Low-zone IL-2 signaling is key to understanding how CD4+ CD25high FOXP3+ regulatory T cells (Tregs) exhibit dominance and overgrow conventional effector T cells (Tcons) that typically express lower levels of the IL-2 receptor alpha chain (i.e., CD25). Thus, modalities such as low-dose IL-2 or IL-2/anti-IL-2 antibody complexes have been advanced in the clinic to selectively expand Treg populations as a treatment for chronic inflammatory autoimmune diseases. However, more effective reagents that efficiently lock IL-2 signaling into a low signaling mode are needed to validate and exploit the low-zone IL-2 signaling niche of Tregs. This study focuses on CD25-IL2 and IL2-CD25 fusion proteins (FPs) that were approximately 32 and 320-fold less potent than IL-2. These FPs exhibited transient binding to transmembrane CD25 on human embryonic kidney (HEK) cells, had partially occluded IL-2 binding sites, and formed higher order multimeric conformers that limited the availability of bioactive IL-2. These FPs exhibited broad bell-shaped concentration ranges that favored dominant Treg outgrowth during continuous culture and were used to derive essentially pure long-term Treg monocultures (∼98% Treg purity). FP-induced Tregs had canonical Treg suppressive activity in that these Tregs suppressed antigen-specific proliferative responses of naïve CD4+ T cells. The in vivo administration of CD25-IL2/Alum elicited robust increases in circulating Tregs and selectively augmented CD25 expression on Tregs but not on Tcons. A single injection of a Myelin Oligodendrocyte Glycoprotein (MOG35-55)-specific tolerogenic vaccine elicited high levels of circulating MOG-specific Tregs in vivo that waned after 2–3 weeks, whereas boosting with CD25-IL2/Alum maintained MOG-specific CD25high Tregs throughout the 30-day observation period. However, these FPs did not antagonize free monomeric IL-2 and lacked therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE). In conclusion, these data reveal that CD25-IL2 FPs can be used to select essentially pure long-term lines of FOXP3+ CD25high Tregs. This study also shows that CD25-IL2 FPs can be administered in vivo in synergy with tolerogenic vaccination to maintain high circulating levels of antigen-specific Tregs. Because tolerogenic vaccination and Treg-based adoptive immunotherapy are limited by gradual waning of Tregs, these FPs have potential utility in sustaining tolerogenic Treg responses in vivo.
Collapse
Affiliation(s)
- Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|