1
|
Derakhshan-Sefidi M, Bakhshi B, Rasekhi A. Vibriocidal efficacy of Bifidobacterium bifidum and Lactobacillus acidophilus cell-free supernatants encapsulated in chitosan nanoparticles against multi-drug resistant Vibrio cholerae O1 El Tor. BMC Infect Dis 2024; 24:905. [PMID: 39223499 PMCID: PMC11367852 DOI: 10.1186/s12879-024-09810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Cholera is a diarrheal disease recognized for being caused by toxin-producing Vibrio (V.) cholerae. This study aims to assess the vibriocidal and immunomodulatory properties of derived cell-free supernatants (CFSs) of Bifidobacterium (B.) bifidum and Lactobacillus (L.) acidophilus encapsulated in chitosan nanoparticles (CFSb-CsNPs and CFSa-CsNPs) against clinical multi-drug resistance (MDR) isolates of V. cholerae O1 El Tor. METHODS We synthesized CFSb-CsNPs and CFSa-CsNPs using the ionic gelation technique. The newly nanostructures were characterized for size, surface zeta potential, morphology, encapsulation efficacy (EE), stability in different pH values and temperatures, release profile, and in vitro cytotoxicity. The antimicrobial and antibiofilm effects of the obtained nanocomposites on clinical MDR isolates (N = 5) of V. cholerae E1 Tor O1 were investigated by microbroth dilution assay and crystal violet staining, respectively. We conducted quantitative real-time PCR (qRT-PCR) to analyze the relative gene expressions of Bap, Rbmc, CTXAB, and TCP in response to CFSb-CsNPs and CFSa-CsNPs. Additionally, the immunomodulatory effects of formulated structures on the expression of TLR2 and TLR4 genes in human colorectal adenocarcinoma cells (Caco-2) were studied. RESULTS Nano-characterization analyses indicated that CFSb-CsNPs and CFSa-CsNPs exhibit spherical shapes under scanning electron microscopy (SEM) imaging, with mean diameters of 98.16 ± 0.763 nm and 83.90 ± 0.854 nm, respectively. Both types of nanoparticles possess positive surface charges. The EE% of CFSb-CsNPs was 77 ± 4.28%, whereas that of CFSa-CsNPs was 62.5 ± 7.33%. Chitosan (Cs) encapsulation leads to increased stability of CFSs in simulated pH conditions of the gastrointestinal tract in which the release rates for CFSb-CsNPs and CFSa-CsNPs were reached at 58.00 ± 1.24% and 55.01 ± 1.73%, respectively at pH = 7.4. The synergistic vibriocidal effects observed from the co-administration of both CFSb-CsNPs and CFSa-CsNPs, as evidenced by a fractional inhibitory concentration (FIC) index of 0.57, resulting in a significantly lower MIC of 2.5 ± 0.05 mg/mL (p < 0.0001) compare to individual administration. The combined antibacterial effect of CFSb-CsNPs and CFSa-CsNPs on Bap (0.14 ± 0.05), Rbmc (0.24 ± 0.01), CTXAB (0.30 ± 0.09), and TCP (0.38 ± 0.01) gene expression was significant (p < 0.001). Furthermore, co-administration of CFSb-CsNPs and CFSa-CsNPs also demonstrated the potency of suppressing TLR 2/4 (0.20 ± 0.01 and 0.12 ± 0.02, respectively) gene expression (p = 0.0019) and reduced Caco-2 cells attached bacteria to 526,000 ± 51,46 colony-forming units/mL (11.19%) (p < 0.0001). CONCLUSION Our study revealed that encapsulating CFSs within CsNPs enhances their vibriocidal activity by improving stability and enabling a controlled release mechanism at the site of interaction between the host and bacteria. Additionally, the simultaneous use of CFSb-CsNPs and CFSa-CsNPs exhibited superior vibriocidal potency against MDR V. cholerae O1 El Tor strains, indicating these combinations as a potential new approach against MDR bacteria.
