1
|
Behzadi P, Chandran D, Chakraborty C, Bhattacharya M, Saikumar G, Dhama K, Chakraborty A, Mukherjee S, Sarshar M. The dual role of toll-like receptors in COVID-19: Balancing protective immunity and immunopathogenesis. Int J Biol Macromol 2025; 284:137836. [PMID: 39613064 DOI: 10.1016/j.ijbiomac.2024.137836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Toll-like receptors (TLRs) of human are considered as the most critical immunological mediators of inflammatory pathogenesis of COVID-19. These immunoregulatory glycoproteins are located on the surface and/or intracellular compartment act as innate immune sensors. Upon binding with distinct SARS-CoV-2 ligand(s), TLRs signal activation of different transcription factors that induce expression of the proinflammatory mediators that collectively induce 'cytokine storm'. Similarly, TLR activation is also pivotal in conferring protection to infection and invasion as well as upregulating the tissue repair pathways. This dual role of the human TLRs in deciding the fate of SARS-CoV-2 has made these receptor proteins as the critical mediators of immunoprotective and immunopathogenic consequences associated with COVID-19. Herein, pathbreaking discoveries exploring the immunobiological importance of the TLRs in COVID-19 and developing TLR-directed therapeutic intervention have been reviewed by accessing the up-to-date literatures available in the public domain/databases. In accordance with our knowledge in association with the importance of TLRs' role against viruses and identification of viral particles, they have been recognized as suitable candidates with high potential as vaccine adjuvants. In this regard, the agonists of TLR4 and TLR9 have effective potential in vaccine technology while the others need further investigations. This comprehensive review suggests that basal level expression of TLRs can act as friends to keep our body safe from strangers but act as a foe via overexpression. Therefore, selective inhibition of the overexpressed TLRs appears to be a solution to counteract the cytokine storm while TLR-agonists as vaccine adjuvants could lessen the risk of infection in the naïve population.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| | | | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, 756020, Odisha, India
| | - Guttula Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India.
| | - Ankita Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India.
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, 00146, Rome, Italy
| |
Collapse
|
2
|
Yang YL, Zhang RR, Pang JY, Xing JH, Guo TK, Shi CW, Yang GL, Huang HB, Jiang YL, Wang JZ, Cao X, Wang N, Zeng Y, Yang WT, Yao JY, Wang CF. Immunoprotective effect of recombinant Lactobacillus plantarum expressing largemouth bass virus MCP on largemouth bass. FISH & SHELLFISH IMMUNOLOGY 2024; 155:109986. [PMID: 39461397 DOI: 10.1016/j.fsi.2024.109986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/26/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Largemouth bass virus (LMBV) is an infectious pathogen that causes high mortality rates in largemouth bass, and outbreaks of this virus can significantly harm the aquaculture industry. Currently, no vaccine has been developed that can effectively prevent the transmission of LMBV. In this study, we constructed a recombinant Lactobacillus plantarum (L. plantarum) strain capable of expressing the MCP gene of LMBV and displaying this protein on its surface; then, we evaluated the immunoprotective effect of this recombinant bacterium on largemouth bass. Western blotting, immunofluorescence, and flow cytometry confirmed that MCP was successfully expressed and anchored on the surfaces of NC8 cells. Immunization of largemouth bass with NC8-pSIP409-pgsA'-MCP via the oral feeding route induced CD4, CD8, IL-1β, and IL-6 gene expression. In addition, NC8-pSIP409-pgsA'-MCP at different CFUs increased the survival of largemouth bass after LMBV infection; in particular, NC8-pSIP409-pgsA'-MCP (109 CFU) resulted in approximately 30 % survival. NC8-pSIP409-pgsA'-MCP immunization alleviated the pathological changes in the liver and spleen, exerting a more advantageous protective effect. These data suggest that the recombinant L. plantarum strain NC8-pSIP409-pgsA'-MCP can increase the resistance of largemouth bass to LMBV infection and that this strain is a promising candidate oral vaccine for the prevention of LMBV infection.
Collapse
Affiliation(s)
- Yong-Lei Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Rong-Rong Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jing-Yi Pang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jun-Hong Xing
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tian-Kui Guo
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Jia-Yun Yao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
3
|
Kamali Z, Esmaeil N, Thio CHL, Vaez A, Snieder H. Pathway-Based Mendelian Randomization for Pre-Infection IL-6 Levels Highlights Its Role in Coronavirus Disease. Genes (Basel) 2024; 15:889. [PMID: 39062668 PMCID: PMC11275426 DOI: 10.3390/genes15070889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVES Interleukin 6 (IL-6) levels at hospital admission have been suggested for disease prognosis, and IL-6 antagonists have been suggested for the treatment of patients with severe COVID-19. However, less is known about the relationship between pre-COVID-19 IL-6 levels and the risk of severe COVID-19. To fill in this gap, here we extensively investigated the association of genetically instrumented IL-6 pathway components with the risk of severe COVID-19. METHODS We used a two-sample Mendelian randomization study design and retrieved genetic instruments for blood biomarkers of IL-6 activation, including IL-6, soluble IL-6 receptor, IL-6 signal transducer, and CRP, from respective large available GWASs. To establish associations of these instruments with COVID-19 outcomes, we used data from the Host Genetics Initiative and GenOMICC studies. RESULTS Our analyses revealed inverse associations of genetically instrumented levels of IL-6 and its soluble receptor with the risk of developing severe disease (OR = 0.60 and 0.94, respectively). They also demonstrated a positive association of severe disease with the soluble signal transducer level (OR = 1.13). Only IL-6 associations with severe COVID-19 outcomes reached the significance threshold corrected for multiple testing (p < 0.003; with COVID-19 hospitalization and critical illness). CONCLUSIONS These potential causal relationships for pre-COVID-19 IL-6 levels with the risk of developing severe symptoms provide opportunities for further evaluation of these factors as prognostic/preventive markers of severe COVID-19. Further studies will need to clarify whether the higher risk for a severe disease course with lower baseline IL-6 levels may also extend to other infectious diseases.
Collapse
Affiliation(s)
- Zoha Kamali
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan 81746-73441, Iran
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1 (9713 GZ), P.O. Box 30.001, 9700 RB Groningen, The Netherlands (H.S.)
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73441, Iran;
- Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan 81746-73441, Iran
| | - Chris H. L. Thio
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1 (9713 GZ), P.O. Box 30.001, 9700 RB Groningen, The Netherlands (H.S.)
| | - Ahmad Vaez
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan 81746-73441, Iran
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1 (9713 GZ), P.O. Box 30.001, 9700 RB Groningen, The Netherlands (H.S.)
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1 (9713 GZ), P.O. Box 30.001, 9700 RB Groningen, The Netherlands (H.S.)
| |
Collapse
|
4
|
Zhai W, Wang Z, Ye C, Ke L, Wang H, Liu H. IL-6 Mutation Attenuates Liver Injury Caused by Aeromonas hydrophila Infection by Reducing Oxidative Stress in Zebrafish. Int J Mol Sci 2023; 24:17215. [PMID: 38139043 PMCID: PMC10743878 DOI: 10.3390/ijms242417215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin-6 (IL-6), a pleiotropic cytokine, plays a crucial role in acute stress induced by bacterial infection and is strongly associated with reactive oxygen species (ROS) production. However, the role of IL-6 in the liver of fish after Aeromonas hydrophila infection remains unclear. Therefore, this study constructed a zebrafish (Danio rerio) il-6 knockout line by CRISPR/Cas9 to investigate the function of IL-6 in the liver post bacterial infection. After infection with A. hydrophila, pathological observation showed that il-6-/- zebrafish exhibited milder liver damage than wild-type (WT) zebrafish. Moreover, liver transcriptome sequencing revealed that 2432 genes were significantly up-regulated and 1706 genes were significantly down-regulated in il-6-/- fish compared with WT fish after A. hydrophila infection. Further, gene ontology (GO) analysis showed that differentially expressed genes (DEGs) were significantly enriched in redox-related terms, including oxidoreductase activity, copper ion transport, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were significantly enriched in pathways such as the PPAR signaling pathway, suggesting that il-6 mutation has a significant effect on redox processes in the liver after A. hydrophila infection. Additionally, il-6-/- zebrafish exhibited lower malondialdehyde (MDA) levels and higher superoxide dismutase (SOD) activities in the liver compared with WT zebrafish following A. hydrophila infection, indicating that IL-6 deficiency mitigates oxidative stress induced by A. hydrophila infection in the liver. These findings provide a basis for further studies on the role of IL-6 in regulating oxidative stress in response to bacterial infections.
