1
|
Zhang J, Cheng H, Yevdokimova K, Zhu Y, Xie S, Liu R, Zhao P, Li G, Jiang L, Shao X, Zhang Z, Chen J, Rogers L, Hao K. Prenatal exposure to PM 2.5 led to impaired respiratory function in adult mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117052. [PMID: 39299211 DOI: 10.1016/j.ecoenv.2024.117052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND PM2.5 is a complex mixture, with water-soluble inorganic ions (WSII), mainly NH4+, SO42-, and NO3-, constituting major components. Early-life PM2.5 exposure has been shown to induce adverse health consequence but it is difficult to determine whether such an effect occurs prenatally (preconception, gestational) or postnatally in human studies. METHODS Four groups of C57BL/6 J mice were assigned to four exposure conditions: PM2.5 NO3-, PM2.5 SO42-, PM2.5 NH4+ and clean air, and exposure started at 4 weeks old. At 8 weeks old, mice bred within group. The exposure continued during gestation. After delivery, both the maternal and F1 mice (offspring) were kept in clean air without exposure to PM2.5. Respiratory function and pulmonary pathology were assessed in offspring mice at 8 weeks of age. In parallel, placenta tissue was collected for transcriptome profiling and mechanistic investigation. RESULTS F1 mice in PM2.5 NH4+, SO42- and NO3- groups had 32.2 % (p=6.0e-10), 30.3 % (p=3.8e-10) and 16.9 % (p=5.7e-8) lower peak expiratory flow (PEF) than the clean air group. Importantly, the exposure-induced lung function decline was greater in male than female offspring. Moreover, exposure to PM2.5 WSII before conception and during gestation was linked to increased airway wall thickness and elevated pulmonary neutrophil and macrophage counts in the offspring mice. At the molecular level, the exposure significantly disrupted gene expression in the placenta, affecting crucial functional pathways related to sex hormone response and inflammation. CONCLUSIONS PM2.5 WSII exposure during preconception and gestational period alone without post-natal exposure substantially impacted offspring's respiratory function as measured at adolescent age. Our results support the paradigm of fetal origin of environmentally associated chronic lung disease and highlight sex differences in susceptibility to air pollution exposure.
Collapse
Affiliation(s)
- Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse (Tongji University), China
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kateryna Yevdokimova
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yujie Zhu
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Rui Liu
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Pengbo Zhao
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Guohao Li
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Lu Jiang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xiaowen Shao
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jia Chen
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Linda Rogers
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ke Hao
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse (Tongji University), China; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
2
|
Short B, Delaney C, Johnston W, Litherland GJ, Lockhart JC, Williams C, Mackay WG, Ramage G. Informed development of a multi-species biofilm in chronic obstructive pulmonary disease. APMIS 2024; 132:336-347. [PMID: 38379455 DOI: 10.1111/apm.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Recent evidence indicates that microbial biofilm aggregates inhabit the lungs of COPD patients and actively contribute towards chronic colonization and repeat infections. However, there are no contextually relevant complex biofilm models for COPD research. In this study, a meta-analysis of the lung microbiome in COPD was used to inform development of an optimized biofilm model composed of genera highly associated with COPD. Bioinformatic analysis showed that although diversity matrices of COPD microbiomes were similar to healthy controls, and internal compositions made it possible to accurately differentiate between these cohorts (AUC = 0.939). Genera that best defined these patients included Haemophilus, Moraxella and Streptococcus. Many studies fail to account for fungi; therefore, Candida albicans was included in the creation of an interkingdom biofilm model. These organisms formed a biofilm capable of tolerating high concentrations of antimicrobial therapies with no significant reductions in viability. However, combined therapies of antibiotics and an antifungal resulted in significant reductions in viable cells throughout the biofilm (p < 0.05). This biofilm model is representative of the COPD lung microbiome and results from in vitro antimicrobial challenge experiments indicate that targeting both bacteria and fungi in these interkingdom communities will be required for more positive clinical outcomes.
Collapse
Affiliation(s)
- Bryn Short
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow, UK
| | - Christopher Delaney
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow, UK
| | - William Johnston
- Safeguarding Health through Infection Prevention (SHIP) Research Group, Research Centre for Health, Glasgow Caledonian University, Glasgow, UK
| | - Gary J Litherland
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
- Hamilton International Technology Park, Glasgow, UK
| | - John C Lockhart
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
- Hamilton International Technology Park, Glasgow, UK
| | - Craig Williams
- Microbiology Department, Lancaster Royal Infirmary, University of Lancaster, Lancaster, UK
| | - William G Mackay
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
- Hamilton International Technology Park, Glasgow, UK
| | - Gordon Ramage
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow, UK
- Safeguarding Health through Infection Prevention (SHIP) Research Group, Research Centre for Health, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
3
|
Pei G, Guo L, Liang S, Chen F, Ma N, Bai J, Deng J, Li M, Qin C, Feng T, He Z. Long-Term Erythromycin Treatment Alters the Airway and Gut Microbiota: Data from Chronic Obstructive Pulmonary Disease Patients and Mice with Emphysema. Respiration 2024; 103:461-479. [PMID: 38663359 DOI: 10.1159/000538911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/10/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Although long-term macrolide antibiotics could reduce the recurrent exacerbation of chronic obstructive pulmonary disease (COPD), the side effect of bacterial resistance and the impact on the microbiota remain concerning. We investigated the influence of long-term erythromycin treatment on the airway and gut microbiota in mice with emphysema and patients with COPD. METHODS We conducted 16S rRNA gene sequencing to explore the effect of erythromycin treatment on the lung and gut microbiota in mice with emphysema. Liquid chromatography-mass spectrometry was used for lung metabolomics. A randomized controlled trial was performed to investigate the effect of 48-week erythromycin treatment on the airway and gut microbiota in COPD patients. RESULTS The mouse lung and gut microbiota were disrupted after cigarette smoke exposure. Erythromycin treatment depleted harmful bacteria and altered lung metabolism. Erythromycin treatment did not alter airway or gut microbial diversity in COPD patients. It reduced the abundance of pathogens, such as Burkholderia, in the airway of COPD patients and increased levels of symbiotic bacteria, such as Prevotella and Veillonella. The proportions of Blautia, Ruminococcus, and Lachnospiraceae in the gut were increased in COPD patients after erythromycin treatment. The time to the first exacerbation following treatment was significantly longer in the erythromycin treatment group than in the COPD group. CONCLUSION Long-term erythromycin treatment reduces airway and gut microbe abundance in COPD patients but does not affect microbial diversity and restores microbiota balance in COPD patients by reducing the abundance of pathogenic bacteria.
Collapse
Affiliation(s)
- Guangsheng Pei
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Liyan Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siqiao Liang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fugang Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Nan Ma
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Bai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingmin Deng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meihua Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunhai Qin
- Department of Pulmonary and Critical Care Medicine, Guiping People's Hospital, Guiping, China
| | - Tao Feng
- Department of Pulmonary and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyi He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Zhang J, Cheng H, Zhu Y, Xie S, Shao X, Wang C, Chung SK, Zhang Z, Hao K. Exposure to Airborne PM 2.5 Water-Soluble Inorganic Ions Induces a Wide Array of Reproductive Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4092-4103. [PMID: 38373958 DOI: 10.1021/acs.est.3c07532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Water-soluble inorganic ions (WSIIs, primarily NH4+, SO42-, and NO3-) are major components in ambient PM2.5, but their reproductive toxicity remains largely unknown. An animal study was conducted where parental mice were exposed to PM2.5 WSIIs or clean air during preconception and the gestational period. After delivery, all maternal and offspring mice lived in a clean air environment. We assessed reproductive organs, gestation outcome, birth weight, and growth trajectory of the offspring mice. In parallel, we collected birth weight and placenta transcriptome data from 150 mother-infant pairs from the Rhode Island Child Health Study. We found that PM2.5 WSIIs induced a broad range of adverse reproductive outcomes in mice. PM2.5 NH4+, SO42-, and NO3- exposure reduced ovary weight by 24.22% (p = 0.005), 14.45% (p = 0.048), and 16.64% (p = 0.022) relative to the clean air controls. PM2.5 SO42- exposure reduced the weight of testicle by 5.24% (p = 0.025); further, mice in the PM2.5 SO42- exposure group had 1.81 (p = 0.027) fewer offspring than the control group. PM2.5 NH4+, SO42-, and NO3- exposure all led to lower birth than controls. In mice, 557 placenta genes were perturbed by exposure. Integrative analysis of mouse and human data suggested hypoxia response in placenta as an etiological mechanism underlying PM2.5 WSII exposure's reproductive toxicity.