Collapse
Affiliation(s)
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Aliakbar Rasekhi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Sempach L, Doll JPK, Limbach V, Marzetta F, Schaub AC, Schneider E, Kettelhack C, Mählmann L, Schweinfurth-Keck N, Ibberson M, Lang UE, Schmidt A. Examining immune-inflammatory mechanisms of probiotic supplementation in depression: secondary findings from a randomized clinical trial. Transl Psychiatry 2024; 14:305. [PMID: 39048549 PMCID: PMC11269721 DOI: 10.1038/s41398-024-03030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
We recently indicated that four-week probiotic supplementation significantly reduced depression along with microbial and neural changes in people with depression. Here we further elucidated the biological modes of action underlying the beneficial clinical effects of probiotics by focusing on immune-inflammatory processes. The analysis included a total of N = 43 participants with depression, from which N = 19 received the probiotic supplement and N = 24 received a placebo over four weeks, in addition to treatment as usual. Blood and saliva were collected at baseline, at post-intervention (week 4) and follow-up (week 8) to assess immune-inflammatory markers (IL-1β, IL-6, CRP, MIF), gut-related hormones (ghrelin, leptin), and a stress marker (cortisol). Furthermore, transcriptomic analyses were conducted to identify differentially expressed genes. Finally, we analyzed the associations between probiotic-induced clinical and immune-inflammatory changes. We observed a significant group x time interaction for the gut hormone ghrelin, indicative of an increase in the probiotics group. Additionally, the increase in ghrelin was correlated with the decrease in depressive symptoms in the probiotics group. Transcriptomic analyses identified 51 up- and 57 down-regulated genes, which were involved in functional pathways related to enhanced immune activity. We identified a probiotic-dependent upregulation of the genes ELANE, DEFA4 and OLFM4 associated to immune activation and ghrelin concentration. These results underscore the potential of probiotic supplementation to produce biological meaningful changes in immune activation in patients with depression. Further large-scale mechanistic trials are warranted to validate and extend our understanding of immune-inflammatory measures as potential biomarkers for stratification and treatment response in depression. Trial Registration: www.clinicaltrials.gov , identifier: NCT02957591.
Collapse
Affiliation(s)
- Lukas Sempach
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland.
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland.
| | - Jessica P K Doll
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Verena Limbach
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Flavia Marzetta
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anna-Chiara Schaub
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
- Translational Psychiatry, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
| | - Else Schneider
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
- Experimental Cognitive and Clinical Affective Neuroscience (ECAN) Laboratory, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
| | - Cedric Kettelhack
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - Laura Mählmann
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | | | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Undine E Lang
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| | - André Schmidt
- Translational Neuroscience, Department of Clinical Research (DKF), University of Basel, Basel, Switzerland
- University Psychiatric Clinics Basel (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Jeffrey MP, Saleem L, MacPherson CW, Tompkins TA, Clarke ST, Green-Johnson JM. A Lacticaseibacillus rhamnosus secretome induces immunoregulatory transcriptional, functional and immunometabolic signatures in human THP-1 monocytes. Sci Rep 2024; 14:8379. [PMID: 38600116 PMCID: PMC11006683 DOI: 10.1038/s41598-024-56420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Macrophage responses to activation are fluid and dynamic in their ability to respond appropriately to challenges, a role integral to host defence. While bacteria can influence macrophage differentiation and polarization into pro-inflammatory and alternatively activated phenotypes through direct interactions, many questions surround indirect communication mechanisms mediated through secretomes derived from gut bacteria, such as lactobacilli. We examined effects of secretome-mediated conditioning on THP-1 human monocytes, focusing on the ability of the Lacticaseibacillus rhamnosus R0011 secretome (LrS) to drive macrophage differentiation and polarization and prime immune responses to subsequent challenge with lipopolysaccharide (LPS). Genome-wide transcriptional profiling revealed increased M2-associated gene transcription in response to LrS conditioning in THP-1 cells. Cytokine and chemokine profiling confirmed these results, indicating increased M2-associated chemokine and cytokine production (IL-1Ra, IL-10). These cells had increased cell-surface marker expression of CD11b, CD86, and CX3CR1, coupled with reduced expression of the M1 macrophage-associated marker CD64. Mitochondrial substrate utilization assays indicated diminished reliance on glycolytic substrates, coupled with increased utilization of citric acid cycle intermediates, characteristics of functional M2 activity. LPS challenge of LrS-conditioned THP-1s revealed heightened responsiveness, indicative of innate immune priming. Resting stage THP-1 macrophages co-conditioned with LrS and retinoic acid also displayed an immunoregulatory phenotype with expression of CD83, CD11c and CD103 and production of regulatory cytokines. Secretome-mediated conditioning of macrophages into an immunoregulatory phenotype is an uncharacterized and potentially important route through which lactic acid bacteria and the gut microbiota may train and shape innate immunity at the gut-mucosal interface.
Collapse
Affiliation(s)
- Michael P Jeffrey
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada
| | - Lin Saleem
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| | - Chad W MacPherson
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | | | - Sandra T Clarke
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| | - Julia M Green-Johnson
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada.
