1
|
Doherty CM, Patterson PR, Emeanuwa JA, Belmares Ortega J, Fox BA, Bzik DJ, Denkers EY. T lymphocyte-dependent IL-10 down-regulates a cytokine storm driven by Toxoplasma gondii GRA24. mBio 2024:e0145524. [PMID: 39440975 DOI: 10.1128/mbio.01455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
As a model organism in the study of immunity to infection, Toxoplasma gondii has been instrumental in establishing key principles of host anti-microbial defense and its regulation. Here, we employed an attenuated uracil auxotroph strain of Type I Toxoplasma designated OMP to further untangle the early immune response to this parasitic pathogen. Experiments using αβ T cell-deficient Tcrb-/- mice unexpectedly revealed that an intact αβ T lymphocyte compartment was essential to survive infection with OMP. Subsequent antibody depletion and knockout mouse experiments demonstrated contributions from CD4+ T cells and most predominantly CD8+ T cells in resistance. Using transgenic knockout mice, we found only a partial requirement for IFN-γ and a lack of requirement for Toll-like receptor (TLR) adaptor MyD88 in resistance. In contrast to other studies on Toxoplasma, the ability to survive OMP infection did not require IL-12p40. Surprisingly, T cell-dependent IL-10 was found to be critical for survival, and deficiency of this cytokine triggered an abnormally high systemic inflammatory response. We also found that parasite molecule GRA24, a dense granule protein that triggers TLR-independent IL-12 production, acts as a virulence factor contributing to death of OMP-infected Tcrb-/- and IL-10-/- mice. Furthermore, resistance against OMP was restored in Tcrb-/- mice via monoclonal depletion of IL-12p40, suggesting that GRA24-induced IL-12 underlies the fatal immunopathology observed. Collectively, our studies provide insight into a novel and rapidly arising T lymphocyte-dependent anti-inflammatory response to T. gondii which operates independently of MyD88 and IL-12 and that depends on the function of parasite-dense granule protein GRA24.IMPORTANCEAs a model infectious microbe and an important human pathogen, the apicomplexan Toxoplasma gondii has provided many important insights into innate and adaptive immunity to infection. We show here that a low virulence uracil auxotrophic Toxoplasma strain emerges as a virulent parasite in the absence of an intact T cell compartment. Both CD4+ and CD8+ T lymphocytes are required for optimal protection, in line with previous findings in other models of Toxoplasma infection. Nevertheless, several novel aspects of the response were identified in our study. Protection occurs independently of IL-12 and MyD88 and only partially requires IFN-γ. This is noteworthy particularly because the cytokines IL-12 and IFN-γ have previously been regarded as essential for protective immunity to T. gondii. Instead, we identified the anti-inflammatory effects of T cell-dependent IL-10 as the critical factor enabling host survival. The parasite dense granule protein GRA24, a host-directed mitogen-activated protein kinase activator, was identified as a major virulence factor in T cell-deficient hosts. Collectively, our results provide new and unexpected insights into host resistance to Toxoplasma.
Collapse
Affiliation(s)
- Claire M Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Paige R Patterson
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Julie A Emeanuwa
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jessica Belmares Ortega
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
2
|
Pereira M, Ramalho T, Andrade WA, Durso DF, Souza MC, Fitzgerald KA, Golenbock DT, Silverman N, Gazzinelli RT. The IRAK1/IRF5 axis initiates IL-12 response by dendritic cells and control of Toxoplasma gondii infection. Cell Rep 2024; 43:113795. [PMID: 38367238 DOI: 10.1016/j.celrep.2024.113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 02/19/2024] Open
Abstract
Activation of endosomal Toll-like receptor (TLR) 7, TLR9, and TLR11/12 is a key event in the resistance against the parasite Toxoplasma gondii. Endosomal TLR engagement leads to expression of interleukin (IL)-12 via the myddosome, a protein complex containing MyD88 and IL-1 receptor-associated kinase (IRAK) 4 in addition to IRAK1 or IRAK2. In murine macrophages, IRAK2 is essential for IL-12 production via endosomal TLRs but, surprisingly, Irak2-/- mice are only slightly susceptible to T. gondii infection, similar to Irak1-/- mice. Here, we report that upon T. gondii infection IL-12 production by different cell populations requires either IRAK1 or IRAK2, with conventional dendritic cells (DCs) requiring IRAK1 and monocyte-derived DCs (MO-DCs) requiring IRAK2. In both populations, we identify interferon regulatory factor 5 as the main transcription factor driving the myddosome-dependent IL-12 production during T. gondii infection. Consistent with a redundant role of DCs and MO-DCs, mutations that affect IL-12 production in both cell populations show high susceptibility to infection in vivo.
Collapse
Affiliation(s)
- Milton Pereira
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Theresa Ramalho
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Warrison A Andrade
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Danielle F Durso
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maria C Souza
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Douglas T Golenbock
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ricardo T Gazzinelli
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Pritchard GH, Phan AT, Christian DA, Blain TJ, Fang Q, Johnson J, Roy NH, Shallberg L, Kedl RM, Hunter CA. Early T-bet promotes LFA1 upregulation required for CD8+ effector and memory T cell development. J Exp Med 2023; 220:e20191287. [PMID: 36445307 PMCID: PMC9712775 DOI: 10.1084/jem.20191287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/29/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
The T-box transcription factor T-bet is regarded as a "master regulator" of CD4+ Th1 differentiation and IFN-γ production. However, in multiple models of infection, T-bet appears less critical for CD8+ T cell expansion and effector function. Here, we show that following vaccination with a replication-deficient strain of Toxoplasma gondii, CD8+ T cell expression of T-bet is required for optimal expansion of parasite-specific effector CD8+ T cells. Analysis of the early events associated with T cell activation reveals that the α chain of LFA1, CD11a, is a target of T-bet, and T-bet is necessary for CD8+ T cell upregulation of this integrin, which influences the initial priming of CD8+ effector T cells. We propose that the early expression of T-bet represents a T cell-intrinsic factor that optimizes T-DC interactions necessary to generate effector responses.
Collapse
Affiliation(s)
- Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anthony T. Phan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - David A. Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Trevor J. Blain
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Qun Fang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Johnson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nathan H. Roy
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA
| | - Lindsey Shallberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ross M. Kedl
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Chen J, Liao W, Peng H. Toxoplasma gondii infection possibly reverses host immunosuppression to restrain tumor growth. Front Cell Infect Microbiol 2022; 12:959300. [PMID: 36118042 PMCID: PMC9470863 DOI: 10.3389/fcimb.2022.959300] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor cells can successfully escape the host immune attack by inducing the production of immunosuppressive cells and molecules, leading to an ineffective tumor treatment and poor prognosis. Although immunotherapies have improved the survival rate of cancer patients in recent years, more effective drugs and therapies still need to be developed. As an intracellular parasite, Toxoplasma gondii can trigger a strong Th1 immune response in host cells, including upregulating the expression of interleukin-12 (IL-12) and interferon-γ (IFN-γ). Non-replicating uracil auxotrophic strains of T. gondii were used to safely reverse the immunosuppression manipulated by the tumor microenvironment. In addition to the whole lysate antigens, T. gondii-secreted effectors, including Toxoplasma profilin, rhoptry proteins (ROPs), and dense granule antigens (GRAs), are involved in arousing the host’s antigen presentation system to suppress tumors. When T. gondii infection relieves immunosuppression, tumor-related myeloid cells, including macrophages and dendritic cells (DCs), are transformed into immunostimulatory phenotypes, showing a powerful Th1 immune response mediated by CD8+ T cells. Afterwards, they target and kill the tumor cells, and ultimately reduce the size and weight of tumor tissues. This article reviews the latest applications of T. gondii in tumor therapy, including the activation of cellular immunity and the related signal pathways, which will help us understand why T. gondii infection can restrain tumor growth.
Collapse
Affiliation(s)
- Jiating Chen
- Department of Pathogen Biology, School of Public Health, Guangdong Provincial Key laboratory of Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Wenzhong Liao
- Department of Pathogen Biology, School of Public Health, Guangdong Provincial Key laboratory of Tropical Medicine, Southern Medical University, Guangzhou, China
| | - HongJuan Peng
- Department of Pathogen Biology, School of Public Health, Guangdong Provincial Key laboratory of Tropical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Sardinha-Silva A, Alves-Ferreira EVC, Grigg ME. Intestinal immune responses to commensal and pathogenic protozoa. Front Immunol 2022; 13:963723. [PMID: 36211380 PMCID: PMC9533738 DOI: 10.3389/fimmu.2022.963723] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The physical barrier of the intestine and associated mucosal immunity maintains a delicate homeostatic balance between the host and the external environment by regulating immune responses to commensals, as well as functioning as the first line of defense against pathogenic microorganisms. Understanding the orchestration and characteristics of the intestinal mucosal immune response during commensal or pathological conditions may provide novel insights into the mechanisms underlying microbe-induced immunological tolerance, protection, and/or pathogenesis. Over the last decade, our knowledge about the interface between the host intestinal mucosa and the gut microbiome has been dominated by studies focused on bacterial communities, helminth parasites, and intestinal viruses. In contrast, specifically how commensal and pathogenic protozoa regulate intestinal immunity is less well studied. In this review, we provide an overview of mucosal immune responses induced by intestinal protozoa, with a major focus on the role of different cell types and immune mediators triggered by commensal (Blastocystis spp. and Tritrichomonas spp.) and pathogenic (Toxoplasma gondii, Giardia intestinalis, Cryptosporidium parvum) protozoa. We will discuss how these various protozoa modulate innate and adaptive immune responses induced in experimental models of infection that benefit or harm the host.
Collapse
|
6
|
Frickel EM, Hunter CA. Lessons from Toxoplasma: Host responses that mediate parasite control and the microbial effectors that subvert them. J Exp Med 2021; 218:212714. [PMID: 34670268 PMCID: PMC8532566 DOI: 10.1084/jem.20201314] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/29/2021] [Indexed: 11/15/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii has long provided a tractable experimental system to investigate how the immune system deals with intracellular infections. This review highlights the advances in defining how this organism was first detected and the studies with T. gondii that contribute to our understanding of how the cytokine IFN-γ promotes control of vacuolar pathogens. In addition, the genetic tractability of this eukaryote organism has provided the foundation for studies into the diverse strategies that pathogens use to evade antimicrobial responses and now provides the opportunity to study the basis for latency. Thus, T. gondii remains a clinically relevant organism whose evolving interactions with the host immune system continue to teach lessons broadly relevant to host–pathogen interactions.
