1
|
Shirey KA, Joseph J, Coughlan L, Nijhuis H, Varley AW, Blanco JCG, Vogel SN. An adenoviral vector encoding an inflammation-inducible antagonist, HMGB1 Box A, as a novel therapeutic approach to inflammatory diseases. mBio 2024:e0338724. [PMID: 39699172 DOI: 10.1128/mbio.03387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Influenza, as well as other respiratory viruses, can trigger local and systemic inflammation resulting in an overall "cytokine storm" that produces serious outcomes such as acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). We hypothesized that gene therapy platforms could be useful in these cases if the production of an anti-inflammatory protein reflects the intensity and duration of the inflammatory condition. The recombinant protein would be produced and released only in the presence of the inciting stimulus, avoiding immunosuppression or other unwanted side effects that may occur when treating infectious diseases with anti-inflammatory drugs. To test this hypothesis, we developed AdV.C3-Tat/HIV-Box A, an inflammation-inducible cassette that remains innocuous in the absence of inflammation but releases HMGB1 Box A, an antagonist of high mobility group box 1 (HMGB1), in response to inflammatory stimuli such as lipopolysaccharide (LPS) or influenza virus infection. We report here that this novel inflammation-inducible HMGB1 Box A construct in a non-replicative adenovirus (AdV) vector mitigates lung and systemic inflammation therapeutically in response to influenza infection. We anticipate that this strategy will apply to the treatment of multiple diseases in which HMGB1-mediated signaling is a central driver of inflammation.IMPORTANCEMany inflammatory diseases are mediated by the action of a host-derived protein, HMGB1, on Toll-like receptor 4 (TLR4) to elicit an inflammatory response. We have engineered a non-replicative AdV vector that produces HMGB1 Box A, an antagonist of HMGB1-induced inflammation, under the control of an endogenous complement component C3 (C3) promoter sequence, that is inducible by LPS and influenza in vitro and ex vivo in macrophages (Mϕ) and protects mice and cotton rats therapeutically against infection with mouse-adapted and human non-adapted influenza strains, respectively, in vivo. We anticipate that this novel strategy will apply to the treatment of multiple infectious and non-infectious diseases in which HMGB1-mediated TLR4 signaling is a central driver of inflammation.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - John Joseph
- Sigmovir Biosystems Inc., Rockville, Maryland, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Haye Nijhuis
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | | | | | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Marrufo AM, Flores-Mireles AL. Macrophage fate: to kill or not to kill? Infect Immun 2024; 92:e0047623. [PMID: 38829045 PMCID: PMC11385966 DOI: 10.1128/iai.00476-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Macrophages are dynamic innate immune cells that either reside in tissue, serving as sentinels, or recruited as monocytes from bone marrow into inflamed and infected tissue. In response to cues in the tissue microenvironment (TME), macrophages polarize on a continuum toward M1 or M2 with diverse roles in progression and resolution of disease. M1-like macrophages exhibit proinflammatory functions with antimicrobial and anti-tumorigenic activities, while M2-like macrophages have anti-inflammatory functions that generally resolve inflammatory responses and orchestrate a tissue healing process. Given these opposite phenotypes, proper spatiotemporal coordination of macrophage polarization in response to cues within the TME is critical to effectively resolve infectious disease and regulate wound healing. However, if this spatiotemporal coordination becomes disrupted due to persistent infection or dysregulated coagulation, macrophages' inappropriate response to these cues will result in the development of diseases with clinically unfavorable outcomes. Since plasticity and heterogeneity are hallmarks of macrophages, they are attractive targets for therapies to reprogram toward specific phenotypes that could resolve disease and favor clinical prognosis. In this review, we discuss how basic science studies have elucidated macrophage polarization mechanisms in TMEs during infections and inflammation, particularly coagulation. Therefore, understanding the dynamics of macrophage polarization within TMEs in diseases is important in further development of targeted therapies.
Collapse
Affiliation(s)
- Armando M. Marrufo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | | |
Collapse
|
3
|
Tyagi S, Sadhu S, Sharma T, Paul A, Pandey M, Nain VK, Rathore DK, Chatterjee S, Awasthi A, Pandey AK. VapC12 ribonuclease toxin modulates host immune response during Mycobacterium tuberculosis infection. Front Immunol 2024; 15:1302163. [PMID: 38515752 PMCID: PMC10955575 DOI: 10.3389/fimmu.2024.1302163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024] Open
Abstract
Mechanistic understanding of antibiotic persistence is a prerequisite in controlling the emergence of MDR cases in Tuberculosis (TB). We have reported that the cholesterol-induced activation of VapC12 ribonuclease is critical for disease persistence in TB. In this study, we observed that relative to the wild type, mice infected with ΔvapC12 induced a pro-inflammatory response, had a higher pathogen load, and responded better to the anti-TB treatment. In a high-dose infection model, all the mice infected with ΔvapC12 succumbed early to the disease. Finally, we reported that the above phenotype of ΔvapC12 was dependent on the presence of the TLR4 receptor. Overall, the data suggests that failure of a timely resolution of the early inflammation by the ΔvapC12 infected mice led to hyperinflammation, altered T-cell response and high bacterial load. In conclusion, our findings suggest the role of the VapC12 toxin in modulating the innate immune response of the host in ways that favor the long-term survival of the pathogen inside the host.
Collapse
Affiliation(s)
- Shaifali Tyagi
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Srikanth Sadhu
- Immunobiology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Taruna Sharma
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Abhijit Paul
- Complex Analysis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manitosh Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Vaibhav Kumar Nain
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Kumar Rathore
- Immunobiology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Samrat Chatterjee
- Complex Analysis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Immunobiology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Kumar Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
4
|
Peng Y, Qiao S, Wang H, Shekhar S, Wang S, Yang J, Fan Y, Yang X. Enhancement of Macrophage Immunity against Chlamydial Infection by Natural Killer T Cells. Cells 2024; 13:133. [PMID: 38247825 PMCID: PMC10813948 DOI: 10.3390/cells13020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Lung macrophage (LM) is vital in host defence against bacterial infections. However, the influence of other innate immune cells on its function, including the polarisation of different subpopulations, remains poorly understood. This study examined the polarisation of LM subpopulations (monocytes/undifferentiated macrophages (Mo/Mφ), interstitial macrophages (IM), and alveolar macrophages (AM)). We further assessed the effect of invariant natural killer T cells (iNKT) on LM polarisation in a protective function against Chlamydia muridarum, an obligate intracellular bacterium, and respiratory tract infection. We found a preferentially increased local Mo/Mφ and IMs with a significant shift to a type-1 macrophage (M1) phenotype and higher expression of iNOS and TNF-α. Interestingly, during the same infection, the alteration of macrophage subpopulations and the shift towards M1 was much less in iNKT KO mice. More importantly, functional testing by adoptively transferring LMs isolated from iNKT KO mice (iNKT KO-Mφ) conferred less protection than those isolated from wild-type mice (WT-Mφ). Further analyses showed significantly reduced gene expression of the JAK/STAT signalling pathway molecules in iNKT KO-Mφ. The data show an important role of iNKT in promoting LM polarisation to the M1 direction, which is functionally relevant to host defence against a human intracellular bacterial infection. The alteration of JAK/STAT signalling molecule gene expression in iNKT KO-Mφ suggests the modulating effect of iNKT is likely through the JAK/STAT pathway.
Collapse
Affiliation(s)
- Ying Peng
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Sai Qiao
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Hong Wang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Medical Microbiology, School of Medicine, Shandong University, Jinan 250100, China
| | - Sudhanshu Shekhar
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Shuhe Wang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jie Yang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Yijun Fan
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Xi Yang
- Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
5
|
Shirey KA, Lai W, Sunday ME, Cuttitta F, Blanco JCG, Vogel SN. Novel neuroendocrine role of γ-aminobutyric acid and gastrin-releasing peptide in the host response to influenza infection. Mucosal Immunol 2023; 16:302-311. [PMID: 36965691 PMCID: PMC10330014 DOI: 10.1016/j.mucimm.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Gastrin-releasing peptide (GRP), an evolutionarily conserved neuropeptide, significantly contributes to influenza-induced lethality and inflammation in rodent models. Because GRP is produced by pulmonary neuroendocrine cells (PNECs) in response to γ-aminobutyric acid (GABA), we hypothesized that influenza infection promotes GABA release from PNECs that activate GABAB receptors on PNECs to secrete GRP. Oxidative stress was increased in the lungs of influenza A/PR/8/34 (PR8)-infected mice, as well as serum glutamate decarboxylase 1, the enzyme that converts L-glutamic acid into GABA. The therapeutic administration of saclofen, a GABAB receptor antagonist, protected PR8-infected mice, reduced lung proinflammatory gene expression of C-C chemokine receptor type 2 (Ccr2), cluster of differentiation 68 (Cd68), and Toll like receptor 4 (Tlr4) and decreased the levels of GRP and high-mobility group box 1 (HMGB1) in sera. Conversely, baclofen, a GABAB receptor agonist, significantly increased the lethality and inflammatory responses. The GRP antagonist, NSC77427, as well as the GABAB antagonist, saclofen, blunted the PR8-induced monocyte infiltration into the lung. Together, these data provide the first report of neuroregulatory control of influenza-induced disease.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Mary E Sunday
- Duke University Medical Center, Durham, North Carolina, USA
| | - Frank Cuttitta
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | | | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Zhang Q, Sioud M. Tumor-Associated Macrophage Subsets: Shaping Polarization and Targeting. Int J Mol Sci 2023; 24:7493. [PMID: 37108657 PMCID: PMC10138703 DOI: 10.3390/ijms24087493] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Among the innate immune cells recruited to the tumor site, macrophages are the most abundant cell population and are present at all stages of tumor progression. They undergo M1/M2 polarization in response to signals derived from TME. M1 macrophages suppress tumor growth, while their M2 counterparts exert pro-tumoral effects by promoting tumor growth, angiogenesis, metastasis, and resistance to current therapies. Several subsets of the M2 phenotype have been observed, often denoted as M2a, M2b, M2c, and M2d. These are induced by different stimuli and differ in phenotypes as well as functions. In this review, we discuss the key features of each M2 subset, their implications in cancers, and highlight the strategies that are being developed to harness TAMs for cancer treatment.
Collapse
Affiliation(s)
- Qindong Zhang
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, P.O. Box 1068, 0316 Oslo, Norway
| | - Mouldy Sioud
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway
| |
Collapse
|
7
|
Dow J, Cytlak UM, Casulli J, McEntee CP, Smedley C, Hodge SH, D’Elia RV, Hepworth MR, Travis MA. Group 2 Innate Lymphoid Cells Are Detrimental to the Control of Infection with Francisella tularensis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:618-627. [PMID: 36602520 PMCID: PMC9946898 DOI: 10.4049/jimmunol.2100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/02/2022] [Indexed: 01/06/2023]
Abstract
Innate lymphoid cells (ILCs) are capable of rapid response to a wide variety of immune challenges, including various respiratory pathogens. Despite this, their role in the immune response against the lethal intracellular bacterium Francisella tularensis is not yet known. In this study, we demonstrate that infection of the airways with F. tularensis results in a significant reduction in lung type 2 ILCs (ILC2s) in mice. Conversely, the expansion of ILC2s via treatment with the cytokine IL-33, or by adoptive transfer of ILC2s, resulted in significantly enhanced bacterial burdens in the lung, liver, and spleen, suggesting that ILC2s may favor severe infection. Indeed, specific reduction of ILC2s in a transgenic mouse model results in a reduction in lung bacterial burden. Using an in vitro culture system, we show that IFN-γ from the live vaccine strain-infected lung reduces ILC2 numbers, suggesting that this cytokine in the lung environment is mechanistically important in reducing ILC2 numbers during infection. Finally, we show Ab-mediated blockade of IL-5, of which ILC2s are a major innate source, reduces bacterial burden postinfection, suggesting that IL-5 production by ILC2s may play a role in limiting protective immunity. Thus, overall, we highlight a negative role for ILC2s in the control of infection with F. tularensis. Our work therefore highlights the role of ILC2s in determining the severity of potentially fatal airway infections and raises the possibility of interventions targeting innate immunity during infection with F. tularensis to benefit the host.