| |
Collapse
|
4
|
Loskutov SI, Proshin SN, Ryabukhin DS. Evolutionary aspects of gastrointestinal tract microbiome-host interaction underlying gastrointestinal barrier integrity. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022. [DOI: 10.15789/2220-7619-eao-1633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the host sustenance and homeostasis, the microbiome is a key component in the functional system. Throughout ontogenetic development, microbiome including that of the gastrointestinal tract (GIT) is the vital factor that ensures not only host functioning, but also its interaction with environment. To uncover the mechanisms underlying GIT microbiome showing a decisive influence on host organism, a systematic approach is needed, because diverse microorganisms are predominantly localized in different parts of the GIT. Recently, a new interdisciplinary direction of science, nanobioinformatics that has been extensively developed considers gene networks as the major object of study representing a coordinated group of genes that functionally account for formation and phenotypic disclosure of various host traits. Here, an important place should be provided to the genetically determined level of the gastrointestinal tract microbiome, its interaction at the level of the host food systems. There have been increasing evidence indicating that the microbiome is directly involved in the pathogenesis of host diseases showing a multi-layered interaction with host metabolic and immune systems. At the same time, the microbial community is unevenly distributed throughout the gastrointestinal tract, and its different portions are variously active while interacting with the host immune system. The architecture of interaction between the microbiome and host cells is extremely complex, and the interaction of individual cells, at the same time, varies greatly. Bacteria colonizing the crypts of the small intestine regulate enterocyte proliferation by affecting DNA replication and gene expression, while bacteria at the tip of the intestinal villi mediate gene expression responsible for metabolism and immune response. Enterocytes and Paneth cells, in turn, regulate the vital activity of the community of microorganisms through the production of polysaccharides (carbohydrates) and antibacterial factors on their surface. Thus, the integrity of the gastrointestinal barrier (GIB) is maintained, which protects the body from infections and inflammation, while violation of its integrity leads to a number of diseases. It has been shown that depending on the dominance of certain types of bacteria the microbiome can maintain or disrupt GIB integrity. The structural and functional GIB integrity is important for body homeostasis. To date, at least 50 proteins have been characterized as being involved in the structural and functional integrability of tight junctions between gastrointestinal tract epithelial cells. The current review comprehensively discusses such issues and presents original research carried out at various facilities of translational biomedicine.
Collapse
|
5
|
Jeffrey MP, MacPherson CW, Tompkins TA, Green-Johnson JM. Lacticaseibacillus rhamnosus R0011 secretome attenuates Salmonella enterica serovar Typhimurium secretome-induced intestinal epithelial cell monolayer damage and pro-inflammatory mediator production in intestinal epithelial cell and antigen-presenting cell co-cultures. Front Microbiol 2022; 13:980989. [PMID: 36246229 PMCID: PMC9554441 DOI: 10.3389/fmicb.2022.980989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Certain lactic acid bacteria (LAB) are associated with immune modulatory activities including down-regulation of pro-inflammatory gene transcription and expression. While host antigen-presenting cells (APCs) and intestinal epithelial cells (IEC) can interact directly with both pathogenic and commensal bacteria through innate immune pattern recognition receptors, recent evidence indicates indirect communication through secreted molecules is an important inter-domain communication mechanism. This communication route may be especially important in the context of IEC and APC interactions which shape host immune responses within the gut environment. We have previously shown that the Lacticaseibacillus rhamnosus R0011 secretome (LrS) dampens pro-inflammatory gene transcription and mediator production from Tumor Necrosis Factor-α and Salmonella enterica serovar Typhimurium secretome (STS)-challenged HT-29 IECs through the induction of negative regulators of innate immunity. However, many questions remain about interactions mediated through these bacterial-derived soluble components and the resulting host immune outcomes in the context of IEC and APC interactions. In the present study, we examined the ability of the LrS to down-regulate pro-inflammatory gene transcription and cytokine production from STS-challenged T84 human IEC and THP-1 human monocyte co-cultures. Cytokine and chemokine profiling revealed that apically delivered LrS induces apical secretion of macrophage inhibitory factor (MIF) and down-regulates STS-induced pro-inflammatory mediator secretion into the apical and basolateral chambers of the T84/THP-1 co-culture. Transcriptional profiling confirmed these results, as the LrS attenuated STS challenge-induced CXCL8 and NFκB1 expression in T84 IECs and THP-1 APCs. Interestingly, the LrS also reversed STS-induced damage to monolayer transepithelial resistance (TER) and permeability, results which were confirmed by ZO-1 gene expression and immunofluorescence visualization of ZO-1 expression in T84 IEC monolayers. The addition of a MIF-neutralizing antibody abrogated the ability of the LrS to reverse STS-induced damage to T84 IEC monolayer integrity, suggesting a novel role for MIF in maintaining IEC barrier function and integrity in response to soluble components derived from LAB. The results presented here provide mechanistic evidence for indirect communication mechanisms used by LAB to modulate immune responses to pathogen challenge, using in vitro approaches which allow for IEC and APC cell communication in a context which more closely mimics that which occurs in vivo.