Collapse
Affiliation(s)
- Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Snyder LM, Doherty CM, Mercer HL, Denkers EY. Induction of IL-12p40 and type 1 immunity by Toxoplasma gondii in the absence of the TLR-MyD88 signaling cascade. PLoS Pathog 2021; 17:e1009970. [PMID: 34597344 PMCID: PMC8513874 DOI: 10.1371/journal.ppat.1009970] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/13/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii is an orally acquired pathogen that induces strong IFN-γ based immunity conferring protection but that can also be the cause of immunopathology. The response in mice is driven in part by well-characterized MyD88-dependent signaling pathways. Here we focus on induction of less well understood immune responses that do not involve this Toll-like receptor (TLR)/IL-1 family receptor adaptor molecule, in particular as they occur in the intestinal mucosa. Using eYFP-IL-12p40 reporter mice on an MyD88-/- background, we identified dendritic cells, macrophages, and neutrophils as cellular sources of MyD88-independent IL-12 after peroral T. gondii infection. Infection-induced IL-12 was lower in the absence of MyD88, but was still clearly above noninfected levels. Overall, this carried through to the IFN-γ response, which while generally decreased was still remarkably robust in the absence of MyD88. In the latter mice, IL-12 was strictly required to induce type I immunity. Type 1 and type 3 innate lymphoid cells (ILC), CD4+ T cells, and CD8+ T cells each contributed to the IFN-γ pool. We report that ILC3 were expanded in infected MyD88-/- mice relative to their MyD88+/+ counterparts, suggesting a compensatory response triggered by loss of MyD88. Furthermore, bacterial flagellin and Toxoplasma specific CD4+ T cell populations in the lamina propria expanded in response to infection in both WT and KO mice. Finally, we show that My88-independent IL-12 and T cell mediated IFN-γ production require the presence of the intestinal microbiota. Our results identify MyD88-independent intestinal immune pathways induced by T. gondii including myeloid cell derived IL-12 production, downstream type I immunity and IFN-γ production by ILC1, ILC3, and T lymphocytes. Collectively, our data reveal an underlying network of immune responses that do not involve signaling through MyD88. Toxoplasma gondii is an apicomplexan parasite estimated to infect 30–50% of humans worldwide. The parasite normally establishes latency in brain and muscle tissue marked by persistent asymptomatic infection. T. gondii masterfully strikes a balance between eliciting strong, anti-parasite immunity while also persisting in the host. Although the murine host recognizes Toxoplasma profilin via MyD88 and Toll-like receptors 11/12, humans lack these receptors and MyD88 deficient patients retain resistance to T. gondii infection. Given these observations, it is important to identify MyD88 independent pathways of immunity. Using an oral infection mouse model, we identified cellular sources of IL-12 and IFN-γ, two cytokines that are essential for host resistance to this microbial pathogen. We determined how these responses are impacted by the presence and absence of MyD88 and the intestinal microbiota. Our data demonstrate that T. gondii triggers MyD88-independent innate and adaptive immunity in the intestinal mucosa that requires the presence of intestinal microbes. These pathways may be conserved among species and understanding how they work in rodents will likely help determine how humans recognize and respond to T. gondii infection.
Collapse
Affiliation(s)
- Lindsay M Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Claire M Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Heather L Mercer
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
8
|
Clark JT, Christian DA, Gullicksrud JA, Perry JA, Park J, Jacquet M, Tarrant JC, Radaelli E, Silver J, Hunter CA. IL-33 promotes innate lymphoid cell-dependent IFN-γ production required for innate immunity to Toxoplasma gondii. eLife 2021; 10:e65614. [PMID: 33929319 PMCID: PMC8121546 DOI: 10.7554/elife.65614] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/29/2021] [Indexed: 12/29/2022] Open
Abstract
IL-33 is an alarmin required for resistance to the parasite Toxoplasma gondii, but its role in innate resistance to this organism is unclear. Infection with T. gondii promotes increased stromal cell expression of IL-33, and levels of parasite replication correlate with release of IL-33 in affected tissues. In response to infection, a subset of innate lymphoid cells (ILC) emerges composed of IL-33R+ NK cells and ILC1s. In Rag1-/-mice, where NK cells and ILC1 production of IFN-γ mediate innate resistance to T. gondii, the loss of the IL-33R resulted in reduced ILC responses and increased parasite replication. Furthermore, administration of IL-33 to Rag1-/- mice resulted in a marked decrease in parasite burden, increased production of IFN-γ, and the recruitment and expansion of inflammatory monocytes associated with parasite control. These protective effects of exogenous IL-33 were dependent on endogenous IL-12p40 and the ability of IL-33 to enhance ILC production of IFN-γ. These results highlight that IL-33 synergizes with IL-12 to promote ILC-mediated resistance to T. gondii.
Collapse
Affiliation(s)
- Joseph T Clark
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - David A Christian
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Jodi A Gullicksrud
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Joseph A Perry
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Jeongho Park
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
- Kangwon National University College of Veterinary Medicine and Institute of Veterinary ScienceChuncheonRepublic of Korea
| | - Maxime Jacquet
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
- Liver Immunology, Department of Biomedicine, University Hospital of Basel and University of BaselBaselSwitzerland
| | - James C Tarrant
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Enrico Radaelli
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Jonathan Silver
- Department of Respiratory Inflammation and Autoimmunity, AstraZenecaGaithersburgUnited States
| | - Christopher A Hunter
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| |
Collapse
|
9
|
Chiebao DP, Bartley PM, Chianini F, Black LE, Burrells A, Pena HFJ, Soares RM, Innes EA, Katzer F. Early immune responses and parasite tissue distribution in mice experimentally infected with oocysts of either archetypal or non-archetypal genotypes of Toxoplasma gondii. Parasitology 2021; 148:464-476. [PMID: 33315001 PMCID: PMC11010124 DOI: 10.1017/s0031182020002346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
In most of the world Toxoplasma gondii is comprised of archetypal types (types I, II and III); however, South America displays several non-archetypal strains. This study used an experimental mouse model to characterize the immune response and parasite kinetics following infection with different parasite genotypes. An oral inoculation of 50 oocysts per mouse from T. gondii M4 type II (archetypal, avirulent), BrI or BrIII (non-archetypal, virulent and intermediate virulent, respectively) for groups (G)2, G3 and G4, respectively was used. The levels of mRNA expression of cytokines, immune compounds, cell surface markers and receptor adapters [interferon gamma (IFNγ), interleukin (IL)-12, CD8, CD4, CD25, CXCR3 and MyD88] were quantified by SYBR green reverse transcription-quantitative polymerase chain reaction. Lesions were characterized by histology and detection by immunohistochemistry established distribution of parasites. Infection in G2 mice was mild and characterized by an early MyD88-dependent pathway. In G3, there were high levels of expression of pro-inflammatory cytokines IFNγ and IL-12 in the mice showing severe clinical symptoms at 8–11 days post infection (dpi), combined with the upregulation of CD25, abundant tachyzoites and tissue lesions in livers, lungs and intestines. Significant longer expression of IFNγ and IL-12 genes, with other Th1-balanced immune responses, such as increased levels of CXCR3 and MyD88 in G4, resulted in survival of mice and chronic toxoplasmosis, with the occurrence of tissue cysts in brain and lungs, at 14 and 21 dpi. Different immune responses and kinetics of gene expression appear to be elicited by the different strains and non-archetypal parasites demonstrated higher virulence.
Collapse
Affiliation(s)
- Daniela P. Chiebao
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Animal Science – FMVZ, University of Sao Paulo, 87 Professor Doutor Orlando Marques de Paiva Avenue, 05508-270São Paulo, Brazil
| | - Paul M. Bartley
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Francesca Chianini
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Lauren E. Black
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Alison Burrells
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Hilda F. J. Pena
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Animal Science – FMVZ, University of Sao Paulo, 87 Professor Doutor Orlando Marques de Paiva Avenue, 05508-270São Paulo, Brazil
| | - Rodrigo M. Soares
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Animal Science – FMVZ, University of Sao Paulo, 87 Professor Doutor Orlando Marques de Paiva Avenue, 05508-270São Paulo, Brazil
| | - Elisabeth A. Innes
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Frank Katzer
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| |
Collapse
|
10
|
Snyder LM, Denkers EY. From Initiators to Effectors: Roadmap Through the Intestine During Encounter of Toxoplasma gondii With the Mucosal Immune System. Front Cell Infect Microbiol 2021; 10:614701. [PMID: 33505924 PMCID: PMC7829212 DOI: 10.3389/fcimb.2020.614701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
The gastrointestinal tract is a major portal of entry for many pathogens, including the protozoan parasite Toxoplasma gondii. Billions of people worldwide have acquired T. gondii at some point in their life, and for the vast majority this has led to latent infection in the central nervous system. The first line of host defense against Toxoplasma is located within the intestinal mucosa. Appropriate coordination of responses by the intestinal epithelium, intraepithelial lymphocytes, and lamina propria cells results in an inflammatory response that controls acute infection. Under some conditions, infection elicits bacterial dysbiosis and immune-mediated tissue damage in the intestine. Here, we discuss the complex interactions between the microbiota, the epithelium, as well as innate and adaptive immune cells in the intestinal mucosa that induce protective immunity, and that sometimes switch to inflammatory pathology as T. gondii encounters tissues of the gut.