Collapse
Affiliation(s)
- Wenya Zhai
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Zhensheng Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Canxun Ye
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Lan Ke
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
5
|
Mazzocco YL, Bergero G, Del Rosso S, Eberhardt N, Sola C, Saka HA, Villada SM, Bocco JL, Aoki MP. Differential expression patterns of purinergic ectoenzymes and the antioxidative role of IL-6 in hospitalized COVID-19 patient recovery. Front Immunol 2023; 14:1227873. [PMID: 37818368 PMCID: PMC10560791 DOI: 10.3389/fimmu.2023.1227873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction We have acquired significant knowledge regarding the pathogenesis of severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2). However, the underlying mechanisms responsible for disease recovery still need to be fully understood. Methods To gain insights into critical immune markers involved in COVID-19 etiopathogenesis, we studied the evolution of the immune profile of peripheral blood samples from patients who had recovered from COVID-19 and compared them to subjects with severe acute respiratory illness but negative for SARS-CoV-2 detection (controls). In addition, linear and clustered correlations between different parameters were determined. Results The data obtained revealed a significant reduction in the frequency of inflammatory monocytes (CD14+CD16+) at hospital discharge vs. admission. Remarkably, nitric oxide (NO) production by the monocyte compartment was significantly reduced at discharge. Furthermore, interleukin (IL)-6 plasma levels were negatively correlated with the frequency of NO+CD14+CD16+ monocytes at hospital admission. However, at the time of hospital release, circulating IL-6 directly correlated with the NO production rate by monocytes. In line with these observations, we found that concomitant with NO diminution, the level of nitrotyrosine (NT) on CD8 T-cells significantly diminished at the time of hospital release. Considering that purinergic signaling constitutes another regulatory system, we analyzed the kinetics of CD39 and CD73 ectoenzyme expression in CD8 T-cells. We found that the frequency of CD39+CD8+ T-cells significantly diminished while the percentage of CD73+ cells increased at hospital discharge. In vitro, IL-6 stimulation of PBMCs from COVID-19 patients diminished the NT levels on CD8 T-cells. A clear differential expression pattern of CD39 and CD73 was observed in the NT+ vs. NT-CD8+ T-cell populations. Discussion The results suggest that early after infection, IL-6 controls the production of NO, which regulates the levels of NT on CD8 T-cells modifying their effector functions. Intriguingly, in this cytotoxic cell population, the expression of purinergic ectoenzymes is tightly associated with the presence of nitrated surface molecules. Overall, the data obtained contribute to a better understanding of pathogenic mechanisms associated with COVID-19 outcomes.
Collapse
Affiliation(s)
- Yanina Luciana Mazzocco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Gastón Bergero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Sebastian Del Rosso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Natalia Eberhardt
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Claudia Sola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Héctor Alex Saka
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Sofía María Villada
- Servicio de Enfermedades Infecciosas, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - José Luis Bocco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Maria Pilar Aoki
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| |
Collapse
|
6
|
Aomar-Millán IF, de Victoria-Carazo JM, Fernández Reyes D, Torres-Parejo Ú, Pérez Fernández L, Martínez-Diz S, Ceballos Torres A, López Gómez J, Bizzarri F, Raya Álvarez E, Salvatierra J. Characteristics and clinical outcome in 312 patients with moderate to severe pneumonia due to SARS-COV-2 and hyperinflammation treated with anakinra and corticosteroids: A retrospective cohort study. PLoS One 2023; 18:e0283529. [PMID: 36961847 PMCID: PMC10038301 DOI: 10.1371/journal.pone.0283529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/12/2023] [Indexed: 03/25/2023] Open
Abstract
OBJECTIVE To assess the clinical outcome (death and/or Intensive Care Unit (ICU) admission) based on the time from hospital admission to the administration of anakinra and the possible usefulness of a "simplified" SCOPE score to stratify the risk of worse prognosis in our cohort of patients with moderate/severe SARS-CoV-2 pneumonia, both vaccinated and unvaccinated, that received anakinra and corticosteroids. In addition, the clinical, analytical, and imaging characteristics of patients at admission are described. METHODS Retrospective cohort study of 312 patients admitted to Hospital Clínico San Cecilio in Granada for moderate/severe pneumonia caused by SARS-CoV-2 that received anakinra and corticosteroids between March 2020 and January 2022. Clinical and analytical data were collected as well as the patient outcome at 30 and 60 days after admission. Three treatment groups were established according to the time from hospital admission to administration of anakinra: early (1st-2nd day), intermediate (3rd-5th day), and late (after the 5th day). RESULTS The median age was 67.4 years (IQR 22-97 years) and 204 (65.4%) were male. The most common comorbidity was hypertension (58%). The median time from the start of symptoms to anakinra administration was 6 days (IQR 5-10) and the SaFi (SaO2/FiO2) was 228 (IQR 71-471). The cure rate was higher in the early-onset anakinra group versus the late-onset group (73% vs 56.6%). The latter had a higher percentage of deaths (27.4%) and a greater number of patients remained hospitalized for a month (16%). On admission, the patients had elevated C-reactive protein (CRP), ferritin, and D-dimer values and decreased total lymphocytes. Analytical improvement was observed at both 72 hours and one month after treatment. 42 (13.5%) required ICU admission, and 23 (7.3%) orotracheal intubation. At 60 days, 221 (70.8%) were discharged, 87 (27.8%) had died and 4 (1.4%) remained hospitalized. The mean dose of anakinra was 1000 mg (100-2600 mg) with differences found between the dose administered and the clinical outcome. There were no differences in the primary outcome based on vaccination. A simplified SCOPE score at the start of anakinra administration was lower in patients with better clinical evolution. CONCLUSIONS Early treatment with anakinra and corticosteroids was associated with a better outcome regardless of vaccination status. A simplified SCOPE was found to be a good prognostic tool.