Collapse
Affiliation(s)
- Joshua Dow
- Lydia Becker Institute for Immunology and Inflammation, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Urszula M. Cytlak
- Lydia Becker Institute for Immunology and Inflammation, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Targeted Therapy Group, Division of Cancer Sciences, Manchester, United Kingdom
| | - Joshua Casulli
- Lydia Becker Institute for Immunology and Inflammation, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Craig P. McEntee
- Lydia Becker Institute for Immunology and Inflammation, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Catherine Smedley
- Lydia Becker Institute for Immunology and Inflammation, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Suzanne H. Hodge
- Lydia Becker Institute for Immunology and Inflammation, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Riccardo V. D’Elia
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom; and
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Matthew R. Hepworth
- Lydia Becker Institute for Immunology and Inflammation, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Mark A. Travis
- Lydia Becker Institute for Immunology and Inflammation, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Pavkova I, Kopeckova M, Link M, Vlcak E, Filimonenko V, Lecova L, Zakova J, Laskova P, Sheshko V, Machacek M, Stulik J. Francisella tularensis Glyceraldehyde-3-Phosphate Dehydrogenase Is Relocalized during Intracellular Infection and Reveals Effect on Cytokine Gene Expression and Signaling. Cells 2023; 12:cells12040607. [PMID: 36831274 PMCID: PMC9954481 DOI: 10.3390/cells12040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known for its multifunctionality in several pathogenic bacteria. Our previously reported data suggest that the GAPDH homologue of Francisella tularensis, GapA, might also be involved in other processes beyond metabolism. In the present study, we explored GapA's potential implication in pathogenic processes at the host cell level. Using immunoelectron microscopy, we demonstrated the localization of this bacterial protein inside infected macrophages and its peripheral distribution in bacterial cells increasing with infection time. A quantitative proteomic approach based on stable isotope labeling of amino acids in cell culture (SILAC) combined with pull-down assay enabled the identification of several of GapA's potential interacting partners within the host cell proteome. Two of these partners were further confirmed by alternative methods. We also investigated the impact of gapA deletion on the transcription of selected cytokine genes and the activation of the main signaling pathways. Our results show that ∆gapA-induced transcription of genes encoding several cytokines whose expressions were not affected in cells infected with a fully virulent wild-type strain. That might be caused, at least in part, by the detected differences in ERK/MAPK signaling activation. The experimental observations together demonstrate that the F. tularensis GAPDH homologue is directly implicated in multiple host cellular processes and, thereby, that it participates in several molecular mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Ivona Pavkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Correspondence: ; Tel.: +420-973-255-201
| | - Monika Kopeckova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Erik Vlcak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Electron Microscopy Core Facility, Videnska 1083, 142 20 Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Electron Microscopy Core Facility, Videnska 1083, 142 20 Prague, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Department of Biology of the Cell Nucleus, Videnska 1083, 142 20 Prague, Czech Republic
| | - Lenka Lecova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jitka Zakova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Pavlina Laskova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Valeria Sheshko
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Miloslav Machacek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Gopalakrishnan A, Richard K, Wahid R, Harley R, Sztein MB, Hawkins LD, Vogel SN. E6020, a TLR4 Agonist Adjuvant, Enhances Both Antibody Titers and Isotype Switching in Response to Immunization with Hapten-Protein Antigens and Is Diminished in Mice with TLR4 Signaling Insufficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1950-1959. [PMID: 36426935 PMCID: PMC9643654 DOI: 10.4049/jimmunol.2200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 12/30/2022]
Abstract
The mechanisms by which TLR4-based adjuvants enhance immunogenicity are not fully understood. We have taken advantage of a novel knock-in mouse strain that homozygously expresses two single-nucleotide polymorphisms (SNPs) that are homologous to human TLR4 (rs4986790 and rs4986791) and have been associated with LPS hyporesponsiveness in vivo and in vitro. TLR4-SNP (coexpressing mutations D298G/N397I in TLR4) mice that recapitulate the human phenotype were compared with wild-type (WT) mice for their hapten-specific Ab responses after immunization with hapten 4-hydroxy-3-nitrophenyl acetyl (NP) NP-Ficoll or NP-OVA in the absence or presence of a water-soluble TLR4 analog adjuvant, E6020. IgM and IgG anti-NP responses were comparable in WT and TLR4-SNP mice after immunization with either NP-Ficoll or NP-OVA only. E6020 significantly yet transiently improved the IgM and IgG anti-NP responses of both WT and TLR4-SNP mice to NP-Ficoll (T-independent), with modestly enhanced Ab production in WT mice. In contrast, T-dependent (NP-OVA), adjuvant-enhanced responses showed sustained elevation of NP-specific Ab titers in WT mice, intermediate responses in TLR4-SNP mice, and negligible enhancement in TLR4-/- mice. E6020-enhanced early humoral responses in WT and TLR4-SNP mice to NP-OVA favored an IgG1 response. After a second immunization, however, the immune responses of TLR4-SNP mice remained IgG1 dominant, whereas WT mice reimmunized with NP-OVA and E6020 exhibited increased anti-NP IgG2c titers and a sustained increase in the IgG1 and IgG2c production by splenocytes. These findings indicate that E6020 increases and sustains Ab titers and promotes isotype class switching, as evidenced by reduced titers and IgG1-dominant immune responses in mice with TLR4 insufficiency.
Collapse
Affiliation(s)
- Archana Gopalakrishnan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Katharina Richard
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Rezwanul Wahid
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD
| | - Regina Harley
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD
| | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
10
|
Zhang J, Zhou X, Hao H. Macrophage phenotype-switching in cancer. Eur J Pharmacol 2022; 931:175229. [PMID: 36002039 DOI: 10.1016/j.ejphar.2022.175229] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 12/20/2022]
Abstract
Tumour-associated macrophages (TAMs) have been found to be of great importance in tumorigenesis and in promoting malignant progression, including tumour angiogenesis and metastasis. Moreover, the TAM phenotype is more likely to be an M2 type. Transforming TAMs by M2-polarization into the tumour-suppressive M1-phenotype is an important approach for tumour therapy. In this review, we analysed the effects of the tumour microenvironment on macrophage phenotype-switching, including hypoxia and cytokines, and the mechanisms of drugs targeting TAMs. Furthermore, we analysed the effects of exosomes on macrophage polarization, phenotype switching of macrophages, and the mechanisms of lipid mediators targeting TAMs.
Collapse
Affiliation(s)
- Jiamin Zhang
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaoyan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, PR China.
| |
Collapse
|
11
|
Gopalakrishnan A, Joseph J, Shirey KA, Keegan AD, Boukhvalova MS, Vogel SN, Blanco JCG. Protection against influenza-induced Acute Lung Injury (ALI) by enhanced induction of M2a macrophages: possible role of PPARγ/RXR ligands in IL-4-induced M2a macrophage differentiation. Front Immunol 2022; 13:968336. [PMID: 36052067 PMCID: PMC9424652 DOI: 10.3389/fimmu.2022.968336] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Many respiratory viruses cause lung damage that may evolve into acute lung injury (ALI), a cytokine storm, acute respiratory distress syndrome, and ultimately, death. Peroxisome proliferator activated receptor gamma (PPARγ), a member of the nuclear hormone receptor (NHR) family of transcription factors, regulates transcription by forming heterodimers with another NHR family member, Retinoid X Receptor (RXR). Each component of the heterodimer binds specific ligands that modify transcriptional capacity of the entire heterodimer by recruiting different co-activators/co-repressors. However, the role of PPARγ/RXR ligands in the context of influenza infection is not well understood. PPARγ is associated with macrophage differentiation to an anti-inflammatory M2 state. We show that mice lacking the IL-4Rα receptor, required for M2a macrophage differentiation, are more susceptible to mouse-adapted influenza (A/PR/8/34; "PR8")-induced lethality. Mice lacking Ptgs2, that encodes COX-2, a key proinflammatory M1 macrophage mediator, are more resistant. Blocking the receptor for COX-2-induced Prostaglandin E2 (PGE2) was also protective. Treatment with pioglitazone (PGZ), a PPARγ ligand, increased survival from PR8 infection, decreased M1 macrophage gene expression, and increased PPARγ mRNA in lungs. Conversely, conditional knockout mice expressing PPARγ-deficient macrophages were significantly more sensitive to PR8-induced lethality. These findings were extended in cotton rats: PGZ blunted lung inflammation and M1 cytokine gene expression after challenge with non-adapted human influenza. To study mechanisms by which PPARγ/RXR transcription factors induce canonical M2a genes, WT mouse macrophages were treated with IL-4 in the absence or presence of rosiglitazone (RGZ; PPARγ ligand), LG100754 (LG; RXR ligand), or both. IL-4 dose-dependently induced M2a genes Arg1, Mrc1, Chil3, and Retnla. Treatment of macrophages with IL-4 and RGZ and/or LG differentially affected induction of Arg1 and Mrc1 vs. Chil3 and Retnla gene expression. In PPARγ-deficient macrophages, IL-4 alone failed to induce Arg1 and Mrc1 gene expression; however, concurrent treatment with LG or RGZ + LG enhanced IL-4-induced Arg1 and Mrc1 expression, but to a lower level than in WT macrophages, findings confirmed in the murine alveolar macrophage cell line, MH-S. These findings support a model in which PPARγ/RXR heterodimers control IL-4-induced M2a differentiation, and suggest that PPARγ/RXR agonists should be considered as important tools for clinical intervention against influenza-induced ALI.
Collapse
Affiliation(s)
- Archana Gopalakrishnan
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - John Joseph
- Sigmovir Biosystems, Inc., Rockville, MD, United States
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Achsah D. Keegan
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Center for Vascular and Inflammatory Diseases, University of Maryland, School of Medicine, Baltimore, MD, United States
| | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
12
|
Markley RL, Restori KH, Katkere B, Sumner SE, Nicol MJ, Tyryshkina A, Nettleford SK, Williamson DR, Place DE, Dewan KK, Shay AE, Carlson BA, Girirajan S, Prabhu KS, Kirimanjeswara GS. Macrophage Selenoproteins Restrict Intracellular Replication of Francisella tularensis and Are Essential for Host Immunity. Front Immunol 2021; 12:701341. [PMID: 34777335 PMCID: PMC8586653 DOI: 10.3389/fimmu.2021.701341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
The essential micronutrient Selenium (Se) is co-translationally incorporated as selenocysteine into proteins. Selenoproteins contain one or more selenocysteines and are vital for optimum immunity. Interestingly, many pathogenic bacteria utilize Se for various biological processes suggesting that Se may play a role in bacterial pathogenesis. A previous study had speculated that Francisella tularensis, a facultative intracellular bacterium and the causative agent of tularemia, sequesters Se by upregulating Se-metabolism genes in type II alveolar epithelial cells. Therefore, we investigated the contribution of host vs. pathogen-associated selenoproteins in bacterial disease using F. tularensis as a model organism. We found that F. tularensis was devoid of any Se utilization traits, neither incorporated elemental Se, nor exhibited Se-dependent growth. However, 100% of Se-deficient mice (0.01 ppm Se), which express low levels of selenoproteins, succumbed to F. tularensis-live vaccine strain pulmonary challenge, whereas 50% of mice on Se-supplemented (0.4 ppm Se) and 25% of mice on Se-adequate (0.1 ppm Se) diet succumbed to infection. Median survival time for Se-deficient mice was 8 days post-infection while Se-supplemented and -adequate mice was 11.5 and >14 days post-infection, respectively. Se-deficient macrophages permitted significantly higher intracellular bacterial replication than Se-supplemented macrophages ex vivo, corroborating in vivo observations. Since Francisella replicates in alveolar macrophages during the acute phase of pneumonic infection, we hypothesized that macrophage-specific host selenoproteins may restrict replication and systemic spread of bacteria. F. tularensis infection led to an increased expression of several macrophage selenoproteins, suggesting their key role in limiting bacterial replication. Upon challenge with F. tularensis, mice lacking selenoproteins in macrophages (TrspM) displayed lower survival and increased bacterial burden in the lung and systemic tissues in comparison to WT littermate controls. Furthermore, macrophages from TrspM mice were unable to restrict bacterial replication ex vivo in comparison to macrophages from littermate controls. We herein describe a novel function of host macrophage-specific selenoproteins in restriction of intracellular bacterial replication. These data suggest that host selenoproteins may be considered as novel targets for modulating immune response to control a bacterial infection.