Collapse
Affiliation(s)
- Lindsay M Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Eric Y Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
11
|
Mévélec MN, Lakhrif Z, Dimier-Poisson I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front Cell Infect Microbiol 2020; 10:607198. [PMID: 33324583 PMCID: PMC7724089 DOI: 10.3389/fcimb.2020.607198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a parasitic disease affecting human, livestock and cat. Prophylactic strategies would be ideal to prevent infection. In a One Health vaccination approach, the objectives would be the prevention of congenital disease in both women and livestock, prevention/reduction of T. gondii tissue cysts in food-producing animals; and oocyst shedding in cats. Over the last few years, an explosion of strategies for vaccine development, especially due to the development of genetic-engineering technologies has emerged. The field of vaccinology has been exploring safer vaccines by the generation of recombinant immunogenic proteins, naked DNA vaccines, and viral/bacterial recombinants vectors. These strategies based on single- or few antigens, are less efficacious than recombinant live-attenuated, mostly tachyzoite T. gondii vaccine candidates. Reflections on the development of an anti-Toxoplasma vaccine must focus not only on the appropriate route of administration, capable of inducing efficient immune response, but also on the choice of the antigen (s) of interest and the associated delivery systems. To answer these questions, the choice of the animal model is essential. If mice helped in understanding the protection mechanisms, the data obtained cannot be directly transposed to humans, livestock and cats. Moreover, effectiveness vaccines should elicit strong and protective humoral and cellular immune responses at both local and systemic levels against the different stages of the parasite. Finally, challenge protocols should use the oral route, major natural route of infection, either by feeding tissue cysts or oocysts from different T. gondii strains. Effective Toxoplasma vaccines depend on our understanding of the (1) protective host immune response during T. gondii invasion and infection in the different hosts, (2) manipulation and modulation of host immune response to ensure survival of the parasites able to evade and subvert host immunity, (3) molecular mechanisms that define specific stage development. This review presents an overview of the key limitations for the development of an effective vaccine and highlights the contributions made by recent studies on the mechanisms behind stage switching to offer interesting perspectives for vaccine development.
Collapse
Affiliation(s)
| | - Zineb Lakhrif
- Team BioMAP, Université de Tours, INRAE, ISP, Tours, France
| | | |
Collapse
|
12
|
Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity. PLoS Pathog 2020; 16:e1008572. [PMID: 32413093 PMCID: PMC7255617 DOI: 10.1371/journal.ppat.1008572] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/28/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022] Open
Abstract
The apicomplexan Toxoplasma gondii induces strong protective immunity dependent upon recognition by Toll-like receptors (TLR)11 and 12 operating in conjunction with MyD88 in the murine host. However, TLR11 and 12 proteins are not present in humans, inspiring us to investigate MyD88-independent pathways of resistance. Using bicistronic IL-12-YFP reporter mice on MyD88+/+ and MyD88-/- genetic backgrounds, we show that CD11c+MHCII+F4/80- dendritic cells, F4/80+ macrophages, and Ly6G+ neutrophils were the dominant cellular sources of IL-12 in both wild type and MyD88 deficient mice after parasite challenge. Parasite dense granule protein GRA24 induces p38 MAPK activation and subsequent IL-12 production in host macrophages. We show that Toxoplasma triggers an early and late p38 MAPK phosphorylation response in MyD88+/+ and MyD88-/- bone marrow-derived macrophages. Using the uracil auxotrophic Type I T. gondii strain cps1-1, we demonstrate that the late response does not require active parasite proliferation, but strictly depends upon GRA24. By i. p. inoculation with cps1-1 and cps1-1:Δgra24, we identified unique subsets of chemokines and cytokines that were up and downregulated by GRA24. Finally, we demonstrate that cps1-1 triggers a strong host-protective GRA24-dependent Th1 response in the absence of MyD88. Our data identify GRA24 as a major mediator of p38 MAPK activation, IL-12 induction and protective immunity that operates independently of the TLR/MyD88 cascade. Toxoplasma gondii is a protozoan parasite that infects over 1 billion people worldwide. Infection with the parasite is normally asymptomatic and Toxoplasma co-exists with its host in the form of latent cysts in brain and muscle tissue. The balance between immune recognition and immune evasion is likely a key factor in the outcome of this host-parasite interaction. It is therefore important to understand how Toxoplasma triggers immunity, and in particular how the protective cytokine IL-12 is induced during infection. While Toll-like receptor (TLR)/MyD88 signaling is important in mouse resistance to Toxoplasma, this pathway is likely less important in human infection. Here, we report that the parasite dense granule protein GRA24 triggers p38 MAPK activation and IL-12 production independently of TLR/MyD88 signaling. We identify additional cytokines and chemokines that are regulated by GRA24 during in vivo infection. Our data demonstrate that GRA24 initiates a protective MyD88-independent immune response during in vivo infection. The GRA24 molecule provides an example of a parasite molecule whose function is induction of a host protective immune response. From the standpoint of Toxoplasma, this likely reflects an evolutionary adaptation to ensure host survival and simultaneously enable latency to maximize the chance of transmission.
Collapse
|
13
|
Park J, Hunter CA. The role of macrophages in protective and pathological responses to Toxoplasma gondii. Parasite Immunol 2020; 42:e12712. [PMID: 32187690 DOI: 10.1111/pim.12712] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
The ability of Toxoplasma gondii to cause clinical disease in immune-competent and immune-deficient hosts coupled with its ease of use in vitro and availability of murine models has led to its use as a model organism to study how the immune system controls an intracellular infection. This article reviews the studies that established the role of the cytokine IFN-γ in the activation of macrophages to control T gondii and the events that lead to the mobilization and expansion of macrophage populations and their ability to limit parasite replication. Macrophages also have pro-inflammatory functions that promote protective NK and T-cell activities as well as regulatory properties that facilitate the resolution of inflammation. Nevertheless, while macrophages are important in determining the outcome of infection, T gondii has evolved mechanisms to subvert macrophage activation and can utilize their migratory activities to promote dissemination and these two properties underlie the ability of this parasite to persist and cause disease.
Collapse
Affiliation(s)
- Jeongho Park
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.,Kangwon National University College of Veterinary Medicine and Institute of Veterinary Science, Chuncheon, Korea
| | | |
Collapse
|
14
|
Lakho SA, Haseeb M, Huang J, Hasan MW, Naqvi MAUH, Zhou Z, Song X, Yan R, Xu L, Li X. Recombinant ubiquitin-conjugating enzyme of Eimeria maxima induces immunogenic maturation in chicken splenic-derived dendritic cells and drives Th1 polarization in-vitro. Microb Pathog 2020; 143:104162. [PMID: 32194180 DOI: 10.1016/j.micpath.2020.104162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DCs) are key linkages between innate immunity and acquired immunity. The antigens that promote the functions of DCs might be the effective candidates of novel vaccine. In this research, the ability of ubiquitin-conjugating enzyme (UCE), a recognized common antigens among chicken Eimeria species, to stimulate DCs of chickens were evaluated. We cloned UCE gene from Eimeria maxima (EmUCE), and its protein expression was confirmed by SDS-PAGE and western-blot. Immunofluorescence assay confirmed the binding of rEmUCE on the surface of chicken splenic-derived DCs (ChSP-DCs). Flow cytometric analysis showed that rEmUCE-treated ChSP-DCs increased MHCII, CD1.1, CD11c, CD80, and CD86 phenotypes. qRT-PCR indicated that transcript levels of maturation markers CCL5, CCR7, and CD83 in ChSP-DCs were upregulated in response to rEmUCE. Following rEmUCE treatment, chSP-DCs activated TLR signaling and inhibited Wnt signaling. Moreover, rEmUCE promoted DC-mediated T-cell proliferation in DC/T-cell co-incubation. Interestingly, CD3+/CD4+ T-cells were significantly enhanced when rEmUCE-treated chSP-DCs were co-incubated with T-cells. Cytokine secretion pattern of rEmUCE-stimulated ChSP-DCs revealed that the production of IL-12 and IFN-γ was increased whereas IL-10 and TGF-β were unchanged. Likewise, the co-incubation of ChSP-DCs with T-cells indicated increased production of IFN-γ but not IL-4. Collectively, rEmUCE could polarize DCs to immunogenic phenotype and shift the immune cells towards Th1 response. Our observations provide valuable insight for future research aimed at vaccine development against avian coccidiosis.
Collapse
Affiliation(s)
- Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Jianmei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Muhammad Ali-Ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Zhouyang Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
15
|
Rommereim LM, Fox BA, Butler KL, Cantillana V, Taylor GA, Bzik DJ. Rhoptry and Dense Granule Secreted Effectors Regulate CD8 + T Cell Recognition of Toxoplasma gondii Infected Host Cells. Front Immunol 2019; 10:2104. [PMID: 31555296 PMCID: PMC6742963 DOI: 10.3389/fimmu.2019.02104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii secretes rhoptry (ROP) and dense granule (GRA) effector proteins to evade host immune clearance mediated by interferon gamma (IFN-γ), immunity-related GTPase (IRG) effectors, and CD8+ T cells. Here, we investigated the role of parasite-secreted effectors in regulating host access to parasitophorous vacuole (PV) localized parasite antigens and their presentation to CD8+ T cells by the major histocompatibility class I (MHC-I) pathway. Antigen presentation of PV localized parasite antigens by MHC-I was significantly increased in macrophages and/or dendritic cells infected with mutant parasites that lacked expression of secreted GRA (GRA2, GRA3, GRA4, GRA5, GRA7, GRA12) or ROP (ROP5, ROP18) effectors. The ability of various secreted GRA or ROP effectors to suppress antigen presentation by MHC-I was dependent on cell type, expression of IFN-γ, or host IRG effectors. The suppression of antigen presentation by ROP5, ROP18, and GRA7 correlated with a role for these molecules in preventing PV disruption by IFN-γ-activated host IRG effectors. However, GRA2 mediated suppression of antigen presentation was not correlated with PV disruption. In addition, the GRA2 antigen presentation phenotypes were strictly co-dependent on the expression of the GRA6 protein. These results show that MHC-I antigen presentation of PV localized parasite antigens was controlled by mechanisms that were dependent or independent of IRG effector mediated PV disruption. Our findings suggest that the GRA6 protein underpins an important mechanism that enhances CD8+ T cell recognition of parasite-infected cells with damaged or ruptured PV membranes. However, in intact PVs, parasite secreted effector proteins that associate with the PV membrane or the intravacuolar network membranes play important roles to actively suppress antigen presentation by MHC-I to reduce CD8+ T cell recognition and clearance of Toxoplasma gondii infected host cells.