Collapse
Affiliation(s)
- Ismael Francisco Aomar-Millán
- Department of Internal Medicine, Hospital Universitario Clínico San Cecilio, Granada, Spain
- Biosanitary Research Institute of Granada, ibsGRANADA, Granada, Spain
| | | | - Daniel Fernández Reyes
- Department of Internal Medicine, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Úrsula Torres-Parejo
- Department of Statistics, Faculty of Health Sciences, University of Granada, Granada, Spain
| | | | - Silvia Martínez-Diz
- Department of Preventive Medicine, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Angel Ceballos Torres
- Department of Internal Medicine, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Jairo López Gómez
- Department of Internal Medicine, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Francesco Bizzarri
- Department of Rheumatology, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Enrique Raya Álvarez
- Biosanitary Research Institute of Granada, ibsGRANADA, Granada, Spain
- Department of Rheumatology, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Juan Salvatierra
- Biosanitary Research Institute of Granada, ibsGRANADA, Granada, Spain
- Department of Rheumatology, Hospital Universitario Clínico San Cecilio, Granada, Spain
| |
Collapse
|
7
|
Mormile R. IL-6 inhibitors for critically ill patients with SARS-CoV-2 pneumonia: a suitable treatment for everyone or only for a few? Minerva Pediatr (Torino) 2023; 75:131-132. [PMID: 36799344 DOI: 10.23736/s2724-5276.20.05921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Aversa, Caserta, Italy -
| |
Collapse
|
8
|
Du Y, Luo Y, Hu Z, Lu J, Liu X, Xing C, Wu J, Duan T, Chu J, Wang HY, Su X, Yu X, Wang R. Activation of cGAS-STING by Lethal Malaria N67C Dictates Immunity and Mortality through Induction of CD11b + Ly6C hi Proinflammatory Monocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103701. [PMID: 35635376 PMCID: PMC9353503 DOI: 10.1002/advs.202103701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/25/2022] [Indexed: 05/16/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) play critical roles in the innate immunity against infectious diseases and are required to link pathogen DNA sensing to immune responses. However, the mechanisms by which cGAS-STING-induced cytokines suppress the adaptive immune response against malaria infections remain poorly understood. Here, cGAS-STING signaling is identified to play a detrimental role in regulating anti-malaria immunity. cGAS or STING deficiency in mice markedly prolongs mouse survival during lethal malaria Plasmodium yoelii nigeriensis N67C infections by reducing late interleukin (IL)-6 production. Mechanistically, cGAS/STING recruits myeloid differentiation factor 88 (MyD88) and specifically induces the p38-dependent signaling pathway for late IL-6 production, which, in turn, expands CD11b+ Ly6Chi proinflammatory monocytes to inhibit immunity. Moreover, the blockage or ablation of the cGAS-STING-MyD88-p38-IL-6 signaling axis or the depletion of CD11b+ Ly6Chi proinflammatory monocytes provides mice a significant survival benefit during N67C and other lethal malaria-strain infections. Taken together, these findings identify a previously unrecognized detrimental role of cGAS-STING-MyD88-p38 axis in infectious diseases through triggering the late IL-6 production and proinflammatory monocyte expansion and provide insight into how targeting the DNA sensing pathway, dysregulated cytokines, and proinflammatory monocytes enhances immunity against infection.
Collapse
Affiliation(s)
- Yang Du
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Yien Luo
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Zhiqiang Hu
- Department of ImmunologyGuangdong Provincial Key Lab of Single Cell Technology and ApplicationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jiansen Lu
- Department of ImmunologyGuangdong Provincial Key Lab of Single Cell Technology and ApplicationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Department of Joint SurgeryThe Fifth Affiliated HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Xin Liu
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Changsheng Xing
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Jian Wu
- Malaria Functional Genomics SectionLaboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Tianhao Duan
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Junjun Chu
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Helen Y. Wang
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Department of PediatricsChildren's HospitalKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90027USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Xin‐zhuan Su
- Malaria Functional Genomics SectionLaboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Xiao Yu
- Department of ImmunologyGuangdong Provincial Key Lab of Single Cell Technology and ApplicationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
- Department of Joint SurgeryThe Fifth Affiliated HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| | - Rong‐Fu Wang
- Department of Medicineand Norris Comprehensive Cancer CenterKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
- Department of PediatricsChildren's HospitalKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90027USA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTX77030USA
| |
Collapse
|
9
|
Nayebi A, Navashenaq JG, Soleimani D, Nachvak SM. Probiotic supplementation: A prospective approach in the treatment of COVID-19. Nutr Health 2022; 28:163-175. [PMID: 34747257 PMCID: PMC9160438 DOI: 10.1177/02601060211049631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Despite strategies based on social distancing, the coronavirus disease 2019 (COVID-19) expands globally, and so far, many attempts have been made to achieve effective treatment for patients with COVID-19. This disease infects the lower respiratory tract and may lead to severe acute respiratory syndrome coronavirus (SARS-CoV). COVID-19 also can cause gastrointestinal infections. Therefore, COVID-19 patients with gastrointestinal symptoms are more likely to be complicated by SARS-CoV. In this disease, acquired immune responses are impaired, and uncontrolled inflammatory responses result in cytokine storms, leading to acute lung injury and thrombus formation. Probiotics are living microorganisms that contribute to the health of the host if administered in appropriate doses. Aim: This study aimed to provide evidence to show the importance of gut dysbiosis in viral disease, especially COVID-19. Therefore, we have focused on the impact of probiotics consumption on preventing severe symptoms of the disease. Methods: We have entirely searched SCOPUS, PubMed, and Google Scholar databases to collect evidence regarding the relationship between probiotics and viral infections to expand this relationship to the COVID-19. Results: It has been shown that probiotics directly counteract SARS-CoV in the gastrointestinal and respiratory tracts. Moreover, probiotics suppress severe immune responses and prevent cytokine storms to inhibit pathologic inflammatory conditions in the body via modulation of immune responses. Conclusion: According to available evidence based on their antiviral and respiratory activities, using probiotics might be an adjuvant therapy to reduce the burden and severity of this disease.
Collapse
Affiliation(s)
- Atiyeh Nayebi
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Davood Soleimani
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Mostafa Nachvak
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Gilliaux G, Desmecht D. Gammaherpesvirus Alters Alveolar Macrophages According to the Host Genetic Background and Promotes Beneficial Inflammatory Control over Pneumovirus Infection. Viruses 2022; 14:98. [PMID: 35062301 PMCID: PMC8777918 DOI: 10.3390/v14010098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/25/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) infection brings a wide spectrum of clinical outcomes, from a mild cold to severe bronchiolitis or even acute interstitial pneumonia. Among the known factors influencing this clinical diversity, genetic background has often been mentioned. In parallel, recent evidence has also pointed out that an early infectious experience affects heterologous infections severity. Here, we analyzed the importance of these two host-related factors in shaping the immune response in pneumoviral disease. We show that a prior gammaherpesvirus infection improves, in a genetic background-dependent manner, the immune system response against a subsequent lethal dose of pneumovirus primary infection notably by inducing a systematic expansion of the CD8+ bystander cell pool and by modifying the resident alveolar macrophages (AMs) phenotype to induce immediate cyto/chemokinic responses upon pneumovirus exposure, thereby drastically attenuating the host inflammatory response without affecting viral replication. Moreover, we show that these AMs present similar rapid and increased production of neutrophil chemokines both in front of pneumoviral or bacterial challenge, confirming recent studies attributing a critical antibacterial role of primed AMs. These results corroborate other recent studies suggesting that the innate immunity cells are themselves capable of memory, a capacity hitherto reserved for acquired immunity.
Collapse
Affiliation(s)
| | - Daniel Desmecht
- Department of Animal Pathology, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
11
|
Differential Expression of Mitosis and Cell Cycle Regulatory Genes during Recovery from an Acute Respiratory Virus Infection. Pathogens 2021; 10:pathogens10121625. [PMID: 34959580 PMCID: PMC8708581 DOI: 10.3390/pathogens10121625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/27/2022] Open
Abstract
Acute respiratory virus infections can have profound and long-term effects on lung function that persist even after the acute responses have fully resolved. In this study, we examined gene expression by RNA sequencing in the lung tissue of wild-type BALB/c mice that were recovering from a sublethal infection with the pneumonia virus of mice (PVM), a natural rodent pathogen of the same virus family and genus as the human respiratory syncytial virus. We compared these responses to gene expression in PVM-infected mice treated with Lactobacillus plantarum, an immunobiotic agent that limits inflammation and averts the negative clinical sequelae typically observed in response to acute infection with this pathogen. Our findings revealed prominent differential expression of inflammation-associated genes as well as numerous genes and gene families implicated in mitosis and cell-cycle regulation, including cyclins, cyclin-dependent kinases, cell division cycle genes, E2F transcription factors, kinesins, centromere proteins, and aurora kinases, among others. Of particular note was the differential expression of the cell division cycle gene Cdc20b, which was previously identified as critical for the ex vivo differentiation of multi-ciliated cells. Collectively, these findings provided us with substantial insight into post-viral repair processes and broadened our understanding of the mechanisms underlying Lactobacillus-mediated protection.