Collapse
Affiliation(s)
- Rachel L. Markley
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Katherine H. Restori
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Bhuvana Katkere
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Sarah E. Sumner
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - McKayla J. Nicol
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Anastasia Tyryshkina
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Shaneice K. Nettleford
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - David R. Williamson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - David E. Place
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Kalyan K. Dewan
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Infectious Diseases, The University of Georgia, Athens, GA, United States
| | - Ashley E. Shay
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bradley A. Carlson
- Office of Research Support, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - K. Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States
| | - Girish S. Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States,*Correspondence: Girish S. Kirimanjeswara,
| |
Collapse
|
13
|
Gao Z, Xu X, Li Y, Sun K, Yang M, Zhang Q, Wang S, Lin Y, Lou L, Wu A, Liu W, Nie B. Mechanistic Insight into PPARγ and Tregs in Atherosclerotic Immune Inflammation. Front Pharmacol 2021; 12:750078. [PMID: 34658891 PMCID: PMC8511522 DOI: 10.3389/fphar.2021.750078] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis (AS) is the main pathological cause of acute cardiovascular and cerebrovascular diseases, such as acute myocardial infarction and cerebral apoplexy. As an immune-mediated inflammatory disease, the pathogenesis of AS involves endothelial cell dysfunction, lipid accumulation, foam cell formation, vascular smooth muscle cell (VSMC) migration, and inflammatory factor infiltration. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in lipid metabolism, inflammation, and apoptosis by antagonizing the Wnt/β-catenin pathway and regulating cholesterol efflux and inflammatory factors. Importantly, PPARγ-dependant fatty acid uptake is critical for metabolic programming. Activated PPARγ can exert an anti-atherosclerotic effect by inhibiting the expression of various inflammatory factors, improving endothelial cell function, and restraining the proliferation and migration of VSMCs. Regulatory T cells (Tregs) are the only subset of T lymphocytes that have a completely negative regulatory effect on the autoimmune response. They play a critical role in suppressing excessive immune responses and inflammatory reactions and widely affect AS-associated foam cell formation, plaque rupture, and other processes. Recent studies have shown that PPARγ activation promotes the recruitment of Tregs to reduce inflammation, thereby exerting its anti-atherosclerotic effect. In this review, we provide an overview of the anti-AS roles of PPARγ and Tregs by discussing their pathological mechanisms from the perspective of AS and immune-mediated inflammation, with a focus on basic research and clinical trials of their efficacies alone or in combination in inhibiting atherosclerotic inflammation. Additionally, we explore new ideas for AS treatment and plaque stabilization and establish a foundation for the development of natural PPARγ agonists with Treg recruitment capability.
Collapse
Affiliation(s)
- Zhao Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China.,Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Institute of Nephrology, Guangdong Medical University, Zhanjiang, China
| | - Xinrui Xu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China
| | - Yang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kehan Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Manfang Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingyue Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China
| | - Shuqi Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yiyi Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China
| | - Lixia Lou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China
| | - Aiming Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China.,Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Institute of Nephrology, Guangdong Medical University, Zhanjiang, China
| | - Bo Nie
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to BeijingUniversity of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Richard K, Piepenbrink KH, Shirey KA, Gopalakrishnan A, Nallar S, Prantner DJ, Perkins DJ, Lai W, Vlk A, Toshchakov VY, Feng C, Fanaroff R, Medvedev AE, Blanco JCG, Vogel SN. A mouse model of human TLR4 D299G/T399I SNPs reveals mechanisms of altered LPS and pathogen responses. J Exp Med 2021; 218:211550. [PMID: 33216117 PMCID: PMC7685774 DOI: 10.1084/jem.20200675] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/01/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Two cosegregating single-nucleotide polymorphisms (SNPs) in human TLR4, an A896G transition at SNP rs4986790 (D299G) and a C1196T transition at SNP rs4986791 (T399I), have been associated with LPS hyporesponsiveness and differential susceptibility to many infectious or inflammatory diseases. However, many studies failed to confirm these associations, and transfection experiments resulted in conflicting conclusions about the impact of these SNPs on TLR4 signaling. Using advanced protein modeling from crystallographic data of human and murine TLR4, we identified homologous substitutions of these SNPs in murine Tlr4, engineered a knock-in strain expressing the D298G and N397I TLR4 SNPs homozygously, and characterized in vivo and in vitro responses to TLR4 ligands and infections in which TLR4 is implicated. Our data provide new insights into cellular and molecular mechanisms by which these SNPs decrease the TLR4 signaling efficiency and offer an experimental approach to confirm or refute human data possibly confounded by variables unrelated to the direct effects of the SNPs on TLR4 functionality.
Collapse
Affiliation(s)
- Katharina Richard
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Kurt H Piepenbrink
- Department of Food Science and Technology, Department of Biochemistry, University of Nebraska, Lincoln, NE
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Archana Gopalakrishnan
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Shreeram Nallar
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Daniel J Prantner
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Alexandra Vlk
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Vladimir Y Toshchakov
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Chiguang Feng
- Center for Vaccine Development, University of Maryland, School of Medicine, Baltimore, MD
| | - Rachel Fanaroff
- Department of Anatomical Pathology, University of Maryland Medical Center, Baltimore, MD
| | - Andrei E Medvedev
- Department of Immunology, University of Connecticut Health Center, Farmington, CT
| | | | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| |
Collapse
|
15
|
Gomes MTR, Guimarães ES, Marinho FV, Macedo I, Aguiar ERGR, Barber GN, Moraes-Vieira PMM, Alves-Filho JC, Oliveira SC. STING regulates metabolic reprogramming in macrophages via HIF-1α during Brucella infection. PLoS Pathog 2021; 17:e1009597. [PMID: 33989349 PMCID: PMC8153530 DOI: 10.1371/journal.ppat.1009597] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/26/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Macrophages metabolic reprogramming in response to microbial insults is a major determinant of pathogen growth or containment. Here, we reveal a distinct mechanism by which stimulator of interferon genes (STING), a cytosolic sensor that regulates innate immune responses, contributes to an inflammatory M1-like macrophage profile upon Brucella abortus infection. This metabolic reprogramming is induced by STING-dependent stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), a global regulator of cellular metabolism and innate immune cell functions. HIF-1α stabilization reduces oxidative phosphorylation and increases glycolysis during infection with B. abortus and, likewise, enhances nitric oxide production, inflammasome activation and IL-1β release in infected macrophages. Furthermore, the induction of this inflammatory profile participates in the control of bacterial replication since absence of HIF-1α renders mice more susceptible to B. abortus infection. Mechanistically, activation of STING by B. abortus infection drives the production of mitochondrial reactive oxygen species (mROS) that ultimately influences HIF-1α stabilization. Moreover, STING increases the intracellular succinate concentration in infected macrophages, and succinate pretreatment induces HIF-1α stabilization and IL-1β release independently of its cognate receptor GPR91. Collectively, these data demonstrate a pivotal mechanism in the immunometabolic regulation of macrophages during B. abortus infection that is orchestrated by STING via HIF-1α pathway and highlight the metabolic reprogramming of macrophages as a potential treatment strategy for bacterial infections. The impact of host cell metabolism on pathogen growth or restriction represent an emerging field in immunology and shed light on the intricate network of signaling pathways during immune cells response. Here, we dissected a distinct mechanism by which STING regulates macrophage metabolic reprogramming eliciting an inflammatory profile during Brucella infection. Brucella abortus is an intracellular bacterium that causes brucellosis, an infectious disease that promotes abortion in domestic animals leading to severe economic losses and an inflammatory condition in humans. The metabolite reprogramming orchestrated by STING relies on HIF-1α stabilization through increased succinate and mROS levels. We demonstrated that HIF-1α stabilization enhances nitric oxide production, inflammasome activation and IL-1β release in infected macrophages, and this inflammatory profile participates in the control of bacterial replication. Thus, our findings bring new insights on this intricate circuit by which the host immune senses intracellular pathogens contributing to development of drugs and/or vaccines to control infectious diseases.
Collapse
Affiliation(s)
- Marco Tulio R. Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Erika S. Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Genética, Ecologia e Evolução, Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabio V. Marinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabella Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eric R. G. R. Aguiar
- Departmento de Ciências Biológicas, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Glen N. Barber
- Department of Cell Biology, University of Miami, Miami, Florida
| | - Pedro M. M. Moraes-Vieira
- Departmento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Campinas São Paulo, Brazil
| | - José Carlos Alves-Filho
- Departmento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sergio C. Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
16
|
Prantner D, Nallar S, Richard K, Spiegel D, Collins KD, Vogel SN. Classically activated mouse macrophages produce methylglyoxal that induces a TLR4- and RAGE-independent proinflammatory response. J Leukoc Biol 2021; 109:605-619. [PMID: 32678947 PMCID: PMC7855181 DOI: 10.1002/jlb.3a0520-745rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023] Open
Abstract
The highly reactive compound methylglyoxal (MG) can cause direct damage to cells and tissues by reacting with cellular macromolecules. MG has been identified as a biomarker associated with increased sepsis-induced mortality. Patients undergoing septic shock have significantly elevated circulating MG levels compared to postoperative patients and healthy controls. Furthermore, MG has been implicated in the development of type II diabetes mellitus and Alzheimer's disease. Because MG is generated during glycolysis, we hypothesized that MG may be produced by classically activated (M1) macrophages, possibly contributing to the inflammatory response. LPS and IFN-γ-treated macrophages acquired an M1 phenotype (as evidenced by M1 markers and enhanced glycolysis) and formed MG adducts, MG-H1, MG-H2, and MG-H3, which were detected using antibodies specific for MG-modified proteins (methylglyoxal 5-hydro-5-methylimidazolones). MG adducts were also increased in the lungs of LPS-treated mice. Macrophages treated with LPS and IFN-γ also exhibited decreased expression of glyoxalase 1 (Glo1), an enzyme that metabolizes MG. Concentrations of exogenous, purified MG > 0.5 mM were toxic to macrophages; however, a nontoxic dose of 0.3 mM induced TNF-α and IL-1β, albeit to a lesser extent than LPS stimulation. Despite prior evidence that MG adducts may signal through "receptor for advanced glycation endproducts" (RAGE), MG-mediated cell death and cytokine induction by exogenous MG was RAGE-independent in primary macrophages. Finally, RAGE-deficient mice did not exhibit a significant survival advantage following lethal LPS injection. Overall, our evidence suggests that MG may be produced by M1 macrophages during sepsis, following IFN-γ-dependent down-regulation of Glo1, contributing to over-exuberant inflammation.