Collapse
Affiliation(s)
- Leah M Rommereim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kiah L Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Viviana Cantillana
- Division of Geriatrics, Departments of Medicine, Molecular Genetics and Microbiology, and Immunology, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States
| | - Gregory A Taylor
- Division of Geriatrics, Departments of Medicine, Molecular Genetics and Microbiology, and Immunology, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States.,Geriatric Research, Education and Clinical Center, VA Medical Center, Durham, NC, United States
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
16
|
Ashour DS, Saad AE, Dawood LM, Zamzam Y. Immunological interaction between Giardia cyst extract and experimental toxoplasmosis. Parasite Immunol 2017; 40. [PMID: 29130475 DOI: 10.1111/pim.12503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Toxoplasmosis is mostly associated with other intestinal parasitic infections especially Giardia due to shared mode of peroral infection. Toxoplasma and Giardia induce a strong T-helper 1- immune response. Our aim was to induce a protective immune response that results in significant impact on intestinal and extra-intestinal phases of Toxoplasma infection. This study was conducted in experimental animals and assessment of Giardia cyst extract effect on Toxoplasma infection was investigated by histopathological examination of small intestine and brain, Toxoplasma cyst count and iNOS staining of the brain, measurement of IFN-γ and TGF-β in intestinal tissues. Results showed that the brain Toxoplasma cyst number was decreased in mice infected with Toxoplasma then received Giardia cyst extract as compared to mice infected with Toxoplasma only. This effect was produced because Giardia cyst extract augmented the immune response to Toxoplasma infection as evidenced by severe inflammatory reaction in the intestinal and brain tissues, increased levels of IFN-γ and TGF-β in intestinal tissues and strong iNOS staining of the brain. In conclusion, Giardia cyst extract generated a protective response against T. gondii infection. Therefore, Giardia antigen will be a suitable candidate for further researches as an immunomodulatory agent against Toxoplasma infection.
Collapse
Affiliation(s)
- D S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - A E Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - L M Dawood
- Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Y Zamzam
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
17
|
Shalaby KH, Al Heialy S, Tsuchiya K, Farahnak S, McGovern TK, Risse PA, Suh WK, Qureshi ST, Martin JG. The TLR4-TRIF pathway can protect against the development of experimental allergic asthma. Immunology 2017; 152:138-149. [PMID: 28502093 DOI: 10.1111/imm.12755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
The Toll-like receptor (TLR) adaptor proteins myeloid differentiating factor 88 (MyD88) and Toll, interleukin-1 receptor and resistance protein (TIR) domain-containing adaptor inducing interferon-β (TRIF) comprise the two principal limbs of the TLR signalling network. We studied the role of these adaptors in the TLR4-dependent inhibition of allergic airway disease and induction of CD4+ ICOS+ T cells by nasal application of Protollin™, a mucosal adjuvant composed of TLR2 and TLR4 agonists. Wild-type (WT), Trif-/- or Myd88-/- mice were sensitized to birch pollen extract (BPEx), then received intranasal Protollin followed by consecutive BPEx challenges. Protollin's protection against allergic airway disease was TRIF-dependent and MyD88-independent. TRIF deficiency diminished the CD4+ ICOS+ T-cell subsets in the lymph nodes draining the nasal mucosa, as well as their recruitment to the lungs. Overall, TRIF deficiency reduced the proportion of cervical lymph node and lung CD4+ ICOS+ Foxp3- cells, in particular. Adoptive transfer of cervical lymph node cells supported a role for Protollin-induced CD4+ ICOS+ cells in the TRIF-dependent inhibition of airway hyper-responsiveness. Hence, our data demonstrate that stimulation of the TLR4-TRIF pathway can protect against the development of allergic airway disease and that a TRIF-dependent adjuvant effect on CD4+ ICOS+ T-cell responses may be a contributing mechanism.
Collapse
Affiliation(s)
- Karim H Shalaby
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Saba Al Heialy
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Kimitake Tsuchiya
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Soroor Farahnak
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Toby K McGovern
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Paul-Andre Risse
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Salman T Qureshi
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - James G Martin
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
18
|
Targeted disruption of CK1α in Toxoplasma gondii increases acute virulence in mice. Eur J Protistol 2016; 56:90-101. [PMID: 27567091 DOI: 10.1016/j.ejop.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 01/02/2023]
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, encodes two casein kinase 1 (CK1) isoforms, CK1α and CK1β, with only CK1α having enzyme activity. Here we investigated the biological role of CK1α by construction of a CK1α deletion mutant (Δck1α) based on the type I parasite, and complement the mutant with restored expression of CK1α. Deletion of CK1α resulted in markedly defective parasite replication in vitro. Infected mice with Δck1α parasite caused suppression of IL-12 production, severe liver damage, higher tissue burdens, and short survival time relative to the CK1α-positive parental strain. Western blot analysis revealed that deletion of CK1α led to increased activation of the signal transducer and activator of transcription (STAT)-3 in infected mice and bone marrow-derived microphages. The transcriptome analysis showed that deletion of CK1α may increase expression of rhoptry proteins (ROPs). Western blot showed enhanced expression of ROP16 in the Δck1α parasite as compared with the wild-type and complemented parasites. These findings demonstrated that deletion of CK1α may increase acute virulence of T. gondii in mice by increased expression of ROPs, activation of STAT3, and suppression of IL-12 production, which have important implications for elucidating regulation mechanism of virulence factors for T. gondii.
Collapse
|
19
|
Fox BA, Sanders KL, Rommereim LM, Guevara RB, Bzik DJ. Secretion of Rhoptry and Dense Granule Effector Proteins by Nonreplicating Toxoplasma gondii Uracil Auxotrophs Controls the Development of Antitumor Immunity. PLoS Genet 2016; 12:e1006189. [PMID: 27447180 PMCID: PMC4957766 DOI: 10.1371/journal.pgen.1006189] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/22/2016] [Indexed: 12/19/2022] Open
Abstract
Nonreplicating type I uracil auxotrophic mutants of Toxoplasma gondii possess a potent ability to activate therapeutic immunity to established solid tumors by reversing immune suppression in the tumor microenvironment. Here we engineered targeted deletions of parasite secreted effector proteins using a genetically tractable Δku80 vaccine strain to show that the secretion of specific rhoptry (ROP) and dense granule (GRA) proteins by uracil auxotrophic mutants of T. gondii in conjunction with host cell invasion activates antitumor immunity through host responses involving CD8α+ dendritic cells, the IL-12/interferon-gamma (IFN-γ) TH1 axis, as well as CD4+ and CD8+ T cells. Deletion of parasitophorous vacuole membrane (PVM) associated proteins ROP5, ROP17, ROP18, ROP35 or ROP38, intravacuolar network associated dense granule proteins GRA2 or GRA12, and GRA24 which traffics past the PVM to the host cell nucleus severely abrogated the antitumor response. In contrast, deletion of other secreted effector molecules such as GRA15, GRA16, or ROP16 that manipulate host cell signaling and transcriptional pathways, or deletion of PVM associated ROP21 or GRA3 molecules did not affect the antitumor activity. Association of ROP18 with the PVM was found to be essential for the development of the antitumor responses. Surprisingly, the ROP18 kinase activity required for resistance to IFN-γ activated host innate immunity related GTPases and virulence was not essential for the antitumor response. These data show that PVM functions of parasite secreted effector molecules, including ROP18, manipulate host cell responses through ROP18 kinase virulence independent mechanisms to activate potent antitumor responses. Our results demonstrate that PVM associated rhoptry effector proteins secreted prior to host cell invasion and dense granule effector proteins localized to the intravacuolar network and host nucleus that are secreted after host cell invasion coordinately control the development of host immune responses that provide effective antitumor immunity against established ovarian cancer.
Collapse
Affiliation(s)
- Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Kiah L. Sanders
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Leah M. Rommereim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Rebekah B. Guevara
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
20
|
Gartlan KH, Krashias G, Wegmann F, Hillson WR, Scherer EM, Greenberg PD, Eisenbarth SC, Moghaddam AE, Sattentau QJ. Sterile inflammation induced by Carbopol elicits robust adaptive immune responses in the absence of pathogen-associated molecular patterns. Vaccine 2016; 34:2188-96. [PMID: 27005810 PMCID: PMC4850248 DOI: 10.1016/j.vaccine.2016.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/07/2016] [Accepted: 03/12/2016] [Indexed: 11/27/2022]
Abstract
Carbopol induces Th1/IgG2a responses without PRR activation. Carbopol polymer morphology is changed by APC phagocytosis leading to ROS induction. This study highlights a potentially novel mechanism for in vivo cellular activation.
Carbopol is a polyanionic carbomer used in man for topical application and drug delivery purposes. However parenteral administration of Carbopol in animal models results in systemic adjuvant activity including strong pro-inflammatory type-1 T-cell (Th1) polarization. Here we investigated potential pathways of immune activation by Carbopol by comparison with other well-characterized adjuvants. Carbopol administration triggered rapid and robust leukocyte recruitment, pro-inflammatory cytokine secretion and antigen capture largely by inflammatory monocytes. The induction of antigen specific Th1 cells by Carbopol was found to occur via a non-canonical pathway, independent of MyD88/TRIF signaling and in the absence of pattern-recognition-receptor (PRR) activation typically associated with Th1/Ig2a induction. Using multispectral fluorescence imaging (Imagestream) and electron microscopy we demonstrated that phagocytic uptake of Carbopol particles followed by entry into the phagosomal/lysosomal pathway elicited conformational changes to the polymer and reactive oxygen species (ROS) production. We therefore conclude that Carbopol may mediate its adjuvant activity via novel mechanisms of antigen presenting cell activation and Th1 induction, leading to enhanced IgG2a responses independent of microbial pattern recognition.
Collapse
Affiliation(s)
- Kate H Gartlan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - George Krashias
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Frank Wegmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - William R Hillson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Erin M Scherer
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | - Amin E Moghaddam
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Quentin J Sattentau
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
21
|
Thaiss CA, Levy M, Itav S, Elinav E. Integration of Innate Immune Signaling. Trends Immunol 2016; 37:84-101. [PMID: 26755064 DOI: 10.1016/j.it.2015.12.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
The last decades of research in innate immunology have revealed a multitude of sensing receptors that evaluate the presence of microorganisms or cellular damage in tissues. In the context of a complex tissue, many such sensing events occur simultaneously. Thus, the downstream pathways need to be integrated to launch an appropriate cellular response, to tailor the magnitude of the reaction to the inciting event, and to terminate it in a manner that avoids immunopathology. Here, we provide a conceptual overview of the crosstalk between innate immune receptors in the initiation of a concerted immune reaction to microbial and endogenous triggers. We classify the known interactions into categories of communication and provide examples of their importance in pathogenic infection.