Collapse
|
12
|
Hu Y, Jiang Y, Liu S, Shen J, An Y. Phenotypes, Lung Microbiota and Cytokine Responses in Pneumonia After Hematopoietic Stem Cell Transplantation. J Inflamm Res 2021; 14:6055-6065. [PMID: 34824541 PMCID: PMC8610763 DOI: 10.2147/jir.s338914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Objective We aim to identify phenotypes of hematopoietic stem cell transplantation (HSCT) patients with pneumonia, discover relations of microbiota composition, cytokine profile, and outcomes between phenotypes. Specific cytokines will be evaluated for their role in lung injury in a murine model. Methods HSCT patients with pneumonia were included, and clustering of variables including cytokine levels provided the phenotypes. Outcomes were compared between phenotypes. Analysis of lung microbiota identified marker species of phenotypes. In the murine model, marker species-related cytokine regulations and the role of cytokines in lung injury were evaluated. Results Seventy-two patients were included, and two phenotypes were identified, namely "reactive" (N=21) and "nonreactive" (N=51) phenotype. Compared to their counterparts, patients with nonreactive phenotype had lower serum IL-6, IL-8, less severe inflammation, worse outcomes and more viruses as marker species in lung microbiota. The animal study validated the pathogens specific cytokine responses that presented in the human study and the potential protective role of IL-6 in these patients. Conclusion HSCT patients with pneumonia can be clustered into two phenotypes with different marker species and outcomes: the "nonreactive" phenotype and the "reactive" phenotype. Serum cytokine levels were different between the two phenotypes, which indicate the existence of the pathogen-related cytokine responses. For patients with the "nonreactive" phenotype, IL-6 therapy may improve their prognosis, which should be further tested in clinical studies.
Collapse
Affiliation(s)
- Yan Hu
- Department of Respiratory and Critical Care Medicine, Peking University International Hospital, Beijing, People's Republic of China
| | - Yanwen Jiang
- Department of Respiratory and Critical Care Medicine, Peking University International Hospital, Beijing, People's Republic of China
| | - Shuang Liu
- Department of Respiratory and Critical Care Medicine, Peking University International Hospital, Beijing, People's Republic of China
| | - Jiawei Shen
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
13
|
Rouhani SJ, Trujillo JA, Pyzer AR, Yu J, Fessler J, Cabanov A, Higgs EF, Cron KR, Zha Y, Lu Y, Bloodworth JC, Abasiyanik MF, Okrah S, Flood BA, Hatogai K, Leung MY, Pezeshk A, Kozloff L, Reschke R, Strohbehn GW, Chervin CS, Kumar M, Schrantz S, Madariaga ML, Beavis KG, Yeo KTJ, Sweis RF, Segal J, Tay S, Izumchenko E, Mueller J, Chen LS, Gajewski TF. Severe COVID-19 infection is associated with aberrant cytokine production by infected lung epithelial cells rather than by systemic immune dysfunction. RESEARCH SQUARE 2021:rs.3.rs-1083825. [PMID: 34845442 PMCID: PMC8629200 DOI: 10.21203/rs.3.rs-1083825/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanisms explaining progression to severe COVID-19 remain poorly understood. It has been proposed that immune system dysregulation/over-stimulation may be implicated, but it is not clear how such processes would lead to respiratory failure. We performed comprehensive multiparameter immune monitoring in a tightly controlled cohort of 128 COVID-19 patients, and used the ratio of oxygen saturation to fraction of inspired oxygen (SpO2 / FiO2) as a physiologic measure of disease severity. Machine learning algorithms integrating 139 parameters identified IL-6 and CCL2 as two factors predictive of severe disease, consistent with the therapeutic benefit observed with anti-IL6-R antibody treatment. However, transcripts encoding these cytokines were not detected among circulating immune cells. Rather, in situ analysis of lung specimens using RNAscope and immunofluorescent staining revealed that elevated IL-6 and CCL2 were dominantly produced by infected lung type II pneumocytes. Severe disease was not associated with higher viral load, deficient antibody responses, or dysfunctional T cell responses. These results refine our understanding of severe COVID-19 pathophysiology, indicating that aberrant cytokine production by infected lung epithelial cells is a major driver of immunopathology. We propose that these factors cause local immune regulation towards the benefit of the virus.
Collapse
Affiliation(s)
- Sherin J Rouhani
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jonathan A Trujillo
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Athalia R Pyzer
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jovian Yu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jessica Fessler
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Alexandra Cabanov
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Emily F Higgs
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Kyle R Cron
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Yuanyuan Zha
- The Human Immunological Monitoring Facility, University of Chicago, Chicago, IL 60637
| | - Yihao Lu
- Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637
| | - Jeffrey C Bloodworth
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | | | - Susan Okrah
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Blake A Flood
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Ken Hatogai
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Michael Yk Leung
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Apameh Pezeshk
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Lara Kozloff
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Robin Reschke
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Garth W Strohbehn
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Carolina Soto Chervin
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Madan Kumar
- Department of Pediatrics, Section of Infectious Diseases, University of Chicago
| | - Stephen Schrantz
- Department of Medicine, Section of Infectious Diseases, University of Chicago
| | | | - Kathleen G Beavis
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Kiang-Teck J Yeo
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Randy F Sweis
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jeremy Segal
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jeffrey Mueller
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Lin S Chen
- Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637
| | - Thomas F Gajewski
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| |
Collapse
|
14
|
Rhinovirus Reduces the Severity of Subsequent Respiratory Viral Infections by Interferon-Dependent and -Independent Mechanisms. mSphere 2021; 6:e0047921. [PMID: 34160242 PMCID: PMC8265665 DOI: 10.1128/msphere.00479-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coinfection by heterologous viruses in the respiratory tract is common and can alter disease severity compared to infection by individual virus strains. We previously found that inoculation of mice with rhinovirus (RV) 2 days before inoculation with a lethal dose of influenza A virus [A/Puerto Rico/8/34 (H1N1) (PR8)] provides complete protection against mortality. Here, we extended that finding to a second lethal respiratory virus, pneumonia virus of mice (PVM), and analyzed potential mechanisms of RV-induced protection. RV completely prevented mortality and weight loss associated with PVM infection. Major changes in host gene expression upon PVM infection were delayed compared to PR8. RV induced earlier recruitment of inflammatory cells, which were reduced at later times in RV-inoculated mice. Findings common to both virus pairs included the upregulated expression of mucin-associated genes and dampening of inflammation-related genes in mice that were inoculated with RV before lethal virus infection. However, type I interferon (IFN) signaling was required for RV-mediated protection against PR8 but not PVM. IFN signaling had minor effects on PR8 replication and contributed to controlling neutrophilic inflammation and hemorrhagic lung pathology in RV/PR8-infected mice. These findings, combined with differences in virus replication levels and disease severity, suggest that the suppression of inflammation in RV/PVM-infected mice may be due to early, IFN-independent suppression of viral replication, while that in RV/PR8-infected mice may be due to IFN-dependent modulation of immune responses. Thus, a mild upper respiratory viral infection can reduce the severity of a subsequent severe viral infection in the lungs through virus-dependent mechanisms. IMPORTANCE Respiratory viruses from diverse families cocirculate in human populations and are frequently detected within the same host. Although clinical studies suggest that infection by multiple different respiratory viruses may alter disease severity, animal models in which we can control the doses, timing, and strains of coinfecting viruses are critical to understanding how coinfection affects disease severity. Here, we compared gene expression and immune cell recruitment between two pairs of viruses (RV/PR8 and RV/PVM) inoculated sequentially in mice, both of which result in reduced severity compared to lethal infection by PR8 or PVM alone. Reduced disease severity was associated with suppression of inflammatory responses in the lungs. However, differences in disease kinetics and host and viral gene expression suggest that protection by coinfection with RV may be due to distinct molecular mechanisms. Indeed, we found that antiviral cytokine signaling was required for RV-mediated protection against lethal infection by PR8 but not PVM.