Collapse
Affiliation(s)
- Daniel Prantner
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Shreeram Nallar
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Katharina Richard
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - David Spiegel
- Department of Chemistry, Yale University, New Haven, CT
| | - Kim D. Collins
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
- Institute of Marine and Environmental Technology (IMET), University of Maryland, Baltimore, Baltimore, MD
| | - Stefanie N. Vogel
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| |
Collapse
|
17
|
Yao R, Chen Y, Hao H, Guo Z, Cheng X, Ma Y, Ji Q, Yang X, Wang Y, Li X, Wang Z. Pathogenic effects of inhibition of mTORC1/STAT3 axis facilitates Staphylococcus aureus-induced pyroptosis in human macrophages. Cell Commun Signal 2020; 18:187. [PMID: 33256738 PMCID: PMC7706204 DOI: 10.1186/s12964-020-00677-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pyroptosis is a recently identified pathway of caspase-mediated cell death in response to microbes, lipopolysaccharide, or chemotherapy in certain types of cells. However, the mechanism of how pyroptosis is regulated is not well-established. METHODS Herein, the intracellular bacteria were detected by staining and laser confocal microscopy and TEM. Live/dead cell imaging assay was used to examine macrophage death. Western blot and immunohistochemical staining were used to examine the protein changes. IFA was used to identify typical budding vesicles of pyroptosis and the STAT3 nuclear localization. SEM was used to observe the morphological characteristics of pyroptosis. ELISA was used to detect the level of inflammatory cytokines. Pyroptosis was filmed in macrophages by LSCM. RESULTS S. aureus was internalized by human macrophages. Intracellular S. aureus induced macrophage death. S. aureus invasion increased the expression of NLRP3, Caspase1 (Casp-1 p20) and the accumulation of GSDMD-NT, GSDMD-NT pore structures, and the release of IL-1β and IL-18 in macrophages. Macrophages pyroptosis induced by S. aureus can be abrogated by blockage of S. aureus phagocytosis. The pyroptosic effect by S. aureus infection was promoted by either rapamycin or Stattic, a specific inhibitor for mTORC1 or STAT3. Inhibition of mTORC1 or STAT3 induced pyroptosis. mTORC1 regulated the pyroptosic gene expression through governing the nuclear localization of STAT3. mTORC1/STAT3 axis may play a regulatory role in pyroptosis within macrophages. CONCLUSIONS S. aureus infection induces human macrophage pyroptosis, inhibition of mTORC1/STAT3 axis facilitates S. aureus-induced pyroptosis. mTORC1 and STAT3 are associated with pyroptosis. Our findings demonstrate a regulatory function of the mTORC1/STAT3 axis in macrophage pyroptosis, constituting a novel mechanism by which pyroptosis is regulated in macrophages. Video Abstract Macrophages were infected with S. aureus for 3 h (MOI 25:1), and pyroptosis was filmed in macrophages by laser confocal microscopy. A representative field was recorded. Arrow indicates lysing dead cell.
Collapse
Affiliation(s)
- Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.,School of Life Sciences, Jining Normal University, Jining, 012000, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Zhixin Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Xiaoou Cheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yuze Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Qiang Ji
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Xiaoru Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Xihe Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China. .,Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot, 010070, China.
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
18
|
Polumuri S, Perkins DJ, Vogel SN. cAMP levels regulate macrophage alternative activation marker expression. Innate Immun 2020; 27:133-142. [PMID: 33241977 PMCID: PMC7882807 DOI: 10.1177/1753425920975082] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The capacity for macrophages to polarize into distinct functional activation states (e.g., M1, M2) is critical to tune an inflammatory response to the relevant infection or injury. Alternative or M2 polarization of macrophages is most often achieved in vitro in response to IL-4/IL-13 and results in the transcriptional up-regulation of a constellation of characteristic M2 marker genes. In vivo, additional signals from the inflammatory milieu can further increase or decrease M2 marker expression. Particularly, activation of cAMP-generating G protein-coupled receptors is reported to increase M2 markers, but whether this is strictly dependent upon cAMP production is unclear. We report herein that increased cAMP alone can increase IL-4-dependent M2 marker expression through a PKA/C/EBPβ/CREB dependent pathway in murine macrophages.
Collapse
Affiliation(s)
- Swamy Polumuri
- Food and Drug Administration (FDA), White Oak Campus, Silver Spring, MD, USA
| | - Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Wang B, Wu Y, Liu R, Xu H, Mei X, Shang Q, Liu S, Yu D, Li W. Lactobacillus rhamnosus GG promotes M1 polarization in murine bone marrow-derived macrophages by activating TLR2/MyD88/MAPK signaling pathway. Anim Sci J 2020; 91:e13439. [PMID: 32779289 DOI: 10.1111/asj.13439] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/23/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Lactobacillus rhamnosus GG (LGG) is increasingly applied in functional food products and acts as a probiotic model in nutritious and clinical studies. Increasing evidences have revealed the immune modulation of LGG on macrophages. The aim of this study is to investigate the effect of LGG on macrophage polarization of murine bone marrow-derived macrophages (BMDMs). BMDMs were treated with 108 colony-forming units (CFU)/ml LGG for 1.5, 3, and 6 hr. Results showed that LGG obviously upregulated the mRNA expression of M1-associated cytokines (p < .05), including interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS), whereas had no effect on the expression of M2-associated markers (p > .05), including arginase 1 (Arg1), mannose receptor, and chitinase-like protein 3 (YM1). Furthermore, LGG markedly increased the expression of pro-inflammatory cytokines (IL-12p40, cyclooxygenase-2 [COX-2], and interferon-γ [IFN-γ]) (p < .05) and anti-inflammatory cytokines (IL-10, IL-4, and transforming growth factor-β [TGF-β]) (p < .05). In addition, we also found that TLR2/MyD88/MAPK signaling pathway was required for LGG-induced M1 macrophage polarization and M1-related cytokines expression. Together, these findings demonstrate that probiotic LGG facilitates M1 polarization of BMDMs, suggesting that LGG may have an immunotherapeutic potential in regulating the host defense against pathogen invasion.
Collapse
Affiliation(s)
- Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Rongrong Liu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Han Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Mei
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qinqin Shang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shijie Liu
- National Animal Husbandry Service, Beijing, China
| | - Dongyou Yu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Richard K, Perkins DJ, Harberts EM, Song Y, Gopalakrishnan A, Shirey KA, Lai W, Vlk A, Mahurkar A, Nallar S, Hawkins LD, Ernst RK, Vogel SN. Dissociation of TRIF bias and adjuvanticity. Vaccine 2020; 38:4298-4308. [PMID: 32389496 PMCID: PMC7302928 DOI: 10.1016/j.vaccine.2020.04.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/03/2020] [Accepted: 04/18/2020] [Indexed: 02/08/2023]
Abstract
Toll-like receptors (TLRs), a family of "pattern recognition receptors," bind microbial and host-derived molecules, leading to intracellular signaling and proinflammatory gene expression. TLR4 is unique in that ligand-mediated activation requires the co-receptor myeloid differentiation 2 (MD2) to initiate two signaling cascades: the MyD88-dependent pathway is initiated at the cell membrane, and elicits rapid MAP kinase and NF-κB activation, while the TIR-domain containing adaptor inducing interferon-β (TRIF)-dependent pathway is initiated from TLR4-containing endosomes and results in IRF3 activation. Previous studies associated inflammation with the MyD88 pathway and adjuvanticity with the TRIF pathway. Gram-negative lipopolysaccharide (LPS) is a potent TLR4 agonist, and structurally related molecules signal through TLR4 to differing extents. Herein, we compared monophosphoryl lipid A (sMPL) and E6020, two synthetic, non-toxic LPS lipid A analogs used as vaccine adjuvants, for their capacities to activate TLR4-mediated innate immune responses and to enhance antibody production. In mouse macrophages, high dose sMPL activates MyD88-dependent signaling equivalently to E6020, while E6020 exhibits significantly more activation of the TRIF pathway (a "TRIF bias") than sMPL. Eritoran, a TLR4/MD2 antagonist, competitively inhibited sMPL more strongly than E6020. Despite these differences, sMPL and E6020 adjuvants enhanced antibody responses to comparable extents, with balanced immunoglobulin (Ig) isotypes in two immunization models. These data indicate that a TRIF bias is not necessarily predictive of superior adjuvanticity.
Collapse
Affiliation(s)
- Katharina Richard
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | - Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | - Erin M Harberts
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry (UMSOD), Baltimore, MD, United States
| | - Yang Song
- Genome Informatics Core, Institute for Genome Sciences (IGS), UMSOM, Baltimore, MD, United States
| | - Archana Gopalakrishnan
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | - Alexandra Vlk
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | - Anup Mahurkar
- Genome Informatics Core, Institute for Genome Sciences (IGS), UMSOM, Baltimore, MD, United States
| | - Shreeram Nallar
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States
| | | | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry (UMSOD), Baltimore, MD, United States
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine (UMSOM), Baltimore, MD, United States.
| |
Collapse
|
21
|
Panagi I, Jennings E, Zeng J, Günster RA, Stones CD, Mak H, Jin E, Stapels DAC, Subari NZ, Pham THM, Brewer SM, Ong SYQ, Monack DM, Helaine S, Thurston TLM. Salmonella Effector SteE Converts the Mammalian Serine/Threonine Kinase GSK3 into a Tyrosine Kinase to Direct Macrophage Polarization. Cell Host Microbe 2020; 27:41-53.e6. [PMID: 31862381 PMCID: PMC6953433 DOI: 10.1016/j.chom.2019.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/13/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
Many Gram-negative bacterial pathogens antagonize anti-bacterial immunity through translocated effector proteins that inhibit pro-inflammatory signaling. In addition, the intracellular pathogen Salmonella enterica serovar Typhimurium initiates an anti-inflammatory transcriptional response in macrophages through its effector protein SteE. However, the target(s) and molecular mechanism of SteE remain unknown. Here, we demonstrate that SteE converts both the amino acid and substrate specificity of the host pleiotropic serine/threonine kinase GSK3. SteE itself is a substrate of GSK3, and phosphorylation of SteE is required for its activity. Remarkably, phosphorylated SteE then forces GSK3 to phosphorylate the non-canonical substrate signal transducer and activator of transcription 3 (STAT3) on tyrosine-705. This results in STAT3 activation, which along with GSK3 is required for SteE-mediated upregulation of the anti-inflammatory M2 macrophage marker interleukin-4Rα (IL-4Rα). Overall, the conversion of GSK3 to a tyrosine-directed kinase represents a tightly regulated event that enables a bacterial virulence protein to reprogram innate immune signaling and establish an anti-inflammatory environment.