Collapse
Affiliation(s)
- Jushan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China 200092
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China 200072
- College of Environmental Science and Engineering, Tongji University, Shanghai, China 200092
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yujie Zhu
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China 200072
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China 200072
| | - Xiaowen Shao
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China 200072
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China 200072
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ke Hao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China 200092
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China 200072
- College of Environmental Science and Engineering, Tongji University, Shanghai, China 200092
| |
Collapse
|
5
|
Hazra D, SM F, Chawla K, Sintchenko V, Martinez E, Magazine R, Siddalingaiah N. The altered sputum microbiome profile in patients with moderate and severe COPD exacerbations, compared to the healthy group in the Indian population. F1000Res 2023; 12:528. [PMID: 37928173 PMCID: PMC10624950 DOI: 10.12688/f1000research.132220.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
Background: Microbial culture-independent sequencing techniques have advanced our understanding of host-microbiome interactions in health and disease. The purpose of this study was to explore the dysbiosis of airway microbiota in patients with moderate or severe chronic obstructive pulmonary disease (COPD) and compare them with healthy controls. Methods: The COPD patients were investigated for disease severity based on airflow limitations and divided into moderate (50%≤FEV1<80% predicted) and severe groups (FEV1<50% predicted). Spontaneous sputum samples were collected and, the V3-V4 regions of the 16S rRNA coding gene were sequenced to examine the microbiome profile of COPD and healthy participants. Results: A total of 45 sputum samples were collected from 17 severe COPD, 12 moderate COPD cases, and 16 healthy volunteers. The bacterial alpha diversity (Shannon and Simpson's index) significantly decreased in the moderate and severe COPD groups, compared to healthy samples. A significantly higher proportion of Firmicutes and Actinobacteria were present in moderate COPD, and Proteobacteria numbers were comparatively increased in severe COPD. In healthy samples, Bacteroidetes and Fusobacteria were more abundant in comparison to both the COPD groups. Among the most commonly detected 20 bacterial genera, Streptococcus was predominant among the COPD sputum samples, whereas Prevotella was the top genus in healthy controls. Linear discriminant analysis (LDA>2) revealed that marker genera like Streptococcus and Rothia were abundant in moderate COPD. For severe COPD, the genera Pseudomonasand Leptotrichia were most prevalent, whereas Fusobacterium and Prevotella were dominant in the healthy group. Conclusions: Our findings suggest a significant dysbiosis of the respiratory microbiome in COPD patients. The decreased microbial diversity may influence the host immune response and provide microbiological biomarkers for the diagnosis and monitoring of COPD.
Collapse
Affiliation(s)
- Druti Hazra
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Fayaz SM
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, New South Wale, 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, 2145, Australia
| | - Elena Martinez
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, 2145, Australia
| | - Rahul Magazine
- Department of Respiratory Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nayana Siddalingaiah
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
6
|
Pant A, Das B, Arimbasseri GA. Host microbiome in tuberculosis: disease, treatment, and immunity perspectives. Front Microbiol 2023; 14:1236348. [PMID: 37808315 PMCID: PMC10559974 DOI: 10.3389/fmicb.2023.1236348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Tuberculosis (TB), an airborne pulmonary disease caused by Mycobacterium tuberculosis (M. tb), poses an unprecedented health and economic burden to most of the developing countries. Treatment of TB requires prolonged use of a cocktail of antibiotics, which often manifest several side effects, including stomach upset, nausea, and loss of appetite spurring on treatment non-compliance and the emergence of antibiotic resistant M. tb. The anti-TB treatment regimen causes imbalances in the composition of autochthonous microbiota associated with the human body, which also contributes to major side effects. The microbiota residing in the gastrointestinal tract play an important role in various physiological processes, including resistance against colonization by pathogens, boosting host immunity, and providing key metabolic functions. In TB patients, due to prolonged exposure to anti-tuberculosis drugs, the gut microbiota significantly loses its diversity and several keystone bacterial taxa. This loss may result in a significant reduction in the functional potency of the microbiota, which is a probable reason for poor treatment outcomes. In this review, we discuss the structural and functional changes of the gut microbiota during TB and its treatment. A major focus of the review is oriented to the gut microbial association with micronutrient profiles and immune cell dynamics during TB infection. Furthermore, we summarize the acquisition of anti-microbial resistance in M. tb along with the microbiome-based therapeutics to cure the infections. Understanding the relationship between these components and host susceptibility to TB disease is important to finding potential targets that may be used in TB prevention, progression, and cure.
Collapse
Affiliation(s)
- Archana Pant
- Molecular Genetics Lab, National Institute of Immunology, New Delhi, India
| | - Bhabatosh Das
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | | |
Collapse
|
7
|
Ilnytskyy Y, Petersen L, McIntyre JB, Konno M, D'Silva A, Dean M, Elegbede A, Golubov A, Kovalchuk O, Kovalchuk I, Bebb G. Genome-wide Detection of Chimeric Transcripts in Early-stage Non-small Cell Lung Cancer. Cancer Genomics Proteomics 2023; 20:417-432. [PMID: 37643782 PMCID: PMC10464939 DOI: 10.21873/cgp.20394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND/AIM Lung cancer remains the main culprit in cancer-related mortality worldwide. Transcript fusions play a critical role in the initiation and progression of multiple cancers. Treatment approaches based on specific targeting of discovered driver events, such as mutations in EGFR, and fusions in NTRK, ROS1, and ALK genes led to profound improvements in clinical outcomes. The formation of chimeric proteins due to genomic rearrangements or at the post-transcriptional level is widespread and plays a critical role in tumor initiation and progression. Yet, the fusion landscape of lung cancer remains underexplored. MATERIALS AND METHODS We used the JAFFA pipeline to discover transcript fusions in early-stage non-small cell lung cancer (NSCLC). The set of detected fusions was further analyzed to identify recurrent events, genes with multiple partners and fusions with high predicted oncogenic potential. Finally, we used a generalized linear model (GLM) to establish statistical associations between fusion occurrences and clinicopathological variables. RNA sequencing was used to discover and characterize transcript fusions in 270 NSCLC samples selected from the Glans-Look specimen repository. The samples were obtained during the early stages of disease prior to the initiation of chemo- or radiotherapy. RESULTS We identified a set of 792 fusions where 751 were novel, and 33 were recurrent. Four of the 33 recurrent fusions were significantly associated with clinicopathological variables. Several of the fusion partners were represented by well-established oncogenes ERBB4, BRAF, FGFR2, and MET. CONCLUSION The data presented in this study allow researchers to identify, select, and validate promising candidates for targeted clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Mie Konno
- Alberta Health Services, Calgary, Alberta, Canada
| | | | | | | | | | | | | | - Gwyn Bebb
- University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Vientós‐Plotts AI, Ericsson AC, Reinero CR. The respiratory microbiota and its impact on health and disease in dogs and cats: A One Health perspective. J Vet Intern Med 2023; 37:1641-1655. [PMID: 37551852 PMCID: PMC10473014 DOI: 10.1111/jvim.16824] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Healthy lungs were long thought of as sterile, with presence of bacteria identified by culture representing contamination. Recent advances in metagenomics have refuted this belief by detecting rich, diverse, and complex microbial communities in the healthy lower airways of many species, albeit at low concentrations. Although research has only begun to investigate causality and potential mechanisms, alterations in these microbial communities (known as dysbiosis) have been described in association with inflammatory, infectious, and neoplastic respiratory diseases in humans. Similar studies in dogs and cats are scarce. The microbial communities in the respiratory tract are linked to distant microbial communities such as in the gut (ie, the gut-lung axis), allowing interplay of microbes and microbial products in health and disease. This review summarizes considerations for studying local microbial communities, key features of the respiratory microbiota and its role in the gut-lung axis, current understanding of the healthy respiratory microbiota, and examples of dysbiosis in selected respiratory diseases of dogs and cats.