Collapse
Affiliation(s)
- Michael P. Jeffrey
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, Canada
| | | | | | - Julia M. Green-Johnson
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Tech University, Oshawa, ON, Canada
- *Correspondence: Julia M. Green-Johnson,
| |
Collapse
|
6
|
Esposito P, Kearns MM, Smith KB, Chandrasegaram R, Kadamani AK, Gandelman M, Liang J, Nikpoor N, Tompkins TA, Ismail N. The effects of antimicrobials and lipopolysaccharide on acute immune responsivity in pubertal male and female CD1 mice. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 11:100147. [PMID: 35967925 PMCID: PMC9363646 DOI: 10.1016/j.cpnec.2022.100147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to stress during critical periods of development—such as puberty—is associated with long-term disruptions in brain function and neuro-immune responsivity. However, the mechanisms underlying the effect of stress on the pubertal neuro-immune response has yet to be elucidated. Therefore, the objective of the current study was to investigate the effect antimicrobial and lipopolysaccharide (LPS) treatments on acute immune responsivity in pubertal male and female mice. Moreover, the potential for probiotic supplementation to mitigate these effects was also examined. 240 male and female CD1 mice were treated with one week of antimicrobial treatment (mixed antimicrobials or water) and probiotic treatment (L. rhamnosis R0011 and L. helveticus R0052 or L. helveticus R0052 and B. longum R0175) or placebo at five weeks of age. At six weeks of age (pubertal stress-sensitive period), the mice received a single injection of LPS or saline. Sickness behaviours were assessed, and mice were euthanized 8 h post-injection. Brain, blood, and intestinal samples were collected. The results indicated that the antimicrobial treatment reduced sickness behaviours, and potentiated LPS-induced plasma cytokine concentrations and pro-inflammatory markers in the pre-frontal cortex (PFC) and hippocampus, in a sex-dependent manner. However, probiotics reduced LPS-induced plasma cytokine concentrations along with hippocampal and PFC pro-inflammatory markers in a sex-dependent manner. L. rhamnosis R0011 and L. helveticus R0052 treatment also mitigated antimicrobial-induced plasma cytokine concentrations and sickness behaviours. These findings suggest that the microbiome is an important modulator of the pro-inflammatory immune response during puberty. Pubertal dysbiosis increases LPS-induced neuroinflammation. Pubertal dysbiosis increases LPS-induced plasma cytokine concentrations. Pubertal probiotic treatment reduces LPS-induced neuroinflammation. Pubertal probiotic treatment reduces LPS-induced plasma cytokine concentrations. Pubertal probiotic treatment reduces LPS-induced sickness.
Collapse
|
7
|
Squarzanti DF, Zanetta P, Ormelli M, Manfredi M, Barberis E, Vanella VV, Amoruso A, Pane M, Azzimonti B. An animal derivative-free medium enhances Lactobacillus johnsonii LJO02 supernatant selective efficacy against the methicillin (oxacillin)-resistant Staphylococcus aureus virulence through key-metabolites. Sci Rep 2022; 12:8666. [PMID: 35606510 PMCID: PMC9126979 DOI: 10.1038/s41598-022-12718-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
The spread of multidrug-resistant bacteria, such as the skin commensal Staphylococcus aureus, is a worldwide health challenge; new methods to counteract opportunistic pathogen growth and virulence are urgent. We compared the activity of Lacticaseibacillus rhamnosus LR06 (DSM 21981) and Lactobacillus johnsonii LJO02 (DSM 33828) cell-free supernatants (CFSs) produced in the conventional animal derivative-based MRS medium and an innovative animal derivative-free broth (TIL) versus the MDR S. aureus (ATCC 43300). CFS influence was assessed towards the viability, metabolic activity, and ability to form biofilm of the MDR strain through optical density, alamarBlue assay, and crystal violet staining; their content in short-chain fatty acids, lactic acid, and proteins was analysed via high-resolution mass spectrometry and gas chromatography. All CFSs reduce viable and metabolically active S. aureus, being TIL more efficient compared to MRS in stimulating lactic acid bacteria metabolism and decreasing S. aureus biofilm formation. Particularly, the CFS from LJO02 grown in TIL has the best efficacy, revealing a high amount of lactic acid and 59 peculiar proteins; its effectiveness is partially maintained upon trypsin and proteinase K treatments, but not by pepsin and pH basification. Therefore, antagonistic CFSs may represent a strategic prevention approach, with bacteriotherapeutic and bio-repair potential.
Collapse
Affiliation(s)
- Diletta Francesca Squarzanti
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100, Novara, Italy
| | - Paola Zanetta
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100, Novara, Italy
| | - Margherita Ormelli
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100, Novara, Italy
| | - Marcello Manfredi
- Laboratory of Biological Mass Spectrometry, Department of Translational Medicine (DiMeT), Center for Translational Research On Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100, Novara, Italy
| | - Elettra Barberis
- Laboratory of Biological Mass Spectrometry, Department of Translational Medicine (DiMeT), Center for Translational Research On Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100, Novara, Italy
| | - Virginia Vita Vanella
- Laboratory of Biological Mass Spectrometry, Department of Translational Medicine (DiMeT), Center for Translational Research On Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100, Novara, Italy
| | - Angela Amoruso
- Probiotical Research S.R.L, Via Mattei 3, 28100, Novara, Italy
| | - Marco Pane
- Probiotical Research S.R.L, Via Mattei 3, 28100, Novara, Italy
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100, Novara, Italy.