Collapse
Affiliation(s)
| | - Maayan Levy
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomik Itav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
22
|
Bär AK, Phukan N, Pinheiro J, Simoes-Barbosa A. The Interplay of Host Microbiota and Parasitic Protozoans at Mucosal Interfaces: Implications for the Outcomes of Infections and Diseases. PLoS Negl Trop Dis 2015; 9:e0004176. [PMID: 26658061 PMCID: PMC4684208 DOI: 10.1371/journal.pntd.0004176] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infections by parasitic protozoans are largely neglected, despite threatening millions of people, particularly in developing countries. With descriptions of the microbiota in humans, a new frontier of investigation is developing to decipher the complexity of host-parasite-microbiota relationships, instead of the classic reductionist approach, which considers host-parasite in isolation. Here, we review with specific examples the potential roles that the resident microbiota can play at mucosal interfaces in the transmission of parasitic protozoans and in the progress of infection and disease. Although the mechanisms underlying these relationships remain poorly understood, some examples provide compelling evidence that specific components of the microbiota can potentially alter the outcomes of parasitic infections and diseases in humans. Most findings suggest a protective role of the microbiota, which might lead to exploratory research comprising microbiota-based interventions to prevent and treat protozoal infections in the future. However, these infections are often accompanied by an unbalanced microbiota and, in some specific cases, apparently, these bacteria may contribute synergistically to disease progression. Taken together, these findings provide a different perspective on the ecological nature of protozoal infections. This review focuses attention on the importance of considering polymicrobial associations, i.e., parasitic protozoans and the host microbiota, for understanding these human infections in their natural microbial context.
Collapse
Affiliation(s)
- Ann-Katrein Bär
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Niha Phukan
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jully Pinheiro
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Augusto Simoes-Barbosa
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Microbial Innovation, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Zhang NZ, Wang M, Xu Y, Petersen E, Zhu XQ. Recent advances in developing vaccines against Toxoplasma gondii: an update. Expert Rev Vaccines 2015; 14:1609-21. [PMID: 26467840 DOI: 10.1586/14760584.2015.1098539] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toxoplasma gondii, a significant public health risk, is able to infect almost all warm-blooded animals including humans, and it results in economic losses in production animals. In the last three years, a large number of vaccination experiments have been performed to control T. gondii infection, with the target of limiting the acute infection and reducing or eliminating tissue cysts in the intermediate hosts. In this paper, we summarize the latest results of the veterinary vaccines against T. gondii infection since 2013. Immunization with live-attenuated whole organisms of non-reverting mutants has been shown to induce remarkably potent immune responses associated with control of acute and chronic toxoplasmosis. The non-cyst-forming mutants are promising new tools for the development of veterinary vaccines against T. gondii infection.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| | - Meng Wang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| | - Ying Xu
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China.,b Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine , China Agricultural University , Beijing , PR China
| | - Eskild Petersen
- c Department of Infectious Diseases, Clinical Institute, Faculty of Health Sciences , Aarhus University , Aarhus , Denmark
| | - Xing-Quan Zhu
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| |
Collapse
|
24
|
Sanders KL, Fox BA, Bzik DJ. Attenuated Toxoplasma gondii Stimulates Immunity to Pancreatic Cancer by Manipulation of Myeloid Cell Populations. Cancer Immunol Res 2015; 3:891-901. [PMID: 25804437 DOI: 10.1158/2326-6066.cir-14-0235] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/16/2015] [Indexed: 01/08/2023]
Abstract
Suppressive myeloid cells represent a significant barrier to the generation of productive antitumor immune responses to many solid tumors. Eliminating or reprogramming suppressive myeloid cells to abrogate tumor-associated immune suppression is a promising therapeutic approach. We asked whether treatment of established aggressive disseminated pancreatic cancer with the immunotherapeutic attenuated Toxoplasma gondii vaccine strain CPS would trigger tumor-associated myeloid cells to generate therapeutic antitumor immune responses. CPS treatment significantly decreased tumor-associated macrophages and markedly increased dendritic cell infiltration of the pancreatic tumor microenvironment. Tumor-resident macrophages and dendritic cells, particularly cells actively invaded by CPS, increased expression of costimulatory molecules CD80 and CD86 and concomitantly boosted their production of IL12. CPS treatment increased CD4(+) and CD8(+) T-cell infiltration into the tumor microenvironment, activated tumor-resident T cells, and increased IFNγ production by T-cell populations. CPS treatment provided a significant therapeutic benefit in pancreatic tumor-bearing mice. This therapeutic benefit depended on IL12 and IFNγ production, MyD88 signaling, and CD8(+) T-cell populations. Although CD4(+) T cells exhibited activated effector phenotypes and produced IFNγ, CD4(+) T cells as well as natural killer cells were not required for the therapeutic benefit. In addition, CD8(+) T cells isolated from CPS-treated tumor-bearing mice produced IFNγ after re-exposure to pancreatic tumor antigen, suggesting this immunotherapeutic treatment stimulated tumor cell antigen-specific CD8(+) T-cell responses. This work highlights the potency and immunotherapeutic efficacy of CPS treatment and demonstrates the significance of targeting tumor-associated myeloid cells as a mechanism to stimulate more effective immunity to pancreatic cancer.
Collapse
Affiliation(s)
- Kiah L Sanders
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.
| |
Collapse
|
25
|
Nonreplicating, cyst-defective type II Toxoplasma gondii vaccine strains stimulate protective immunity against acute and chronic infection. Infect Immun 2015; 83:2148-55. [PMID: 25776745 DOI: 10.1128/iai.02756-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/06/2015] [Indexed: 01/08/2023] Open
Abstract
Live attenuated vaccine strains, such as type I nonreplicating uracil auxotroph mutants, are highly effective in eliciting lifelong immunity to virulent acute infection by Toxoplasma gondii. However, it is currently unknown whether vaccine-elicited immunity can provide protection against acute infection and also prevent chronic infection. To address this problem, we developed nonreverting, nonreplicating, live attenuated uracil auxotroph vaccine strains in the type II Δku80 genetic background by targeting the deletion of the orotidine 5'-monophosphate decarboxylase (OMPDC) and uridine phosphorylase (UP) genes. Deletion of OMPDC induced a severe uracil auxotrophy with loss of replication, loss of virulence in mice, and loss of the ability to develop cysts and chronic infection. Vaccination of mice using type II Δku80 Δompdc mutants stimulated a fully protective CD8(+) T cell-dependent immunity that prevented acute infection by type I and type II strains of T. gondii, and this vaccination also severely reduced or prevented cyst formation after type II challenge infection. Nonreverting, nonreplicating, and non-cyst-forming Δompdc mutants provide new tools to examine protective immune responses elicited by vaccination with a live attenuated type II vaccine.
Collapse
|
26
|
Cohen SB, Denkers EY. The gut mucosal immune response toToxoplasma gondii. Parasite Immunol 2015; 37:108-17. [DOI: 10.1111/pim.12164] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/09/2014] [Indexed: 12/23/2022]
Affiliation(s)
- S. B. Cohen
- Department of Microbiology and Immunology; College of Veterinary Medicine; Cornell University; Ithaca NY USA
| | - E. Y. Denkers
- Department of Microbiology and Immunology; College of Veterinary Medicine; Cornell University; Ithaca NY USA
| |
Collapse
|
27
|
Zaph C, Artis D. Parasitic Infection of the Mucosal Surfaces. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
|
29
|
Wilhelm CL, Yarovinsky F. Apicomplexan infections in the gut. Parasite Immunol 2014; 36:409-20. [PMID: 25201405 DOI: 10.1111/pim.12115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/20/2014] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii and Cryptosporidium parvum are intracellular protozoan parasites that establish infection through the small intestinal bowel after the ingestion of contaminated food products. These Apicomplexan parasites have emerged as an important cause of chronic and fatal disease in immunodeficient individuals, in addition to being investigated as possible triggers of inflammatory bowel disease. T. gondii disseminates to the brain and other tissues after infection, whereas C. parvum remains localized to the intestine. In the following review, we will discuss the pathogenesis of these parasitic diseases in the small intestine, the site of initial invasion. Themes include the sequence of invasion, the structure of Th1 immunity provoked by these parasites and the contribution of intestinal microbiota to the development of the mucosal immune response.
Collapse
Affiliation(s)
- C L Wilhelm
- Departments of Immunology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | | |
Collapse
|
30
|
Han SJ, Melichar HJ, Coombes JL, Chan SW, Koshy AA, Boothroyd JC, Barton GM, Robey EA. Internalization and TLR-dependent type I interferon production by monocytes in response to Toxoplasma gondii. Immunol Cell Biol 2014; 92:872-81. [PMID: 25155465 PMCID: PMC4245188 DOI: 10.1038/icb.2014.70] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 12/20/2022]
Abstract
The classic anti-viral cytokine interferon (IFN)-β can be induced during parasitic infection, but relatively little is know about the cell types and signaling pathways involved. Here we show that inflammatory monocytes (IMs), but not neutrophils, produce IFN-β in response to T. gondii infection. This difference correlated with the mode of parasite entry into host cells, with phagocytic uptake predominating in IMs and active invasion predominating in neutrophils. We also show that expression of IFN-β requires phagocytic uptake of the parasite by IMs, and signaling through Toll-like receptors (TLRs) and MyD88. Finally, we show that IMs are major producers of IFN-β in mesenteric lymph nodes following in vivo oral infection of mice, and mice lacking the receptor for type I IFN-1 show higher parasite loads and reduced survival. Our data reveal a TLR and internalization-dependent pathway in IMs for IFN-β induction to a non-viral pathogen.