Collapse
|
15
|
Lordan R, Rando HM, Greene CS. Dietary Supplements and Nutraceuticals under Investigation for COVID-19 Prevention and Treatment. mSystems 2021; 6:e00122-21. [PMID: 33947804 PMCID: PMC8269209 DOI: 10.1128/msystems.00122-21] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents may reduce the pandemic's devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products may help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with a greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.IMPORTANCE Sales of dietary supplements and nutraceuticals have increased during the pandemic due to their perceived "immune-boosting" effects. However, little is known about the efficacy of these dietary supplements and nutraceuticals against the novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) or the disease that it causes, CoV disease 2019 (COVID-19). This review provides a critical overview of the potential prophylactic and therapeutic value of various dietary supplements and nutraceuticals from the evidence available to date. These include vitamin C, vitamin D, and zinc, which are often perceived by the public as treating respiratory infections or supporting immune health. Consumers need to be aware of misinformation and false promises surrounding some supplements, which may be subject to limited regulation by authorities. However, considerably more research is required to determine whether dietary supplements and nutraceuticals exhibit prophylactic and therapeutic value against SARS-CoV-2 infection and COVID-19. This review provides perspective on which nutraceuticals and supplements are involved in biological processes that are relevant to recovery from or prevention of COVID-19.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Limkar AR, Percopo CM, Redes JL, Druey KM, Rosenberg HF. Persistent Airway Hyperresponsiveness Following Recovery from Infection with Pneumonia Virus of Mice. Viruses 2021; 13:v13050728. [PMID: 33922096 PMCID: PMC8143513 DOI: 10.3390/v13050728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 01/25/2023] Open
Abstract
Respiratory virus infections can have long-term effects on lung function that persist even after the acute responses have resolved. Numerous studies have linked severe early childhood infection with respiratory syncytial virus (RSV) to the development of wheezing and asthma, although the underlying mechanisms connecting these observations remain unclear. Here, we examine airway hyperresponsiveness (AHR) that develops in wild-type mice after recovery from symptomatic but sublethal infection with the natural rodent pathogen, pneumonia virus of mice (PVM). We found that BALB/c mice respond to a limited inoculum of PVM with significant but reversible weight loss accompanied by virus replication, acute inflammation, and neutrophil recruitment to the airways. At day 21 post-inoculation, virus was no longer detected in the airways and the acute inflammatory response had largely resolved. However, and in contrast to most earlier studies using the PVM infection model, all mice survived the initial infection and all went on to develop serum anti-PVM IgG antibodies. Furthermore, using both invasive plethysmography and precision-cut lung slices, we found that these mice exhibited significant airway hyperresponsiveness at day 21 post-inoculation that persisted through day 45. Taken together, our findings extend an important and versatile respiratory virus infection model that can now be used to explore the role of virions and virion clearance as well as virus-induced inflammatory mediators and their signaling pathways in the development and persistence of post-viral AHR and lung dysfunction.
Collapse
Affiliation(s)
- Ajinkya R. Limkar
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (A.R.L.); (C.M.P.)
| | - Caroline M. Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (A.R.L.); (C.M.P.)
| | - Jamie L. Redes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.R.); (K.M.D.)
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.R.); (K.M.D.)
| | - Helene F. Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (A.R.L.); (C.M.P.)
- Correspondence:
| |
Collapse
|
17
|
Hill JA, Menon MP, Dhanireddy S, Wurfel MM, Green M, Jain R, Chan JD, Huang J, Bethune D, Turtle C, Johnston C, Xie H, Leisenring WM, Nina Kim H, Cheng G. Tocilizumab in hospitalized patients with COVID-19: Clinical outcomes, inflammatory marker kinetics, and safety. J Med Virol 2021; 93:2270-2280. [PMID: 33200828 PMCID: PMC7753799 DOI: 10.1002/jmv.26674] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 01/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) due to infection with severe acute respiratory syndrome coronavirus 2 causes substantial morbidity. Tocilizumab, an interleukin-6 receptor antagonist, might improve outcomes by mitigating inflammation. We conducted a retrospective study of patients admitted to the University of Washington Hospital system with COVID-19 and requiring supplemental oxygen. Outcomes included clinical improvement, defined as a two-point reduction in severity on a six-point ordinal scale or discharge, and mortality within 28 days. We used Cox proportional-hazards models with propensity score inverse probability weighting to compare outcomes in patients who did and did not receive tocilizumab. We evaluated 43 patients who received tocilizumab and 45 who did not. Patients receiving tocilizumab were younger with fewer comorbidities but higher baseline oxygen requirements. Tocilizumab treatment was associated with reduced C-reactive protein, fibrinogen, and temperature, but there were no meaningful differences in time to clinical improvement (adjusted hazard ratio [aHR], 0.92; 95% confidence interval [CI], 0.38-2.22) or mortality (aHR, 0.57; 95% CI, 0.21-1.52). A numerically higher proportion of tocilizumab-treated patients had subsequent infections, transaminitis, and cytopenias. Tocilizumab did not improve outcomes in hospitalized patients with COVID-19. However, this study was not powered to detect small differences, and there remains the possibility for a survival benefit.
