1
|
Sok SPM, Pipkin K, Popescu NI, Reidy M, Li B, Van Remmen H, Kinter M, Sun XH, Fan Z, Zhao M. Gpx4 Regulates Invariant NKT Cell Homeostasis and Function by Preventing Lipid Peroxidation and Ferroptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:941-951. [PMID: 39158281 PMCID: PMC11408103 DOI: 10.4049/jimmunol.2400246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
Invariant NKT (iNKT) cells are a group of innate-like T cells that plays important roles in immune homeostasis and activation. We found that iNKT cells, compared with CD4+ T cells, have significantly higher levels of lipid peroxidation in both mice and humans. Proteomic analysis also demonstrated that iNKT cells express higher levels of phospholipid hydroperoxidase glutathione peroxidase 4 (Gpx4), a major antioxidant enzyme that reduces lipid peroxidation and prevents ferroptosis. T cell-specific deletion of Gpx4 reduces iNKT cell population, most prominently the IFN-γ-producing NKT1 subset. RNA-sequencing analysis revealed that IFN-γ signaling, cell cycle regulation, and mitochondrial function are perturbed by Gpx4 deletion in iNKT cells. Consistently, we detected impaired cytokine production, elevated cell proliferation and cell death, and accumulation of lipid peroxides and mitochondrial reactive oxygen species in Gpx4 knockout iNKT cells. Ferroptosis inhibitors, iron chelators, vitamin E, and vitamin K2 can prevent ferroptosis induced by Gpx4 deficiency in iNKT cells and ameliorate the impaired function of iNKT cells due to Gpx4 inhibition. Last, vitamin E rescues iNKT cell population in Gpx4 knockout mice. Altogether, our findings reveal the critical role of Gpx4 in regulating iNKT cell homeostasis and function, through controlling lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Sophia P. M. Sok
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
| | - Kaitlyn Pipkin
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
| | - Narcis I. Popescu
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
| | - Megan Reidy
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
| | - Bin Li
- Department of Cellular and Molecular Medicine, School of Medicine, University of California-San Diego, 9500 Gilman Dr, La Jolla, California, 92093, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
- Oklahoma City VA Medical Center, 921 NE 13th St, Oklahoma City, Oklahoma, 73104,USA
| | - Mike Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
| | - Xiao-Hong Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, Connecticut 06030, USA
| | - Meng Zhao
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 13 Street, Oklahoma City, Oklahoma, 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, 1100 N Lindsay Ave, Oklahoma City, Oklahoma, 73104, USA
| |
Collapse
|
2
|
Ulibarri MR, Lin Y, Ramprashad JC, Han G, Hasan MH, Mithila FJ, Ma C, Gopinath S, Zhang N, Milner JJ, Beura LK. Epithelial organoid supports resident memory CD8 T cell differentiation. Cell Rep 2024; 43:114621. [PMID: 39153200 PMCID: PMC11401477 DOI: 10.1016/j.celrep.2024.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
Resident memory T cells (TRMs) play a vital role in regional immune defense. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency and low cell survival rates have limited the implementation of TRM-focused high-throughput assays. Here, we engineer a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation. These in-vitro-generated TRMs are phenotypically and transcriptionally similar to in vivo TRMs. Pharmacological and genetic approaches showed that transforming growth factor β (TGF-β) signaling plays a crucial role in their differentiation. The VEOs in our model are susceptible to viral infections and the CD8 T cells are amenable to genetic manipulation, both of which will allow a detailed interrogation of antiviral CD8 T cell biology. Altogether we have established a robust in vitro TRM differentiation system that is scalable and can be subjected to high-throughput assays that will rapidly add to our understanding of TRMs.
Collapse
Affiliation(s)
- Max R Ulibarri
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Ying Lin
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| | - Julian C Ramprashad
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Geongoo Han
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Mohammad H Hasan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Farha J Mithila
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; Molecular Biology, Cell Biology and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Smita Gopinath
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Cambridge, MA 02115, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - J Justin Milner
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
3
|
Vardam-Kaur T, Banuelos A, Gabaldon-Parish M, Macedo BG, Salgado CL, Wanhainen KM, Zhou MH, van Dijk S, Santiago-Carvalho I, Beniwal AS, Leff CL, Peng C, Tran NL, Jameson SC, Borges da Silva H. The ATP-exporting channel Pannexin 1 promotes CD8 + T cell effector and memory responses. iScience 2024; 27:110290. [PMID: 39045105 PMCID: PMC11263643 DOI: 10.1016/j.isci.2024.110290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Sensing of extracellular ATP (eATP) controls CD8+ T cell function. Their accumulation can occur through export by specialized molecules, such as the release channel Pannexin 1 (Panx1). Whether Panx1 controls CD8+ T cell immune responses in vivo, however, has not been previously addressed. Here, we report that T-cell-specific Panx1 is needed for CD8+ T cell responses to viral infections and cancer. We found that CD8-specific Panx1 promotes both effector and memory CD8+ T cell responses. Panx1 favors initial effector CD8+ T cell activation through extracellular ATP (eATP) export and subsequent P2RX4 activation, which helps promote full effector differentiation through extracellular lactate accumulation and its subsequent recycling. In contrast, Panx1 promotes memory CD8+ T cell survival primarily through ATP export and subsequent P2RX7 engagement, leading to improved mitochondrial metabolism. In summary, Panx1-mediated eATP export regulates effector and memory CD8+ T cells through distinct purinergic receptors and different metabolic and signaling pathways.
Collapse
Affiliation(s)
- Trupti Vardam-Kaur
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | - Alma Banuelos
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | | | - Bruna Gois Macedo
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | | | | | - Maggie Hanqi Zhou
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | - Sarah van Dijk
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | | | - Angad S. Beniwal
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | - Chloe L. Leff
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | - Changwei Peng
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nhan L. Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| | - Stephen C. Jameson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Henrique Borges da Silva
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85255, USA
| |
Collapse
|
4
|
Midavaine É, Moraes BC, Benitez J, Rodriguez SR, Braz JM, Kochhar NP, Eckalbar WL, Domingos AI, Pintar JE, Basbaum AI, Kashem SW. Regulatory T cell-derived enkephalin imparts pregnancy-induced analgesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593442. [PMID: 38798460 PMCID: PMC11118376 DOI: 10.1101/2024.05.11.593442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. mTregs are both necessary and sufficient for suppressing mechanical pain sensitivity in female but not male mice. Notably, the mTreg modulation of pain thresholds depends on sex-hormones and expansion of enkephalinergic mTregs during gestation imparts a remarkable pregnancy-induced analgesia in a pre-existing, chronic, unremitting neuropathic pain model. These results uncover a fundamental sex-specific, pregnancy-pronounced, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology and maternal health.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Beatriz C. Moraes
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Jorge Benitez
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Sian R. Rodriguez
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Joao M. Braz
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Nathan P. Kochhar
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Walter L. Eckalbar
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Ana I. Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - John E. Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Allan I. Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Sakeen W. Kashem
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
5
|
Vardam-Kaur T, Banuelos A, Gabaldon-Parish M, Macedo BG, Salgado CL, Wanhainen KM, Zhou MH, van Dijk S, Santiago-Carvalho I, Beniwal AS, Leff CL, Peng C, Tran NL, Jameson SC, da Silva HB. The ATP-exporting channel Pannexin-1 promotes CD8 + T cell effector and memory responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.19.537580. [PMID: 37131831 PMCID: PMC10153284 DOI: 10.1101/2023.04.19.537580] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Sensing of extracellular ATP (eATP) controls CD8+ T cell function. Their accumulation can occur through export by specialized molecules, such as the release channel Pannexin-1 (Panx1). Whether Panx1 controls CD8+ T cell immune responses in vivo, however, has not been previously addressed. Here, we report that T cell-specific Panx1 is needed for CD8+ T cell responses to viral infections and cancer. We found that CD8-specific Panx1 promotes both effector and memory CD8+ T cell responses. Panx1 favors initial effector CD8+ T cell activation through extracellular ATP (eATP) export and subsequent P2RX4 activation, which helps promote full effector differentiation through extracellular lactate accumulation and its subsequent recycling. In contrast, Panx1 promotes memory CD8+ T cell survival primarily through ATP export and subsequent P2RX7 engagement, leading to improved mitochondrial metabolism. In summary, Panx1-mediated eATP export regulates effector and memory CD8+ T cells through distinct purinergic receptors and different metabolic and signaling pathways.