Collapse
Affiliation(s)
- Seong-Ji Han
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Heather J. Melichar
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Janine L. Coombes
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Anita A. Koshy
- Department of Medicine (Infectious Disease) and Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Gregory M. Barton
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ellen A. Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
31
|
Blank BS, Abi Abdallah DS, Park JJ, Nazarova EV, Pavinski Bitar A, Maurer KJ, Marquis H. Misregulation of the broad-range phospholipase C activity increases the susceptibility of Listeria monocytogenes to intracellular killing by neutrophils. Microbes Infect 2014; 16:104-13. [PMID: 24513703 DOI: 10.1016/j.micinf.2013.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/05/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
Listeria monocytogenes is a facultative intracellular bacterial pathogen that tightly regulates the activities of various virulence factors during infection. A mutant strain (the plcBDpro mutant) that has lost the ability to control the activity of a phospholipase C (PC-PLC) is attenuated a hundred fold in mice. This attenuation is not due to a lack of bacterial fitness, but appears to result from a modified host response to infection. The transcriptomic pattern of immune-related genes indicated that PC-PLC did not enhance the innate immune response in infected macrophages. However, it partially protected the cells from bacteria-mediated mitochondrial fragmentation. In mice, the plcBDpro mutant transiently caused an increase in liver pathology, as judged by the size of neutrophil-filled micro-abscesses. Moreover, the plcBDpro mutant was more susceptible to intracellular killing by neutrophils than wild-type L. monocytogenes. Together, these data indicate that in vivo attenuation of the plcBDpro mutant results from its reduced ability to disrupt mitochondrial homeostasis and to resist intracellular killing by neutrophils.
Collapse
|
32
|
Uchiyama R, Chassaing B, Zhang B, Gewirtz AT. MyD88-mediated TLR signaling protects against acute rotavirus infection while inflammasome cytokines direct Ab response. Innate Immun 2014; 21:416-28. [PMID: 25213347 DOI: 10.1177/1753425914547435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/24/2014] [Indexed: 11/16/2022] Open
Abstract
Rotavirus (RV) infects small intestinal epithelial cells, inducing severe diarrhea in children, resulting in over 500,000 deaths annually. Relatively little is known about how innate immunity contains acute infection and drives adaptive immune responses that afford complete clearance of RV and protection against future infection. Hence, we examined the consequence of the absence of MyD88, known to be central to innate immunity, in a mouse model of RV infection. The absence of MyD88, but not combined blockade of IL-1β and IL-18 signaling, resulted in greater infectivity, as reflected by levels of RV in feces, intestinal lysates and viremia. Such increased RV levels correlated with an increase in incidence and duration of diarrhea. Loss of MyD88 also impaired humoral immunity to RV. Specifically, MyD88 knockout generated less RV-specific IgA and exhibited profoundly reduced RV-specific IgG2c/IgG1 ratios suggesting that MyD88 signaling drives RV-induced Th1 responses. A study of MyD88 bone marrow chimeras indicated that MyD88-dependent control of acute RV infection was mediated by both hemopoietic and non-hemopoietic cells, while generation of RV-specific humoral immunity was driven by MyD88 signaling in hemopoietic cells, which reflected the loss of IL-1β and IL-18 expression by these cells. Thus, TLR signaling and inflammasome cytokines drive innate and adaptive immunity to RV.
Collapse
Affiliation(s)
- Robin Uchiyama
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA, USA
| | - Benoit Chassaing
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benyue Zhang
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
33
|
Cruz A, Mendes ÉA, de Andrade MVM, do Nascimento VC, Cartelle CT, Arantes RME, Melo JRDC, Gazzinelli RT, Ropert C. Mast cells are crucial in the resistance against Toxoplasma gondii oral infection. Eur J Immunol 2014; 44:2949-54. [PMID: 25091816 DOI: 10.1002/eji.201344185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 06/19/2014] [Accepted: 07/30/2014] [Indexed: 11/06/2022]
Abstract
During oral infection, mucosal immunity assumes a predominant role. Here, we addressed the role of mast cells (MCs), which are mainly located in mucosa during oral infection with Toxoplasma gondii, using MC-deficient (W/W(v) ) mice. We show that in the absence of MCs the resistance of W/W(v) mice to oral infection was considerably reduced. W/W(v) mice uniformly succumbed within 15 days of infection after administration of cysts of the ME49 strain of T. gondii. The rapid lethality of T. gondii in W/W(v) mice correlated with a delayed Th1-cell response, since IFN-γ and IL-12 levels peaked in the later phase of the infection. In vitro, BM-derived MCs were able to recognize parasite lysate in a MyD88-dependent way, reaffirming the role of this TLR adapter in immune responses to T. gondii. The importance of MCs in vivo was confirmed when W/W(v) mice reconstituted with BM-derived MCs from control mice retrieved an early strong Th1-cell response and specially a significant IL-12 production. In conclusion, MCs play an important role for the development of a protective immune response during oral infection with T. gondii.
Collapse
Affiliation(s)
- Aline Cruz
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cohen SB, Denkers EY. Border maneuvers: deployment of mucosal immune defenses against Toxoplasma gondii. Mucosal Immunol 2014; 7:744-52. [PMID: 24717355 DOI: 10.1038/mi.2014.25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/13/2014] [Indexed: 02/04/2023]
Abstract
Toxoplasma gondii is a highly prevalent protozoan pathogen that is transmitted through oral ingestion of infectious cysts. As such, mucosal immune defenses in the intestine constitute the first and arguably most important line of resistance against the parasite. The response to infection is now understood to involve complex three-way interactions between Toxoplasma, the mucosal immune system, and the host intestinal microbiota. Productive outcome of these interactions ensures resolution of infection in the intestinal mucosa. Nonsuccessful outcome may result in emergence of proinflammatory damage that can spell death for the host. Here, we discuss new advances in our understanding of the mechanisms underpinning these disparate outcomes, with particular reference to initiators, effectors, and regulators of mucosal immunity stimulated by Toxoplasma in the intestine.
Collapse
Affiliation(s)
- S B Cohen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - E Y Denkers
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
35
|
Ge Y, Chen J, Qiu X, Zhang J, Cui L, Qi Y, Liu X, Qiu J, Shi Z, Lun Z, Shen J, Wang Y. Natural killer cell intrinsic toll-like receptor MyD88 signaling contributes to IL-12-dependent IFN-γ production by mice during infection with Toxoplasma gondii. Int J Parasitol 2014; 44:475-84. [PMID: 24727091 DOI: 10.1016/j.ijpara.2014.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/28/2014] [Accepted: 03/11/2014] [Indexed: 01/22/2023]
Abstract
Myeloid differentiation factor 88 (MyD88)-dependent IL-12 secretion by dendritic cells is critical for natural killer cell-mediated IFN-γ production and innate resistance to Toxoplasma gondii. Although MyD88(-/-) mice challenged with T. gondii have defective IL-12 responses and succumb to infection, administration of IL-12 to MyD88(-/-) mice fails to prevent acute mortality, suggesting that MyD88 may mediate signals within natural killer cells important for IL-12-dependent IFN-γ production and innate resistance to this parasite. In this study, we found that T. gondii antigens and IL-12 could synergistically trigger IFN-γ secretion by natural killer cells, which was dependent on toll-like receptor-MyD88 signaling. Further analysis showed that p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and NF-κB multiple pathways downstream of MyD88 contributed to IFN-γ production by natural killer cells. Moreover, the well-established toll-like receptor agonists, T. gondii profilin (Tgprofilin) and T. gondii heat shock protein 70 (TgHSP70) could evoke a similar IFN-γ secretory response in natural killer cells to that evoked by T. gondii antigens. In vivo adoptive transfer experiments showed that, upon challenge with T. gondii, NOD/SCID-β2 microglobulin null (NOD/SCID-β2m(-/-)) mice injected i.v. with MyD88(-/-) natural killer cells had reduced serum IFN-γ levels and increased splenic tachyzoite burdens compared with those injected i.v. with wild-type natural killer cells. Taken together, these findings demonstrate a critical role for natural killer cell intrinsic toll-like receptor-MyD88 signaling in IL-12-dependent early IFN-γ production and innate resistance to T. gondii.
Collapse
Affiliation(s)
- Yiyue Ge
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China; Institute of Pathogenic Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Key Laboratories of Enteric Pathogenic Microbiology, Ministry of Health, Nanjing, China
| | - Jinling Chen
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China; Department of Parasitology and Microbiology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Xiaoyan Qiu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Jie Zhang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Lunbiao Cui
- Institute of Pathogenic Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Key Laboratories of Enteric Pathogenic Microbiology, Ministry of Health, Nanjing, China
| | - Yuhua Qi
- Institute of Pathogenic Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Key Laboratories of Enteric Pathogenic Microbiology, Ministry of Health, Nanjing, China
| | - Xinjian Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Jingfan Qiu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Zhiyang Shi
- Institute of Pathogenic Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Key Laboratories of Enteric Pathogenic Microbiology, Ministry of Health, Nanjing, China
| | - Zhaorong Lun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jilong Shen
- Department of Parasitology, Anhui Medical University, Hefei, China
| | - Yong Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Ghosh D, Stumhofer JS. Do you see what I see: Recognition of protozoan parasites by Toll-like receptors. ACTA ACUST UNITED AC 2014; 9:129-140. [PMID: 25383072 DOI: 10.2174/1573395509666131203225929] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Toll-like receptors (TLRs) are important for recognizing a variety of pathogens, including protozoan parasites, and initiating innate immune responses against them. TLRs are localized on the cell surface as well as in the endosome, and are implicated in innate sensing of these parasites. In this review, we will discuss recent findings on the identification of parasite-derived pathogen associated molecular patterns and the TLRs that bind them. The role of these TLRs in initiating the immune response against protozoan parasitic infections in vivo will be presented in the context of murine models of infection utilizing TLR-deficient mice. Additionally, we will explore evidence that TLRs and genetic variants of TLRs may impact the outcome of these parasitic infections in humans.