Collapse
Affiliation(s)
- Ioanna Panagi
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Elliott Jennings
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Jingkun Zeng
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Regina A Günster
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cullum D Stones
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Hazel Mak
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Enkai Jin
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Daphne A C Stapels
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nur Z Subari
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Trung H M Pham
- Departments of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Susan M Brewer
- Departments of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Samantha Y Q Ong
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Denise M Monack
- Departments of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Sophie Helaine
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Teresa L M Thurston
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| |
Collapse
|
22
|
Shirey KA, Lai W, Brown LJ, Blanco JCG, Beadenkopf R, Wang Y, Vogel SN, Snyder GA. Select targeting of intracellular Toll-interleukin-1 receptor resistance domains for protection against influenza-induced disease. Innate Immun 2020; 26:26-34. [PMID: 31955622 PMCID: PMC6974880 DOI: 10.1177/1753425919846281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/01/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
TLRs are a family of PRRs that respond to PAMPs or host-derived Danger-Associated Molecular Patterns (DAMPs) to initiate host inflammation and immune responses. TLR dimerization and recruitment of adapter molecules is critical for intracellular signaling and is mediated through intracellular Toll-Interleukin 1 Receptor Resistance (TIR) domain interactions. Human TIR domains, including reported structures of TIR1, TIR2, TIR6, TIR10, TIRAP, and MyD88, contain Cysteine (Cys) interactions or modifications that are disproportionally at, or near, reported biological TIR interfaces, or in close proximity to functionally important regions. Therefore, we hypothesized that intracellular TIR Cys regulation may have greater functional importance than previously appreciated. Expression of mutant TLR4-C747S or treatment of TLR4 reporter cells with a small molecule, Cys-binding inhibitor of TLR4, TAK-242, abrogated LPS signaling in vitro . Using TAK-242, mice were protected from lethal influenza challenge as previously reported for extracellular TLR4 antagonists. Molecular modeling and sequence analysis of the region surrounding TLR4-Cys747 indicate conservation of a WxxxE motif identified among bacterial and NAD+-consuming TIRs, as well as within the TIRs domains of surface TLRs 1, 2, 4, 6, and 10. Together, these data support the hypothesis that critical Cys within the TIR domain are essential for TLR4 functionality.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, USA
| | - Wendy Lai
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, USA
| | - Lindsey J Brown
- Institute of Human Virology, Department of Medicine, University
of Maryland School of Medicine, USA
| | | | - Robert Beadenkopf
- Institute of Human Virology, Department of Medicine, University
of Maryland School of Medicine, USA
| | - Yajing Wang
- Institute of Human Virology, Department of Medicine, University
of Maryland School of Medicine, USA
- China Pharmaceutical University, Nanjing, P.R. China
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, USA
| | - Greg A Snyder
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, USA
- Institute of Human Virology, Department of Medicine, University
of Maryland School of Medicine, USA
| |
Collapse
|
23
|
Koh SM, Chan CK, Teo SH, Singh S, Merican A, Ng WM, Abbas A, Kamarul T. Elevated plasma and synovial fluid interleukin-8 and interleukin-18 may be associated with the pathogenesis of knee osteoarthritis. Knee 2020; 27:26-35. [PMID: 31917106 DOI: 10.1016/j.knee.2019.10.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE Osteoarthritis (OA) of the knee is a multifactorial degenerative disease typically defined as the 'wear and tear' of articular joint cartilage. However, recent studies suggest that OA is a disease arising from chronic low-grade inflammation. We conducted a study to investigate the relationship between chronic inflammatory mediators present in both the systemic peripheral blood system and localised inflammation in synovial fluid (SF) of OA and non-OA knees; and subsequently made direct comparative analyses to understand the mechanisms that may underpin the processes involved in OA. METHODS 20-Plex proteins were quantified using Human Magnetic Luminex® assay (R&D Systems, USA) from plasma and SF of OA (n = 14) and non-OA (n = 14) patients. Ingenuity Pathway Analysis (IPA) software was used to predict the relationship and possible interaction of molecules pertaining to OA. RESULTS There were significant differences in plasma level for matrix metalloproteinase (MMP)-3, interleukin (IL)-27, IL-8, IL-4, tumour necrosis factor-alpha, MMP-1, IL-15, IL-21, IL-10, and IL-1 beta between the groups, as well as significant differences in SF level for IL-15, IL-8, vascular endothelial growth factor (VEGF), MMP-1, and IL-18. Our predictive OA model demonstrated that toll-like receptor (TLR) 2, macrophage migration inhibitory factor (MIF), TLR4 and IL-1 were the main regulators of IL-1B, IL-4, IL-8, IL-10, IL-15, IL-21, IL-27, MMP-1 and MMP-3 in the plasma system; whilst IL-1B, TLR4, IL-1, and basigin (BSG) were the regulators of IL-4, IL-8, IL-10, IL-15, IL-18, IL-21, IL-27, MMP-1, and MMP-3 in the SF system. CONCLUSION The elevated plasma IL-8 and SF IL-18 may be associated with the pathogenesis of OA via the activation of MMP-3.
Collapse
Affiliation(s)
- S M Koh
- Tissue Engineering Group (TEG), Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - C K Chan
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S H Teo
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S Singh
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - A Merican
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - W M Ng
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - A Abbas
- Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - T Kamarul
- Tissue Engineering Group (TEG), Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Influenza "Trains" the Host for Enhanced Susceptibility to Secondary Bacterial Infection. mBio 2019; 10:mBio.00810-19. [PMID: 31064834 PMCID: PMC6509193 DOI: 10.1128/mbio.00810-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enhanced susceptibility to 2° bacterial infections following infection with influenza virus is a global health concern that accounts for many hospitalizations and deaths, particularly during pandemics. The complexity of the impaired host immune response during 2° bacterial infection has been widely studied. Both type I IFN and neutrophil dysfunction through decreased chemokine production have been implicated as mechanisms underlying enhanced susceptibility to 2° bacterial infections. Our findings support the conclusion that selective suppression of CXCL1/CXCL2 represents an IFN-β-mediated “training” of the macrophage transcriptional response to TLR2 agonists and that blocking of TLR4 therapeutically with Eritoran after influenza virus infection reverses this suppression by blunting influenza-induced IFN-β. We previously reported that the Toll-like receptor 4 (TLR4) antagonist Eritoran blocks acute lung injury (ALI) therapeutically in mouse and cotton rat models of influenza. However, secondary (2°) bacterial infection following influenza virus infection is associated with excess morbidity and mortality. Wild-type (WT) mice infected with mouse-adapted influenza A/Puerto Rico/8/34 virus (PR8) and, 7 days later, with Streptococcus pneumoniae serotype 3 (Sp3) exhibited significantly enhanced lung pathology and lethality that was reversed by Eritoran therapy after PR8 infection but before Sp3 infection. Cotton rats infected with nonadapted pH1N1 influenza virus and then superinfected with methicillin-resistant Staphylococcus aureus also exhibited increased lung pathology and serum high-mobility-group box 1 (HMGB1) levels, both of which were blunted by Eritoran therapy. In mice, PR8 infection suppressed Sp3-induced CXCL1 and CXCL2 mRNA, reducing neutrophil infiltration and increasing the bacterial burden, all of which were reversed by Eritoran treatment. While beta interferon (IFN-β)-deficient (IFN-β−/−) mice are highly susceptible to PR8, they exhibited delayed death upon Sp3 superinfection, indicating that while IFN-β was protective against influenza, it negatively impacted the host response to Sp3. IFN-β-treated WT macrophages selectively suppressed Sp3-induced CXCL1/CXCL2 transcriptionally, as evidenced by reduced recruitment of RNA polymerase II to the CXCL1 promoter. Thus, influenza establishes a “trained” state of immunosuppression toward 2° bacterial infection, in part through the potent induction of IFN-β and its downstream transcriptional regulation of chemokines, an effect reversed by Eritoran.
Collapse
|
25
|
Montoya D, Mehta M, Ferguson BG, Teles RMB, Krutzik SR, Cruz D, Pellegrini M, Modlin RL. Plasticity of antimicrobial and phagocytic programs in human macrophages. Immunology 2019; 156:164-173. [PMID: 30357820 PMCID: PMC6328994 DOI: 10.1111/imm.13013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/01/2018] [Indexed: 01/03/2023] Open
Abstract
Macrophage (MΦ) polarization is triggered during the innate immune response to defend against microbial pathogens, but can also contribute to disease pathogenesis. In a previous study, we found that interleukin-15 (IL-15) -derived classically activated macrophages (M1 MΦ) have enhanced antimicrobial activity, whereas IL-10-derived alternatively activated macrophages (M2 MΦ) were highly phagocytic but lacked antimicrobial activity. Given that the ability to modulate MΦ polarization from M2 MΦ to M1 MΦ may promote a more effective immune response to infection, we investigated the plasticity of these MΦ programs. Addition of IL-10 to M1 MΦ induced M2-like MΦ, but IL-15 had little effect on M2 MΦ. We determined the set of immune receptors that are present on M2 MΦ, elucidating two candidates for inducing plasticity of M2 MΦ, Toll-like receptor 1 (TLR1) and interferonγ (IFN-γ) receptor 1. Stimulation of M2 MΦ with TLR2/1 ligand (TLR2/1L) or IFN-γ alone was not sufficient to alter M2 MΦ phenotype or function. However, co-addition of TLR2/1L and IFN-γ re-educated M2 MΦ towards the M1 MΦ phenotype, with a decrease in the phagocytosis of lipids and mycobacteria, as well as recovery of the vitamin-D-dependent antimicrobial pathway compared with M2 MΦ maintained in polarizing conditions. Similarly, treatment of M2 MΦ with both TLR2/1L and anti-IL-10 neutralizing antibodies led to polarization to the M1-like MΦ phenotype and function. Together, our data demonstrate an approach to induce MΦ plasticity that provides the potential for re-educating MΦ function in human mycobacterial disease to promote host defense and limit pathogenesis.
Collapse
Affiliation(s)
- Dennis Montoya
- Department of Molecular, Cell, and Developmental BiologyUniversity of CaliforniaLos AngelesCAUSA
| | - Manali Mehta
- Division of DermatologyDepartment of Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | | | - Rosane M. B. Teles
- Division of DermatologyDepartment of Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Stephan R. Krutzik
- Division of DermatologyDepartment of Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Daniel Cruz
- Division of CardiologyDepartment of Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental BiologyUniversity of CaliforniaLos AngelesCAUSA
| | - Robert L. Modlin
- Division of DermatologyDepartment of Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
26
|
Shirey KA, Sunday ME, Lai W, Patel M, Blanco JCG, Cuttitta F, Vogel SN. Novel role of gastrin releasing peptide-mediated signaling in the host response to influenza infection. Mucosal Immunol 2019; 12:223-231. [PMID: 30327535 PMCID: PMC6301097 DOI: 10.1038/s41385-018-0081-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 02/04/2023]
Abstract
Gastrin-releasing peptide (GRP) is an evolutionarily well-conserved neuropeptide that was originally recognized for its ability to mediate gastric acid secretion in the gut. More recently, however, GRP has been implicated in pulmonary lung inflammatory diseases including bronchopulmonary dysplasia, chronic obstructive pulmonary disease, emphysema, and others. Antagonizing GRP or its receptor mitigated lethality associated with the onset of viral pneumonia in a well-characterized mouse model of influenza. In mice treated therapeutically with the small-molecule GRP inhibitor, NSC77427, increased survival was accompanied by decreased numbers of GRP-producing pulmonary neuroendocrine cells, improved lung histopathology, and suppressed cytokine gene expression. In addition, in vitro studies in macrophages indicate that GRP synergizes with the prototype TLR4 agonist, lipopolysaccharide, to induce cytokine gene expression. Thus, these findings reveal that GRP is a previously unidentified mediator of influenza-induced inflammatory disease that is a potentially novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Dept. of Microbiology and Immunology, Univ. of Maryland, School of Medicine, Baltimore, MD USA 21201
| | - Mary E. Sunday
- Dept. of Pathology, Duke University Medical Center, Durham, NC USA 27710
| | - Wendy Lai
- Dept. of Microbiology and Immunology, Univ. of Maryland, School of Medicine, Baltimore, MD USA 21201
| | - Mira Patel
- Sigmovir Biosystems, Inc., Rockville, MD USA 20850
| | | | - Frank Cuttitta
- Mouse Cancer Genetics Program, National Cancer Institute, NIH, Frederick, MD USA 21702
| | - Stefanie N. Vogel
- Dept. of Microbiology and Immunology, Univ. of Maryland, School of Medicine, Baltimore, MD USA 21201
| |
Collapse
|
27
|
Stapels DAC, Hill PWS, Westermann AJ, Fisher RA, Thurston TL, Saliba AE, Blommestein I, Vogel J, Helaine S. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 2018; 362:1156-1160. [DOI: 10.1126/science.aat7148] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/25/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022]
Abstract
Many bacterial infections are hard to treat and tend to relapse, possibly due to the presence of antibiotic-tolerant persisters. In vitro, persister cells appear to be dormant. After uptake of Salmonella species by macrophages, nongrowing persisters also occur, but their physiological state is poorly understood. In this work, we show that Salmonella persisters arising during macrophage infection maintain a metabolically active state. Persisters reprogram macrophages by means of effectors secreted by the Salmonella pathogenicity island 2 type 3 secretion system. These effectors dampened proinflammatory innate immune responses and induced anti-inflammatory macrophage polarization. Such reprogramming allowed nongrowing Salmonella cells to survive for extended periods in their host. Persisters undermining host immune defenses might confer an advantage to the pathogen during relapse once antibiotic pressure is relieved.