| |
Collapse
|
8
|
Gaisawat MB, Lopez-Escalera S, MacPherson CW, Iskandar MM, Tompkins TA, Kubow S. Probiotics Exhibit Strain-Specific Protective Effects in T84 Cells Challenged With Clostridioides difficile-Infected Fecal Water. Front Microbiol 2022; 12:698638. [PMID: 35154018 PMCID: PMC8826048 DOI: 10.3389/fmicb.2021.698638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022] Open
Abstract
Clostridioides difficile infection (CDI) is frequently associated with intestinal injury and mucosal barrier dysfunction, leading to an inflammatory response involving neutrophil localization and upregulation of pro-inflammatory cytokines. The severity of clinical manifestations is associated with the extent of the immune response, which requires mitigation for better clinical management. Probiotics could play a protective role in this disorder due to their immunomodulatory ability in gastrointestinal disorders. We assessed five single-strain and three multi-strain probiotics for their ability to modulate CDI fecal water (FW)-induced effects on T84 cells. The CDI-FW significantly (p < 0.05) decreased T84 cell viability. The CDI-FW-exposed cells also exhibited increased pro-inflammatory cytokine production as characterized by interleukin (IL)-8, C-X-C motif chemokine 5, macrophage inhibitory factor (MIF), IL-32, and tumor necrosis factor (TNF) ligand superfamily member 8. Probiotics were associated with strain-specific attenuation of the CDI-FW mediated effects, whereby Saccharomyces boulardii CNCM I-1079 and Lacticaseibacillus rhamnosus R0011 were most effective in reducing pro-inflammatory cytokine production and in increasing T84 cell viability. ProtecFlor™, Lactobacillus helveticus R0052, and Bifidobacterium longum R0175 showed moderate effectiveness, and L. rhamnosus GG R0343 along with the two other multi-strain combinations were the least effective. Overall, the findings showed that probiotic strains possess the capability to modulate the CDI-mediated inflammatory response in the gut lumen.
Collapse
Affiliation(s)
| | | | - Chad W MacPherson
- Rosell Institute for Microbiome and Probiotics, Montréal, QC, Canada
| | | | - Thomas A Tompkins
- Rosell Institute for Microbiome and Probiotics, Montréal, QC, Canada
| | - Stan Kubow
- School of Human Nutrition, McGill University, Montréal, QC, Canada
| |
Collapse
|
9
|
Knockdown of TRIM9 attenuates irinotecan‑induced intestinal mucositis in IEC‑6 cells by regulating DUSP6 expression via the P38 pathway. Mol Med Rep 2021; 24:867. [PMID: 34676875 PMCID: PMC8554382 DOI: 10.3892/mmr.2021.12507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal mucositis is a common side effect of cancer chemotherapy and it limits the dose of chemotherapy given to a patient. Tripartite motif family (TRIM) proteins have been reported to be implicated in the regulation of cancer chemotherapy. The present study aimed to investigate the effect of TRIM9 on irinotecan-induced intestinal mucositis in the rat intestinal epithelial cell line IEC-6. The expression of several TRIMs, such as TRIM1, TRIM9, TRIM18, TRIM36, TRIM46 and TRIM67, was examined. After TRIM9 knockdown or overexpression by lentivirus infection, cell proliferation and apoptosis, epithelial barrier tight-junction proteins, inflammatory cytokines, transepithelial electrical resistance (TEER) and FITC dextran were measured. Treatment with irinotecan significantly inhibited cell proliferation and induced cell apoptosis, TRIM9 expression, intestinal mucosal barrier impairment, the levels of inflammatory cytokines and P38 phosphorylation in IEC-6 cells, while the expression levels of epithelial barrier tight-junction protein ZO-1 and Claudin-4 were decreased. Knockdown of TRIM9 partly counteracted the effect of irinotecan treatment, and inhibition of P38 potently reversed the effect of TRIM9 overexpression in IEC-6 cells. Moreover, co-immunoprecipitation showed an interaction between TRIM9 and DUSP6 in IEC-6 cells, and overexpression of DUSP6 notably counteracted the effect of TRIM9 overexpression. The results demonstrated that TRIM9 knockdown may benefit patients with intestinal mucositis by inhibiting inflammatory cytokine expression and repairing intestinal barrier functions, which was probably due to inhibition of the activation of the P38 pathway via targeting DUSP6.