Collapse
Affiliation(s)
- Debopam Ghosh
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| |
Collapse
|
37
|
Fischer S, Agmon-Levin N, Shapira Y, Porat Katz BS, Graell E, Cervera R, Stojanovich L, Gómez Puerta JA, Sanmartí R, Shoenfeld Y. Toxoplasma gondii: bystander or cofactor in rheumatoid arthritis. Immunol Res 2014; 56:287-92. [PMID: 23553228 DOI: 10.1007/s12026-013-8402-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Parasitic infections may induce variable immunomodulatory effects and control of autoimmune disease. Toxoplasma gondii (T. gondii) is a ubiquitous intracellular protozoan that was recently associated with autoimmunity. This study was undertaken to investigate the seroprevalence and clinical correlation of anti-T. gondii antibodies in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We evaluated sera from European patients with RA (n = 125) and SLE (n = 164) for the prevalence of anti-T. gondii IgG antibodies (ATXAb), as well as other common infections such as Cytomegalovirus, Epstein-Barr, and Rubella virus. The rates of seropositivity were determined utilizing the LIAISON chemiluminescent immunoassays (DiaSorin, Italy). Our results showed a higher seroprevalence of ATXAb in RA patients, as compared with SLE patients [63 vs. 36 %, respectively (p = 0.01)]. The rates of seropositivity of IgG against other infectious agents were comparable between RA and SLE patients. ATXAb-seropositivity was associated with older age of RA patients, although it did not correlate with RA disease activity and other manifestations of the disease. In conclusion, our data suggest a possible link between exposure to T. gondii infection and RA.
Collapse
Affiliation(s)
- Svetlana Fischer
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 52621, Tel HaShomer, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Cohen SB, Maurer KJ, Egan CE, Oghumu S, Satoskar AR, Denkers EY. CXCR3-dependent CD4⁺ T cells are required to activate inflammatory monocytes for defense against intestinal infection. PLoS Pathog 2013; 9:e1003706. [PMID: 24130498 DOI: 10.1371/journal.ppat.1003706] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Chemokines and their receptors play a critical role in orchestrating immunity to microbial pathogens, including the orally acquired Th1-inducing protozoan parasite Toxoplasma gondii. Chemokine receptor CXCR3 is associated with Th1 responses, and here we use bicistronic CXCR3-eGFP knock-in reporter mice to demonstrate upregulation of this chemokine receptor on CD4⁺ and CD8⁺ T lymphocytes during Toxoplasma infection. We show a critical role for CXCR3 in resistance to the parasite in the intestinal mucosa. Absence of the receptor in Cxcr3⁻/⁻ mice resulted in selective loss of ability to control T. gondii specifically in the lamina propria compartment. CD4⁺ T cells were impaired both in their recruitment to the intestinal lamina propria and in their ability to secrete IFN-γ upon stimulation. Local recruitment of CD11b⁺Ly6C/G⁺ inflammatory monocytes, recently reported to be major anti-Toxoplasma effectors in the intestine, was not impacted by loss of CXCR3. However, inflammatory monocyte activation status, as measured by dual production of TNF-α and IL-12, was severely impaired in Cxcr3⁻/⁻ mice. Strikingly, adoptive transfer of wild-type but not Ifnγ⁻/⁻ CD4⁺ T lymphocytes into Cxcr3⁻/⁻ animals prior to infection corrected the defect in inflammatory macrophage activation, simultaneously reversing the susceptibility phenotype of the knockout animals. Our results establish a central role for CXCR3 in coordinating innate and adaptive immunity, ensuring generation of Th1 effectors and their trafficking to the frontline of infection to program microbial killing by inflammatory monocytes.
Collapse
Affiliation(s)
- Sara B Cohen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | | | | | | | | | | |
Collapse
|
40
|
Fox BA, Sanders KL, Chen S, Bzik DJ. Targeting tumors with nonreplicating Toxoplasma gondii uracil auxotroph vaccines. Trends Parasitol 2013; 29:431-7. [PMID: 23928100 DOI: 10.1016/j.pt.2013.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 06/28/2013] [Accepted: 07/04/2013] [Indexed: 12/15/2022]
Abstract
Toxoplasma gondii is an intracellular parasite that has evolved to actively control its invaded host cells. Toxoplasma triggers then actively regulates host innate interleukin-12 (IL-12) and interferon-γ (IFN-γ) responses that elicit T cell control of infection. A live, nonreplicating avirulent uracil auxotroph vaccine strain (cps) of Toxoplasma triggers novel innate immune responses that stimulate amplified CD8(+) T cell responses and life-long immunity in vaccinated mice. Here, we review recent reports showing that intratumoral treatment with cps activated immune-mediated regression of established solid tumors in mice. We speculate that a better understanding of host-parasite interaction at the molecular level and applying improved genetic models based on Δku80 Toxoplasma strains will stimulate development of highly effective immunotherapeutic cancer vaccine strategies using engineered uracil auxotrophs.
Collapse
Affiliation(s)
- Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
41
|
Russo BC, Brown MJ, Nau GJ. MyD88-dependent signaling prolongs survival and reduces bacterial burden during pulmonary infection with virulent Francisella tularensis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1223-1232. [PMID: 23920326 DOI: 10.1016/j.ajpath.2013.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 01/24/2023]
Abstract
Francisella tularensis is the causative agent of the debilitating febrile illness tularemia. The severe morbidity associated with F. tularensis infections is attributed to its ability to evade the host immune response. Innate immune activation is undetectable until more than 48 hours after infection. The ensuing inflammatory response is considered pathological, eliciting a septic-like state characterized by hypercytokinemia and cell death. To investigate potential pathological consequences of the innate immune response, mice deficient in a key innate immune signaling molecule, MyD88, were studied. MyD88 knockout (KO) mice were infected with the prototypical virulent F. tularensis strain, Schu S4. MyD88 KO mice succumbed to infection more rapidly than wild-type mice. The enhanced pathogenicity of Schu S4 in MyD88 KO mice was associated with greater bacterial burdens in lungs and distal organs, and the absence of IFN-γ in the lungs, spleens, and sera. Cellular infiltrates were not observed on histological evaluation of the lungs, livers, or spleens of MyD88 KO mice, the first KO mouse described with this phenotype to our knowledge. Despite the absence of cellular infiltration, there was more cell death in the lungs of MyD88 KO mice. Thus, the host proinflammatory response is beneficial, and MyD88 signaling is required to limit bacterial burden and prolong survival during pulmonary infection by virulent F. tularensis.
Collapse
Affiliation(s)
- Brian C Russo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew J Brown
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard J Nau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
42
|
Baird JR, Fox BA, Sanders KL, Lizotte PH, Cubillos-Ruiz JR, Scarlett UK, Rutkowski MR, Conejo-Garcia JR, Fiering S, Bzik DJ. Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment. Cancer Res 2013; 73:3842-51. [PMID: 23704211 DOI: 10.1158/0008-5472.can-12-1974] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reversing tumor-associated immunosuppression seems necessary to stimulate effective therapeutic immunity against lethal epithelial tumors. Here, we show this goal can be addressed using cps, an avirulent, nonreplicating uracil auxotroph strain of the parasite Toxoplasma gondii (T. gondii), which preferentially invades immunosuppressive CD11c(+) antigen-presenting cells in the ovarian carcinoma microenvironment. Tumor-associated CD11c(+) cells invaded by cps were converted to immunostimulatory phenotypes, which expressed increased levels of the T-cell receptor costimulatory molecules CD80 and CD86. In response to cps treatment of the immunosuppressive ovarian tumor environment, CD11c(+) cells regained the ability to efficiently cross-present antigen and prime CD8(+) T-cell responses. Correspondingly, cps treatment markedly increased tumor antigen-specific responses by CD8(+) T cells. Adoptive transfer experiments showed that these antitumor T-cell responses were effective in suppressing solid tumor development. Indeed, intraperitoneal cps treatment triggered rejection of established ID8-VegfA tumors, an aggressive xenograft model of ovarian carcinoma, also conferring a survival benefit in a related aggressive model (ID8-Defb29/Vegf-A). The therapeutic benefit of cps treatment relied on expression of IL-12, but it was unexpectedly independent of MyD88 signaling as well as immune experience with T. gondii. Taken together, our results establish that cps preferentially invades tumor-associated antigen-presenting cells and restores their ability to trigger potent antitumor CD8(+) T-cell responses. Immunochemotherapeutic applications of cps might be broadly useful to reawaken natural immunity in the highly immunosuppressive microenvironment of most solid tumors.
Collapse
Affiliation(s)
- Jason R Baird
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire 03756, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhou Z, Wang Z, Cao L, Hu S, Zhang Z, Qin B, Guo Z, Nie K. Upregulation of chicken TLR4, TLR15 and MyD88 in heterophils and monocyte-derived macrophages stimulated with Eimeria tenella in vitro. Exp Parasitol 2013; 133:427-33. [PMID: 23352867 DOI: 10.1016/j.exppara.2013.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/16/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
|
44
|
von Bernuth H, Picard C, Puel A, Casanova JL. Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans. Eur J Immunol 2013; 42:3126-35. [PMID: 23255009 PMCID: PMC3752658 DOI: 10.1002/eji.201242683] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/11/2012] [Accepted: 10/25/2012] [Indexed: 01/15/2023]
Abstract
Most Toll-like-receptors (TLRs) and interleukin-1 receptors (IL-1Rs) signal via myeloid differentiation primary response 88 (MyD88) and interleukin-1 receptor-associated kinase 4 (IRAK-4). The combined roles of these two receptor families in the course of experimental infections have been assessed in MyD88- and IRAK-4-deficient mice for almost fifteen years. These animals have been shown to be susceptible to 46 pathogens: 27 bacteria, eight viruses, seven parasites, and four fungi. Humans with inborn MyD88 or IRAK-4 deficiency were first identified in 2003. They suffer from naturally occurring life-threatening infections caused by a small number of bacterial species, although the incidence and severity of these infections decrease with age. Mouse TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be vital to combat a wide array of experimentally administered pathogens at most ages. By contrast, human TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be effective in the natural setting against only a few bacteria and is most important in infancy and early childhood. The roles of TLRs and IL-1Rs in protective immunity deduced from studies in mutant mice subjected to experimental infections should therefore be reconsidered in the light of findings for natural infections in humans carrying mutations as discussed in this review.