Collapse
Affiliation(s)
- Aida I. Vientós‐Plotts
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Comparative Internal Medicine LaboratoryUniversity of MissouriColumbiaMissouriUSA
| | - Aaron C. Ericsson
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- University of Missouri Metagenomics CenterUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Pathobiology, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Carol R. Reinero
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Comparative Internal Medicine LaboratoryUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
9
|
Zhang J, Cheng H, Di Narzo A, Zhu Y, Xie S, Shao X, Zhang Z, Chung SK, Hao K. Profiling Microbiota from Multiple Sites in the Respiratory Tract to Identify a Biomarker for PM 2.5 Nitrate Exposure-Induced Pulmonary Damages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7346-7357. [PMID: 37133311 DOI: 10.1021/acs.est.2c08807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The microbiota present in the respiratory tract (RT) responds to environmental stimuli and engages in a continuous interaction with the host immune system to maintain homeostasis. A total of 40 C57BL/6 mice were divided into four groups and exposed to varying concentrations of PM2.5 nitrate aerosol and clean air. After 10 weeks of exposure, assessments were conducted on the lung and airway microbiome, lung functions, and pulmonary inflammation. Additionally, we analyzed data from both mouse and human respiratory tract (RT) microbiomes to identify possible biomarkers for PM2.5 exposure-induced pulmonary damages. On average, 1.5 and 13.5% inter-individual microbiome variations in the lung and airway were explained by exposure, respectively. In the airway, among the 60 bacterial OTUs (operational taxonomic units) > 0.05% proportion, 40 OTUs were significantly affected by PM2.5 exposure (FDR ≤ 10%). Further, the airway microbiome was associated with peak expiratory flow (PEF) (p = 0.003), pulmonary neutrophil counts (p = 0.01), and alveolar 8-OHdG oxidative lesions (p = 0.0078). The Clostridiales order bacteria showed the strongest signals. For example, the o_Clostridiales;f_;g_ OTU was elevated by PM2.5 nitrate exposure (p = 4.98 × 10-5) and negatively correlated with PEF (r = -0.585 and p = 2.4 × 10-4). It was also associated with the higher pulmonary neutrophil count (p = 8.47 × 10-5) and oxidative lesion (p = 7.17 × 10-3). In human data, we confirmed the association of airway Clostridiales order bacteria with PM2.5 exposure and lung function. For the first time, this study characterizes the impact of PM2.5 exposure on the microbiome of multiple sites in the respiratory tract (RT) and its relevance to airflow obstructive diseases. By analyzing data from both humans and mice, we have identified bacteria belonging to the Clostridiales order as a promising biomarker for PM2.5 exposure-induced decline in pulmonary function and inflammation.
Collapse
Affiliation(s)
- Jushan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200072, China
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
- College of Environmental Science and Engineering, Tongji University, Shanghai 200072, China
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, United States
| | - Antonio Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, United States
| | - Yujie Zhu
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiaowen Shao
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, United States
| | - Sookja Kim Chung
- Medical Faculty, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Ke Hao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200072, China
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574, United States
| |
Collapse
|
10
|
Wu X, Li RF, Lin ZS, Xiao C, Liu B, Mai KL, Zhou HX, Zeng DY, Cheng S, Weng YC, Zhao J, Chen RF, Jiang HM, Chen LP, Deng LZ, Xie PF, Yang WM, Xia XS, Yang ZF. Coinfection with influenza virus and non-typeable Haemophilus influenzae aggregates inflammatory lung injury and alters gut microbiota in COPD mice. Front Microbiol 2023; 14:1137369. [PMID: 37065141 PMCID: PMC10098174 DOI: 10.3389/fmicb.2023.1137369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
BackgroundAcute exacerbation of chronic obstructive pulmonary disease (AECOPD) is associated with high mortality rates. Viral and bacterial coinfection is the primary cause of AECOPD. How coinfection with these microbes influences host inflammatory response and the gut microbiota composition is not entirely understood.MethodsWe developed a mouse model of AECOPD by cigarette smoke exposure and sequential infection with influenza H1N1 virus and non-typeable Haemophilus influenzae (NTHi). Viral and bacterial titer was determined using MDCK cells and chocolate agar plates, respectively. The levels of cytokines, adhesion molecules, and inflammatory cells in the lungs were measured using Bio-Plex and flow cytometry assays. Gut microbiota was analyzed using 16S rRNA gene sequencing. Correlations between cytokines and gut microbiota were determined using Spearman’s rank correlation coefficient test.ResultsCoinfection with H1N1 and NTHi resulted in more severe lung injury, higher mortality, declined lung function in COPD mice. H1N1 enhanced NTHi growth in the lungs, but NTHi had no effect on H1N1. In addition, coinfection increased the levels of cytokines and adhesion molecules, as well as immune cells including total and M1 macrophages, neutrophils, monocytes, NK cells, and CD4 + T cells. In contrast, alveolar macrophages were depleted. Furthermore, coinfection caused a decline in the diversity of gut bacteria. Muribaculaceae, Lactobacillus, Akkermansia, Lachnospiraceae, and Rikenella were further found to be negatively correlated with cytokine levels, whereas Bacteroides was positively correlated.ConclusionCoinfection with H1N1 and NTHi causes a deterioration in COPD mice due to increased lung inflammation, which is correlated with dysbiosis of the gut microbiota.
Collapse
Affiliation(s)
- Xiao Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Run-Feng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Zheng-Shi Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Bin Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai-Lin Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - De-You Zeng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Sha Cheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Yun-Ceng Weng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui-Feng Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hai-Ming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li-Ping Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling-Zhu Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pei-Fang Xie
- The Affiliated Anning First Hospital and Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Wei-Min Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- Wei-Min Yang,
| | - Xue-Shan Xia
- The Affiliated Anning First Hospital and Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Xue-Shan Xia,
| | - Zi-Feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- *Correspondence: Zi-Feng Yang,
| |
Collapse
|
11
|
Kayongo A, Robertson NM, Siddharthan T, Ntayi ML, Ndawula JC, Sande OJ, Bagaya BS, Kirenga B, Mayanja-Kizza H, Joloba ML, Forslund SK. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front Immunol 2023; 13:1085551. [PMID: 36741369 PMCID: PMC9890194 DOI: 10.3389/fimmu.2022.1085551] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | | | - Trishul Siddharthan
- Division of Pulmonary Medicine, School of Medicine, University of Miami, Miami, FL, United States
| | - Moses Levi Ntayi
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Josephine Caren Ndawula
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Experimental and Clinical Research Center, a cooperation of Charité - Universitatsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany,Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,*Correspondence: Sofia K. Forslund,
| |
Collapse
|
12
|
Singh A, Singh K, Kour A. Assessment of lung microbes in patients with silicosis: A comparison with acid-fast bacilli-positive and acid-fast bacilli-negative patients. APOLLO MEDICINE 2023. [DOI: 10.4103/am.am_169_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
13
|
Liu T, Zhang Z, Shen W, Wu Y, Bian T. MicroRNA Let-7 Induces M2 Macrophage Polarization in COPD Emphysema Through the IL-6/STAT3 Pathway. Int J Chron Obstruct Pulmon Dis 2023; 18:575-591. [PMID: 37077365 PMCID: PMC10108876 DOI: 10.2147/copd.s404850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
Background M2 polarized macrophages are involved in the occurrence and development of emphysema in COPD patients. However, the molecular mechanism of M2 macrophage polarization is still unclear. This study investigated the molecular mechanism of let-7 differentially expressed in bronchial epithelial cells of COPD patients participating in COPD emphysema by regulating the expression of IL-6 and inducing M2 polarization of alveolar macrophages (AM). Materials and Methods We measured let-7c expression in human lung tissue, serum and the lung tissue of cigarette smoke (CS)-exposed mice by qRT‒PCR. We observed the M1/M2 AM polarization in the lungs of COPD patients and COPD model mice by immunofluorescence analysis. Western blotting was used to determine the expression of MMP9/12 in the lung tissue of COPD patients and CS-exposed mice. An in vitro experiment was performed to determine the molecular mechanism of let-7c-induced macrophage polarization. Results Let-7c expression was downregulated in COPD patients, CS-exposed mice, and CS extract (CSE)-treated human bronchial epithelial (HBE) cells. AMs in COPD patients and CS-exposed mice were dominated by the M2 type, and the release of MMP9/12 was increased. In vitro, the transfection of mimics overexpressing let-7 or the use of tocilizumab to block signal transduction between HBE cells and macrophages inhibited the IL-6/STAT3 pathway. M2 macrophage polarization was inhibited, and MMP9/12 release was reduced. Conclusion Our results indicate that CS decreased let-7c expression in HBE cells, and M2 AM polarization was dominant in COPD. In HBE cells, let-7c could inhibit M2 polarization of AMs through the IL-6/STAT3 pathway, providing potential diagnostic and therapeutic value for slowing COPD emphysema.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Zheming Zhang