Collapse
Affiliation(s)
- Trupti Vardam-Kaur
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
- Current address: Omeros Corporation, Seattle, Washington, United States
| | - Alma Banuelos
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| | - Maria Gabaldon-Parish
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
- Current address: University of New Mexico, Albuquerque, New Mexico, United States
| | - Bruna Gois Macedo
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| | | | | | - Maggie Hanqi Zhou
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| | - Sarah van Dijk
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
- Current address: Biomedical Sciences Graduate Program, University of California, San Diego, California, United States
| | | | - Angad S. Beniwal
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| | - Chloe L. Leff
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| | - Changwei Peng
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States
- Current address: Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, Massachusetts, United States
| | - Nhan L. Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| | - Stephen C. Jameson
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Henrique Borges da Silva
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona, United States
| |
Collapse
|
6
|
Beumer-Chuwonpad A, Behr FM, van Alphen FPJ, Kragten NAM, Hoogendijk AJ, van den Biggelaar M, van Gisbergen KPJM. Intestinal tissue-resident memory T cells maintain distinct identity from circulating memory T cells after in vitro restimulation. Eur J Immunol 2024; 54:e2350873. [PMID: 38501878 DOI: 10.1002/eji.202350873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Resident memory T (TRM) cells have been recently established as an important subset of memory T cells that provide early and essential protection against reinfection in the absence of circulating memory T cells. Recent findings showing that TRM expand in vivo after repeated antigenic stimulation indicate that these memory T cells are not terminally differentiated. This suggests an opportunity for in vitro TRM expansion to apply in an immunotherapy setting. However, it has also been shown that TRM may not maintain their identity and form circulating memory T cells after in vivo restimulation. Therefore, we set out to determine how TRM respond to antigenic activation in culture. Using Listeria monocytogenes and LCMV infection models, we found that TRM from the intraepithelial compartment of the small intestine expand in vitro after antigenic stimulation and subsequent resting in homeostatic cytokines. A large fraction of the expanded TRM retained their phenotype, including the expression of key TRM markers CD69 and CD103 (ITGAE). The optimal culture of TRM required low O2 pressure to maintain the expression of these and other TRM-associated molecules. Expanded TRM retained their effector capacity to produce cytokines after restimulation, but did not acquire a highly glycolytic profile indicative of effector T cells. The proteomic analysis confirmed TRM profile retention, including expression of TRM-related transcription factors, tissue retention factors, adhesion molecules, and enzymes involved in fatty acid metabolism. Collectively, our data indicate that limiting oxygen conditions supports in vitro expansion of TRM cells that maintain their TRM phenotype, at least in part, suggesting an opportunity for therapeutic strategies that require in vitro expansion of TRM.
Collapse
MESH Headings
- Animals
- Memory T Cells/immunology
- Immunologic Memory/immunology
- Mice
- Listeria monocytogenes/immunology
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Integrin alpha Chains/metabolism
- Mice, Inbred C57BL
- Listeriosis/immunology
- Lectins, C-Type/metabolism
- Lectins, C-Type/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cytokines/metabolism
- Cytokines/immunology
- Lymphocyte Activation/immunology
- Lymphocytic choriomeningitis virus/immunology
- Intestinal Mucosa/immunology
- CD8-Positive T-Lymphocytes/immunology
- Intestine, Small/immunology
- Cells, Cultured
Collapse
Affiliation(s)
- Ammarina Beumer-Chuwonpad
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Floris P J van Alphen
- Department of Research Facilities, Sanquin Research and Laboratory Services, Amsterdam, the Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | | | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, the Netherlands
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
7
|
Ferrer-Font L, Burn OK, Mayer JU, Price KM. Immunophenotyping challenging tissue types using high-dimensional full spectrum flow cytometry. Methods Cell Biol 2024; 186:51-90. [PMID: 38705606 DOI: 10.1016/bs.mcb.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Technological advancements in fluorescence flow cytometry and an ever-expanding understanding of the complexity of the immune system, have led to the development of large flow cytometry panels, reaching up to 40 markers at the single-cell level. Full spectrum flow cytometry, that measures the full emission range of all the fluorophores present in the panel instead of only the emission peaks is now routinely used in many laboratories internationally, and the demand for this technology is rapidly increasing. With the capacity to use larger and more complex staining panels, optimized protocols are required for the best panel design, panel validation and high-dimensional data analysis outcomes. In addition, for ex vivo experiments, tissue preparation methods for single-cell analysis should also be optimized to ensure that samples are of the highest quality and are truly representative of tissues in situ. Here we provide optimized step-by-step protocols for full spectrum flow cytometry panel design, tissue digestion and panel optimization to facilitate the analysis of challenging tissue types.
Collapse
Affiliation(s)
- Laura Ferrer-Font
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand.
| | - Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Johannes U Mayer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kylie M Price
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
8
|
Macedo BG, Masuda MY, Borges da Silva H. Location versus ID: what matters to lung-resident memory T cells? Front Immunol 2024; 15:1355910. [PMID: 38375476 PMCID: PMC10875077 DOI: 10.3389/fimmu.2024.1355910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Tissue-resident memory T cells (TRM cells) are vital for the promotion of barrier immunity. The lung, a tissue constantly exposed to foreign pathogenic or non-pathogenic antigens, is not devoid of these cells. Lung TRM cells have been considered major players in either the protection against respiratory viral infections or the pathogenesis of lung allergies. Establishment of lung TRM cells rely on intrinsic and extrinsic factors. Among the extrinsic regulators of lung TRM cells, the magnitude of the impact of factors such as the route of antigen entry or the antigen natural tropism for the lung is not entirely clear. In this perspective, we provide a summary of the literature covering this subject and present some preliminary results on this potential dichotomy between antigen location versus antigen type. Finally, we propose a hypothesis to synthesize the potential contributions of these two variables for lung TRM cell development.
Collapse
|
9
|
Ulibarri MR, Lin Y, Ramprashad JR, Han G, Hasan MH, Mithila FJ, Ma C, Gopinath S, Zhang N, Milner JJ, Beura LK. Epithelial organoid supports resident memory CD8 T cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569395. [PMID: 38076957 PMCID: PMC10705482 DOI: 10.1101/2023.12.01.569395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Resident Memory T cells (TRM) play a vital role in regional immune defense in barrier organs. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency, sampling bias and low cell survival rates have limited our ability to conduct TRM-focused high-throughput assays. Here, we engineered a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation in vitro. The three-dimensional VEOs established from murine adult stem cells resembled stratified squamous vaginal epithelium and induced gradual differentiation of activated CD8 T cells into epithelial TRM. These in vitro generated TRM were phenotypically and transcriptionally similar to in vivo TRM, and key tissue residency features were reinforced with a second cognate-antigen exposure during co-culture. TRM differentiation was not affected even when VEOs and CD8 T cells were separated by a semipermeable barrier, indicating soluble factors' involvement. Pharmacological and genetic approaches showed that TGF-β signaling played a crucial role in their differentiation. We found that the VEOs in our model remained susceptible to viral infections and the CD8 T cells were amenable to genetic manipulation; both of which will allow detailed interrogation of antiviral CD8 T cell biology in a reductionist setting. In summary, we established a robust model which captures bonafide TRM differentiation that is scalable, open to iterative sampling, and can be subjected to high throughput assays that will rapidly add to our understanding of TRM.
Collapse
Affiliation(s)
- Max R. Ulibarri
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Ying Lin
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
- Pathobiology Graduate Program, Brown University, Providence, RI, 02912
| | - Julian R. Ramprashad
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Geongoo Han
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Mohammad H. Hasan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Farha J. Mithila
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
- Molecular Biology, Cell Biology and Biochemistry Graduate Program, Brown University, Providence, RI, 02912
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, 78229
| | - Smita Gopinath
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Cambridge, MA, 02115
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, 78229
- South Texas Veterans Health Care System, San Antonio, TX, 78229
| | - J. Justin Milner
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599
| | - Lalit K. Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| |
Collapse
|
10
|
Santiago-Carvalho I, Almeida-Santos G, Macedo BG, Barbosa-Bomfim CC, Almeida FM, Pinheiro Cione MV, Vardam-Kaur T, Masuda M, Van Dijk S, Melo BM, Silva do Nascimento R, da Conceição Souza R, Peixoto-Rangel AL, Coutinho-Silva R, Hirata MH, Alves-Filho JC, Álvarez JM, Lassounskaia E, Borges da Silva H, D'Império-Lima MR. T cell-specific P2RX7 favors lung parenchymal CD4 + T cell accumulation in response to severe lung infections. Cell Rep 2023; 42:113448. [PMID: 37967010 PMCID: PMC10841667 DOI: 10.1016/j.celrep.2023.113448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
CD4+ T cells are key components of the immune response during lung infections and can mediate protection against tuberculosis (TB) or influenza. However, CD4+ T cells can also promote lung pathology during these infections, making it unclear how these cells control such discrepant effects. Using mouse models of hypervirulent TB and influenza, we observe that exaggerated accumulation of parenchymal CD4+ T cells promotes lung damage. Low numbers of lung CD4+ T cells, in contrast, are sufficient to protect against hypervirulent TB. In both situations, lung CD4+ T cell accumulation is mediated by CD4+ T cell-specific expression of the extracellular ATP (eATP) receptor P2RX7. P2RX7 upregulation in lung CD4+ T cells promotes expression of the chemokine receptor CXCR3, favoring parenchymal CD4+ T cell accumulation. Our findings suggest that direct sensing of lung eATP by CD4+ T cells is critical to induce tissue CD4+ T cell accumulation and pathology during lung infections.
