1
|
Li J, Wang K, Starodubtseva MN, Nadyrov E, Kapron CM, Hoh J, Liu J. Complement factor H in molecular regulation of angiogenesis. MEDICAL REVIEW (2021) 2024; 4:452-466. [PMID: 39444793 PMCID: PMC11495524 DOI: 10.1515/mr-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/07/2024] [Indexed: 10/25/2024]
Abstract
Angiogenesis, the process of formation of new capillaries from existing blood vessels, is required for multiple physiological and pathological processes. Complement factor H (CFH) is a plasma protein that inhibits the alternative pathway of the complement system. Loss of CFH enhances the alternative pathway and increases complement activation fragments with pro-angiogenic capacity, including complement 3a, complement 5a, and membrane attack complex. CFH protein contains binding sites for C-reactive protein, malondialdehyde, and endothelial heparan sulfates. Dysfunction of CFH prevents its interaction with these molecules and initiates pro-angiogenic events. Mutations in the CFH gene have been found in patients with age-related macular degeneration characterized by choroidal neovascularization. The Cfh-deficient mice show an increase in angiogenesis, which is decreased by administration of recombinant CFH protein. In this review, we summarize the molecular mechanisms of the anti-angiogenic effects of CFH and the regulatory mechanisms of CFH expression. The therapeutic potential of recombinant CFH protein in angiogenesis-related diseases has also been discussed.
Collapse
Affiliation(s)
- Jiang Li
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Kaili Wang
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Maria N. Starodubtseva
- Gomel State Medical University, Gomel, Belarus
- Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
| | | | | | - Josephine Hoh
- Department of Ophthalmology, Yale School of Medicine, New Haven, CT, USA
| | - Ju Liu
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Gomel State Medical University, Gomel, Belarus
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Janes ME, Park KS, Gottlieb AP, Curreri A, Adebowale K, Kim J, Mitragotri S. Dendritic Cell Immune Modulation via Polyphenol Membrane Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28070-28079. [PMID: 38779939 DOI: 10.1021/acsami.4c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cellular hitchhiking is an emerging strategy for the in vivo control of adoptively transferred immune cells. Hitchhiking approaches are primarily mediated by adhesion of nano and microparticles to the cell membrane, which conveys an ability to modulate transferred cells via local drug delivery. Although T cell therapies employing this strategy have progressed into the clinic, phagocytic cells including dendritic cells (DCs) are much more challenging to engineer. DC vaccines hold great potential for a spectrum of diseases, and the combination drug delivery is an attractive strategy to manipulate their function and overcome in vivo plasticity. However, DCs are not compatible with current hitchhiking approaches due to their broad phagocytic capacity. In this work, we developed and validated META (membrane engineering using tannic acid) to enable DC cellular hitchhiking for the first time. META employs the polyphenol tannic acid (TA) to facilitate supramolecular assembly of protein drug cargoes on the cell membrane, enabling the creation of cell surface-bound formulations for local drug delivery to carrier DCs. We optimized META formulations to incorporate and release protein cargoes with varying physical properties alone and in combination and to preserve DC viability and critical functions such as migration. We further show that META loaded with either a pro- or anti-inflammatory cargo can influence the carrier cell phenotype, thus demonstrating the flexibility of the approach for applications from cancer to autoimmune disease. Overall, this approach illustrates a new platform for the local control of phagocytic immune cells as a next step to advance DC therapies in the clinic.
Collapse
Affiliation(s)
- Morgan E Janes
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts 02139, United States
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Kyung Soo Park
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Alexander P Gottlieb
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Alexander Curreri
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Kolade Adebowale
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Jayoung Kim
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| | - Samir Mitragotri
- John A Paulson School of Engineering & Applied Sciences, Allston, Massachusetts 02134, United States
- Wyss Institute of Biologically Inspired Engineering, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Liu X, Sun S, Wang N, Kang R, Xie L, Liu X. Therapeutic application of hydrogels for bone-related diseases. Front Bioeng Biotechnol 2022; 10:998988. [PMID: 36172014 PMCID: PMC9510597 DOI: 10.3389/fbioe.2022.998988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 01/15/2023] Open
Abstract
Bone-related diseases caused by trauma, infection, and aging affect people’s health and quality of life. The prevalence of bone-related diseases has been increasing yearly in recent years. Mild bone diseases can still be treated with conservative drugs and can be cured confidently. However, serious bone injuries caused by large-scale trauma, fractures, bone tumors, and other diseases are challenging to heal on their own. Open surgery must be used for intervention. The treatment method also faces the problems of a long cycle, high cost, and serious side effects. Studies have found that hydrogels have attracted much attention due to their good biocompatibility and biodegradability and show great potential in treating bone-related diseases. This paper mainly introduces the properties and preparation methods of hydrogels, reviews the application of hydrogels in bone-related diseases (including bone defects, bone fracture, cartilage injuries, and osteosarcoma) in recent years. We also put forward suggestions according to the current development status, pointing out a new direction for developing high-performance hydrogels more suitable for bone-related diseases.