Collapse
Affiliation(s)
- Horst von Bernuth
- Pediatric Pneumology and Immunology, Charité Hospital - Humboldt University, Berlin, Germany.
| | | | | | | |
Collapse
|
45
|
Participation of MyD88 and interleukin-33 as innate drivers of Th2 immunity to Trichinella spiralis. Infect Immun 2013; 81:1354-63. [PMID: 23403558 DOI: 10.1128/iai.01307-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trichinella spiralis is a highly destructive parasitic nematode that invades and destroys intestinal epithelial cells, injures many different tissues during its migratory phase, and occupies and transforms myotubes during the final phase of its life cycle. We set out to investigate the role in immunity of innate receptors for potential pathogen- or danger-associated molecular patterns (PAMPs or DAMPs). Focusing on the MyD88-dependent receptors, which include Toll-like receptors (TLRs) and interleukin-1 (IL-1) family members, we found that MyD88-deficient mice expelled worms normally, while TLR2/4-deficient mice showed accelerated worm expulsion, suggesting that MyD88 was active in signaling pathways for more than one receptor during intestinal immunity. A direct role for PAMPs in TLR activation was not supported in a transactivation assay involving a panel of murine and human TLRs. Mice deficient in the IL-1 family receptor for the DAMP, IL-33 (called ST2), displayed reduced intestinal Th2 responses and impaired mast cell activation. IL-33 was constitutively expressed in intestinal epithelial cells, where it became concentrated in nuclei within 2 days of infection. Nuclear localization was an innate response to infection that occurred in intestinal regions where worms were actively migrating. Th2 responses were also compromised in the lymph nodes draining the skeletal muscles of ST2-deficient mice, and this correlated with increased larval burdens in muscle. Our results support a mechanism in which the immune system recognizes and responds to tissue injury in a way that promotes Th2 responses.
Collapse
|
46
|
Raetz M, Hwang SH, Wilhelm C, Kirkland D, Benson A, Sturge C, Mirpuri J, Vaishnava S, Hou B, DeFranco AL, Gilpin CJ, Hooper LV, Yarovinsky F. Parasite-induced TH1 cells and intestinal dysbiosis cooperate in IFN-γ-dependent elimination of Paneth cells. Nat Immunol 2013; 14:136-42. [PMID: 23263554 PMCID: PMC3552073 DOI: 10.1038/ni.2508] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/27/2012] [Indexed: 12/14/2022]
Abstract
Activation of Toll-like receptors (TLRs) by pathogens triggers cytokine production and T cell activation, immune defense mechanisms that are linked to immunopathology. Here we show that IFN-γ production by CD4(+) T(H)1 cells during mucosal responses to the protozoan parasite Toxoplasma gondii resulted in dysbiosis and the elimination of Paneth cells. Paneth cell death led to loss of antimicrobial peptides and occurred in conjunction with uncontrolled expansion of the Enterobacteriaceae family of Gram-negative bacteria. The expanded intestinal bacteria were required for the parasite-induced intestinal pathology. The investigation of cell type-specific factors regulating T(H)1 polarization during T. gondii infection identified the T cell-intrinsic TLR pathway as a major regulator of IFN-γ production in CD4(+) T cells responsible for Paneth cell death, dysbiosis and intestinal immunopathology.
Collapse
Affiliation(s)
- Megan Raetz
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Sun-hee Hwang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Cara Wilhelm
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Donna Kirkland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Alicia Benson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Carolyn Sturge
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Julie Mirpuri
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Shipra Vaishnava
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Baidong Hou
- Department of Microbiology & Immunology, University of California, San Francisco, CA, 94143
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Anthony L. DeFranco
- Department of Microbiology & Immunology, University of California, San Francisco, CA, 94143
| | - Christopher J Gilpin
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - Lora V. Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
- The Howard Hughes Medical Institute
| | - Felix Yarovinsky
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| |
Collapse
|
47
|
Torres M, Guiton R, Lacroix-Lamandé S, Ryffel B, Leman S, Dimier-Poisson I. MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection. J Neuroinflammation 2013; 10:19. [PMID: 23374751 PMCID: PMC3566937 DOI: 10.1186/1742-2094-10-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 12/14/2012] [Indexed: 11/24/2022] Open
Abstract
Background Toxoplasmosis is one of the most common parasitic infections in humans. It can establish chronic infection and is characterized by the formation of tissue cysts in the brain. The cysts remain largely quiescent for the life of the host, but can reactivate and cause life-threatening toxoplasmic encephalitis in immunocompromised patients, such as those with AIDS, neoplastic diseases and organ transplants. Toll-like receptor (TLR) adaptor MyD88 activation is required for the innate sensing of Toxoplasma gondii. Mice deficient in MyD88 have defective IL-12 and Th1 effector responses, and are highly susceptible to the acute phase of T. gondii infection. However, the role of this signaling pathway during cerebral infection is poorly understood and requires examination. Method MyD88-deficient mice and control mice were orally infected with T. gondii cysts. Cellular and parasite infiltration in the peripheral organs and in the brain were determined by histology and immunohistochemistry. Cytokine levels were determined by ELISA and chemokine mRNA levels were quantified by real-time PCR (qPCR). Results Thirteen days after infection, a higher parasite burden was observed but there was no histological change in the liver, heart, lungs and small intestine of MyD88−/− and MyD88+/+ mice. However, MyD88−/− mice compared to MyD88+/+ mice were highly susceptible to cerebral infection, displayed high parasite migration to the brain, severe neuropathological signs of encephalitis and succumbed within 2 weeks of oral infection. Susceptibility was primarily associated with lower expression of Th1 cytokines, especially IL-12, IFN-γ and TNF-α, significant decrease in the expression of CCL3, CCL5, CCL7 and CCL19 chemokines, marked defect of CD8+ T cells, and infiltration of CD11b+ and F4/80+ cells in the brain. Conclusion MyD88 is essential for the protection of mice during the cerebral installation of T. gondii infection. These results establish a role for MyD88 in T cell-mediated control of T. gondii in the central nervous system (CNS).
Collapse
Affiliation(s)
- Marbel Torres
- Université de Tours, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, Tours F-37000, France
| | | | | | | | | | | |
Collapse
|
48
|
Andrade WA, Souza MDC, Ramos-Martinez E, Nagpal K, Dutra MS, Melo MB, Bartholomeu DC, Ghosh S, Golenbock DT, Gazzinelli RT. Combined action of nucleic acid-sensing Toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice. Cell Host Microbe 2013; 13:42-53. [PMID: 23290966 DOI: 10.1016/j.chom.2012.12.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/05/2012] [Accepted: 12/13/2012] [Indexed: 11/16/2022]
Abstract
"Triple-defective" (3d) mice carrying a mutation in UNC93B1, a chaperone for the endosomal nucleic acid-sensing (NAS) Toll-like receptors TLR3, TLR7, and TLR9, are highly susceptible to Toxoplasma gondii infection. However, none of the single or even the triple NAS-TLR-deficient animals recapitulated the 3d susceptible phenotype to experimental toxoplasmosis. Investigating this further, we found that while parasite RNA and DNA activate innate immune responses via TLR7 and TLR9, TLR11 and TLR12 working as heterodimers are required for sensing and responding to Toxoplasma profilin. Consequently, the triple TLR7/TLR9/TLR11-deficient mice are highly susceptible to T. gondii infection, recapitulating the phenotype of 3d mice. Humans lack functional TLR11 and TLR12 genes. Consistently, human cells produce high levels of proinflammatory cytokines in response to parasite-derived RNA and DNA, but not to Toxoplasma profilin, supporting a more critical role for NAS-TLRs in human toxoplasmosis.
Collapse
|
49
|
Wujcicka W, Wilczyński J, Nowakowska D. SNPs in toll-like receptor (TLR) genes as new genetic alterations associated with congenital toxoplasmosis? Eur J Clin Microbiol Infect Dis 2012; 32:503-11. [PMID: 23161283 PMCID: PMC3589654 DOI: 10.1007/s10096-012-1763-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 12/29/2022]
Abstract
Nearly 40 % of pregnant women are infected with Toxoplasma gondii. Primary infections in pregnant women result, in approximately 30–50 % of patients, in transmission of T. gondii through the placenta to the fetus and then in congenital infections with severe, sometimes fatal course. Studies still do not provide sufficient data on the genetic bases of the immunity in fetuses, newborns, and infants with congenital toxoplasmosis. Previous research showed the contribution of toll-like receptors (TLRs) to non-specific immunity against T. gondii invasion, observed in T. gondii-infected animals, especially mice. So far, the activity of TLRs in defense against T. gondii infections was observed particularly for TLR2, TLR4, and TLR9 molecules. Differential TLR activity associates with both cell types, including a variety of placental cells and stage of pregnancy. Several single-nucleotide polymorphisms (SNPs) residing in three genes encoding these receptors were reported as significant genetic modifications of TLRs associated with different pregnancy disorders. Despite those data, genetic alterations of TLRs which have contributed to innate immune response against T. gondii infections are still not precisely described. In this article, we present reasons for the research of the plausible role of SNPs residing in TLR2, TLR4, and TLR9 genes in congenital toxoplasmosis development.
Collapse
Affiliation(s)
- W Wujcicka
- Department of Fetal-Maternal Medicine and Gynecology, Polish Mother's Memorial Hospital Research Institute, 281/289 Rzgowska Street, Lodz 93-338, Poland
| | | | | |
Collapse
|
50
|
Abstract
The ubiquitous apicomplexan parasite Toxoplasma gondii stimulates its host’s immune response to achieve quiescent chronic infection. Central to this goal are host dendritic cells. The parasite exploits dendritic cells to disseminate through the body, produce pro-inflammatory cytokines, present its antigens to the immune system and yet at the same time subvert their signaling pathways in order to evade detection. This carefully struck balance by Toxoplasma makes it the most successful parasite on this planet. Recent progress has highlighted specific parasite and host molecules that mediate some of these processes particularly in dendritic cells and in other cells of the innate immune system. Critically, there are several important factors that need to be taken into consideration when concluding how the dendritic cells and the immune system deal with a Toxoplasma infection, including the route of administration, parasite strain and host genotype.
Collapse
Affiliation(s)
- Anna Sanecka
- Division of Parasitology, MRC National Institute of Medical Research, London, UK
| | | |
Collapse
|