Collapse
|
10
|
In Vitro Framework to Assess the Anti- Helicobacter pylori Potential of Lactic Acid Bacteria Secretions as Alternatives to Antibiotics. Int J Mol Sci 2021; 22:ijms22115650. [PMID: 34073352 PMCID: PMC8198849 DOI: 10.3390/ijms22115650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Helicobacter pylori is a prevalent bacterium that can cause gastric ulcers and cancers. Lactic acid bacteria (LAB) ameliorate treatment outcomes against H. pylori, suggesting that they could be a source of bioactive molecules usable as alternatives to current antibiotics for which resistance is mounting. We developed an in vitro framework to compare the anti-H. pylori properties of 25 LAB and their secretions against H. pylori. All studies were done at acidic and neutralized pH, with or without urea to mimic various gastric compartments. Eighteen LAB strains secreted molecules that curtailed the growth of H. pylori and the activity was urea-resistant in five LAB. Several LAB supernatants also reduced the urease activity of H. pylori. Pre-treatment of H. pylori with acidic LAB supernatants abrogated its flagella-mediated motility and decreased its ability to elicit pro-inflammatory IL-8 cytokine from human gastric cells, without reverting the H. pylori-induced repression of other pro-inflammatory cytokines. This study identified the LAB that have the most anti-H. pylori effects, decreasing its viability, its production of virulence factors, its motility and/or its ability to elicit pro-inflammatory IL-8 from gastric cells. Once identified, these molecules can be used as alternatives or complements to current antibiotics to fight H. pylori infections.
Collapse
|
11
|
Antioxidant and Anti-Inflammatory Properties of Probiotic Candidate Strains Isolated during Fermentation of Agave ( Agave angustifolia Haw). Microorganisms 2021; 9:microorganisms9051063. [PMID: 34069080 PMCID: PMC8156479 DOI: 10.3390/microorganisms9051063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022] Open
Abstract
Agave species are a source of diverse products for human use, such as food, fiber, and beverages, which include mezcal, a distilled beverage produced by spontaneous fermentation. Agave is an excellent source of high amounts of sugars, minerals, and phenolic compounds, which favor the growth of lactic acid bacteria (LAB) and yeast communities. In this work, 20 promising LAB strains with probiotic characteristics were isolated from the agave fermentation stage in mezcal production. The strains belonged to Lactobacillus plantarum (15), Lactobacillus rhamnosus (2), Enterococcus faecium (2), and Lactococcus lactis (1). These isolates were characterized for their resistance under gastrointestinal conditions, such as lysozyme, acid pH, and bile salts. In addition, the adherence of these LABs to human intestinal epithelial cells (Caco-2 and HT-29 cells) was tested in vitro and their antioxidant and immunomodulatory profile was determined using cellular models. Lactobacillus rhamnosus LM07 and Lactobacillus plantarum LM17 and LM19 strains were selected for their antioxidant properties, and their capacities in an oxidative stress model in intestinal epithelial cells IECs (Caco-2 and HT-29 cells) in the presence of hydrogen peroxide were evaluated. Interestingly, Lactobacillus rhamnosus LM07 and Lactobacillus plantarum LM17 and LM19 strains showed anti-inflammatory properties in TNF-α-stimulated HT-29 cells. Subsequently, bacterial strains exhibiting antioxidant and anti-inflammatory properties were tested in vivo in a mouse model with dinitrobenzene sulfonic acid (DNBS)-induced chronic colitis. Weight loss, intestinal permeability, and cytokine profiles were measured in mice as indicators of inflammation. One of the selected strains, Lactobacillus plantarum LM17, improved the health of the mice, as observed by reduced weight loss, and significantly decreased intestinal permeability. Altogether, our results demonstrate the potential of LAB (and lactobacilli in particular) isolated from the agave fermentation stage in mezcal production. Lactobacillus rhamnosus LM07 and Lactobacillus plantarum LM17 strains represent potential candidates for developing new probiotic supplements to treat inflammatory bowel disease (IBD).
Collapse
|
12
|
Li A, Yang Y, Zhang Y, Lv S, Jin T, Li K, Han Z, Li Y. Microbiome analysis reveals the alterations in gut microbiota in different intestinal segments of Yimeng black goats. Microb Pathog 2021; 155:104900. [PMID: 33894292 DOI: 10.1016/j.micpath.2021.104900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Mounting evidence revealed the importance of gut microbiota in host metabolism, immunity and physiology, and health. Yimeng black goats (YBGs) mainly distributed in Shandong province of China, displayed a complicated intestinal microecosystem, but studies of its gut microbiota are still insufficient to report. Therefore, this study was performed with an objective to characterize the intestinal microbial community structure and diversity in the small intestine (duodenum, jejunum and ileum) and cecum of YBGs and investigated the variability of gut microbiota of different intestinal segments. A total of 12 intestinal samples were collected from YBGs for high-throughput sequencing analysis based on V3-V4 variable region of 16S rRNA genes. Our results revealed alterations in gut microbial composition with obvious differences in relative abundance between the different intestinal segments. Additionally, small intestine including duodenum, jejunum and ileum not only displayed higher species abundance and diversity than cecum but also showed a significant difference among the main components of gut microbiota based on the analytical results of alpha and beta diversities. At the phylum level, Firmicutes and Proteobacteria were the most preponderant phyla in all the samples regardless of intestinal sites. Moreover, the microbiota in small intestine was significantly different from cecum, which were characterized by the higher relative abundance of Butyrivibrio_2, Megasphaera, Halomonas, Delftia, Hydrogenophaga, Limnobacter, Pseudoxanthomonas, Novosphingobium, Janibacter and Erythrobacter, whereas the levels of Butyricicoccus, unidentified_Lachnospiraceae, Fusicatenibacter, Akkermansia, Ruminococcaceae_NK4A214_group and Lactobacillus were lower. Overall, this study first characterized the profile of gut microbiota composition in different intestinal sites and provide better insight into intestinal microbial community structure and diversity of YBGs.