Collapse
Affiliation(s)
- Igor Santiago-Carvalho
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Gislane Almeida-Santos
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Caio Cesar Barbosa-Bomfim
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fabricio Moreira Almeida
- Laboratory of Biology of Recognition, North Fluminense State University, Campos, RJ 28013-602, Brazil
| | | | | | - Mia Masuda
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Sarah Van Dijk
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Bruno Marcel Melo
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Rogério Silva do Nascimento
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Rebeka da Conceição Souza
- Laboratory of Biology of Recognition, North Fluminense State University, Campos, RJ 28013-602, Brazil
| | | | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - José Maria Álvarez
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Elena Lassounskaia
- Laboratory of Biology of Recognition, North Fluminense State University, Campos, RJ 28013-602, Brazil
| | | | - Maria Regina D'Império-Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
11
|
Sainz RM, Rodriguez-Quintero JH, Maldifassi MC, Stiles BM, Wennerberg E. Tumour immune escape via P2X7 receptor signalling. Front Immunol 2023; 14:1287310. [PMID: 38022596 PMCID: PMC10643160 DOI: 10.3389/fimmu.2023.1287310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
While P2X7 receptor expression on tumour cells has been characterized as a promotor of cancer growth and metastasis, its expression by the host immune system is central for orchestration of both innate and adaptive immune responses against cancer. The role of P2X7R in anti-tumour immunity is complex and preclinical studies have described opposing roles of the P2X7R in regulating immune responses against tumours. Therefore, few P2X7R modulators have reached clinical testing in cancer patients. Here, we review the prognostic value of P2X7R in cancer, how P2X7R have been targeted to date in tumour models, and we discuss four aspects of how tumours skew immune responses to promote immune escape via the P2X7R; non-pore functional P2X7Rs, mono-ADP-ribosyltransferases, ectonucleotidases, and immunoregulatory cells. Lastly, we discuss alternative approaches to offset tumour immune escape via P2X7R to enhance immunotherapeutic strategies in cancer patients.
Collapse
Affiliation(s)
- Ricardo M. Sainz
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Jorge Humberto Rodriguez-Quintero
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Maria Constanza Maldifassi
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Brendon M. Stiles
- Department of Cardiovascular and Thoracic Surgery, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
12
|
Xu C, Li S, Fulford TS, Christo SN, Mackay LK, Gray DH, Uldrich AP, Pellicci DG, I Godfrey D, Koay HF. Expansion of MAIT cells in the combined absence of NKT and γδ-T cells. Mucosal Immunol 2023; 16:446-461. [PMID: 37182737 DOI: 10.1016/j.mucimm.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, and γδT cells are collectively referred to as 'unconventional T cells' due to their recognition of non-peptide antigens and restriction to MHC-I-like molecules. However, the factors controlling their widely variable frequencies between individuals and organs are poorly understood. We demonstrated that MAIT cells are increased in NKT or γδT cell-deficient mice and highly expand in mice lacking both cell types. TCRα repertoire analysis of γδT cell-deficient thymocytes revealed altered Trav segment usage relative to wild-type thymocytes, highlighting retention of the Tcra-Tcrd locus from the 129 mouse strain used to generate Tcrd-/- mice. This resulted in a moderate increase in distal Trav segment usage, including Trav1, potentially contributing to increased generation of Trav1-Traj33+ MAIT cells in the Tcrd-/- thymus. Importantly, adoptively transferred MAIT cells underwent increased homeostatic proliferation within NKT/gdT cell-deficient tissues, with MAIT cell subsets exhibiting tissue-specific homing patterns. Our data reveal a shared niche for unconventional T cells, where competition for common factors may be exploited to collectively modulate these cells in the immune response. Lastly, our findings emphasise careful assessment of studies using NKT or γδT cell-deficient mice when investigating the role of unconventional T cells in disease.
Collapse
Affiliation(s)
- Calvin Xu
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Shihan Li
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Thomas S Fulford
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Daniel Hd Gray
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia.
| | - Dale I Godfrey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.
| | - Hui-Fern Koay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
13
|
Evrard M, Becht E, Fonseca R, Obers A, Park SL, Ghabdan-Zanluqui N, Schroeder J, Christo SN, Schienstock D, Lai J, Burn TN, Clatch A, House IG, Beavis P, Kallies A, Ginhoux F, Mueller SN, Gottardo R, Newell EW, Mackay LK. Single-cell protein expression profiling resolves circulating and resident memory T cell diversity across tissues and infection contexts. Immunity 2023:S1074-7613(23)00262-5. [PMID: 37392736 DOI: 10.1016/j.immuni.2023.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/08/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Memory CD8+ T cells can be broadly divided into circulating (TCIRCM) and tissue-resident memory T (TRM) populations. Despite well-defined migratory and transcriptional differences, the phenotypic and functional delineation of TCIRCM and TRM cells, particularly across tissues, remains elusive. Here, we utilized an antibody screening platform and machine learning prediction pipeline (InfinityFlow) to profile >200 proteins in TCIRCM and TRM cells in solid organs and barrier locations. High-dimensional analyses revealed unappreciated heterogeneity within TCIRCM and TRM cell lineages across nine different organs after either local or systemic murine infection models. Additionally, we demonstrated the relative effectiveness of strategies allowing for the selective ablation of TCIRCM or TRM populations across organs and identified CD55, KLRG1, CXCR6, and CD38 as stable markers for characterizing memory T cell function during inflammation. Together, these data and analytical framework provide an in-depth resource for memory T cell classification in both steady-state and inflammatory conditions.
Collapse
Affiliation(s)
- Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia.
| | - Etienne Becht
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raissa Fonseca
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Nagela Ghabdan-Zanluqui
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Jan Schroeder
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Dominik Schienstock
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Junyun Lai
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC 3010, Australia
| | - Thomas N Burn
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Allison Clatch
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Imran G House
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC 3010, Australia
| | - Paul Beavis
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC 3010, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Centre Hospitalier Universitaire du Vaud and University of Lausanne, Lausanne 1011, Switzerland
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia.
| |
Collapse
|
14
|
Janho Dit Hreich S, Hofman P, Vouret-Craviari V. The Role of IL-18 in P2RX7-Mediated Antitumor Immunity. Int J Mol Sci 2023; 24:ijms24119235. [PMID: 37298187 DOI: 10.3390/ijms24119235] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is the leading cause of death worldwide despite the variety of treatments that are currently used. This is due to an innate or acquired resistance to therapy that encourages the discovery of novel therapeutic strategies to overcome the resistance. This review will focus on the role of the purinergic receptor P2RX7 in the control of tumor growth, through its ability to modulate antitumor immunity by releasing IL-18. In particular, we describe how the ATP-induced receptor activities (cationic exchange, large pore opening and NLRP3 inflammasome activation) modulate immune cell functions. Furthermore, we recapitulate our current knowledge of the production of IL-18 downstream of P2RX7 activation and how IL-18 controls the fate of tumor growth. Finally, the potential of targeting the P2RX7/IL-18 pathway in combination with classical immunotherapies to fight cancer is discussed.
Collapse
Affiliation(s)
- Serena Janho Dit Hreich
- Faculty of Medicine, Université Côte d'Azur, CNRS, INSERM, IRCAN, 06108 Nice, France
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- FHU OncoAge, 06108 Nice, France
| | - Paul Hofman
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur Hospital, 06108 Nice, France
- Hospital-Related Biobank, Pasteur Hospital, 06108 Nice, France
| | - Valérie Vouret-Craviari
- Faculty of Medicine, Université Côte d'Azur, CNRS, INSERM, IRCAN, 06108 Nice, France
- IHU RespirEREA, Université Côte d'Azur, 06108 Nice, France
- FHU OncoAge, 06108 Nice, France
| |
Collapse
|
15
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
16
|
Santiago-Carvalho I, Banuelos A, Borges da Silva H. Tissue- and temporal-specific roles of extracellular ATP on T cell metabolism and function. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00025. [PMID: 37143525 PMCID: PMC10150631 DOI: 10.1097/in9.0000000000000025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
The activation and function of T cells is fundamental for the control of infectious diseases and cancer, and conversely can mediate several autoimmune diseases. Among the signaling pathways leading to T cell activation and function, the sensing of extracellular adenosine triphosphate (eATP) has been recently appreciated as an important component. Through a plethora of purinergic receptors, most prominently P2RX7, eATP sensing can induce a wide variety of processes in T cells, such as proliferation, subset differentiation, survival, or cell death. The downstream roles of eATP sensing can vary according to (a) the T cell subset, (b) the tissue where T cells are, and (c) the time after antigen exposure. In this mini-review, we revisit the recent findings on how eATP signaling pathways regulate T-cell immune responses and posit important unanswered questions on this field.
Collapse
Affiliation(s)
| | - Alma Banuelos
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | |
Collapse
|
17
|
von Werdt D, Gungor B, Barreto de Albuquerque J, Gruber T, Zysset D, Kwong Chung CKC, Corrêa-Ferreira A, Berchtold R, Page N, Schenk M, Kehrl JH, Merkler D, Imhof BA, Stein JV, Abe J, Turchinovich G, Finke D, Hayday AC, Corazza N, Mueller C. Regulator of G-protein signaling 1 critically supports CD8 + T RM cell-mediated intestinal immunity. Front Immunol 2023; 14:1085895. [PMID: 37153600 PMCID: PMC10158727 DOI: 10.3389/fimmu.2023.1085895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 05/09/2023] Open
Abstract
Members of the Regulator of G-protein signaling (Rgs) family regulate the extent and timing of G protein signaling by increasing the GTPase activity of Gα protein subunits. The Rgs family member Rgs1 is one of the most up-regulated genes in tissue-resident memory (TRM) T cells when compared to their circulating T cell counterparts. Functionally, Rgs1 preferentially deactivates Gαq, and Gαi protein subunits and can therefore also attenuate chemokine receptor-mediated immune cell trafficking. The impact of Rgs1 expression on tissue-resident T cell generation, their maintenance, and the immunosurveillance of barrier tissues, however, is only incompletely understood. Here we report that Rgs1 expression is readily induced in naïve OT-I T cells in vivo following intestinal infection with Listeria monocytogenes-OVA. In bone marrow chimeras, Rgs1 -/- and Rgs1 +/+ T cells were generally present in comparable frequencies in distinct T cell subsets of the intestinal mucosa, mesenteric lymph nodes, and spleen. After intestinal infection with Listeria monocytogenes-OVA, however, OT-I Rgs1 +/+ T cells outnumbered the co-transferred OT-I Rgs1- /- T cells in the small intestinal mucosa already early after infection. The underrepresentation of the OT-I Rgs1 -/- T cells persisted to become even more pronounced during the memory phase (d30 post-infection). Remarkably, upon intestinal reinfection, mice with intestinal OT-I Rgs1 +/+ TRM cells were able to prevent the systemic dissemination of the pathogen more efficiently than those with OT-I Rgs1 -/- TRM cells. While the underlying mechanisms are not fully elucidated yet, these data thus identify Rgs1 as a critical regulator for the generation and maintenance of tissue-resident CD8+ T cells as a prerequisite for efficient local immunosurveillance in barrier tissues in case of reinfections with potential pathogens.