Collapse
Affiliation(s)
- Joshua A. Hill
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Manoj P. Menon
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | | | - Mark M. Wurfel
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Margaret Green
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Rupali Jain
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- University of Washington School of PharmacySeattleWashingtonUSA
| | - Jeannie D. Chan
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- University of Washington School of PharmacySeattleWashingtonUSA
| | - Joanne Huang
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- University of Washington School of PharmacySeattleWashingtonUSA
| | - Danika Bethune
- University of Washington School of MedicineSeattleWashingtonUSA
| | - Cameron Turtle
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Christine Johnston
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Hu Xie
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Wendy M. Leisenring
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - H. Nina Kim
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Guang‐Shing Cheng
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| |
Collapse
|
18
|
Lordan R, Rando HM, Greene CS. Dietary Supplements and Nutraceuticals Under Investigation for COVID-19 Prevention and Treatment. ARXIV 2021:arXiv:2102.02250v1. [PMID: 33564696 PMCID: PMC7872359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents could reduce the pandemic's devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products could help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| | - Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
19
|
Iriana S, Asha K, Repak M, Sharma-Walia N. Hedgehog Signaling: Implications in Cancers and Viral Infections. Int J Mol Sci 2021; 22:1042. [PMID: 33494284 PMCID: PMC7864517 DOI: 10.3390/ijms22031042] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The hedgehog (SHH) signaling pathway is primarily involved in embryonic gut development, smooth muscle differentiation, cell proliferation, adult tissue homeostasis, tissue repair following injury, and tissue polarity during the development of vertebrate and invertebrate organisms. GLIoma-associated oncogene homolog (GLI) family of zinc-finger transcription factors and smoothened (SMO) are the signal transducers of the SHH pathway. Both SHH ligand-dependent and independent mechanisms activate GLI proteins. Various transcriptional mechanisms, posttranslational modifications (phosphorylation, ubiquitination, proteolytic processing, SUMOylation, and acetylation), and nuclear-cytoplasmic shuttling control the activity of SHH signaling pathway proteins. The dysregulated SHH pathway is associated with bone and soft tissue sarcomas, GLIomas, medulloblastomas, leukemias, and tumors of breast, lung, skin, prostate, brain, gastric, and pancreas. While extensively studied in development and sarcomas, GLI family proteins play an essential role in many host-pathogen interactions, including bacterial and viral infections and their associated cancers. Viruses hijack host GLI family transcription factors and their downstream signaling cascades to enhance the viral gene transcription required for replication and pathogenesis. In this review, we discuss a distinct role(s) of GLI proteins in the process of tumorigenesis and host-pathogen interactions in the context of viral infection-associated malignancies and cancers due to other causes. Here, we emphasize the potential of the Hedgehog (HH) pathway targeting as a potential anti-cancer therapeutic approach, which in the future could also be tested in infection-associated fatalities.
Collapse
|
20
|
Respiratory Epithelial Cells Respond to Lactobacillus plantarum but Provide No Cross-Protection against Virus-Induced Inflammation. Viruses 2020; 13:v13010002. [PMID: 33374950 PMCID: PMC7821944 DOI: 10.3390/v13010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Virus-induced inflammation plays a critical role in determining the clinical outcome of an acute respiratory virus infection. We have shown previously that the administration of immunobiotic Lactobacillus plantarum (Lp) directly to the respiratory tract prevents lethal inflammatory responses to subsequent infection with a mouse respiratory virus pathogen. While Lp-mediated protective responses involve non-redundant contributions of both Toll-like receptor 2 (TLR2) and NOD2, the cellular basis of these findings remains unclear. Here, we address the impact of Lp and its capacity to suppress inflammation in virus-infected respiratory epithelial cells in two cell culture models. We found that both MLE-12 cells and polarized mouse tracheal epithelial cells (mTECs) were susceptible to infection with Influenza A and released proinflammatory cytokines, including CCL2, CCL5, CXCL1, and CXCL10, in response to replicating virus. MLE-12 cells express NOD2 (81 ± 6.3%) and TLR2 (19 ± 4%), respond to Lp, and are TLR2-specific, but not NOD2-specific, biochemical agonists. By contrast, we found that mTECs express NOD2 (81 ± 17%) but minimal TLR2 (0.93 ± 0.58%); nonetheless, mTECs respond to Lp and the TLR2 agonist, Pam2CSK4, but not NOD2 agonists or the bifunctional TLR2-NOD2 agonist, CL-429. Although MLE-12 cells and mTECS were both activated by Lp, little to no cytokine suppression was observed in response to Lp followed by virus infection via a protocol that replicated experimental conditions that were effective in vivo. Further study and a more complex approach may be required to reveal critical factors that suppress virus-induced inflammatory responses.
Collapse
|
21
|
Leláková V, Béraud-Dufour S, Hošek J, Šmejkal K, Prachyawarakorn V, Pailee P, Widmann C, Václavík J, Coppola T, Mazella J, Blondeau N, Heurteaux C. Therapeutic potential of prenylated stilbenoid macasiamenene F through its anti-inflammatory and cytoprotective effects on LPS-challenged monocytes and microglia. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113147. [PMID: 32736058 DOI: 10.1016/j.jep.2020.113147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Macaranga Thou. (Euphorbiaceae) is a large genus that comprises over 300 species distributed between Western Africa and the islands of the South Pacific. Plants of this genus have a long-standing history of use in traditional medicine for different purposes, including the treatment of inflammation. Fresh and dried leaves of certain Macaranga species (e.g. M. tanarius (L.) Müll.Arg.), have been used to treat cuts, bruises, boils, swellings, sores and covering of wounds in general. Several reports described Macaranga spp. being a rich source of polyphenols, such as prenylated stilbenoids and flavonoids, mostly responsible for its biological activity. Similarly, an abundant content of prenylated stilbenes was also described in M. siamensis S.J.Davies, species recently identified (2001) in Thailand. While the respective biological activity of the prenylated stilbenes from M. siamensis was poorly investigated to date, our recent study pointed out the interest as the natural source of several novel anti-inflammatory stilbenoids isolated from this species. AIM OF THE STUDY This work investigated the potential anti-inflammatory effects of the stilbenoid macasiamenene F (MF) isolated from M. siamensis S.J.Davies (Euphorbiaceae) on the lipopolysaccharide (LPS)-induced inflammation-like response of monocytes and microglia, major cells involved in the peripheral and central inflammatory response, respectively. MATERIALS AND METHODS LPS-induced stimulation of TLR4 signaling led to the activation of inflammatory pathways in in vitro models of THP-1 and THP-1-XBlue™-MD2-CD14 human monocytes, BV-2 mouse microglia, and an ex vivo model of brain-sorted mouse microglia. The ability of the stilbenoid MF to intervene in the IкB/NF-кB and MAPKs/AP-1 inflammatory cascade was investigated. The gene and protein expressions of the pro-inflammatory cytokines IL-1β and TNF-α were evaluated at the transcription and translation levels. The protective effect of MF against LPS-triggered microglial loss was assessed by cell counting and the LDH assay. RESULTS MF demonstrated beneficial effects, reducing both monocyte and microglial inflammation as assessed in vitro. It efficiently inhibited the degradation of IкBα, thereby reducing the NF-кB activity and TNF-α expression in human monocytes. Furthermore, the LPS-induced expression of IL-1β and TNF-α in microglia was dampened by pre-, co-, or post-treatment with MF. In addition to its anti-inflammatory effect, MF demonstrated a cytoprotective effect against the LPS-induced death of BV-2 microglia. CONCLUSION Our research into anti-inflammatory and protective effects of MF has shown that it is a promising candidate for further in vitro and in vivo investigations of MF interventions with respect to acute and chronic inflammation, including potentially beneficial effects on the inflammatory component of brain diseases such as stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Veronika Leláková
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France; Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic.
| | - Sophie Béraud-Dufour
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Jan Hošek
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic; Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic.
| | | | - Phanruethai Pailee
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, TH-10210, Bangkok, Thailand.
| | - Catherine Widmann
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Jiří Václavík
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic.
| | - Thierry Coppola
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Jean Mazella
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Nicolas Blondeau
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Catherine Heurteaux
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| |
Collapse
|
22
|
Bousquet J, Cristol JP, Czarlewski W, Anto JM, Martineau A, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Fiocchi A, Canonica GW, Fonseca JA, Vidal A, Choi HJ, Kim HJ, Le Moing V, Reynes J, Sheikh A, Akdis CA, Zuberbier T. Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies. Clin Transl Allergy 2020; 10:58. [PMID: 33292691 PMCID: PMC7711617 DOI: 10.1186/s13601-020-00362-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
Collapse
Affiliation(s)
- Jean Bousquet
- Department of Dermatology and Allergy, Charité, Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany. .,University Hospital Montpellier, 273 avenue d'Occitanie, 34090, Montpellier, France. .,MACVIA-France, Montpellier, France.