Collapse
|
28
|
Massie A, Boland E, Kapás L, Szentirmai É. Mice Lacking Alternatively Activated (M2) Macrophages Show Impairments in Restorative Sleep after Sleep Loss and in Cold Environment. Sci Rep 2018; 8:8625. [PMID: 29872141 PMCID: PMC5988741 DOI: 10.1038/s41598-018-26758-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/18/2018] [Indexed: 01/22/2023] Open
Abstract
The relationship between sleep, metabolism and immune functions has been described, but the cellular components of the interaction are incompletely identified. We previously reported that systemic macrophage depletion results in sleep impairment after sleep loss and in cold environment. These findings point to the role of macrophage-derived signals in maintaining normal sleep. Macrophages exist either in resting form, classically activated, pro-inflammatory (M1) or alternatively activated, anti-inflammatory (M2) phenotypes. In the present study we determined the contribution of M2 macrophages to sleep signaling by using IL-4 receptor α-chain-deficient [IL-4Rα knockout (KO)] mice, which are unable to produce M2 macrophages. Sleep deprivation induced robust increases in non-rapid-eye-movement sleep (NREMS) and slow-wave activity in wild-type (WT) animals. NREMS rebound after sleep deprivation was ~50% less in IL-4Rα KO mice. Cold exposure induced reductions in rapid-eye-movement sleep (REMS) and NREMS in both WT and KO mice. These differences were augmented in IL-4Rα KO mice, which lost ~100% more NREMS and ~25% more REMS compared to WTs. Our finding that M2 macrophage-deficient mice have the same sleep phenotype as mice with global macrophage depletion reconfirms the significance of macrophages in sleep regulation and suggests that the main contributors are the alternatively activated M2 cells.
Collapse
Affiliation(s)
- Ashley Massie
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, Washington, USA
| | - Erin Boland
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, Washington, USA
| | - Levente Kapás
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, Washington, USA
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | - Éva Szentirmai
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, Washington, USA.
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA.
| |
Collapse
|
29
|
Utilization of Host Polyamines in Alternatively Activated Macrophages Promotes Chronic Infection by Brucella abortus. Infect Immun 2018; 86:IAI.00458-17. [PMID: 29203548 DOI: 10.1128/iai.00458-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Treatment of intracellular bacterial pathogens with antibiotic therapy often requires a long course of multiple drugs. A barrier to developing strategies that enhance antibiotic efficacy against these pathogens is our poor understanding of the intracellular nutritional environment that maintains bacterial persistence. The intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAMs); however, knowledge of the metabolic adaptations promoting exploitation of this niche is limited. Here we show that one mechanism promoting enhanced survival in AAMs is a shift in macrophage arginine utilization from production of nitric oxide (NO) to biosynthesis of polyamines, induced by interleukin 4 (IL-4)/IL-13 treatment. Production of polyamines by infected AAMs promoted both intracellular survival of B. abortus and chronic infection in mice, as inhibition of macrophage polyamine synthesis or inactivation of the putative putrescine transporter encoded by potIHGF reduced both intracellular survival in AAMs and persistence in mice. These results demonstrate that increased intracellular availability of polyamines induced by arginase-1 expression in IL-4/IL-13-induced AAMs promotes chronic persistence of B. abortus within this niche and suggest that targeting of this pathway may aid in eradicating chronic infection.
Collapse
|
30
|
Tuberculosis State Is Associated with Expression of Toll-Like Receptor 2 in Sputum Macrophages. mSphere 2017; 2:mSphere00475-17. [PMID: 29104936 PMCID: PMC5663984 DOI: 10.1128/msphere.00475-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis is an intracellular pathogen that parasitizes the host macrophage. While approximately two billion people are infected worldwide, only 5 to 10% become diseased with pulmonary tuberculosis, at least in the absence of comorbidities. Tuberculosis control requires development of noninvasive methods probing the host immune status to help distinguish latent infection from active tuberculosis. With such methods, high-risk individuals could be targeted for treatment before disease manifestation. Previous investigations have been based on examination of peripheral blood cells or, more rarely, lung macrophages obtained with invasive procedures, such as bronchoalveolar lavages. Here we show that differences exist in the expression of a surface protein (Toll-like receptor 2) between macrophages recovered from the sputum of individuals in different diagnostic groups: i.e., infection free, latent tuberculosis infection, and active pulmonary tuberculosis. Thus, phenotypic analysis of local macrophages obtained with noninvasive procedures can help distinguish among tuberculosis infection stages. During tuberculosis, macrophages are critical for both pathogen survival and host immune activation. Since expression of particular cell surface markers reflects cell function, we used flow cytometry to measure the abundance of surface markers associated with polarity, lipid uptake, or pattern recognition on macrophages found in induced sputum. Nine macrophage surface markers were examined from three groups of donors: infection-free, latent tuberculosis infection, and active pulmonary tuberculosis. Using a trend test, we found that expression of Toll-like receptor 2 was greater from absence of infection to latent infection and from latent infection to active tuberculosis. The results point to the possibility that innate immune cell phenotypes be used to distinguish among tuberculosis infection stages. Moreover, this study shows that readily accessible sputum macrophages have potential for tuberculosis diagnosis and prognosis. IMPORTANCEMycobacterium tuberculosis is an intracellular pathogen that parasitizes the host macrophage. While approximately two billion people are infected worldwide, only 5 to 10% become diseased with pulmonary tuberculosis, at least in the absence of comorbidities. Tuberculosis control requires development of noninvasive methods probing the host immune status to help distinguish latent infection from active tuberculosis. With such methods, high-risk individuals could be targeted for treatment before disease manifestation. Previous investigations have been based on examination of peripheral blood cells or, more rarely, lung macrophages obtained with invasive procedures, such as bronchoalveolar lavages. Here we show that differences exist in the expression of a surface protein (Toll-like receptor 2) between macrophages recovered from the sputum of individuals in different diagnostic groups: i.e., infection free, latent tuberculosis infection, and active pulmonary tuberculosis. Thus, phenotypic analysis of local macrophages obtained with noninvasive procedures can help distinguish among tuberculosis infection stages.
Collapse
|
31
|
Fu A, Wang Y, Wu Y, Chen H, Zheng S, Li Y, Xu X, Li W. Echinacea purpurea Extract Polarizes M1 Macrophages in Murine Bone Marrow-Derived Macrophages Through the Activation of JNK. J Cell Biochem 2017; 118:2664-2671. [PMID: 28067413 DOI: 10.1002/jcb.25875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/06/2017] [Indexed: 01/19/2023]
Abstract
Echinacea purpurea is an indigenous North American purple cone flower used by North Americans for treatment of various infectious diseases and wounds. This study investigated the effect of polysaccharide enriched extract of Echinacea purpurea (EE) on the polarization of macrophages. The results showed that 100 µg/mL of EE could markedly activate the macrophage by increasing the expression of CD80, CD86, and MHCII molecules. Meanwhile, EE upregulated the markers of classically activated macrophages (M1) such as CCR7 and the production of IL-1β, IL-6, IL-12p70, TNF-αand NO. The functional tests showed that EE enhanced the phagocytic and intracellular bactericidal activity of macrophage against ST. Furthermore, we demonstrated that JNK are required for EE-induced NO and M1-related cytokines production. Together, these results demonstrated that EE can polarize macrophages towards M1 phenotype, which is dependent on the JNK signaling pathways. J. Cell. Biochem. 118: 2664-2671, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Yang Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Yanping Wu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Hongliang Chen
- Shandong Qilu Animal Health Co., Ltd, Jinan, Shangdong, China
| | - Shasha Zheng
- California Baptist University, Riverside, 92504, California
| | - Yali Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| | - Xin Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, 310058, China
| |
Collapse
|
32
|
Pfeffer PE, Hopkins S, Cropley I, Lowe DM, Lipman M. An association between pulmonary Mycobacterium avium-intracellulare complex infections and biomarkers of Th2-type inflammation. Respir Res 2017; 18:93. [PMID: 28506264 PMCID: PMC5432982 DOI: 10.1186/s12931-017-0579-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023] Open
Abstract
Background The rising incidence of pulmonary Mycobacterium avium-intracellulare complex (MAI) infection is unexplained but parallels the growing world-wide epidemic of allergic disease. We hypothesized an association between pulmonary MAI infection and Th2-type immune responses as seen in allergy. Methods Biomarkers of patient Th2-type immune responses (peripheral blood eosinophil counts and serum IgE levels) were compared between patients with positive pulmonary samples for tuberculosis and non-tuberculous mycobacterial (NTM) infection. A further comparison of clinical characteristics, including respiratory co-morbidities, and biomarkers, was conducted between patients culturing MAI NTM and those culturing NTM other than MAI. Results Patients culturing NTM from pulmonary samples had significantly higher peripheral blood eosinophil levels than those culturing Mycobacterium tuberculosis. Furthermore, patients culturing MAI compared to those culturing NTM other than MAI had higher eosinophil counts (mean 0.29x109/L vs 0.15x109/L, p = 0.010) and IgE levels (geometric mean 138kU/L vs 47kU/L, p = 0.021). However there was no significant difference in the frequency of asthma between the two NTM groups. Conclusions There is an association between biomarkers of Th2-type immune responses and pulmonary MAI. Prospective and translational research could identify the direction of causation; and so determine whether our finding may be utilized within future management strategies for MAI.