Collapse
Affiliation(s)
- Diego von Werdt
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Bilgi Gungor
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Thomas Gruber
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Daniel Zysset
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Cheong K. C. Kwong Chung
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Gastrointestinal Health, Immunology, Nestlé Research, Lausanne, Switzerland
| | - Antonia Corrêa-Ferreira
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Regina Berchtold
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Nicolas Page
- Department of Pathology, Division of Clinical Pathology, University & University Hospitals of Geneva, Geneva, Switzerland
| | - Mirjam Schenk
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - John H. Kehrl
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Doron Merkler
- Department of Pathology, Division of Clinical Pathology, University & University Hospitals of Geneva, Geneva, Switzerland
| | - Beat A. Imhof
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
| | - Jens V. Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Gleb Turchinovich
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Finke
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Nadia Corazza
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- *Correspondence: Christoph Mueller, ; Nadia Corazza,
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- *Correspondence: Christoph Mueller, ; Nadia Corazza,
| |
Collapse
|
18
|
Wanhainen KM, Peng C, Zhou MH, de Gois Macedo B, O’Flanagan S, Yang T, Kelekar A, Burbach BJ, da Silva HB, Jameson SC. P2RX7 Enhances Tumor Control by CD8+ T Cells in Adoptive Cell Therapy. Cancer Immunol Res 2022; 10:871-884. [PMID: 35588154 PMCID: PMC9250641 DOI: 10.1158/2326-6066.cir-21-0691] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 01/03/2023]
Abstract
Expression of the purinergic receptor P2RX7 by CD8+ T cells promotes the generation of memory populations following acute infections. However, data suggest that P2RX7 may limit the efficacy of antitumor responses. Herein, we show that P2RX7 is beneficial for optimal melanoma control in a mouse CD8+ T-cell adoptive transfer model. Tumor-specific P2rx7-/- CD8+ T cells exhibited impaired mitochondrial maintenance and function but did not display signs of overt exhaustion early in the antitumor response. However, as the tumor burden increased, the relative frequency of P2RX7-deficient CD8+ T cells declined within the tumor; this correlated with reduced proliferation, increased apoptosis, and mitochondrial dysfunction. Extending these studies, we found that the transient in vitro stimulation of P2RX7 using the ATP analogue BzATP led to enhanced B16 melanoma control by CD8+ T cells. These findings are in keeping with the concept that extracellular ATP (eATP) sensing by P2RX7 on CD8+ T cells is required for their ability to efficiently eliminate tumors by promoting mitochondrial fitness and underscore the potential for P2RX7 stimulation as a novel therapeutic treatment to enhance tumor immunotherapy.
Collapse
Affiliation(s)
- Kelsey M. Wanhainen
- University of Minnesota Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Minneapolis MN
| | - Changwei Peng
- University of Minnesota Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Minneapolis MN
| | | | | | | | - Tingyuan Yang
- University of Minnesota Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Minneapolis MN
| | - Ameeta Kelekar
- University of Minnesota Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Minneapolis MN
| | - Brandon J. Burbach
- University of Minnesota Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Minneapolis MN
| | - Henrique Borges da Silva
- University of Minnesota Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Minneapolis MN
- Mayo Clinic, Department of Immunology, Scottsdale, AZ
| | - Stephen C. Jameson
- University of Minnesota Center for Immunology, Masonic Cancer Center, Department of Laboratory Medicine and Pathology, Minneapolis MN
| |
Collapse
|
19
|
Farrand K, Holz LE, Ferrer-Font L, Wilson MD, Ganley M, Minnell JJ, Tang CW, Painter GF, Heath WR, Hermans IF, Burn OK. Using Full-Spectrum Flow Cytometry to Phenotype Memory T and NKT Cell Subsets with Optimized Tissue-Specific Preparation Protocols. Curr Protoc 2022; 2:e482. [PMID: 35819836 DOI: 10.1002/cpz1.482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Full-spectrum flow cytometry is now routinely used in many laboratories internationally, and the demand for this technology is rapidly increasing. With capacity to use larger and more complex staining panels, standardized protocols are required for optimal panel design and analysis. Importantly, for ex vivo analysis, tissue preparation methods also need to be optimized to ensure samples are truly representative of tissues in situ. This is particularly relevant given the recent interest in adaptive immune cells that form residency in specific organs. Here we provide optimized protocols for tissue processing and phenotyping of memory T cells and natural killer T (NKT) cell subsets from liver, lung, spleen, and lymph node using full-spectrum flow cytometry. We provide a 21-color antibody panel for identification of different memory subsets, including tissue-resident memory T (TRM ) cells, which are increasingly regarded as important effectors in adaptive immunity. We show that processing procedures can affect outcomes, with liver TRM cells particularly sensitive to heat, such that accurate evaluation requires fast processing at defined temperatures. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Processing mouse liver for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 2: Processing mouse spleen for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 3: Processing mouse lungs for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 4: Processing mouse lymph nodes for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 5: Staining and flow cytometric analysis of samples for memory T and NKT cell subsets Support Protocol: Obtaining cell counts from flow cytometry data.
Collapse
Affiliation(s)
- Kathryn Farrand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Lauren E Holz
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria, Australia
| | - Laura Ferrer-Font
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | | | - Mitch Ganley
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | | | - Ching-Wen Tang
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria, Australia
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
20
|
Vardam-Kaur T, van Dijk S, Peng C, Wanhainen KM, Jameson SC, Borges da Silva H. The Extracellular ATP Receptor P2RX7 Imprints a Promemory Transcriptional Signature in Effector CD8 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1686-1699. [PMID: 35264459 PMCID: PMC8976739 DOI: 10.4049/jimmunol.2100555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
Development of CD8+ central memory T (Tcm) and resident memory T (Trm) cells, which promote immunity in the circulation and in barrier tissues, respectively, is not completely understood. Tcm and Trm cells may arise from common precursors; however, their fate-inducing signals are elusive. We found that virus-specific effector CD8+ T cells display heterogeneous expression of the extracellular ATP sensor P2RX7. P2RX7-high expression is confined, at peak effector phase, to CD62L+ memory precursors, which preferentially form Tcm cells. Among early effector CD8+ T cells, asymmetrical P2RX7 distribution correlated with distinct transcriptional signatures, with P2RX7-high cells enriched for memory and tissue residency sets. P2RX7-high early effectors preferentially form both Tcm and Trm cells. Defective Tcm and Trm cell formation in P2RX7 deficiency is significantly reverted when the transcriptional repressor Zeb2 is ablated. Mechanistically, P2RX7 negatively regulates Zeb2 expression, at least partially through TGF-β sensing in early effector CD8+ T cells. Our study indicates that unequal P2RX7 upregulation in effector CD8+ T cells is a foundational element of the early Tcm/Trm fate.
Collapse
Affiliation(s)
| | - Sarah van Dijk
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ; and
| | - Changwei Peng
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Kelsey M Wanhainen
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Stephen C Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | | |
Collapse
|
21
|
Konjar Š, Ficht X, Iannacone M, Veldhoen M. Heterogeneity of Tissue Resident Memory T cells. Immunol Lett 2022; 245:1-7. [DOI: 10.1016/j.imlet.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022]
|
22
|
Georgiev H, Papadogianni G, Bernhardt G. Identification of Follicular T Cells in the Gut. Methods Mol Biol 2022; 2380:85-95. [PMID: 34802124 DOI: 10.1007/978-1-0716-1736-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Humoral adaptive immune responses trigger the establishment of plasma B cells secreting antibodies of various isotypes that bind antigen specifically and with high affinity. Moreover, memory B cells will be generated. To accomplish this, B cells need assistance from a special subset of CD4 T cells, the so called follicular T cells that differentiate from naïve T cells in the course of the immune response. Therefore, the study of follicular T cells is of primordial interest when investigating the molecular and cellular determinants of adaptive immune responses. This is done by direct analysis of the cells isolated from mice following an immunological challenge but in many instances such analyses must involve follow-up studies in cell culture requiring living cells. Especially, in vitro experimentation necessitates isolation and sorting of follicular T cells. However, follicular T cells are generally difficult to handle because they are prone to apoptosis and cell death. This is particularly evident when dealing with follicular T cells residing in the gut since we observed that isolation and processing from murine gut notoriously results in very high loss rates when compared for example to cells obtained from immunized peripheral lymph nodes. To bypass these limitations, we developed a protocol that allows for efficient isolation of intact follicular T cells. The protocol introduced here illustrates isolation and handling of follicular T cells using murine Peyer's Patches as an example because they constantly harbor significant amounts of these cells.