| | - Jean-Paul Cristol
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU, Montpellier, France
| | | | - Josep M Anto
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,ISGlobAL, Barcelona, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Adrian Martineau
- Institute for Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Susana C Fonseca
- GreenUPorto - Sustainable Agrifood Production Research Centre, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Vila do Conde, Portugal
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University, Napoli, Italy
| | - Hubert Blain
- Department of Geriatrics, Montpellier University Hospital, Montpellier, France
| | - Alessandro Fiocchi
- Division of Allergy, Department of Pediatric Medicine, The Bambino Gesu Children's Research Hospital Holy See, Rome, Italy
| | - G Walter Canonica
- Personalized Medicine Asthma and Allergy Clinic-Humanitas University & Research Hospital, IRCCS, Milano, Italy
| | - Joao A Fonseca
- CINTESIS, Center for Research in Health Technology and Information Systems, Faculdade de Medicina da Universidade do Porto; and Medida,, Lda Porto, Porto, Portugal
| | - Alain Vidal
- World Business Council for Sustainable Development (WBCSD) Maison de la Paix, Geneva, Switzerland.,AgroParisTech-Paris Institute of Technology for Life, Food and Environmental Sciences, Paris, France
| | - Hak-Jong Choi
- Microbiology and Functionality Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, Korea
| | - Hyun Ju Kim
- SME Service Department, Strategy and Planning Division, World Institute of Kimchi, Gwangju, Korea
| | | | - Jacques Reynes
- Maladies Infectieuses et Tropicales, CHU, Montpellier, France
| | - Aziz Sheikh
- The Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Torsten Zuberbier
- Department of Dermatology and Allergy, Charité, Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany
| | | |
Collapse
|
23
|
Cardinale V, Capurso G, Ianiro G, Gasbarrini A, Arcidiacono PG, Alvaro D. Intestinal permeability changes with bacterial translocation as key events modulating systemic host immune response to SARS-CoV-2: A working hypothesis. Dig Liver Dis 2020; 52:1383-1389. [PMID: 33023827 PMCID: PMC7494274 DOI: 10.1016/j.dld.2020.09.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
The microbiota-gut-liver-lung axis plays a bidirectional role in the pathophysiology of a number of infectious diseases. During the course of severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and 2 (SARS-CoV-2) infection, this pathway is unbalanced due to intestinal involvement and systemic inflammatory response. Moreover, there is convincing preliminary evidence linking microbiota-gut-liver axis perturbations, proinflammatory status, and endothelial damage in noncommunicable preventable diseases with coronavirus disease 2019 (Covid-19) severity. Intestinal damage due to SARS-CoV-2 infection, systemic inflammation-induced dysfunction, and IL-6-mediated diffuse vascular damage may increase intestinal permeability and precipitate bacterial translocation. The systemic release of damage- and pathogen-associated molecular patterns (e.g. lipopolysaccharides) and consequent immune-activation may in turn auto-fuel vicious cycles of systemic inflammation and tissue damage. Thus, intestinal bacterial translocation may play an additive/synergistic role in the cytokine release syndrome in Covid-19. This review provides evidence on gut-liver axis involvement in Covid-19 as well as insights into the hypothesis that intestinal endotheliitis and permeability changes with bacterial translocation are key pathophysiologic events modulating systemic inflammatory response. Moreover, it presents an overview of readily applicable measures for the modulation of the gut-liver axis and microbiota in clinical practice.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, Rome 00185, Italy.
| | - Gabriele Capurso
- Pancreato-biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Paolo Giorgio Arcidiacono
- Pancreato-biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell'Università 37, Rome 00185, Italy
| |
Collapse
|
24
|
Qun S, Wang Y, Chen J, Huang X, Guo H, Lu Z, Wang J, Zheng C, Ma Y, Zhu Y, Xia D, Wang Y, He H, Wang Y, Fei M, Yin Y, Zheng M, Xu Y, Ge W, Hu F, Zhou J. Neutrophil-to-Lymphocyte Ratios Are Closely Associated With the Severity and Course of Non-mild COVID-19. Front Immunol 2020; 11:2160. [PMID: 32983180 PMCID: PMC7493648 DOI: 10.3389/fimmu.2020.02160] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is spreading worldwide. Measuring the prevention and control of the disease has become a matter requiring urgent focus. Objective Based on coronavirus disease 2019 (COVID-19) clinical data from Wuhan, we conducted an in-depth analysis to clarify some of the pathological mechanisms of the disease and identify simple measures to predict its severity early on. Methods A total of 230 patients with non-mild COVID-19 were recruited, and information on their clinical characteristics, inflammatory cytokines, and T lymphocyte subsets was collected. Risk factors for severity were analyzed by binary logistic regression, and the associations of neutrophil-to-lymphocyte ratios (N/LRs) with illness severity, disease course, CT grading, inflammatory cytokines, and T lymphocyte subsets were evaluated. Results Our results showed that the N/LRs were closely related to interleukin (IL)-6 and IL-10 (P < 0.001, P = 0.024) and to CD3+ and CD8+ T lymphocytes (P < 0.001, P = 0.046). In particular, the N/LRs were positively correlated with the severity and course of the disease (P = 0.021, P < 0.001). Compared to the values at the first test after admission, IL-6 and IL-10 were significantly decreased and increased, respectively, as of the last test before discharge (P = 0.006, P < 0.001). More importantly, through binary logistic regression, we found that male sex, underlying diseases (such as cardiovascular disease), pulse, and N/LRs were all closely related to the severity of the disease (P = 0.004, P = 0.012, P = 0.013, P = 0.028). Conclusions As a quick and convenient marker of inflammation, N/LRs may predict the disease course and severity level of non-mild COVID-19; male sex, cardiovascular disease, and pulse are also risk factors for the severity of non-mild COVID-19.
Collapse
Affiliation(s)
- Sen Qun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yulan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun Chen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Guo
- Union Hospital Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Lu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinquan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changcheng Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Ma
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuyou Zhu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Daqing Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yinzhong Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingming Fei
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yihong Yin
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mao Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yehong Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Ge
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fuyong Hu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jian Zhou
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
25
|
A gammaherpesvirus licenses CD8 T cells to protect the host from pneumovirus-induced immunopathologies. Mucosal Immunol 2020; 13:799-813. [PMID: 32424182 PMCID: PMC7116076 DOI: 10.1038/s41385-020-0293-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 02/04/2023]
Abstract
Human respiratory syncytial virus (RSV) is a pneumovirus that causes severe infections in infants worldwide. Despite intensive research, safe and effective vaccines against RSV have remained elusive. The main reason is that RSV infection of children previously immunized with formalin-inactivated-RSV vaccines has been associated with exacerbated pathology, a phenomenon called RSV vaccine-enhanced respiratory disease. In parallel, despite the high RSV prevalence, only a minor proportion of children develop severe diseases. Interestingly, variation in the immune responses against RSV or following RSV vaccination could be linked with differences of exposure to microbes during childhood. Gammaherpesviruses (γHVs), such as the Epstein-Barr virus, are persistent viruses that deeply influence the immune system of their host and could therefore affect the development of pneumovirus-induced immunopathologies for the long term. Here, we showed that a previous ɣHV infection protects against both pneumovirus vaccine-enhanced disease and pneumovirus primary infection and that CD8 T cells are essential for this protection. These observations shed a new light on the understanding of pneumovirus-induced diseases and open new perspectives for the development of vaccine strategies.