Collapse
Affiliation(s)
- Paul E Pfeffer
- Royal Free London NHS Foundation Trust, London, UK.,William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Ian Cropley
- Royal Free London NHS Foundation Trust, London, UK
| | - David M Lowe
- Royal Free London NHS Foundation Trust, London, UK.,Institute of Immunity and Transplantation, Royal Free Campus, University College London, London, UK
| | - Marc Lipman
- Royal Free London NHS Foundation Trust, London, UK. .,UCL Respiratory, Division of Medicine, University College London, Royal Free Campus, Pond Street, London, NW3 2QG, UK.
| |
Collapse
|
33
|
Monophosphoryl Lipid A Enhances Efficacy of a Francisella tularensis LVS-Catanionic Nanoparticle Subunit Vaccine against F. tularensis Schu S4 Challenge by Augmenting both Humoral and Cellular Immunity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00574-16. [PMID: 28077440 DOI: 10.1128/cvi.00574-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 01/01/2023]
Abstract
Francisella tularensis, a bacterial biothreat agent, has no approved vaccine in the United States. Previously, we showed that incorporating lysates from partially attenuated F. tularensis LVS or fully virulent F. tularensis Schu S4 strains into catanionic surfactant vesicle (V) nanoparticles (LVS-V and Schu S4-V, respectively) protected fully against F. tularensis LVS intraperitoneal (i.p.) challenge in mice. However, we achieved only partial protection against F. tularensis Schu S4 intranasal (i.n.) challenge, even when employing heterologous prime-boost immunization strategies. We now extend these findings to show that both LVS-V and Schu S4-V immunization (i.p./i.p.) elicited similarly high titers of anti-F. tularensis IgG and that the titers could be further increased by adding monophosphoryl lipid A (MPL), a nontoxic Toll-like receptor 4 (TLR4) adjuvant that is included in several U.S. FDA-approved vaccines. LVS-V+MPL immune sera also detected more F. tularensis antigens than LVS-V immune sera and, after passive transfer to naive mice, significantly delayed the time to death against F. tularensis Schu S4 subcutaneous (s.c.) but not i.n. challenge. Active immunization with LVS-V+MPL (i.p./i.p.) also increased the frequency of gamma interferon (IFN-γ)-secreting activated helper T cells, IFN-γ production, and the ability of splenocytes to control intramacrophage F. tularensis LVS replication ex vivo Active LVS-V+MPL immunization via heterologous routes (i.p./i.n.) significantly elevated IgA and IgG levels in bronchoalveolar lavage fluid and significantly enhanced protection against i.n. F. tularensis Schu S4 challenge (to ∼60%). These data represent a significant step in the development of a subunit vaccine against the highly virulent type A strains.
Collapse
|
34
|
Differential Macrophage Polarization from Pneumocystis in Immunocompetent and Immunosuppressed Hosts: Potential Adjunctive Therapy during Pneumonia. Infect Immun 2017; 85:IAI.00939-16. [PMID: 27993972 DOI: 10.1128/iai.00939-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/09/2016] [Indexed: 11/20/2022] Open
Abstract
We explored differential polarization of macrophages during infection using a rat model of Pneumocystis pneumonia. We observed enhanced pulmonary M1 macrophage polarization in immunosuppressed (IS) hosts, but an M2 predominant response in immunocompetent (IC) hosts following Pneumocystis carinii challenge. Increased inflammation and inducible nitric oxide synthase (iNOS) levels characterized the M1 response. However, macrophage ability to produce nitric oxide was defective. In contrast, the lungs of IC animals revealed a prominent M2 gene signature, and these macrophages effectively elicited an oxidative burst associated with clearance of Pneumocystis In addition, during P. carinii infection the expression of Dectin-1, a critical receptor for recognition and clearance of P. carinii, was upregulated in macrophages of IC animals but suppressed in IS animals. In the absence of an appropriate cytokine milieu for M2 differentiation, Pneumocystis induced an M1 response both in vitro and in vivo The M1 response induced by P. carinii was plastic in nature and reversible with appropriate cytokine stimuli. Finally, we tested whether macrophage polarization can be modulated in vivo and used to help manage the pathogenesis of Pneumocystis pneumonia by adoptive transfer. Treatment with both M1 and M2 cells significantly improved survival of P. carinii-infected IS hosts. However, M2 treatment provided the best outcomes with efficient clearance of P. carinii and reduced inflammation.
Collapse
|
35
|
Iron Reduces M1 Macrophage Polarization in RAW264.7 Macrophages Associated with Inhibition of STAT1. Mediators Inflamm 2017; 2017:8570818. [PMID: 28286378 PMCID: PMC5327769 DOI: 10.1155/2017/8570818] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/18/2017] [Indexed: 01/22/2023] Open
Abstract
Iron metabolism in inflammation has been mostly characterized in macrophages exposed to pathogens or inflammatory conditions. The aim of this study is to investigate the cross-regulatory interactions between M1 macrophage polarization and iron metabolism. Firstly, we characterized the transcription of genes related to iron homeostasis in M1 RAW264.7 macrophages stimulated by IFN-γ. The molecular signature of M1 macrophages showed high levels of iron storage (ferritin), a low level of iron export (ferroportin), and changes of iron regulators (hepcidin and transferrin receptors), which favour iron sequestration in the reticuloendothelial system and are benefit for inflammatory disorders. Then, we evaluated the effect of iron on M1 macrophage polarization. Iron significantly reduced mRNA levels of IL-6, IL-1β, TNF-α, and iNOS produced by IFN-γ-polarized M1 macrophages. Immunofluorescence analysis showed that iron also reduced iNOS production. However, iron did not compromise but enhanced the ability of M1-polarized macrophages to phagocytose FITC-dextran. Moreover, we demonstrated that STAT1 inhibition was required for reduction of iNOS and M1-related cytokines production by the present of iron. Together, these findings indicated that iron decreased polarization of M1 macrophages and inhibited the production of the proinflammatory cytokines. The results expanded our knowledge about the role of iron in macrophage polarization.
Collapse
|
36
|
Valdez HA, Oviedo JM, Gorgojo JP, Lamberti Y, Rodriguez ME. Bordetella pertussis modulates human macrophage defense gene expression. Pathog Dis 2016; 74:ftw073. [PMID: 27465637 DOI: 10.1093/femspd/ftw073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 01/14/2023] Open
Abstract
Bordetella pertussis, the etiological agent of whooping cough, still causes outbreaks. We recently found evidence that B. pertussis can survive and even replicate inside human macrophages, indicating that this host cell might serve as a niche for persistence. In this work, we examined the interaction of B. pertussis with a human monocyte cell line (THP-1) that differentiates into macrophages in culture in order to investigate the host cell response to the infection and the mechanisms that promote that intracellular survival. To that end, we investigated the expression profile of a selected number of genes involved in cellular bactericidal activity and the inflammatory response during the early and late phases of infection. The bactericidal and inflammatory response of infected macrophages was progressively downregulated, while the number of THP-1 cells heavily loaded with live bacteria increased over time postinfection. Two of the main toxins of B. pertussis, pertussis toxin (Ptx) and adenylate cyclase (CyaA), were found to be involved in manipulating the host cell response. Therefore, failure to express either toxin proved detrimental to the development of intracellular infections by those bacteria. Taken together, these results support the relevance of host defense gene manipulation to the outcome of the interaction between B. pertussis and macrophages.
Collapse
Affiliation(s)
- Hugo Alberto Valdez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Juan Marcos Oviedo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
37
|
Alterations in P-Glycoprotein Expression and Function Between Macrophage Subsets. Pharm Res 2016; 33:2713-21. [PMID: 27431863 DOI: 10.1007/s11095-016-1998-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Macrophages are an important cellular reservoir in HIV, and exist in two phenotypically dissimilar subsets, the pro-inflammatory M1 phenotype, and the anti-inflammatory M2 phenotype. The role of these two subsets is uncertain. We hypothesized that differences in drug efflux transporters exist between the subsets, which would result in altered intracellular drug concentrations between these cells. METHODS U937 monocytic cells were polarized to the M1 or M2 phenotype via treatment with interferon-gamma and LPS, or interleukins 4, 13, and LPS, respectively. PGP function was assessed with Hoechst 33342, and expression via western blotting. Intracellular lopinavir was assessed via LC-MS/MS. Data was confirmed with primary monocyte derived macrophages. RESULTS We observed significant differences in intracellular concentrations of lopinavir, a PGP substrate, with higher concentrations in M1 cells. PGP function and expression was higher in the M2 macrophages. These results were confirmed with primary monocyte derived macrophages. CONCLUSIONS This data shows that there are previously unreported differences in P-glycoprotein expression between macrophage subsets, and suggests that there may be differences for other transporters. These differences can play a role in intracellular drug concentrations in these cells, and may allow for low-level HIV replication.
Collapse
|
38
|
Periasamy S, Avram D, McCabe A, MacNamara KC, Sellati TJ, Harton JA. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia. PLoS Pathog 2016; 12:e1005517. [PMID: 27015566 PMCID: PMC4807818 DOI: 10.1371/journal.ppat.1005517] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.
Collapse
Affiliation(s)
- Sivakumar Periasamy
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Dorina Avram
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Amanda McCabe
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Katherine C. MacNamara
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Timothy J. Sellati
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Jonathan A. Harton
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Miron RJ, Bosshardt DD. OsteoMacs: Key players around bone biomaterials. Biomaterials 2015; 82:1-19. [PMID: 26735169 DOI: 10.1016/j.biomaterials.2015.12.017] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Osteal macrophages (OsteoMacs) are a special subtype of macrophage residing in bony tissues. Interesting findings from basic research have pointed to their vast and substantial roles in bone biology by demonstrating their key function in bone formation and remodeling. Despite these essential findings, much less information is available concerning their response to a variety of biomaterials used for bone regeneration with the majority of investigation primarily focused on their role during the foreign body reaction. With respect to biomaterials, it is well known that cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials. Here they demonstrate extremely plastic phenotypes with the ability to differentiate towards classical M1 or M2 macrophages, or subsequently fuse into osteoclasts or multinucleated giant cells (MNGCs). These MNGCs have previously been characterized as foreign body giant cells and associated with biomaterial rejection, however more recently their phenotypes have been implicated with wound healing and tissue regeneration by studies demonstrating their expression of key M2 markers around biomaterials. With such contrasting hypotheses, it becomes essential to better understand their roles to improve the development of osteo-compatible and osteo-promotive biomaterials. This review article expresses the necessity to further study OsteoMacs and MNGCs to understand their function in bone biomaterial tissue integration including dental/orthopedic implants and bone grafting materials.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Oral Surgery and Stomatology, Department of Periodontology, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.
| | - Dieter D Bosshardt
- Department of Oral Surgery and Stomatology, Department of Periodontology, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.
| |
Collapse
|
40
|
Abstract
Macrophage plasticity is an important feature of these innate immune cells. Macrophage phenotypes are divided into two categories, the classically activated macrophages (CAM, M1 phenotype) and the alternatively activated macrophages (AAM, M2 phenotype). M1 macrophages are commonly associated with the generation of proinflammatory cytokines, whereas M2 macrophages are anti-inflammatory and often associated with tumor progression and fibrosis development. Macrophages produce high levels of reactive oxygen species (ROS). Recent evidence suggests ROS can potentially regulate macrophage phenotype. In addition, macrophages phenotypes are closely related to their metabolic patterns, particularly fatty acid/cholesterol metabolism. In this review, we briefly summarize recent advances in macrophage polarization with special attention to their relevance to specific disease conditions and metabolic regulation of polarization. Understanding these metabolic switches can facilitate the development of targeted therapies for various diseases.
Collapse
Affiliation(s)
- Chao He
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - A Brent Carter
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Alabama, USA; Birmingham VAMC, Birmingham, Alabama, USA
| |
Collapse
|
41
|
Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-κB. Mediators Inflamm 2015; 2015:372931. [PMID: 26664149 PMCID: PMC4668314 DOI: 10.1155/2015/372931] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/10/2015] [Accepted: 10/15/2015] [Indexed: 11/23/2022] Open
Abstract
The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-α, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-κB activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization.