Collapse
Affiliation(s)
- Hristo Georgiev
- Institute of immunology, Hannover Medical School, Hannover, Germany.
| | | | - Günter Bernhardt
- Institute of immunology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
23
|
Hardardottir L, Bazzano MV, Glau L, Gattinoni L, Köninger A, Tolosa E, Solano ME. The New Old CD8+ T Cells in the Immune Paradox of Pregnancy. Front Immunol 2021; 12:765730. [PMID: 34868016 PMCID: PMC8635142 DOI: 10.3389/fimmu.2021.765730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
CD8+ T cells are the most frequent T cell population in the immune cell compartment at the feto-maternal interface. Due to their cytotoxic potential, the presence of CD8+ T cells in the immune privileged pregnant uterus has raised considerable interest. Here, we review our current understanding of CD8+ T cell biology in the uterus of pregnant women and discuss this knowledge in relation to a recently published immune cell Atlas of human decidua. We describe how the expansion of CD8+ T cells with an effector memory phenotype often presenting markers of exhaustion is critical for a successful pregnancy, and host defense towards pathogens. Moreover, we review new evidence on the presence of long-lasting immunological memory to former pregnancies and discuss its impact on prospective pregnancy outcomes. The formation of fetal-specific memory CD8+ T cell subests in the uterus, in particular of tissue resident, and stem cell memory cells requires further investigation, but promises interesting results to come. Advancing the knowledge of CD8+ T cell biology in the pregnant uterus will be pivotal for understanding not only tissue-specific immune tolerance but also the etiology of complications during pregnancy, thus enabling preventive or therapeutic interventions in the future.
Collapse
Affiliation(s)
- Lilja Hardardottir
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| | - Maria Victoria Bazzano
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luca Gattinoni
- Department of Functional Immune Cell Modulation, Regensburg Center for Interventional Immunology, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Angela Köninger
- Department of Obstetrics and Gynecology of the University of Regensburg at the St. Hedwig Hospital of the Order of St. John, Regensburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Emilia Solano
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Papadogianni G, Ravens I, Hassan A, Dittrich-Breiholz O, Bernhardt G, Georgiev H. The impact of stress on the transcriptomic signature of iNKT1 cells. Biochem Biophys Rep 2021; 28:101163. [PMID: 34765746 PMCID: PMC8570944 DOI: 10.1016/j.bbrep.2021.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
Invariant natural killer T (iNKT) cells develop in thymus before emigrating and settling peripheral tissues and organs. In contrast to regular naïve T cells, most iNKT cells do not continuously recirculate but are rather sessile and can adopt phenotypically as well as functionally to their tissue environment. To explore this in more detail, we focused on the most widely distributed CD4+iNKT1 cells and compared the transcriptome of cells isolated from liver and spleen. Whereas there are only very few genuine differences in the transcriptomes of CD4+iNKT1 cells of these two organs, the mode of cell isolation left clear marks in the transcriptomic signature. In contrast to liver cell isolated in the cold, cells prepared by enzymatic tissue digestion upregulated quickly a series of genes known to respond to stress. Therefore, to avoid erroneous conclusions, a comparison of expression profiles must take into consideration the history of cell preparation.
Collapse
Affiliation(s)
| | - Inga Ravens
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Ahmed Hassan
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | | | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Hristo Georgiev
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
25
|
Lefebvre MN, Surette FA, Anthony SM, Vijay R, Jensen IJ, Pewe LL, Hancox LS, Van Braeckel-Budimir N, van de Wall S, Urban SL, Mix MR, Kurup SP, Badovinac VP, Butler NS, Harty JT. Expeditious recruitment of circulating memory CD8 T cells to the liver facilitates control of malaria. Cell Rep 2021; 37:109956. [PMID: 34731605 PMCID: PMC8628427 DOI: 10.1016/j.celrep.2021.109956] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Circulating memory CD8 T cell trafficking and protective capacity during liver-stage malaria infection remains undefined. We find that effector memory CD8 T cells (Tem) infiltrate the liver within 6 hours after malarial or bacterial infections and mediate pathogen clearance. Tem recruitment coincides with rapid transcriptional upregulation of inflammatory genes in Plasmodium-infected livers. Recruitment requires CD8 T cell-intrinsic LFA-1 expression and the presence of liver phagocytes. Rapid Tem liver infiltration is distinct from recruitment to other non-lymphoid tissues in that it occurs both in the absence of liver tissue resident memory "sensing-and-alarm" function and ∼42 hours earlier than in lung infection by influenza virus. These data demonstrate relevance for Tem in protection against malaria and provide generalizable mechanistic insights germane to control of liver infections.
Collapse
Affiliation(s)
- Mitchell N Lefebvre
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Medical Scientist Training Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Fionna A Surette
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Scott M Anthony
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Isaac J Jensen
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Lecia L Pewe
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Lisa S Hancox
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | | | - Stephanie van de Wall
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Stina L Urban
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Madison R Mix
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Medical Scientist Training Program, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA
| | - Samarchith P Kurup
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA
| | - John T Harty
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA 52246, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52246, USA.
| |
Collapse
|
26
|
Hirsova P, Bamidele AO, Wang H, Povero D, Revelo XS. Emerging Roles of T Cells in the Pathogenesis of Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. Front Endocrinol (Lausanne) 2021; 12:760860. [PMID: 34777255 PMCID: PMC8581300 DOI: 10.3389/fendo.2021.760860] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. A significant proportion of patients with NAFLD develop a progressive inflammatory condition termed nonalcoholic steatohepatitis (NASH), which may eventually advance to cirrhosis and hepatocellular carcinoma (HCC). NASH is characterized by steatosis, hepatocyte ballooning, and lobular inflammation. Heightened immune cell infiltration is a hallmark of NASH, yet the mechanisms whereby hepatic inflammation occurs in NASH and how it contributes to disease initiation and progression remain incompletely understood. Emerging evidence indicates that intrahepatic T cell immune mechanisms play an integral role in the pathogenesis of NASH and its transition to HCC. In this review, we summarize the current knowledge regarding the T cell-mediated mechanisms of inflammation in NASH. We highlight recent preclinical and human studies implicating various subsets of conventional and innate-like T cells in the onset and progression of NASH and HCC. Finally, we discuss the potential therapeutic strategies targeting T cell-mediated responses for the treatment of NASH.
Collapse
Affiliation(s)
- Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Adebowale O. Bamidele
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Haiguang Wang
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Davide Povero
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Xavier S. Revelo
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
27
|
CD4+ T cell immunity to Salmonella is transient in the circulation. PLoS Pathog 2021; 17:e1010004. [PMID: 34695149 PMCID: PMC8568161 DOI: 10.1371/journal.ppat.1010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
While Salmonella enterica is seen as an archetypal facultative intracellular bacterial pathogen where protection is mediated by CD4+ T cells, identifying circulating protective cells has proved very difficult, inhibiting steps to identify key antigen specificities. Exploiting a mouse model of vaccination, we show that the spleens of C57BL/6 mice vaccinated with live-attenuated Salmonella serovar Typhimurium (S. Typhimurium) strains carried a pool of IFN-γ+ CD4+ T cells that could adoptively transfer protection, but only transiently. Circulating Salmonella-reactive CD4+ T cells expressed the liver-homing chemokine receptor CXCR6, accumulated over time in the liver and assumed phenotypic characteristics associated with tissue-associated T cells. Liver memory CD4+ T cells showed TCR selection bias and their accumulation in the liver could be inhibited by blocking CXCL16. These data showed that the circulation of CD4+ T cells mediating immunity to Salmonella is limited to a brief window after which Salmonella-specific CD4+ T cells migrate to peripheral tissues. Our observations highlight the importance of triggering tissue-specific immunity against systemic infections. Helper T cells are essential for controlling infections by bacterial pathogens, such as Salmonella enterica var Typhimurium (S. Typhimurium). While it is well-established that this role is related to their provision of IFN-γ, when and where helper T cells elicit their protective function in vivo remains unresolved. We identified a protective helper T cell population in the circulation of mice early after inoculation with growth-attenuated S. Typhimurium strains; this population waned overtime. We observed that circulating helper T cell immunity can adoptively protect naïve recipient mice against lethal S. Typhimurium infection when harvested from a short time-window. In comparing helper T cell responses between spleen and liver in Salmonella-infected mice, we have observed a previously uncharacterized trafficking of helper T cells to the liver followed by the residence of S. Typhimurium-specific T cell memory in the organ. Taken together these findings identify that protective immunity to Salmonella infections is transient in the circulation and the liver as a preferential site of helper T memory cells.
Collapse
|
28
|
Gondé H, Demeules M, Hardet R, Scarpitta A, Junge M, Pinto-Espinoza C, Varin R, Koch-Nolte F, Boyer O, Adriouch S. A Methodological Approach Using rAAV Vectors Encoding Nanobody-Based Biologics to Evaluate ARTC2.2 and P2X7 In Vivo. Front Immunol 2021; 12:704408. [PMID: 34489954 PMCID: PMC8417108 DOI: 10.3389/fimmu.2021.704408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023] Open
Abstract
On murine T cells, mono-ADP ribosyltransferase ARTC2.2 catalyzes ADP-ribosylation of various surface proteins when nicotinamide adenine dinucleotide (NAD+) is released into the extracellular compartment. Covalent ADP-ribosylation of the P2X7 receptor by ARTC2.2 thereby represents an additional mechanism of activation, complementary to its triggering by extracellular ATP. P2X7 is a multifaceted receptor that may represents a potential target in inflammatory, and neurodegenerative diseases, as well as in cancer. We present herein an experimental approach using intramuscular injection of recombinant AAV vectors (rAAV) encoding nanobody-based biologics targeting ARTC2.2 or P2X7. We demonstrate the ability of these in vivo generated biologics to potently and durably block P2X7 or ARTC2.2 activities in vivo, or in contrast, to potentiate NAD+- or ATP-induced activation of P2X7. We additionally demonstrate the ability of rAAV-encoded functional heavy chain antibodies to elicit long-term depletion of T cells expressing high levels of ARTC2.2 or P2X7. Our approach of using rAAV to generate functional nanobody-based biologics in vivo appears promising to evaluate the role of ARTC2.2 and P2X7 in murine acute as well as chronic disease models.