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Weiyu Shen
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Yan Wu
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Tao Bian
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
- Correspondence: Tao Bian; Yan Wu, Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China, Email ;
| |
Collapse
|
14
|
Zhang Y, He B, Wu L, Mi X, Zhang L, Li S, Wang J, Yu X. Exposure to particulate matter 2.5 leading to lung microbiome disorder and the alleviation effect of Auricularia auricular-judae polysaccharide. Int J Occup Med Environ Health 2022; 35:651-664. [PMID: 35913271 PMCID: PMC10464723 DOI: 10.13075/ijomeh.1896.01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/20/2021] [Indexed: 10/16/2022] Open
Abstract
OBJECTIVES The aim of the paper is to explore the role of lung microbiome disorder in lung tissue injury induced by exposure to particulate matter with a maximum diameter of 2.5 μm (PM2.5) and the alleviation effect of Auricularia auricular-judae polysaccharide (AAP). MATERIAL AND METHODS Sprague Dawley rats were given PM2.5 suspension at a dose of 20 mg/l twice a week for 8 weeks. Then, 100 mg/kg or 200 mg/kg of AAP was administered to the rats after PM2.5 exposure. The bronchoalveolar lavage fluid (BALF) and lung tissue samples were collected at the end of the experiment. The BALF was meant to detect changes in lung microbiome by 16S sequences and cluster analysis, with the application of the principal component analysis and the partial least squares discriminant analysis. The levels of interferon-γ (IFN-γ), and interleukin (IL)-4, IL-8, and IL-10 in lung tissue were detected by the enzyme-linked immunosorbent assay method. The pathological changes in lung tissue were observed by hematoxylin and eosin staining. RESULTS After PM2.5 exposure, the alveolar septum was widened, and the structures of alveolar walls were destroyed. There was inflammatory cells infiltration in the alveolar space and the interstitial space. Alpha diversity in BALF showed that the Chao1, ACE, Simpson, and Shannon values were increased, and the lung microbiome analysis revealed that the relative abundance of Firmicutes and Clostridium increased, while the relative abundance of Bacteroidetes and Akkermansia decreased. The contents of IFN-γ and IL-8 in lung tissue increased while the content of IL-10 decreased. After the administration of AAP, the alveolar structure damage was alleviated, and the interstitial hemorrhage, edema, and inflammatory cells infiltration were reduced. The Chao1 and ACE values decreased, and the taxonomic abundance values of Akkermansia were much higher. Simultaneously, the contents of IFN-γ, IL-4, and IL-8 decreased, and the content of IL-10 increased. CONCLUSIONS It was found that PM2.5 resulted in lung microbiome disorder, which might lead to the inflammation of lung tissue. It was also revealed that AAP could alleviate the inflammatory damage of lung tissue induced by PM2.5. Int J Occup Med Environ Health. 2022;35(6):651-64.
Collapse
Affiliation(s)
- Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
- Experiment Animal Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Bin He
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
- Experiment Animal Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Lei Wu
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Xiaoyi Mi
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Lijin Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Shuang Li
- Experiment Animal Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Jian Wang
- Experiment Animal Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Xiaoyu Yu
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan, People's Republic of China
| |
Collapse
|
15
|
Zhu T, Jin J, Chen M, Chen Y. The impact of infection with COVID-19 on the respiratory microbiome: A narrative review. Virulence 2022; 13:1076-1087. [PMID: 35763685 PMCID: PMC9794016 DOI: 10.1080/21505594.2022.2090071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has affected millions of individuals with various implications. Consistent with the crucial role of the microbiome in determining health and disease in humans, various studies have investigated the gut and respiratory microbiome effect on the COVID-19. Microbiota dysbiosis might support the entry, replication, and establishment of SARS-CoV-2 infection by modulating various mechanisms. One of the main mechanisms that the modulation of respiratory microbiota composition during the COVID-19 infection affects the magnitude of the disease is changes in innate and acquired immune responses, including inflammatory markers and cytokines and B- and T-cells. The diversity of respiratory microbiota in COVID-19 patients is controversial; some studies reported low microbial diversity, while others found high diversity, suggesting the role of respiratory microbiota in this disease. Modulating microbiota diversity and profile by supplementations and nutrients can be applied prophylactic and therapeutic in combating COVID-19. Here, we discussed the lung microbiome dysbiosis during various lung diseases and its interaction with immune cells, focusing on COVID-19.
Collapse
Affiliation(s)
- Taiping Zhu
- Internal Medicine Department, Chun’an Maternal and Child Health Hospital, Hangzhou, Zhejiang, China
| | - Jun Jin
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Minhua Chen
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China,CONTACT Minhua Chen
| | - Yingjun Chen
- Department of Infectious Diseases, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
16
|
The effect of oral bacterial lysates on the respiratory microbiome in patients with chronic obstructive pulmonary disease exacerbations – A pilot study. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Jia Q, Li Q, Wang Y, Zhao J, Jiang Q, Wang H, Xue W, Zhu Z, Tian L. Lung microbiome and transcriptome reveal mechanisms underlying PM 2.5 induced pulmonary fibrosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154974. [PMID: 35378184 DOI: 10.1016/j.scitotenv.2022.154974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Airborne fine particulate matter (PM2.5) is considered to be a risk factor for lung fibrosis, and therefore, it has attracted public attention due to its various physicochemical features and its adverse effects on health. However, little remains to be known regarding the mechanism of PM2.5-induced pulmonary fibrosis. The lung microbiota may be a potential factor involved in the adverse outcomes of pulmonary fibrosis. Meanwhile, miRNAs are thought to be key regulators that participate in the complex interplay between the host and the microbiota. Hence, to investigate the potential mechanisms of pulmonary fibrosis, and to explore the impact of PM2.5-induced alterations in miRNAs and the lung microbiota and possible interaction patterns in mice models, we took advantage of 16S rDNA gene sequencing, miRNAs sequencing (miRNAs-Seq), and mining of public databases profiling. The results of 16S rDNA analysis showed that PM2.5 interfered with the microbial community composition, resulting in Proteobacteria becoming an additional dominant phylum. In addition, differentially expressed miRNAs were enriched in HIF-1 signaling, the IL-17 signaling, as well as Th17 cell differentiation pathways, which are closely related to microbial functional pathways. Significantly, a target miRNA, miR-149-5p, may be a key factor triggering the MAPK signal pathway related to pulmonary fibrosis and disturbing the homeostasis of lung bacterial flora. These results indicate that PM2.5 may lead to interaction between lung microbiota dysbiosis and an imbalance of miRNA levels to form a vicious cycle that promotes lung fibrogenesis. The current study provides new insights into the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiuyue Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Hongwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wenming Xue
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
18
|
Ding K, Chen J, Zhan W, Zhang S, Chen Y, Long S, Lei M. Microbiome Links Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease and Dietary Fiber via the Gut-Lung Axis: A Narrative Review. COPD 2021; 19:10-17. [PMID: 34963421 DOI: 10.1080/15412555.2021.2019208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Existing comprehensive management strategies for COPD effectively relieve the symptoms of patients, delay the deterioration of lung function, and prevent the progression of COPD through various means and multidisciplinary interventions. However, there has been limited progress in therapies that address the underlying causes of COPD pathogenesis. Recent studies have identified specific changes in the gut and pulmonary microbiota in response to exposure to smoke that can cause or exacerbate CS-COPD by regulating the inflammatory immune response in the lungs through the gut-lung axis. As a convenient and controllable intervention, modifying the diet to include more dietary fiber can effectively improve the prognosis of CS-COPD. Gut microbiota ferment dietary fiber to produce short-chain fatty acids, which connect the microbial communities in the lung and gut mucosa across the gut-lung axis, playing an anti-inflammatory and immunosuppressive role in the lungs. Given that the effect of dietary fiber on gut microbiota was highly similar to that of quitting smoking on gut microbiota, we assume that microbiota might be a potential therapeutic target for dietary fiber to alleviate and prevent CS-COPD. This study examines the similarities between pulmonary and gut microbiota changes in the presence of smoking and dietary fiber. It also highlights the mechanism by which SCFAs link pulmonary and gut microbiota in CS-COPD and analyzes the anti-inflammatory and immunomodulatory effects of short-chain fatty acids on CS-COPD via the gut-lung axis.