Collapse
|
42
|
Babadjanova Z, Wiedinger K, Gosselin EJ, Bitsaktsis C. Targeting of a Fixed Bacterial Immunogen to Fc Receptors Reverses the Anti-Inflammatory Properties of the Gram-Negative Bacterium, Francisella tularensis, during the Early Stages of Infection. PLoS One 2015; 10:e0129981. [PMID: 26114641 PMCID: PMC4482730 DOI: 10.1371/journal.pone.0129981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/13/2015] [Indexed: 02/02/2023] Open
Abstract
Production of pro-inflammatory cytokines by innate immune cells at the early stages of bacterial infection is important for host protection against the pathogen. Many intracellular bacteria, including Francisella tularensis, the agent of tularemia, utilize the anti-inflammatory cytokine IL-10, to evade the host immune response. It is well established that IL-10 has the ability to inhibit robust antigen presentation by dendritic cells and macrophages, thus suppressing the generation of protective immunity. The pathogenesis of F. tularensis is not fully understood, and research has failed to develop an effective vaccine to this date. In the current study, we hypothesized that F. tularensis polarizes antigen presenting cells during the early stages of infection towards an anti-inflammatory status characterized by increased synthesis of IL-10 and decreased production of IL-12p70 and TNF-α in an IFN-ɣ-dependent fashion. In addition, F. tularensis drives an alternative activation of alveolar macrophages within the first 48 hours post-infection, thus allowing the bacterium to avoid protective immunity. Furthermore, we demonstrate that targeting inactivated F. tularensis (iFt) to Fcγ receptors (FcɣRs) via intranasal immunization with mAb-iFt complexes, a proven vaccine strategy in our laboratories, reverses the anti-inflammatory effects of the bacterium on macrophages by down-regulating production of IL-10. More specifically, we observed that targeting of iFt to FcγRs enhances the classical activation of macrophages not only within the respiratory mucosa, but also systemically, at the early stages of infection. These results provide important insight for further understanding the protective immune mechanisms generated when targeting immunogens to Fc receptors.
Collapse
Affiliation(s)
- Zulfia Babadjanova
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
| | - Kari Wiedinger
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
| | - Edmund J. Gosselin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Constantine Bitsaktsis
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
43
|
Lai XH, Xu Y, Chen XM, Ren Y. Macrophage cell death upon intracellular bacterial infection. ACTA ACUST UNITED AC 2015; 2:e779. [PMID: 26690967 DOI: 10.14800/macrophage.779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophage-pathogen interaction is a complex process and the outcome of this tag-of-war for both sides is to live or die. Without attempting to be comprehensive, this review will discuss the complexity and significance of the interaction outcomes between macrophages and some facultative intracellular bacterial pathogens as exemplified by Francisella, Salmonella, Shigella and Yersinia. Upon bacterial infection, macrophages can die by a variety of ways, such as apoptosis, autophagic cell death, necrosis, necroptosis, oncosis, pyronecrosis, pyroptosis etc, which is the focus of this review.
Collapse
Affiliation(s)
- Xin-He Lai
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunsheng Xu
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Dermato-venerology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ming Chen
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Pediatric Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Ren
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA)
| |
Collapse
|
44
|
Verma A, Kroetz DN, Tweedle JL, Deepe GS. Type II cytokines impair host defense against an intracellular fungal pathogen by amplifying macrophage generation of IL-33. Mucosal Immunol 2015; 8:380-9. [PMID: 25118166 PMCID: PMC4326567 DOI: 10.1038/mi.2014.75] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/15/2014] [Indexed: 02/04/2023]
Abstract
Interleukin (IL)-4 subverts protective immunity to multiple intracellular pathogens, including the fungus Histoplasma capsulatum. Previously, we reported that H. capsulatum-challenged CCR2(-/-) mice manifest elevated pulmonary fungal burden owing to exaggerated IL-4. Paradoxical to our anticipation in IL-33 driving IL-4, we discovered that the latter prompted IL-33 in mutant mice. In infected CCR2(-/-) animals, amplified IL-33 succeeded the heightened IL-4 response and inhibition of IL-4 signaling decreased IL-33. Moreover, macrophages, but not epithelial cells or dendritic cells, from these mice expressed higher IL-33 in comparison with controls. Dissection of mechanisms that promulgated IL-33 revealed type-II cytokines and H. capsulatum synergistically elicited an IL-33 response in macrophages via signal transducer and activator of transcription factor 6/interferon-regulatory factor-4 and Dectin-1 pathways, respectively. Neutralizing IL-33 in CCR2(-/-) animals, but not controls, enhanced their resistance to histoplasmosis. Thus we describe a previously unrecognized role for IL-4 in instigating IL-33 in macrophages. Furthermore, in the presence of intracellular fungal pathogens, the type-II cytokine-driven IL-33 response impairs immunity.
Collapse
Affiliation(s)
- Akash Verma
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA.,Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Danielle N. Kroetz
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jamie L. Tweedle
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA.,Department of Pathobiology and Molecular Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - George S. Deepe
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA.,Veterans Affairs Hospital, Cincinnati, Ohio 45220, USA,Corresponding author: George S. Deepe, Jr., Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0560, ; Phone: 513-558-4706; Fax: 513-558-2089
| |
Collapse
|
45
|
Inman RD. Reactive arthritis. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
46
|
D'Elia RV, Laws TR, Núñez A, Taylor C, Clark GC. Delayed presence of alternatively activated macrophages during a Francisella tularensis infection. Microb Pathog 2015; 78:37-42. [DOI: 10.1016/j.micpath.2014.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/22/2014] [Accepted: 10/01/2014] [Indexed: 11/25/2022]
|
47
|
Shirey KA, Lai W, Pletneva LM, Finkelman FD, Feola DJ, Blanco JCG, Vogel SN. Agents that increase AAM differentiation blunt RSV-mediated lung pathology. J Leukoc Biol 2014; 96:951-5. [PMID: 25009233 PMCID: PMC4226793 DOI: 10.1189/jlb.4hi0414-226r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/02/2014] [Accepted: 06/11/2014] [Indexed: 12/18/2022] Open
Abstract
RSV is the most significant cause of serious lower respiratory tract infection in infants and young children worldwide. There is currently no vaccine for the virus, and antiviral therapy (e.g., ribavirin) has shown no efficacy against the disease. We reported that alternatively activated macrophages (AAMs) mediate resolution of RSV-induced pathology. AAM differentiation requires macrophage-derived IL-4 and -13, autocrine/paracrine signaling through the type I IL-4 receptor, and STAT6 activation. Based on these findings, we reasoned that it would be possible to intervene therapeutically in RSV disease by increasing AAM differentiation, thereby decreasing lung pathology. Mice treated with the IL-4/anti-IL-4 immune complexes, shown previously to sustain levels of circulating IL-4, increased the RSV-induced AAM markers arginase-1 and mannose receptor and decreased the lung pathology. Induction of PPARγ, shown to play a role in AAM development, by the PPARγ agonist rosiglitazone or treatment of mice with the macrolide antibiotic AZM, also reported to skew macrophage differentiation to an AAM phenotype, increased the AAM markers and mitigated RSV-induced lung pathology. Collectively, our data suggest that therapeutic manipulation of macrophage differentiation to enhance the AAM phenotype is a viable approach for ameliorating RSV-induced disease.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | | | - Fred D Finkelman
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Division of Allergy, Immunology and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; and
| | - David J Feola
- University of Kentucky, College of Pharmacy, Lexington, Kentucky, USA
| | | | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
48
|
Muraille E, Leo O, Moser M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front Immunol 2014; 5:603. [PMID: 25505468 PMCID: PMC4244692 DOI: 10.3389/fimmu.2014.00603] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/10/2014] [Indexed: 02/04/2023] Open
Abstract
The classical view of the Th1/Th2 paradigm posits that the pathogen nature, infectious cycle, and persistence represent key parameters controlling the choice of effector mechanisms operating during an immune response. Thus, efficient Th1 responses are triggered by replicating intracellular pathogens, while Th2 responses would control helminth infection and promote tissue repair during the resolution phase of an infectious event. However, this vision does not account for a growing body of data describing how pathogens exploit the polarization of the host immune response to their own benefit. Recently, the study of macrophages has illustrated a novel aspect of this arm race between pathogens and the immune system, and the central role of macrophages in homeostasis, repair and defense of all tissues is now fully appreciated. Like T lymphocytes, macrophages differentiate into distinct effectors including classically (M1) and alternatively (M2) activated macrophages. Interestingly, in addition to represent immune effectors, M1/M2 cells have been shown to represent potential reservoir cells to a wide range of intracellular pathogens. Subversion of macrophage cell metabolism by microbes appears as a recently uncovered immune escape strategy. Upon infection, several microbial agents have been shown to activate host metabolic pathways leading to the production of nutrients necessary to their long-term persistence in host. The purpose of this review is to summarize and discuss the strategies employed by pathogens to manipulate macrophage differentiation, and in particular their basic cell metabolism, to favor their own growth while avoiding immune control.
Collapse
Affiliation(s)
- Eric Muraille
- Laboratory of Parasitology, Faculty of Medicine, Université Libre de Bruxelles , Brussels , Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Faculty of Sciences, Université Libre de Bruxelles , Gosselies , Belgium
| | - Muriel Moser
- Laboratory of Immunobiology, Faculty of Sciences, Université Libre de Bruxelles , Gosselies , Belgium
| |
Collapse
|
49
|
Steiner DJ, Furuya Y, Metzger DW. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 2014; 7:239-51. [PMID: 25258544 PMCID: PMC4173753 DOI: 10.2147/idr.s53700] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis is an intracellular Gram-negative bacterium that causes life-threatening tularemia. Although the prevalence of natural infection is low, F. tularensis remains a tier I priority pathogen due to its extreme virulence and ease of aerosol dissemination. F. tularensis can infect a host through multiple routes, including the intradermal and respiratory routes. Respiratory infection can result from a very small inoculum (ten organisms or fewer) and is the most lethal form of infection. Following infection, F. tularensis employs strategies for immune evasion that delay the immune response, permitting systemic distribution and induction of sepsis. In this review we summarize the current knowledge of F. tularensis in an immunological context, with emphasis on the host response and bacterial evasion of that response.
Collapse
Affiliation(s)
- Don J Steiner
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Dennis W Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
50
|
Mills CD, Ley K. M1 and M2 macrophages: the chicken and the egg of immunity. J Innate Immun 2014; 6:716-26. [PMID: 25138714 PMCID: PMC4429858 DOI: 10.1159/000364945] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 12/14/2022] Open
Abstract
The purpose of this perspective is to describe a critical advance in understanding how immune responses work. Macrophages are required for all animal life: 'Inhibit' type macrophages in all animals (called M1) can rapidly kill pathogens, and are thus the primary host defense, and 'Heal' type macrophages (M2) routinely repair and maintain tissue integrity. Macrophages perform these activities in all animals without T cells, and also in T cell-deficient vertebrates. Although adaptive immunity can amplify macrophage polarization, the long-held notion that macrophages need to be 'activated' or 'alternatively activated' by T cells is incorrect; indeed, immunology has had it backward. M1/M2-type macrophages necessarily direct T cells toward Th1- or Th2-like activities, respectively. That such macrophage-innate activities are the central directing element in immune responses is a dramatic change in understanding how immune systems operate. Most important, this revelation is opening up whole new approaches to immunotherapy. For example, many modern diseases, such as cancer and atherosclerosis, may not display 'foreign' antigens. However, there are clear imbalances in M1/M2-type responses. Correcting such innate imbalances can result in better health. Macrophages are the chicken and the egg of immunity.
Collapse
Affiliation(s)
| | - Klaus Ley
- La Jolla Institute for Allergy and Immunology, La Jolla, Calif., USA
| |
Collapse
|