Collapse
Affiliation(s)
- Henri Gondé
- Normandie University, UNIROUEN, INSERM U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies, Rouen, France.,Rouen University Hospital, Department of Pharmacy, Rouen, France
| | - Mélanie Demeules
- Normandie University, UNIROUEN, INSERM U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies, Rouen, France
| | - Romain Hardet
- Normandie University, UNIROUEN, INSERM U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies, Rouen, France
| | - Allan Scarpitta
- Normandie University, UNIROUEN, INSERM U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies, Rouen, France
| | - Marten Junge
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Rémi Varin
- Normandie University, UNIROUEN, INSERM U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies, Rouen, France.,Rouen University Hospital, Department of Pharmacy, Rouen, France
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olivier Boyer
- Normandie University, UNIROUEN, INSERM U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies, Rouen, France.,Rouen University Hospital, Department of Immunology and Biotherapy, Rouen, France
| | - Sahil Adriouch
- Normandie University, UNIROUEN, INSERM U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies, Rouen, France
| |
Collapse
|
29
|
Barreto de Albuquerque J, Mueller C, Gungor B. Tissue-Resident T Cells in Chronic Relapsing-Remitting Intestinal Disorders. Cells 2021; 10:1882. [PMID: 34440651 PMCID: PMC8393248 DOI: 10.3390/cells10081882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Tissue-resident memory T (TRM) cells critically contribute to the rapid immunoprotection and efficient immunosurveillance against pathogens, particularly in barrier tissues, but also during anti-tumor responses. However, the involvement of TRM cells also in the induction and exacerbation of immunopathologies, notably in chronically relapsing auto-inflammatory disorders, is becoming increasingly recognized as a critical factor. Thus, TRM cells may also represent an attractive target in the management of chronic (auto-) inflammatory disorders, including multiple sclerosis, rheumatoid arthritis, celiac disease and inflammatory bowel diseases. In this review, we focus on current concepts of TRM cell biology, particularly in the intestine, and discuss recent findings on their involvement in chronic relapsing-remitting inflammatory disorders. Potential therapeutic strategies to interfere with these TRM cell-mediated immunopathologies are discussed.
Collapse
Affiliation(s)
| | | | - Bilgi Gungor
- Division of Experimental Pathology, Institute of Pathology, University of Bern, 3008 Bern, Switzerland;
| |
Collapse
|
30
|
Hasan F, Chiu Y, Shaw RM, Wang J, Yee C. Hypoxia acts as an environmental cue for the human tissue-resident memory T cell differentiation program. JCI Insight 2021; 6:138970. [PMID: 34027895 PMCID: PMC8262358 DOI: 10.1172/jci.insight.138970] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue-resident memory T cells (TRM) provide frontline defense against infectious diseases and contribute to antitumor immunity; however, aside from the necessity of TGF-β, knowledge regarding TRM-inductive cues remains incomplete, particularly for human cells. Oxygen tension is an environmental cue that distinguishes peripheral tissues from the circulation, and here, we demonstrate that differentiation of human CD8+ T cells in the presence of hypoxia and TGF-β1 led to the development of a TRM phenotype, characterized by a greater than 5-fold increase in CD69+CD103+ cells expressing human TRM hallmarks and enrichment for endogenous human TRM gene signatures, including increased adhesion molecule expression and decreased expression of genes involved in recirculation. Hypoxia and TGF-β1 synergized to produce a significantly larger population of TRM phenotype cells than either condition alone, and comparison of these cells from the individual and combination conditions revealed distinct phenotypic and transcriptional profiles, indicating a programming response to milieu rather than a mere expansion. Our findings identify a likely previously unreported cue for the TRM differentiation program and can enable facile generation of human TRM phenotype cells in vitro for basic studies and translational applications such as adoptive cellular therapy.
Collapse
Affiliation(s)
- Farah Hasan
- Department of Melanoma Medical Oncology, University of Texas (UT) MD Anderson Cancer Center, Houston, Texas, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, University of Texas (UT) MD Anderson Cancer Center, Houston, Texas, USA
| | - Rebecca M Shaw
- Department of Melanoma Medical Oncology, University of Texas (UT) MD Anderson Cancer Center, Houston, Texas, USA
| | - Junmei Wang
- Department of Melanoma Medical Oncology, University of Texas (UT) MD Anderson Cancer Center, Houston, Texas, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, University of Texas (UT) MD Anderson Cancer Center, Houston, Texas, USA.,Department of Immunology, UT MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
31
|
Gern BH, Adams KN, Plumlee CR, Stoltzfus CR, Shehata L, Moguche AO, Busman-Sahay K, Hansen SG, Axthelm MK, Picker LJ, Estes JD, Urdahl KB, Gerner MY. TGFβ restricts expansion, survival, and function of T cells within the tuberculous granuloma. Cell Host Microbe 2021; 29:594-606.e6. [DOI: 10.1016/j.chom.2021.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 12/02/2020] [Accepted: 01/22/2021] [Indexed: 01/02/2023]
|
32
|
Vardam-Kaur T, Sun J, Borges da Silva H. Metabolic regulation of tissue-resident memory CD8 + T cells. Curr Opin Pharmacol 2021; 57:117-124. [PMID: 33714873 DOI: 10.1016/j.coph.2021.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Intracellular metabolic adaptations help define the function and homeostasis of memory CD8+ T cells. These cells, which promote protection against infections or cancer, undergo consecutive metabolic shifts, ultimately relying on mitochondrial-related pathways. Past CD8+ T cell metabolism studies focused on circulating memory cells, which are exclusive to secondary lymphoid organs or recirculate between lymphoid and non-lymphoid organs. Yet, now there is unequivocal evidence that memory CD8+ T cells reside in many non-lymphoid organs and mediate protective immunity in barrier tissues. The metabolic adaptations occurring in forming and established tissue-resident memory CD8+ T cells are currently subject of intense research. In this review, we discuss the latest breakthroughs on the transcriptional and protein control of tissue-resident memory CD8+ T cell metabolism.
Collapse
Affiliation(s)
| | - Jie Sun
- Mayo Clinic, Department of Immunology, Rochester, MN, USA
| | | |
Collapse
|
33
|
Leal JM, Huang JY, Kohli K, Stoltzfus C, Lyons-Cohen MR, Olin BE, Gale M, Gerner MY. Innate cell microenvironments in lymph nodes shape the generation of T cell responses during type I inflammation. Sci Immunol 2021; 6:eabb9435. [PMID: 33579750 PMCID: PMC8274717 DOI: 10.1126/sciimmunol.abb9435] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/21/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Microanatomical organization of innate immune cells within lymph nodes (LNs) is critical for the generation of adaptive responses. In particular, steady-state LN-resident dendritic cells (Res cDCs) are strategically localized to intercept lymph-draining antigens. Whether myeloid cell organization changes during inflammation and how that might affect the generation of immune responses are unknown. Here, we report that during type I, but not type II, inflammation after adjuvant immunization or viral infection, antigen-presenting Res cDCs undergo CCR7-dependent intranodal repositioning from the LN periphery into the T cell zone (TZ) to elicit T cell priming. Concurrently, inflammatory monocytes infiltrate the LNs via local blood vessels, enter the TZ, and cooperate with Res cDCs by providing polarizing cytokines to optimize T cell effector differentiation. Monocyte infiltration is nonuniform across LNs, generating distinct microenvironments with varied local innate cell composition. These spatial microdomains are associated with divergent early T cell effector programming, indicating that innate microenvironments within LNs play a critical role in regulating the quality and heterogeneity of T cell responses. Together, our findings reveal that dynamic modulation of innate cell microenvironments during type I inflammation leads to optimized generation of adaptive immune responses to vaccines and infections.