Collapse
Affiliation(s)
- Kaixi Ding
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieling Chen
- Department of Respiration, Shehong Hospital of Traditional Chinese Medicine, Shehong, China
| | - Wenling Zhan
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shipeng Zhang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Chen
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sipei Long
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Lei
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Electronic cigarettes: Modern instruments for toxic lung delivery and posing risk for the development of chronic disease. Int J Biochem Cell Biol 2021; 137:106039. [PMID: 34242684 DOI: 10.1016/j.biocel.2021.106039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023]
Abstract
Following the emergence of electronic cigarette, or vaping product use associated lung injury (EVALI) in 2019 in the US, regulation of e-cigarettes has become globally tighter and the collective evidence of the detrimental effects of vaping has grown. The danger of cellular distress and altered homeostasis is heavily associated with the modifiable nature of electronic cigarette devices. An array of harmful chemicals and elevated concentrations of metals have been detected in e-cigarette aerosols which have been linked to various pathogeneses. Vaping is linked to increased inflammation, altered lipid homeostasis and mitochondrial dysfunction whilst also increasing microbial susceptibility whilst the long-term damage is yet to be observed. The scientific evidence is mounting and highlighting that, along with traditional tobacco cigarette smoking, electronic cigarette vaping is not a safe practice.
Collapse
|
20
|
Zhang J, Cheng H, Wang D, Zhu Y, Yang C, Shen Y, Yu J, Li Y, Xu S, Song X, Zhou Y, Chen J, Fan L, Jiang J, Wang C, Hao K. Revealing consensus gene pathways associated with respiratory functions and disrupted by PM2.5 nitrate exposure at bulk tissue and single cell resolution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116951. [PMID: 33780843 DOI: 10.1016/j.envpol.2021.116951] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nitrate is a major pollutant component in ambient PM2.5. It is known that chronic exposure to PM2.5 NO3- damages respiratory functions. We aim to explore the underlying toxicological mechanism at single cell resolution. METHODS We systematically conducted exposure experiments on forty C57BL/6 mice, assessed respiratory functions, and profiled lung transcriptome. . Afterward, we estimated the cell type compositions from RNA-seq data using deconvolution analysis. The genes and pathways associated with respiratory function and dysregulated by to PM2.5 NO3- exposure were characterized at bulk-tissue and single-cell resolution. RESULTS PM2.5 NO3- exposure did not significantly modify the cell type composition in lung, but profoundly altered the gene expression within each cell type. At ambient concentration (22 μg/m3), exposure significantly (FDR<10%) altered 95 genes' expression. Among the genes associated with respiratory functions, a large fraction (74.6-91.7%) were significantly perturbed by PM2.5 NO3- exposure. For example, among the 764 genes associated with peak expiratory flow (PEF), 608 (79.6%) were affected by exposure (p = 1.92e-345). Pathways known to play role in lung disease pathogenesis, including circadian rhythms, sphingolipid metabolism, immune response and lysosome, were found significantly associated with respiratory functions and disrupted by PM2.5 NO3- exposure. CONCLUSIONS This study extended our knowledge of PM2.5 NO3- exposure's effect to the levels of lung gene expression, pathways, lung cell type composition and cell specific transcriptome. At single cell resolution, we provided insights in toxicological mechanism of PM2.5 NO3- exposure and subsequent pulmonary disease risks.
Collapse
Affiliation(s)
- Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongbin Wang
- School of Environment, Tsinghua University, Beijing, China
| | - Yujie Zhu
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Chun Yang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuan Shen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaolian Song
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yang Zhou
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ke Hao
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Zhang J, Cheng H, Wang D, Zhu Y, Yang C, Shen Y, Yu J, Li Y, Xu S, Zhang S, Song X, Zhou Y, Chen J, Jiang J, Fan L, Wang C, Hao K. Chronic Exposure to PM 2.5 Nitrate, Sulfate, and Ammonium Causes Respiratory System Impairments in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3081-3090. [PMID: 33566583 DOI: 10.1021/acs.est.0c05814] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water-soluble inorganic (WSI) ions are major components of ambient air PM2.5 (particulate matter of diameter ≤2.5 μm); however, their potential health effects are understudied. On C57BL/6 mice, we quantified the effect of three major PM2.5 WSIs (NO3-, SO42-, and NH4+) on respiratory systems. Exposure scenarios include different WSI types, concentrations, animal development stages (young vs adult), and sex. The exposure effects were comprehensively assessed, with special focus on the respiratory function and tissue/cell level changes. Chronic PM2.5 NO3- exposure produced significant respiratory function decline, mainly presented as airflow obstruction. The decline was more profound in young mice than in adult mice. In young mice, exposure to 22 μg/m3 PM2.5 NO3- reduced FEV0.05 (forced expiratory volume in 0.05 s) by 11.3% (p = 9.6 × 10-3) and increased pulmonary neutrophil infiltration by 7.9% (p = 7.1 × 10-3). Causality tests identified that neutrophil infiltration was involved in the biological mechanism underlying PM2.5 NO3- toxicity. In contrast, the effects of PM2.5 SO42- were considerably weaker than NO3-. PM2.5 NO3- exposure was 3.4 times more potent than PM2.5 SO42- in causing reduction of the peak expiratory flow. PM2.5 NH4+ exposure had no statistically significant effects on the respiratory function. In summary, this study provided strong evidence on the adverse impacts of PM2.5 WSIs, where the impacts were most profound in young mice exposed to PM2.5 NO3-. If confirmed in humans, toxicity of PM2.5 WSI will have broad implications in environment health and policy making.
Collapse
Affiliation(s)
- Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, New York, United States
| | - Dongbin Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yujie Zhu
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Chun Yang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yuan Shen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200092, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shumin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Xiaolian Song
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yang Zhou
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York 10029, New York, United States
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Ke Hao
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, New York, United States
| |
Collapse
|
22
|
Short B, Carson S, Devlin AC, Reihill JA, Crilly A, MacKay W, Ramage G, Williams C, Lundy FT, McGarvey LP, Thornbury KD, Martin SL. Non-typeable Haemophilus influenzae chronic colonization in chronic obstructive pulmonary disease (COPD). Crit Rev Microbiol 2021; 47:192-205. [PMID: 33455514 DOI: 10.1080/1040841x.2020.1863330] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Haemophilus influenzae is the most common cause of bacterial infection in the lungs of chronic obstructive pulmonary disease (COPD) patients and contributes to episodes of acute exacerbation which are associated with increased hospitalization and mortality. Due to the ability of H. influenzae to adhere to host epithelial cells, initial colonization of the lower airways can progress to a persistent infection and biofilm formation. This is characterized by changes in bacterial behaviour such as reduced cellular metabolism and the production of an obstructive extracellular matrix (ECM). Herein we discuss the multiple mechanisms by which H. influenzae contributes to the pathogenesis of COPD. In particular, mechanisms that facilitate bacterial adherence to host airway epithelial cells, biofilm formation, and microbial persistence through immune system evasion and antibiotic tolerance will be discussed.
Collapse
Affiliation(s)
- Bryn Short
- University of the West of Scotland, Paisley, United Kingdom
| | - Stephen Carson
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Anna-Claire Devlin
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Anne Crilly
- University of the West of Scotland, Paisley, United Kingdom
| | - William MacKay
- University of the West of Scotland, Paisley, United Kingdom
| | - Gordon Ramage
- Glasgow Biofilm Research Group, Oral Sciences, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Craig Williams
- University of the West of Scotland, Paisley, United Kingdom
| | - Fionnuala T Lundy
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Lorcan P McGarvey
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Keith D Thornbury
- Smooth Muscle Research Group, Dundalk Institute of Technology, Dundalk, Ireland
| | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
23
|
Daniel S, Phillippi D, Schneider LJ, Nguyen KN, Mirpuri J, Lund AK. Exposure to diesel exhaust particles results in altered lung microbial profiles, associated with increased reactive oxygen species/reactive nitrogen species and inflammation, in C57Bl/6 wildtype mice on a high-fat diet. Part Fibre Toxicol 2021; 18:3. [PMID: 33419468 PMCID: PMC7796587 DOI: 10.1186/s12989-020-00393-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Exposure to traffic-generated emissions is associated with the development and exacerbation of inflammatory lung disorders such as chronic obstructive pulmonary disorder (COPD) and idiopathic pulmonary fibrosis (IPF). Although many lung diseases show an expansion of Proteobacteria, the role of traffic-generated particulate matter pollutants on the lung microbiota has not been well-characterized. Thus, we investigated the hypothesis that exposure to diesel exhaust particles (DEP) can alter commensal lung microbiota, thereby promoting alterations in the lung's immune and inflammatory responses. We aimed to understand whether diet might also contribute to the alteration of the commensal lung microbiome, either alone or related to exposure. To do this, we used male C57Bl/6 mice (4-6-week-old) on either regular chow (LF) or high-fat (HF) diet (45% kcal fat), randomly assigned to be exposed via oropharyngeal aspiration to 35 μg DEP, suspended in 35 μl 0.9% sterile saline or sterile saline only (control) twice a week for 30 days. A separate group of study animals on the HF diet was concurrently treated with 0.3 g/day of Winclove Ecologic® Barrier probiotics in their drinking water throughout the study. RESULTS Our results show that DEP-exposure increases lung tumor necrosis factor (TNF)-α, interleukin (IL)-10, Toll-like receptor (TLR)-2, TLR-4, and the nuclear factor kappa B (NF-κB) histologically and by RT-qPCR, as well as Immunoglobulin A (IgA) and Immunoglobulin G (IgG) in the bronchoalveolar lavage fluid (BALF), as quantified by ELISA. We also observed an increase in macrophage infiltration and peroxynitrite, a marker of reactive oxygen species (ROS) + reactive nitrogen species (RNS), immunofluorescence staining in the lungs of DEP-exposed and HF-diet animals, which was further exacerbated by concurrent DEP-exposure and HF-diet consumption. Histological examinations revealed enhanced inflammation and collagen deposition in the lungs DEP-exposed mice, regardless of diet. We observed an expansion of Proteobacteria, by qPCR of bacterial 16S rRNA, in the BALF of DEP-exposed mice on the HF diet, which was diminished with probiotic-treatment. CONCLUSIONS Our findings suggest that exposure to DEP causes persistent and sustained inflammation and bacterial alterations in a ROS-RNS mediated fashion, which is exacerbated by concurrent consumption of an HF diet.