Collapse
Affiliation(s)
- Xiyu Liu
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Shuoshuo Sun
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Nan Wang
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Ran Kang
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| | - Lin Xie
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| | - Xin Liu
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| |
Collapse
|
4
|
Huang W, Li X, Huang C, Tang Y, Zhou Q, Chen W. LncRNAs and Rheumatoid Arthritis: From Identifying Mechanisms to Clinical Investigation. Front Immunol 2022; 12:807738. [PMID: 35087527 PMCID: PMC8786719 DOI: 10.3389/fimmu.2021.807738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic chronic autoinflammatory disease, and the synovial hyperplasia, pannus formation, articular cartilage damage and bone matrix destruction caused by immune system abnormalities are the main features of RA. The use of Disease Modifying Anti-Rheumatic Drugs (DMARDs) has achieved great advances in the therapy of RA. Yet there are still patients facing the problem of poor response to drug therapy or drug intolerance. Current therapy methods can only moderate RA progress, but cannot stop or reverse the damage it has caused. Recent studies have reported that there are a variety of long non-coding RNAs (LncRNAs) that have been implicated in mediating many aspects of RA. Understanding the mechanism of LncRNAs in RA is therefore critical for the development of new therapy strategies and prevention strategies. In this review, we systematically elucidate the biological roles and mechanisms of action of LncRNAs and their mechanisms of action in RA. Additionally, we also highlight the potential value of LncRNAs in the clinical diagnosis and therapy of RA.
Collapse
Affiliation(s)
- Wentao Huang
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xue Li
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central, Hospital, Guangzhou, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central, Hospital, Guangzhou, China
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenli Chen
- Ministry of Education (MOE) Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
5
|
Chen CF, Li HP, Chao YH, Tu MY, Yen CC, Lan YW, Yang SH, Chong KY, Lin CC, Chen CM. Suppression of Dendritic Cell Maturation by Kefir Peptides Alleviates Collagen-Induced Arthritis in Mice. Front Pharmacol 2021; 12:721594. [PMID: 34675803 PMCID: PMC8523924 DOI: 10.3389/fphar.2021.721594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
Arthritis is a disorder that is characterized by joint inflammation and other symptoms. Rheumatoid arthritis (RA), an autoimmune disease, is one of the most common arthritis in worldwide. Inflammation of the synovium is the main factor that triggers bone erosion in the joints in RA, but the pathogenesis of RA is not clearly understood. Kefir grain-fermented products have been demonstrated to enhance immune function and exhibit immune-modulating bioactivities. This study aims to explore the role of kefir peptides (KPs) on the regulation of dendritic cell, which are found in RA synovial fluid, and the protection effects of KPs on mice with collagen-induced arthritis (CIA). Immature mouse bone marrow-derived dendritic cells (BMDCs) were treated with KPs (2.2 and 4.4 mg/ml) and then exposed to lipopolysaccharide (LPS) to study the immune regulation function of KPs in dendritic cells. Mice with CIA (n = 5 per group) were orally administrated KPs (3.75 and 7.5 mg/day/kg) for 21 days and therapeutic effect of KPs on mice with arthritis were assessed. In this study, we found that KPs could inhibit surface molecule expression, reduce inflammatory cytokine release, and repress NF-κB and MAPK signaling in LPS-stimulated mouse BMDCs. In addition, a high dose of KPs (7.5 mg/kg) significantly alleviated arthritis symptoms, decreased inflammatory cytokine expression, suppressed splenic DC maturation and decrease the percentage of Th1 and Th17 in the spleens on mice with CIA. Our findings demonstrated that KPs ameliorate CIA in mice through the mechanism of suppressing DC maturation and inflammatory cytokine releases.