Collapse
Affiliation(s)
- Aoyun Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Yang
- Linyi Academy of Agricultural Sciences, Linyi, 276012, China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shenjin Lv
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Taihua Jin
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhaoqing Han
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China.
| | - Yongzhu Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, China.
| |
Collapse
|
13
|
Freedman SB, Horne R, Johnson-Henry K, Xie J, Williamson-Urquhart S, Chui L, Pang XL, Lee B, Schuh S, Finkelstein Y, Gouin S, Farion KJ, Poonai N, Hurley K, Schnadower D, Sherman PM. Probiotic stool secretory immunoglobulin A modulation in children with gastroenteritis: a randomized clinical trial. Am J Clin Nutr 2021; 113:905-914. [PMID: 34269370 PMCID: PMC8023833 DOI: 10.1093/ajcn/nqaa369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We previously conducted the Probiotic Regimen for Outpatient Gastroenteritis Utility of Treatment (PROGUT) study, which identified no improvements in children with acute gastroenteritis (AGE) administered a probiotic. However, the aforementioned study did not evaluate immunomodulatory benefits. OBJECTIVES The object of this study was to determine if stool secretory immunoglobulin A (sIgA) concentrations in children with AGE increase more among participants administered a Lactobacillus rhamnosus/helveticus probiotic compared with those administered placebo. METHODS This a priori planned multicenter, randomized, double-blinded, placebo-controlled ancillary study enrolled children presenting for emergency care who received a 5-d probiotic or placebo course. Participants submitted stool specimens on days 0, 5, and 28. The primary endpoint was the change in stool sIgA concentrations on day 5 compared with baseline. RESULTS A total of 133 (n = 66 probiotic, 67 placebo) of 886 PROGUT participants (15.0%) provided all 3 specimens. Median stool sIgA concentrations did not differ between the probiotic and placebo groups at any of the study time points: day 0 median (IQR): 1999 (768, 4071) compared with 2198 (702, 5278) (P = 0.27, Cohen's d = 0.17); day 5: 2505 (1111, 5310) compared with 3207 (982, 7080) (P = 0.19, Cohen's d = 0.16); and day 28: 1377 (697, 2248) compared with 1779 (660, 3977) (P = 0.27, Cohen's d = 0.19), respectively. When comparing measured sIgA concentrations between days 0 and 5, we found no treatment allocation effects [β: -0.24 (-0.65, 0.18); P = 0.26] or interaction between treatment and specimen collection day [β: -0.003 (-0.09, 0.09); P = 0.95]. Although stool sIgA decreased between day 5 and day 28 within both groups (P < 0.001), there were no differences between the probiotic and placebo groups in the median changes in sIgA concentrations when comparing day 0 to day 5 median (IQR) [500 (-1135, 2362) compared with 362 (-1122, 4256); P = 0.77, Cohen's d = 0.075] and day 5 to day 28 [-1035 (-3130, 499) compared with -1260 (-4437, 843); P = 0.70, Cohen's d = 0.067], respectively. CONCLUSIONS We found no effect of an L. rhamnosus/helveticus probiotic, relative to placebo, on stool IgA concentrations. This trial was registered at clinicaltrials.gov as NCT01853124.