Collapse
Affiliation(s)
- Sarah Daniel
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Danielle Phillippi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Leah J Schneider
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Kayla N Nguyen
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA
| | - Julie Mirpuri
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, EESAT - 215, 1704 W. Mulberry, Denton, TX, 76201, USA.
| |
Collapse
|
24
|
Din AU, Mazhar M, Waseem M, Ahmad W, Bibi A, Hassan A, Ali N, Gang W, Qian G, Ullah R, Shah T, Ullah M, Khan I, Nisar MF, Wu J. SARS-CoV-2 microbiome dysbiosis linked disorders and possible probiotics role. Biomed Pharmacother 2021; 133:110947. [PMID: 33197765 PMCID: PMC7657099 DOI: 10.1016/j.biopha.2020.110947] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 01/07/2023] Open
Abstract
In December 2019, a pneumonia outbreak of unknown etiology was reported which caused panic in Wuhan city of central China, which was later identified as Coronavirus disease (COVID-19) caused by a novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by the Chinese Centre for Disease Control and Prevention (CDC) and WHO. To date, the SARS-CoV-2 spread has already become a global pandemic with a considerable death toll. The associated symptoms of the COVID-19 infection varied with increased inflammation as an everyday pathological basis. Among various other symptoms such as fever, cough, lethargy, gastrointestinal (GI) symptoms included diarrhea and IBD with colitis, have been reported. Currently, there is no sole cure for COVID-19, and researchers are actively engaged to search out appropriate treatment and develop a vaccine for its prevention. Antiviral for controlling viral load and corticosteroid therapy for reducing inflammation seems to be inadequate to control the fatality rate. Based on the available related literature, which documented GI symptoms with diarrhea, inflammatory bowel diseases (IBD) with colitis, and increased deaths in the intensive care unit (ICU), conclude that dysbiosis occurs during SARS-COV-2 infection as the gut-lung axis cannot be ignored. As probiotics play a therapeutic role for GI, IBD, colitis, and even in viral infection. So, we assume that the inclusion of studies to investigate gut microbiome and subsequent therapies such as probiotics might help decrease the inflammatory response of viral pathogenesis and respiratory symptoms by strengthening the host immune system, amelioration of gut microbiome, and improvement of gut barrier function.
Collapse
Affiliation(s)
- Ahmad Ud Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Maryam Mazhar
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Muhammed Waseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Waqar Ahmad
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, Sichuan, China; College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Asma Bibi
- Institute of Zoonosis Anhui Medical University, Hefei Anhui, 230032, China
| | - Adil Hassan
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Niaz Ali
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio-resources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Wang Gang
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Gao Qian
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Razi Ullah
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tariq Shah
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mehraj Ullah
- Department of Biotechnology School of Fermentation Engineering Tianjin University of Science and Technology China, China
| | - Israr Khan
- School of Life Sciences, Lanzhou University, China
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
25
|
Quinones Tavarez Z, Li D, Croft DP, Gill SR, Ossip DJ, Rahman I. The Interplay Between Respiratory Microbiota and Innate Immunity in Flavor E-Cigarette Vaping Induced Lung Dysfunction. Front Microbiol 2020; 11:589501. [PMID: 33391205 PMCID: PMC7772214 DOI: 10.3389/fmicb.2020.589501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Global usage of electronic nicotine delivery systems (ENDS) has been increasing in the last decade. ENDS are non-combustible tobacco products that heat and aerosolize a liquid containing humectants, with added flavorings and often nicotine. Though ENDS are promoted as a less harmful alternative to smoking, current evidence links their use to a wide range of deleterious health effects including acute and chronic lung damage. ENDS can elicit an inflammatory response and impair the innate immune response in the lungs. Exposure to ENDS flavorings results in abnormal activation of the lung epithelial cells and β-defensins, dysfunction of the macrophage phagocytic activity, increased levels of mucin (MUC5AC) and abnormal activation of the neutrophilic response (NETosis). ENDS menthol flavorings disrupt innate immunity and might be associated with allergies and asthma through activation of transient receptor potential ankyrin 1 (TRAP1). Recent studies have expanded our understanding of the relationship between the homeostasis of lung innate immunity and the immunomodulatory effect of the host-microbiota interaction. Alterations of the normal respiratory microbiota have been associated with chronic obstructive pulmonary disease (COPD), asthma, atopy and cystic fibrosis complications which are strongly associated with smoking and potentially with ENDS use. Little is known about the short-and long-term effects of ENDS on the respiratory microbiota, their impact on the innate immune response and their link to pulmonary health and disease. Here we review the interaction between the innate immune system and the respiratory microbiota in the pathogenesis of ENDS-induced pulmonary dysfunction and identify future areas of research.
Collapse
Affiliation(s)
- Zahira Quinones Tavarez
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel P. Croft
- Department of Medicine, Pulmonary Diseases and Critical Care, University of Rochester, Rochester, NY, United States
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah J. Ossip
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
26
|
Sommariva M, Le Noci V, Bianchi F, Camelliti S, Balsari A, Tagliabue E, Sfondrini L. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell Mol Life Sci 2020; 77:2739-2749. [PMID: 31974656 PMCID: PMC7326824 DOI: 10.1007/s00018-020-03452-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
Like other body districts, lungs present a complex bacteria community. An emerging function of lung microbiota is to promote and maintain a state of immune tolerance, to prevent uncontrolled and not desirable inflammatory response caused by inhalation of harmless environmental stimuli. This effect is mediated by a continuous dialog between commensal bacteria and immune cells resident in lungs, which express a repertoire of sensors able to detect microorganisms. The same receptors are also involved in the recognition of pathogens and in mounting a proper immune response. Due to its important role in preserving lung homeostasis, the lung microbiota can be also considered a mirror of lung health status. Indeed, several studies indicate that lung bacterial composition drastically changes during the occurrence of pulmonary pathologies, such as lung cancer, and the available data suggest that the modifications of lung microbiota can be part of the etiology of tumors in lungs and can influence their progression and response to therapy. These results provide the scientific rationale to analyze lung microbiota composition as biomarker for lung cancer and to consider lung microbiota a new potential target for therapeutic intervention to reprogram the antitumor immune microenvironment. In the present review, we discussed about the role of lung microbiota in lung physiology and summarized the most relevant data about the relationship between lung microbiota and cancer.