Collapse
Affiliation(s)
- Joseph M Leal
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jessica Y Huang
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Karan Kohli
- Department of Surgery, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Caleb Stoltzfus
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Miranda R Lyons-Cohen
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Brandy E Olin
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Michael Y Gerner
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
34
|
Künzli M, Schreiner D, Pereboom TC, Swarnalekha N, Litzler LC, Lötscher J, Ertuna YI, Roux J, Geier F, Jakob RP, Maier T, Hess C, Taylor JJ, King CG. Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity. Sci Immunol 2020; 5:5/45/eaay5552. [PMID: 32144185 DOI: 10.1126/sciimmunol.aay5552] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
CD4+ memory T cells play an important role in protective immunity and are a key target in vaccine development. Many studies have focused on T central memory (Tcm) cells, whereas the existence and functional significance of long-lived T follicular helper (Tfh) cells are controversial. Here, we show that Tfh cells are highly susceptible to NAD-induced cell death (NICD) during isolation from tissues, leading to their underrepresentation in prior studies. NICD blockade reveals the persistence of abundant Tfh cells with high expression of hallmark Tfh markers to at least 400 days after infection, by which time Tcm cells are no longer found. Using single-cell RNA-seq, we demonstrate that long-lived Tfh cells are transcriptionally distinct from Tcm cells, maintain stemness and self-renewal gene expression, and, in contrast to Tcm cells, are multipotent after recall. At the protein level, we show that folate receptor 4 (FR4) robustly discriminates long-lived Tfh cells from Tcm cells. Unexpectedly, long-lived Tfh cells concurrently express a distinct glycolytic signature similar to trained immune cells, including elevated expression of mTOR-, HIF-1-, and cAMP-regulated genes. Late disruption of glycolysis/ICOS signaling leads to Tfh cell depletion concomitant with decreased splenic plasma cells and circulating antibody titers, demonstrating both unique homeostatic regulation of Tfh and their sustained function during the memory phase of the immune response. These results highlight the metabolic heterogeneity underlying distinct long-lived T cell subsets and establish Tfh cells as an attractive target for the induction of durable adaptive immunity.
Collapse
Affiliation(s)
- Marco Künzli
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - David Schreiner
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Tamara C Pereboom
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Nivedya Swarnalekha
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Ludivine C Litzler
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Jonas Lötscher
- Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Yusuf I Ertuna
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland
| | - Julien Roux
- Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Florian Geier
- Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| | - Christoph Hess
- Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Medicine, CITIID, University of Cambridge, Cambridge, UK
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Carolyn G King
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.
| |
Collapse
|
35
|
Er-Lukowiak M, Duan Y, Rassendren F, Ulmann L, Nicke A, Ufer F, Friese MA, Koch-Nolte F, Magnus T, Rissiek B. A P2rx7 Passenger Mutation Affects the Vitality and Function of T cells in Congenic Mice. iScience 2020; 23:101870. [PMID: 33336163 PMCID: PMC7733020 DOI: 10.1016/j.isci.2020.101870] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
Among laboratory mouse strains many genes are differentially expressed in the same cell population. As consequence, gene targeting in 129-derived embryonic stem cells (ESCs) and backcrossing the modified mice onto the C57BL/6 background can introduce passenger mutations in the close proximity of the targeted gene. Here, we demonstrate that several transgenic mice carry a P2rx7 passenger mutation that affects the function of T cells. By the example of P2rx4tm1Rass we demonstrate that P2X4ko T cells express higher levels of P2X7 and are more sensitive toward the P2X7 activators ATP and NAD+, rendering these cells more vulnerable toward NAD-induced cell death (NICD) compared with wild type (WT). The enhanced NICD sensitivity confounded functional assays e.g. cytokine production and cell migration. Our results need to be considered when working with P2rx4tm1Rass mice or other 129-based transgenic strains that target P2rx7 neighboring genes. T cells from 129 mice express higher level of P2X7 compared with T cells from B6 mice P2rx4tm1Rass T cells express high level of P2X7 due to a P2rx7 passenger mutation P2rx4tm1Rass T cells are highly susceptible to NAD-induced cell death (NICD) NICD susceptibility of P2rx4tm1Rass T cells confounds the outcome of functional assays
Collapse
Affiliation(s)
- Marco Er-Lukowiak
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg-Eppendorf, Germany
| | - Yinghui Duan
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg-Eppendorf, Germany
| | - Francois Rassendren
- IGF, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France.,LabEx ICST, 34094 Montpellier, France
| | - Lauriane Ulmann
- IGF, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France.,LabEx ICST, 34094 Montpellier, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Friederike Ufer
- Institute of Neuroimmunology und Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology und Multiple Sclerosis (INIMS), University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg-Eppendorf, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg-Eppendorf, Germany
| |
Collapse
|
36
|
Bartsch LM, Damasio MPS, Subudhi S, Drescher HK. Tissue-Resident Memory T Cells in the Liver-Unique Characteristics of Local Specialists. Cells 2020; 9:cells9112457. [PMID: 33187162 PMCID: PMC7696520 DOI: 10.3390/cells9112457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022] Open
Abstract
T cells play an important role to build up an effective immune response and are essential in the eradication of pathogens. To establish a long-lasting protection even after a re-challenge with the same pathogen, some T cells differentiate into memory T cells. Recently, a certain subpopulation of memory T cells at different tissue-sites of infection was detected-tissue-resident memory T cells (TRM cells). These cells can patrol in the tissue in order to encounter their cognate antigen to establish an effective protection against secondary infection. The liver as an immunogenic organ is exposed to a variety of pathogens entering the liver through the systemic blood circulation or via the portal vein from the gut. It could be shown that intrahepatic TRM cells can reside within the liver tissue for several years. Interestingly, hepatic TRM cell differentiation requires a distinct cytokine milieu. In addition, TRM cells express specific surface markers and transcription factors, which allow their identification delimited from their circulating counterparts. It could be demonstrated that liver TRM cells play a particular role in many liver diseases such as hepatitis B and C infection, non-alcoholic fatty liver disease and even play a role in the development of hepatocellular carcinoma and in building long-lasting immune responses after vaccination. A better understanding of intrahepatic TRM cells is critical to understand the pathophysiology of many liver diseases and to identify new potential drug targets for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Lea M. Bartsch
- Correspondence: (L.M.B.); (H.K.D.); Tel.: +1-(617)-724-7515 (L.M.B. & H.K.D.)
| | | | | | - Hannah K. Drescher
- Correspondence: (L.M.B.); (H.K.D.); Tel.: +1-(617)-724-7515 (L.M.B. & H.K.D.)
| |
Collapse
|
37
|
Takamura S. Divergence of Tissue-Memory T Cells: Distribution and Function-Based Classification. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037762. [PMID: 32816841 DOI: 10.1101/cshperspect.a037762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue-resident memory T cells (Trm) comprise the majority of memory cells in nonlymphoid tissues and play a predominant role in immunity at barrier surfaces. A better understanding of Trm cell maintenance and function is essential for the development of vaccines that confer frontline protection. However, it is currently challenging to precisely distinguish Trm cells from other T cells, and this has led to confusion in the literature. Here we highlight gaps in our understanding of tissue memory and discuss recent advances in the classification of Trm cell subsets based on their distribution and functional characteristics.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
38
|
Peng C, Jameson SC. The relationship between CD4+ follicular helper T cells and CD8+ resident memory T cells: sisters or distant cousins? Int Immunol 2020; 32:583-587. [PMID: 32620009 PMCID: PMC7478156 DOI: 10.1093/intimm/dxaa045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Independent studies over the last decade have characterized the properties of non-circulating CD8+ 'resident' memory T cells (TRM), which offer barrier protective immunity in non-lymphoid tissues and CD4+ follicular helper T cells (TFH), which mediate B-cell help in lymphoid sites. Despite their very different biological roles in the immune system, intriguing parallels have been noted between the trafficking properties and differentiation cues of these populations, parallels which have only sharpened with recent findings. In this review, we explore the features that underlie these similarities and discuss whether these indicate meaningful homologies in the development of CD8+ TRM and CD4+ TFH or reflect resemblances which are only 'skin-deep'.
Collapse
Affiliation(s)
- Changwei Peng
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Stephen C Jameson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
39
|
Borges da Silva H, Peng C, Wang H, Wanhainen KM, Ma C, Lopez S, Khoruts A, Zhang N, Jameson SC. Sensing of ATP via the Purinergic Receptor P2RX7 Promotes CD8 + Trm Cell Generation by Enhancing Their Sensitivity to the Cytokine TGF-β. Immunity 2020; 53:158-171.e6. [PMID: 32640257 DOI: 10.1016/j.immuni.2020.06.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/01/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
Tissue-resident memory (Trm) CD8+ T cells mediate protective immunity in barrier tissues, but the cues promoting Trm cell generation are poorly understood. Sensing of extracellular adenosine triphosphate (eATP) by the purinergic receptor P2RX7 is needed for recirculating CD8+ T cell memory, but its role for Trm cells is unclear. Here we showed that P2RX7 supported Trm cell generation by enhancing CD8+ T cell sensing of TGF-β, which was necessary for tissue residency. P2RX7-deficient Trm cells progressively decayed in non-lymphoid tissues and expressed dysregulated Trm-specific markers. P2RX7 was required for efficient re-expression of the receptor TGF-βRII through calcineurin signaling. Forced Tgfbr2 expression rescued P2RX7-deficient Trm cell generation, and TGF-β sensitivity was dictated by P2RX7 agonists and antagonists. Forced Tgfbr2 also rescued P2RX7-deficient Trm cell mitochondrial function. Sustained P2RX7 signaling was required for long-term Trm cell maintenance, indicating that P2RX7 signaling drives induction and CD8+ T cell durability in barrier sites.
Collapse
Affiliation(s)
- Henrique Borges da Silva
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Changwei Peng
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Haiguang Wang
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey M Wanhainen
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Sharon Lopez
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexander Khoruts
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Stephen C Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
40
|
Nolz JC. P2X7R: The Achilles heel of follicular helper memory T cells. Sci Immunol 2020; 5:5/45/eaba8097. [PMID: 32144183 DOI: 10.1126/sciimmunol.aba8097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/31/2020] [Indexed: 11/02/2022]
Abstract
Protecting TFH memory CD4+ T cells from NAD-induced cell death reveals both their longevity and plasticity (see related Research Article by Künzli et al.).