Collapse
Affiliation(s)
- Stephen B Freedman
- Sections of Pediatric Emergency Medicine and Gastroenterology, Department of Pediatrics, Alberta Children's Hospital, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Rachael Horne
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Kathene Johnson-Henry
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Jianling Xie
- Section of Pediatric Emergency Medicine, Department of Pediatrics, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Sarah Williamson-Urquhart
- Section of Pediatric Emergency Medicine, Department of Pediatrics, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Linda Chui
- Alberta Precision Laboratories - ProvLab, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Xiao-Li Pang
- Alberta Precision Laboratories - ProvLab, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Bonita Lee
- Department of Pediatrics, Faculty of Medicine & Dentistry, Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Suzanne Schuh
- Division of Emergency Medicine, Department of Paediatrics, Hospital for Sick Children, Toronto, Canada
| | - Yaron Finkelstein
- Divisions of Emergency Medicine and Clinical Pharmacology and Toxicology, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Serge Gouin
- Departments of Pediatric Emergency Medicine & Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, Canada
| | - Ken J Farion
- Departments of Pediatrics and Emergency Medicine, and Pediatric Emergency Department, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Naveen Poonai
- Division of Pediatric Emergency Medicine, Departments of Pediatrics, Internal Medicine, Epidemiology & Biostatistics, Schulich School of Medicine and Dentistry, London, Canada
| | - Katrina Hurley
- Division of Paediatric Emergency Medicine, Dalhousie University, Halifax, Canada
| | - David Schnadower
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Philip M Sherman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, and the Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | | |
Collapse
|
14
|
Han Z, Li A, Pei L, Li K, Jin T, Li F, Wang Z, Lv S, Li Y. Milk Replacer Supplementation Ameliorates Growth Performance and Rumen Microbiota of Early-Weaning Yimeng Black Goats. Front Vet Sci 2020; 7:572064. [PMID: 33240951 PMCID: PMC7669828 DOI: 10.3389/fvets.2020.572064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence has indicated the ameliorative effect of milk replacer supplementation in ruminants for regulating their early growth and rumen development. However, it is still unclear whether milk replacer supplementation has a beneficial role in the growth performance and rumen microbiota of Yimeng black goats (YBGs). Therefore, this study was performed to investigate the effects of milk replacer on growth performance and rumen microbiota of YBGs. Our results revealed that milk replacer supplementation could significantly improve the growth performance of YBGs. Additionally, the results of alpha and beta diversities indicated that there was no significant difference in richness and diversity between the control and milk replacer-treated YBGs. At the phylum level, Bacteroidetes, Firmicutes, and Proteobacteria were the most dominant phyla in all the samples at different stages. Moreover, the YBGs treated with milk replacer possessed a higher abundance of Verrucomicrobia than that in the control YBGs, while the level of Actinobacteria was obviously decreased. It is noteworthy that the abundance of Proteobacteria in the control YBGs was higher than that in the YBGs supplemented with milk replacer throughout the experiment. At the level of genus, the differences in the richness between control and milk replacer supplement YBGs were gradually observed. Compared with the control YBGs, the proportion of Akkermansia, Veillonella, Anaerovibrio, Ruminococcaceae_NK4A214_group, Ruminococcus_1, and Ruminococcus_2 was increased in the YBGs treated with milk replacer, whereas Turicibacter was decreased. In conclusion, milk replacer supplementation may serve as a good applicant for ameliorating early YBGs development and rumen microbiota.
Collapse
Affiliation(s)
- Zhaoqing Han
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lulu Pei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Taihua Jin
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Fukuan Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Zhennan Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Shenjin Lv
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Yongzhu Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| |
Collapse
|
15
|
Mathieu E, MacPherson CW, Belvis J, Mathieu O, Robert V, Saint-Criq V, Langella P, Tompkins TA, Thomas M. Oral Primo-Colonizing Bacteria Modulate Inflammation and Gene Expression in Bronchial Epithelial Cells. Microorganisms 2020; 8:microorganisms8081094. [PMID: 32707845 PMCID: PMC7464694 DOI: 10.3390/microorganisms8081094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023] Open
Abstract
The microbiota of the mouth disperses into the lungs, and both compartments share similar phyla. Considering the importance of the microbiota in the maturation of the immunity and physiology during the first days of life, we hypothesized that primo-colonizing bacteria of the oral cavity may induce immune responses in bronchial epithelial cells. Herein, we have isolated and characterized 57 strains of the buccal cavity of two human newborns. These strains belong to Streptococcus, Staphylococcus, Enterococcus, Rothia and Pantoea genera, with Streptococcus being the most represented. The strains were co-incubated with a bronchial epithelial cell line (BEAS-2B), and we established their impact on a panel of cytokines/chemokines and global changes in gene expression. The Staphylococcus strains, which appeared soon after birth, induced a high production of IL-8, suggesting they can trigger inflammation, whereas the Streptococcus strains were less associated with inflammation pathways. The genera Streptococcus, Enterococcus and Pantoea induced differential profiles of cytokine/chemokine/growth factor and set of genes associated with maturation of morphology. Altogether, our results demonstrate that the microorganisms, primo-colonizing the oral cavity, impact immunity and morphology of the lung epithelial cells, with specific effects depending on the phylogeny of the strains.
Collapse
Affiliation(s)
- Elliot Mathieu
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
| | - Chad W. MacPherson
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada; (C.W.M.); (J.B.); (O.M.); (T.A.T.)
| | - Jocelyn Belvis
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada; (C.W.M.); (J.B.); (O.M.); (T.A.T.)
| | - Olivier Mathieu
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada; (C.W.M.); (J.B.); (O.M.); (T.A.T.)
| | - Véronique Robert
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
| | - Vinciane Saint-Criq
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
| | - Philippe Langella
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
| | - Thomas A. Tompkins
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada; (C.W.M.); (J.B.); (O.M.); (T.A.T.)
| | - Muriel Thomas
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
- Correspondence:
| |
Collapse
|