Collapse
Affiliation(s)
- Michele Sommariva
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy
| | - Valentino Le Noci
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy
| | - Francesca Bianchi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS, Istituto Nazionale Dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Simone Camelliti
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy
| | - Andrea Balsari
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS, Istituto Nazionale Dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS, Istituto Nazionale Dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Lucia Sfondrini
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy.
| |
Collapse
|
27
|
Pass HI. Commentary: Lung cancer and dysbiosis: Debugging the studies for the future. J Thorac Cardiovasc Surg 2020; 161:430-431. [PMID: 32305195 DOI: 10.1016/j.jtcvs.2020.02.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Harvey I Pass
- Division of General Thoracic Surgery, Department of Cardiovascular Surgery, NYU Langone Medical Center, New York, NY.
| |
Collapse
|
28
|
Liang X, Liu T, Zhang Z, Yu Z. Airway Inflammation Biomarker for Precise Management of Neutrophil-Predominant COPD. Methods Mol Biol 2020; 2204:181-191. [PMID: 32710325 DOI: 10.1007/978-1-0716-0904-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) course can be divided into stable stage and acute exacerbation. Deepen the understanding to the function and role of airway inflammatory cells in stable COPD is important for developing new therapies to restore airway dysfunction and preventing stable stage COPD progress to acute exacerbation COPD. Neutrophil is a feature of lower airways and lung inflammation in majority COPD patients at stable stage and increased neutrophils usually means COPD patients are in a more serious stage. Neutrophil-predominant COPD always accompanied by increased numbers of macrophages, lymphocytes, and dendritic cells. The composition proportion of different inflammatory cells are changed with disease severity. Recently, neutrophilic inflammation has been proved to be correlated with the disturbance of airway resident microbiota, which promote neutrophil influx and exacerbates inflammation. Consequently, understanding the details of increased neutrophils and dysbacteriosis in COPD is necessary for making precise management strategy against neutrophil-associated COPD.
Collapse
Affiliation(s)
- Xue Liang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China.
- State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China.
| | - Ting Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Zhiming Zhang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ziyu Yu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
29
|
Sun Z, Zhu Q, Shen Y, Yan T, Zhou X. Dynamic changes of gut and lung microorganisms during chronic obstructive pulmonary disease exacerbations. Kaohsiung J Med Sci 2019; 36:107-113. [PMID: 31782610 DOI: 10.1002/kjm2.12147] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhe Sun
- Department of Respiration MedicineShanghai General Hospital of Nanjing Medical University Shanghai China
- Department of RespiratoryShanghai General Hospital, Shanghai Jiao Tong University Shanghai China
| | - Qiu‐Li Zhu
- Department of RespiratoryShanghai General Hospital, Shanghai Jiao Tong University Shanghai China
| | - Yun Shen
- Department of RespiratoryShanghai General Hospital, Shanghai Jiao Tong University Shanghai China
| | - Tao Yan
- Department of RespiratoryShanghai General Hospital, Shanghai Jiao Tong University Shanghai China
| | - Xin Zhou
- Department of Respiration MedicineShanghai General Hospital of Nanjing Medical University Shanghai China
- Department of RespiratoryShanghai General Hospital, Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
30
|
Hammad DBM, Liyanapathirana V, Tonge DP. Molecular characterisation of the synovial fluid microbiome in rheumatoid arthritis patients and healthy control subjects. PLoS One 2019; 14:e0225110. [PMID: 31751379 PMCID: PMC6871869 DOI: 10.1371/journal.pone.0225110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
METHODS The presence and identity of bacterial and fungal DNA in the synovial fluid of rheumatoid arthritis (RA) patients and healthy control subjects was investigated through amplification and sequencing of the bacterial 16S rRNA gene and fungal internal transcribed spacer region 2 respectively. Synovial fluid concentrations of the cytokines IL-6, IL-17A, IL22 and IL-23 were determined by ELISA. RESULTS Bacterial 16S rRNA genes were detected in 87.5% RA patients, and all healthy control subjects. At the phylum level, the microbiome was predominated by Proteobacteria (Control = 83.5%, RA = 79.3%) and Firmicutes (Control = 16.1%, RA = 20.3%), and to a much lesser extent, Actinobacteria (Control = 0.2%, RA = 0.3%) and Bacteroidetes (Control = 0.1%, RA = 0.1%). Fungal DNA was identified in 75% RA samples, and 88.8% healthy controls. At the phylum level, synovial fluid was predominated by members of the Basidiomycota (Control = 53.9%, RA = 46.9%) and Ascomycota (Control = 35.1%, RA = 50.8%) phyla. Statistical analysis revealed key taxa that were differentially present or abundant dependent on disease status. CONCLUSIONS This study reports the presence of a synovial fluid microbiome, and determines that this is modulated by disease status (RA) as are other classical microbiome niches.
Collapse
Affiliation(s)
- Dargham Bayan Mohsen Hammad
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, Newcastle, England, United Kingdom
| | | | - Daniel Paul Tonge
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, Newcastle, England, United Kingdom
| |
Collapse
|
31
|
Fabbrizzi A, Amedei A, Lavorini F, Renda T, Fontana G. The lung microbiome: clinical and therapeutic implications. Intern Emerg Med 2019; 14:1241-1250. [PMID: 31667699 DOI: 10.1007/s11739-019-02208-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
The human respiratory tract, usually considered sterile, is currently being investigated for human-associated microbial communities. According to Dickson's conceptual model, the lung microbiota (LMt) is a dynamic ecosystem, whose composition, in healthy lungs, is likely to reflect microbial migration, reproduction, and elimination. However, which microbial genera constitutes a "healthy microbiome" per se remains hotly debated. It is now widely accepted that a bi-directional gut-lung axis connects the intestinal with the pulmonary microbiota and that the diet could have a role in modulating both microbiotas as in health as in pathological status. The LMt is altered in numerous respiratory disorders such as obstructive airway diseases, interstitial lung diseases, infections, and lung cancer. Some authors hypothesize that the use of specific bacterial strains, termed "probiotics," with positive effects on the host immunity and/or against pathogens, could have beneficial effects in the treatment of intestinal disorders and pulmonary diseases. In this manuscript, we have reviewed the literature available on the LMt to delineate and discuss the potential relationship between composition alterations of LMt and lung diseases. Finally, we have reported some meaningful clinical studies that used integrated probiotics' treatments to contrast some lung-correlated disorders.
Collapse
Affiliation(s)
- Alessio Fabbrizzi
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
- Sod of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), University of Florence, 50134, Florence, Italy.
| | - Federico Lavorini
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Teresa Renda
- Respiratory Unit, Careggi University Hospital, Florence, Italy
| | - Giovanni Fontana
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
32
|
Zhou H, Suo J, Zhu J. [Therapeutic Relevance of Human Microbiota and Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:464-469. [PMID: 31315786 PMCID: PMC6712272 DOI: 10.3779/j.issn.1009-3419.2019.07.09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
人体菌群与人类健康状态密切相关,如人体菌群的失调可能导致糖尿病、胃肠道疾病、肥胖等疾病的发生。人体内微生物与约20%的恶性肿瘤有关,肺癌(lung cancer, LC)是目前最为常见的恶性肿瘤之一,我国男性LC发病率及死亡率高居所有恶性肿瘤之首。近来研究表明,人体菌群可能通过代谢、炎症或免疫等途径影响着LC的发生,同时影响LC对放化疗、基因治疗、免疫治疗等治疗方法的疗效,如免疫治疗,是用于治疗LC的一种极有前景的手段,但不同患者从中获益不一,包含以肺癌细胞株的实验表明肠道微生物群可通过与宿主免疫系统的相互作用调节对免疫治疗的反应。但针对肺癌患者,肠道菌群是否仍能对免疫治疗进行调节仍存在争议。本文就人体菌群与LC的治疗相关性的近来研究进展进行综述。
Collapse
Affiliation(s)
- Huijie Zhou
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Suo
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiang Zhu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Xiong Y, Hu S, Zhou H, Zeng H, He X, Huang D, Li X. High-throughput 16S rDNA sequencing of the pulmonary microbiome of rats with allergic asthma. Genes Dis 2019; 7:272-282. [PMID: 32215297 PMCID: PMC7083718 DOI: 10.1016/j.gendis.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/20/2019] [Indexed: 02/01/2023] Open
Abstract
A decrease in microbial infection in adolescents is implicated with an increase in the incidence of asthma and allergic diseases in adulthood, indicating that the microbiome plays a critical role in asthma. However, the microbial composition of the lower respiratory tract remains unclear, hindering the further exploration of the pathogenesis of asthma. This study aims to explore the microbial distribution and composition in the lungs of normal rats and rats with allergic asthma via 16S rDNA sequencing. The DNA of the pulmonary microbiome was extracted from the left lungs collected from normal control group (NC), saline control group (SC), and allergic asthma group (AA) under aseptic conditions. After the 16s rDNA V4—V5 region was amplified, the products were sequenced using Illumina high-throughput technology and subjected to operational taxonomic unit (OTU) cluster and taxonomy analysis. The OTU values of AA increased significantly compared with those of NC and SC. Microbiome structure analysis showed that the dominant phylum of the pulmonary microbiome changed from Proteobacteria in NC to Firmicutes in AA. Linear discriminant analysis indicated that the key microbiomes involved in the three groups varied. Numerous microbiomes stably settled in the lungs of the rats in NC and AA. The structure and diversity of the pulmonary microbiome in AA differed from those in NC.