Collapse
|
26
|
Percopo CM, Ma M, Mai E, Redes JL, Kraemer LS, Minai M, Moore IN, Druey KM, Rosenberg HF. Alternaria alternata Accelerates Loss of Alveolar Macrophages and Promotes Lethal Influenza A Infection. Viruses 2020; 12:v12090946. [PMID: 32867061 PMCID: PMC7552021 DOI: 10.3390/v12090946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic inhalation of fungi and fungal components has been linked to the development of respiratory disorders, although their role with respect to the pathogenesis of acute respiratory virus infection remains unclear. Here, we evaluate inflammatory pathology induced by repetitive administration of a filtrate of the ubiquitous fungus, Alternaria alternata, and its impact on susceptibility to infection with influenza A. We showed previously that A. alternata at the nasal mucosae resulted in increased susceptibility to an otherwise sublethal inoculum of influenza A in wild-type mice. Here we demonstrate that A. alternata-induced potentiation of influenza A infection was not dependent on fungal serine protease or ribonuclease activity. Repetitive challenge with A. alternata prior to virus infection resulted proinflammatory cytokines, neutrophil recruitment, and loss of alveolar macrophages to a degree that substantially exceeded that observed in response to influenza A infection alone. Concomitant administration of immunomodulatory Lactobacillus plantarum, a strategy shown previously to limit virus-induced inflammation in the airways, blocked the exaggerated lethal response. These observations promote an improved understanding of severe influenza infection with potential clinical relevance for individuals subjected to continuous exposure to molds and fungi.
Collapse
Affiliation(s)
- Caroline M. Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
| | - Michelle Ma
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
| | - Eric Mai
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
| | - Jamie L. Redes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.R.); (K.M.D.)
| | - Laura S. Kraemer
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.M.); (I.N.M.)
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.M.); (I.N.M.)
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.R.); (K.M.D.)
| | - Helene F. Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
- Correspondence: ; Tel.: +1-301-761-6682
| |
Collapse
|
27
|
Ghajarzadeh M, Bonavita S. Are patients with multiple sclerosis (MS) at higher risk of COVID-19 infection? Neurol Sci 2020; 41:2315-2316. [PMID: 32638135 PMCID: PMC7340752 DOI: 10.1007/s10072-020-04570-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Mahsa Ghajarzadeh
- Universal Council of Epidemiology (UCE), Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran.
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| |
Collapse
|
28
|
Infusino F, Marazzato M, Mancone M, Fedele F, Mastroianni CM, Severino P, Ceccarelli G, Santinelli L, Cavarretta E, Marullo AGM, Miraldi F, Carnevale R, Nocella C, Biondi-Zoccai G, Pagnini C, Schiavon S, Pugliese F, Frati G, d’Ettorre G. Diet Supplementation, Probiotics, and Nutraceuticals in SARS-CoV-2 Infection: A Scoping Review. Nutrients 2020; 12:E1718. [PMID: 32521760 PMCID: PMC7352781 DOI: 10.3390/nu12061718] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) global pandemic is a devastating event that is causing thousands of victims every day around the world. One of the main reasons of the great impact of coronavirus disease 2019 (COVID-19) on society is its unexpected spread, which has not allowed an adequate preparation. The scientific community is fighting against time for the production of a vaccine, but it is difficult to place a safe and effective product on the market as fast as the virus is spreading. Similarly, for drugs that can directly interfere with viral pathways, their production times are long, despite the great efforts made. For these reasons, we analyzed the possible role of non-pharmacological substances such as supplements, probiotics, and nutraceuticals in reducing the risk of Sars-CoV-2 infection or mitigating the symptoms of COVID-19. These substances could have numerous advantages in the current circumstances, are generally easily available, and have negligible side effects if administered at the already used and tested dosages. Large scientific evidence supports the benefits that some bacterial and molecular products may exert on the immune response to respiratory viruses. These could also have a regulatory role in systemic inflammation or endothelial damage, which are two crucial aspects of COVID-19. However, there are no specific data available, and rigorous clinical trials should be conducted to confirm the putative benefits of diet supplementation, probiotics, and nutraceuticals in the current pandemic.
Collapse
Affiliation(s)
- Fabio Infusino
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| | - Massimo Mancone
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Francesco Fedele
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| | - Paolo Severino
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
- Mediterranea Cardiocentro, 80133 Naples, Italy
| | - Antonino G. M. Marullo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
| | - Fabio Miraldi
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
- Mediterranea Cardiocentro, 80133 Naples, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
- Mediterranea Cardiocentro, 80133 Naples, Italy
| | - Cristiano Pagnini
- Department of Gastroenterology and Digestive Endoscopy, Azienda Ospedaliera San Giovanni Addolorata, 00184 Rome, Italy;
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
| | - Francesco Pugliese
- Department of General Surgery and Surgical Specialities “Paride Stefanini”, Sapienza, University of Rome, 00185 Rome, Italy;
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
- IRCCS NeuroMed, 86077 Pozzilli (IS), Italy
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| |
Collapse
|
29
|
Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 2020; 53:13-24. [PMID: 32475759 PMCID: PMC7237916 DOI: 10.1016/j.cytogfr.2020.05.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 mortality is strongly associated with the development of severe pneumonia and acute respiratory distress syndrome with the worst outcome resulting in cytokine release syndrome and multiorgan failure. It is becoming critically important to identify at the early stage of the infection those patients who are prone to develop the most adverse effects. Elevated systemic interleukin-6 levels in patients with COVID-19 are considered as a relevant parameter in predicting most severe course of disease and the need for intensive care. This review discusses the mechanisms by which IL-6 may possibly contribute to disease exacerbation and the potential of therapeutic approaches based on anti-IL-6 biologics.
Collapse
Affiliation(s)
- E O Gubernatorova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - E A Gorshkova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A I Polinova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - M S Drutskaya
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
30
|
Pierce SK, Schwartzberg PL, Shah NN, Taylor N. Women in immunology: 2020 and beyond. Nat Immunol 2020; 21:254-258. [PMID: 32094649 PMCID: PMC11549733 DOI: 10.1038/s41590-020-0618-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/27/2022]
Abstract
Women have been at the forefront of tremendous achievements in immunology in the past decade. However, disparities still exist, limiting upward potential and further advancements. As four NIH intramural women scientists who care deeply about scientific progress and the progress of women in our field, we review ongoing challenges and discuss potential approaches to help advance the promotion of women in the sciences.
Collapse
Affiliation(s)
- Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | - Pamela L Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | - Nirali N Shah
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
- IGMM, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
31
|
Stegelmeier AA, van Vloten JP, Mould RC, Klafuric EM, Minott JA, Wootton SK, Bridle BW, Karimi K. Myeloid Cells during Viral Infections and Inflammation. Viruses 2019; 11:E168. [PMID: 30791481 PMCID: PMC6410039 DOI: 10.3390/v11020168] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloid cells represent a diverse range of innate leukocytes that are crucial for mounting successful immune responses against viruses. These cells are responsible for detecting pathogen-associated molecular patterns, thereby initiating a signaling cascade that results in the production of cytokines such as interferons to mitigate infections. The aim of this review is to outline recent advances in our knowledge of the roles that neutrophils and inflammatory monocytes play in initiating and coordinating host responses against viral infections. A focus is placed on myeloid cell development, trafficking and antiviral mechanisms. Although known for promoting inflammation, there is a growing body of literature which demonstrates that myeloid cells can also play critical regulatory or immunosuppressive roles, especially following the elimination of viruses. Additionally, the ability of myeloid cells to control other innate and adaptive leukocytes during viral infections situates these cells as key, yet under-appreciated mediators of pathogenic inflammation that can sometimes trigger cytokine storms. The information presented here should assist researchers in integrating myeloid cell biology into the design of novel and more effective virus-targeted therapies.
Collapse
Affiliation(s)
- Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Elaine M Klafuric
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jessica A Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|