Collapse
Affiliation(s)
- Jeffrey C Nolz
- Department of Molecular Microbiology & Immunology, Department of Cell, Developmental & Cancer Biology, and Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
41
|
Grassi F. The P2X7 Receptor as Regulator of T Cell Development and Function. Front Immunol 2020; 11:1179. [PMID: 32587592 PMCID: PMC7297980 DOI: 10.3389/fimmu.2020.01179] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
Unique structural features characterize the P2X7 receptor with respect to other P2X family members. Dual gating by eATP and regulated expression of P2X7 can imprint distinct outcomes to the T cell depending on the metabolic fitness and/or developmental stage. In the thymus, signaling by P2X7 contributes to γδ T cell lineage choice. In secondary lymphoid organs, P2X7 stimulation promotes Th1/Th17 polarization of CD4+ naïve cells, Tregs conversion to Th17 cells and cell death of Tfh cells that are not stimulated by cognate antigen. Moreover, P2X7 stimulation in eATP rich microenvironments, such as damaged and/or inflamed tissues as well as tumors, induces cell death of various T cell effector subsets.
Collapse
Affiliation(s)
- Fabio Grassi
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
42
|
Bovens AA, Wesselink TH, Behr FM, Kragten NAM, van Lier RAW, van Gisbergen KPJM, Stark R. Murine iNKT cells are depleted by liver damage via activation of P2RX7. Eur J Immunol 2020; 50:1515-1524. [PMID: 32390174 DOI: 10.1002/eji.201948509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/21/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Invariant natural killer T cells (iNKT) constitute up to 50% of liver lymphocytes and contribute to immunosurveillance as well as pathogenesis of the liver. Systemic activation of iNKT cells induces acute immune-mediated liver injury. However, how tissue damage events regulate iNKT cell function and homeostasis remains unclear. We found that specifically tissue-resident iNKT cells in liver and spleen express the tissue-damage receptor P2RX7 and the P2RX7-activating ectoenzyme ARTC2. P2RX7 expression restricted formation of iNKT cells in the liver suggesting that liver iNKT cells are actively restrained under homeostatic conditions. Deliberate activation of P2RX7 in vivo by exogenous NAD resulted in a nearly complete iNKT cell ablation in liver and spleen in a P2RX7-dependent manner. Tissue damage generated by acetaminophen-induced liver injury reduced the number of iNKT cells in the liver. The tissue-damage-induced iNKT cell depletion was driven by P2RX7 and localized to the site of injury, as iNKT cells in the spleen remained intact. The depleted liver iNKT cells reconstituted only slowly compared to other lymphocytes such as regulatory T cells. These findings suggest that tissue-damage-mediated depletion of iNKT cells acts as a feedback mechanism to limit iNKT cell-induced pathology resulting in the establishment of a tolerogenic environment.
Collapse
Affiliation(s)
- Astrid A Bovens
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas H Wesselink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, BIH Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
43
|
Li J, Li W, Li J, Wang Z, Xiao D, Wang Y, Ni X, Zeng D, Zhang D, Jing B, Liu L, Luo Q, Pan K. Screening of differentially expressed immune-related genes from spleen of broilers fed with probiotic Bacillus cereus PAS38 based on suppression subtractive hybridization. PLoS One 2019; 14:e0226829. [PMID: 31869398 PMCID: PMC6927618 DOI: 10.1371/journal.pone.0226829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to construct the spleen differential genes library of broilers fed with probiotic Bacillus cereus PAS38 by suppression subtractive hybridization (SSH) and screen the immune-related genes. Sixty seven-day-old broilers were randomly divided into two groups. The control group was fed with basal diet, and the treated group was fed with basal diet containing Bacillus cereus PAS38 1×106 CFU/g. Spleen tissues were taken and extracted its total RNA at 42 days old, then SSH was used to construct differential gene library and screen immune-related genes. A total of 119 differentially expressed sequence tags (ESTs) were isolated by SSH and 9 immune-related genes were screened out by Gene ontology analysis. Nine differentially expressed genes were identified by qRT-PCR. JCHAIN, FTH1, P2RX7, TLR7, IGF1R, SMAD7, and SLC7A6 were found to be significantly up-regulated in the treated group. Which was consistent with the results of SSH. These findings imply that probiotic Bacillus cereus PAS38-induced differentially expressed genes in spleen might play an important role in the improvement of immunity for broilers, which provided useful information for further understanding of the molecular mechanism of probiotics responsible to affect the poultry immunity.
Collapse
Affiliation(s)
- Jiajun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wanqiang Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Jianzhen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Vocational College of Agricultural Science and Technology, Chengdu, Sichuan Province, China
| | - Zhenhua Wang
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Vocational College of Agricultural Science and Technology, Chengdu, Sichuan Province, China
| | - Dan Xiao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yufei Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Lei Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qihui Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- * E-mail:
| |
Collapse
|
44
|
Abstract
Following activation, CD8 T cells transition from reliance on mitochondrial respiration to increasing utilization of aerobic glycolysis. After the effector phase, however, reversion to mitochondrial metabolism is pivotal generating memory CD8 T cells. We recently showed that sensing of extracellular ATP (eATP) through the receptor P2RX7 is crucial for both production and the long-term survival of memory CD8 T cells, evidently through promoting mitochondrial maintenance. Unexpectedly, these results indicated that sustained P2RX7 activation is required for memory CD8 T cell homeostasis, suggesting constant exposure to eATP, in contrast with the proposed role of eATP as an acute "danger" signal released by dying cells. Active release through transmembrane channels is another path for eATP export. Indeed, CD8 T cells express Pannexin 1 (Panx1) which has a reported eATP release function in vitro and is itself induced by P2RX7 and/or TCR engagement. Such a role for Panx1 could potentially provide a feed-forward mechanism for cell-autonomous P2RX7 signaling. This model envisages that memory CD8 T cells maintain themselves at the cost of reduced intracellular ATP levels, which at first glance would seem to be detrimental for sustained T cell maintenance. On the other hand, the need to tightly regulate levels of intracellular ATP may be critical for the durability and adaptability of memory CD8 T cells, hence engagement of the P2RX7/Panx1 axis may allow these cells to fine tune their metabolic status to meet changing demands. In this Perspective, we discuss how this pathway may influence memory T cell maintenance.
Collapse
|
45
|
Konjar Š, Veldhoen M. Dynamic Metabolic State of Tissue Resident CD8 T Cells. Front Immunol 2019; 10:1683. [PMID: 31379871 PMCID: PMC6650586 DOI: 10.3389/fimmu.2019.01683] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023] Open
Abstract
In the past years, there have been significant advances in the understanding of how environmental conditions alone or in conjunction with pathogen invasion affect the metabolism of T cells, thereby influencing their activation, differentiation, and longevity. Detailed insights of the interlinked processes of activation and metabolism can contribute to major advances in immunotherapies. Naive and memory T cells circulate the body. In a quiescent state with low metabolic demands, they predominantly use oxidative phosphorylation for their energy needs. Recognition of cognate antigen combined with costimulatory signals results in a proliferative burst and effector molecule production, requiring rapid release of energy, achieved via dynamically reprogramming metabolic pathways. After activation, most T cells succumb to activation induced cell death, but few differentiate into memory T cells. Of note, some memory T cells permanently occupy tissues without circulating. These, tissue resident T cells are predominantly CD8 T cells, maintained in a metabolic state distinct from naïve and circulating memory CD8 T cells with elements similar to effector CD8 T cells but without undergoing proliferative burst or secreting immune mediators. They continually interact with tissue cells as part of an immune surveillance network, are well-adapted to the tissues they have made their home and where they may encounter different metabolic environments. In this review, we will discuss recent insights in metabolic characteristics of CD8 T cell biology, with emphasis on tissue resident CD8 T cells at the epithelial barriers.
Collapse
Affiliation(s)
- Špela Konjar
- Instituto de Medicina Molecular, João Lobo Atunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular, João Lobo Atunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
46
|
Liu Q, Kim CH. Control of Tissue-Resident Invariant NKT Cells by Vitamin A Metabolites and P2X7-Mediated Cell Death. THE JOURNAL OF IMMUNOLOGY 2019; 203:1189-1197. [PMID: 31308092 DOI: 10.4049/jimmunol.1900398] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
Invariant NKT (iNKT) cells provide rapid innate T cell responses to glycolipid Ags from host cells and microbes. The numbers of CD1d-restricted iNKT cells are tightly controlled in mucosal tissues, but the mechanisms have been largely unclear. We found that vitamin A is a dominant factor that controls the population size of mucosal iNKT cells in mice. This negative regulation is mediated by the induction of the purinergic receptor P2X7 on iNKT cells. The expression of P2X7 is particularly high on intestinal iNKT cells, making iNKT cells highly susceptible to P2X7-mediated cell death. In vitamin A deficiency, iNKT cells fail to express P2X7 and are, therefore, resistant to P2X7-mediated cell death, leading to iNKT cell overpopulation. This phenomenon is most prominent in the intestine. We found that iNKT cells are divided into CD69+ sphingosine-1-phosphate receptor 1 (S1P1)- tissue resident and CD69- S1P1+ nonresident iNKT cells. The CD69+ S1P1- tissue-resident iNKT cells highly express P2X7 and are effectively controlled by the P2X7 pathway. The regulation of iNKT cells by vitamin A by the P2X7 pathway is important to prevent aberrant expansion of effector cytokine-producing iNKT cells. Our findings identify a novel role of vitamin A in regulating iNKT cell homeostasis in many tissues throughout the body.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109; and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109; and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|