Collapse
Affiliation(s)
- Yang Xiong
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Sen Hu
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongyao Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, 401331, China
| | - Hui Zeng
- Department of the Second Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuan He
- Department of the Second Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Dongni Huang
- Department of Obstetrics, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyu Li
- Laboratory of Innovation, Basic Medical Experimental Teaching Center, Chongqing Medical University, Chongqing, 401331, China
- Corresponding author.
| |
Collapse
|
34
|
Zhou Y, Chen L, Sun G, Li Y, Huang R. Alterations in the gut microbiota of patients with silica-induced pulmonary fibrosis. J Occup Med Toxicol 2019; 14:5. [PMID: 30867671 PMCID: PMC6399897 DOI: 10.1186/s12995-019-0225-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/24/2019] [Indexed: 02/08/2023] Open
Abstract
Silicosis resulting from silica exposure is a global occupational disease characterized by severe pathological changes in progressive pulmonary fibrosis. Previous evidence has indicated that dysbiosis of the gut microbiota occurs after environmental dust exposure and is associated with certain diseases. The aims of this study are to elucidate the compositional and functional characteristics of the gut microbiota in early-stage silicosis and to understand their influence on pulmonary fibrosis. We investigated the gut microbial composition of fecal samples from 18 patients and 21 healthy subjects using 16S rRNA gene sequencing technology. Compared with the healthy subjects, reductions in the levels of Firmicutes and Actinobacteria were noted in patients with silicosis and progressive pulmonary fibrosis, as well as lower levels of Devosia, Clostridiales, AlloprevotellaandRikenellaceae_RC9. Lachnospiraceae and Lachnoclostridium levels were increased in patients with silicosis. GOC and KEGG analyses were used to predict that certain bacteria taxa play critical roles in the development of pulmonary fibrosis, including posttranslational modification, amino acid transport and metabolism, nucleotide transport and metabolism, and ribosomal structure and biogenesis. KEGG analysis showed that certain taxa participate in various roles including cancer, endocrine metabolism, immune system, signaling molecules and interaction, and transcription. Collectively, in this pilot study, microbiota changes have been represented in the gut of patients with silicosis. Although this change in gut microbiota have been represented, caution is needed when interpreting the findings since this is observational finding, not necessarily causative. More studies should be performed in the expanding population to be verified and more studies underlying biological mechanisms for better understanding the relationship between gut microbiota and development of pulmonary fibrosis in patients with silicosis.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Changsha, 410078 China
| | - Lv Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Changsha, 410078 China
| | - Gaofeng Sun
- Department of Chronic and Non-communicable Diseases Control, City Center for Disease Control and Prevention, Urumqi, 830026 China
| | - Ying Li
- Hunan Prevention and Treatment Center For Occupational Diseases, Changsha, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Changsha, 410078 China
| |
Collapse
|
35
|
Wang L, Cheng H, Wang D, Zhao B, Zhang J, Cheng L, Yao P, Di Narzo A, Shen Y, Yu J, Li Y, Xu S, Chen J, Fan L, Lu J, Jiang J, Zhou Y, Wang C, Zhang Z, Hao K. Airway microbiome is associated with respiratory functions and responses to ambient particulate matter exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:269-277. [PMID: 30342360 PMCID: PMC6257984 DOI: 10.1016/j.ecoenv.2018.09.079] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 07/21/2023]
Abstract
BACKGROUND Ambient particulate matter (PM) exposure has been associated with respiratory function decline in epidemiological studies. We hypothesize that a possible underlying mechanism is the perturbation of airway microbiome by PM exposure. METHODS During October 2016-October 2017, on two human cohorts (n = 115 in total) in Shanghai China, we systematically collected three categories of data: (1) respiratory functions, (2) airway microbiome from sputum, and (3) PM2.5 (PM of ≤ 2.5 µm in diameter) level in ambient air. We investigated the impact of PM2.5 on airway microbiome as well as the link between airway microbiome and respiratory functions using linear mixed regression models. RESULTS The respiratory function of our primary interest includes forced vital capacity (FVC) and forced expiratory volume in 1st second (FEV1). FEV1/FVC, an important respiratory function trait and key diagnosis criterion of COPD, was significantly associated with airway bacteria load (p = 0.0038); and FEV1 was associated with airway microbiome profile (p = 0.013). Further, airway microbiome was significantly influenced by PM2.5 exposure (p = 4.48E-11). CONCLUSIONS To our knowledge, for the first time, we demonstrated the impact of PM2.5 on airway microbiome, and reported the link between airway microbiome and respiratory functions. The results expand our understanding on the scope of PM2.5 exposure's influence on human respiratory system, and point to novel etiological mechanism of PM2.5 exposure induced diseases.
Collapse
Affiliation(s)
- Liping Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongbin Wang
- School of Environment, Tsinghua University, Beijing, China
| | - Bo Zhao
- School of Life Sciences, Tongji University, Shanghai, China
| | - Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Long Cheng
- School of Software Engineering, Tongji University, Shanghai, China
| | - Pengfei Yao
- School of Software Engineering, Tongji University, Shanghai, China
| | - Antonio Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuan Shen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jianwei Lu
- School of Software Engineering, Tongji University, Shanghai, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing, China
| | - Yang Zhou
- School of Life Sciences, Tongji University, Shanghai, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ke Hao
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
36
|
Su YC, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018; 9:2530. [PMID: 30455693 PMCID: PMC6230626 DOI: 10.3389/fimmu.2018.02530] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a "vicious circle." Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
37
|
Taylor SL, O'Farrell HE, Simpson JL, Yang IA, Rogers GB. The contribution of respiratory microbiome analysis to a treatable traits model of care. Respirology 2018; 24:19-28. [PMID: 30282116 DOI: 10.1111/resp.13411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/13/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022]
Abstract
The composition of the airway microbiome in patients with chronic airway diseases, such as severe asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis and cystic fibrosis (CF), has the potential to inform a precision model of clinical care. Patients with these conditions share overlapping disease characteristics, including airway inflammation and airflow limitation. The clinical management of chronic respiratory conditions is increasingly moving away from a one-size-fits-all model based on primary diagnosis, towards care targeting individual disease traits, and is particularly useful for subgroups of patients who respond poorly to conventional therapies. Respiratory microbiome analysis is an important potential contributor to such a 'treatable traits' approach, providing insight into both microbial drivers of airways disease, and the selective characteristics of the changing lower airway environment. We explore the potential to integrate respiratory microbiome analysis into a treatable traits model of clinical care and provide a practical guide to the application and clinical interpretation of respiratory microbiome analysis.
Collapse
Affiliation(s)
- Steven L Taylor
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hannah E O'Farrell
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Jodie L Simpson
- Respiratory and Sleep Medicine, Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia
| | - Ian A Yang
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Geraint B Rogers
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,SAHMRI Microbiome Research Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
38
|
Gupta N, Kumar R, Agrawal B. New Players in Immunity to Tuberculosis: The Host Microbiome, Lung Epithelium, and Innate Immune Cells. Front Immunol 2018; 9:709. [PMID: 29692778 PMCID: PMC5902499 DOI: 10.3389/fimmu.2018.00709] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) is a highly contagious infection and devastating chronic disease, causing 10.4 million new infections and 1.8 million deaths every year globally. Efforts to control and eradicate TB are hampered by the rapid emergence of drug resistance and limited efficacy of the only available vaccine, BCG. Immunological events in the airways and lungs are of major importance in determining whether exposure to Mycobacterium tuberculosis (Mtb) results in successful infection or protective immunity. Several studies have demonstrated that the host microbiota is in constant contact with the immune system, and thus continually directs the nature of immune responses occurring during new infections. However, little is known about its role in the eventual outcome of the mycobacterial infection. In this review, we highlight the changes in microbial composition in the respiratory tract and gut that have been linked to the alteration of immune responses, and to the risk, prevention, and treatment of TB. In addition, we summarize our current understanding of alveolar epithelial cells and the innate immune system, and their interaction with Mtb during early infection. Extensive studies are warranted to fully understand the all-inclusive role of the lung microbiota, its interaction with epithelium and innate immune responses and resulting adaptive immune responses, and in the pathogenesis and/or protection from Mtb infection. Novel interventions aimed at influencing the microbiota, the alveolar immune system and innate immunity will shape future strategies of prevention and treatment for TB.
Collapse
Affiliation(s)
- Nancy Gupta
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rakesh Kumar
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|