Collapse
Affiliation(s)
- Chien-Fu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Orthopedic Surgery, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Hsin-Pei Li
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Hsuan Chao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Min-Yu Tu
- Kaohsiung Armed Forces General Hospital Gangshan Branch, Kaohsiung, Taiwan.,Department of Health Business Administration, Meiho University, Pingtung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ching Yen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Internal Medicine, China Medical University Hospital, and College of Health Care, China Medical University, Taichung, Taiwan
| | - Ying-Wei Lan
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science and Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, and Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
6
|
Probiotic-Induced Tolerogenic Dendritic Cells: A Novel Therapy for Inflammatory Bowel Disease? Int J Mol Sci 2021; 22:ijms22158274. [PMID: 34361038 PMCID: PMC8348973 DOI: 10.3390/ijms22158274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are immune-mediated, chronic relapsing diseases with a rising prevalence worldwide in both adult and pediatric populations. Treatment options for immune-mediated diseases, including IBDs, are traditional steroids, immunomodulators, and biologics, none of which are capable of inducing long-lasting remission in all patients. Dendritic cells (DCs) play a fundamental role in inducing tolerance and regulating T cells and their tolerogenic functions. Hence, modulation of intestinal mucosal immunity by DCs could provide a novel, additional tool for the treatment of IBD. Recent evidence indicates that probiotic bacteria might impact immunomodulation both in vitro and in vivo by regulating DCs’ maturation and producing tolerogenic DCs (tolDCs) which, in turn, might dampen inflammation. In this review, we will discuss this evidence and the mechanisms of action of probiotics and their metabolites in inducing tolDCs in IBDs and some conditions associated with them.
Collapse
|
7
|
Genetic approaches for the diagnosis and treatment of rheumatoid arthritis through personalized medicine. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Shams S, Martinez JM, Dawson JRD, Flores J, Gabriel M, Garcia G, Guevara A, Murray K, Pacifici N, Vargas MV, Voelker T, Hell JW, Ashouri JF. The Therapeutic Landscape of Rheumatoid Arthritis: Current State and Future Directions. Front Pharmacol 2021; 12:680043. [PMID: 34122106 PMCID: PMC8194305 DOI: 10.3389/fphar.2021.680043] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disease with grave physical, emotional and socioeconomic consequences. Despite advances in targeted biologic and pharmacologic interventions that have recently come to market, many patients with RA continue to have inadequate response to therapies, or intolerable side effects, with resultant progression of their disease. In this review, we detail multiple biomolecular pathways involved in RA disease pathogenesis to elucidate and highlight pathways that have been therapeutic targets in managing this systemic autoimmune disease. Here we present an up-to-date accounting of both emerging and approved pharmacological treatments for RA, detailing their discovery, mechanisms of action, efficacy, and limitations. Finally, we turn to the emerging fields of bioengineering and cell therapy to illuminate possible future targeted therapeutic options that combine material and biological sciences for localized therapeutic action with the potential to greatly reduce side effects seen in systemically applied treatment modalities.
Collapse
Affiliation(s)
- Shahin Shams
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Joseph M. Martinez
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - John R. D. Dawson
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Juan Flores
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Marina Gabriel
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Gustavo Garcia
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Amanda Guevara
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Noah Pacifici
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | | | - Taylor Voelker
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Judith F. Ashouri
- Rosalind Russell and Ephraim R. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
9
|
Xiao Q, Li X, Li Y, Wu Z, Xu C, Chen Z, He W. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B 2021; 11:941-960. [PMID: 33996408 PMCID: PMC8105778 DOI: 10.1016/j.apsb.2020.12.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion by enzymes in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.
Collapse
Key Words
- AAs, amino acids
- ACT, adoptive T cell therapy
- AHC, Chlamydia pneumonia
- ALL, acute lymphoblastic leukemia
- AP, ascorbyl palmitate
- APCs, antigen-presenting cells
- AS, atherosclerosis
- ASIT, antigen-specific immunotherapy
- Adoptive cell transfer
- ApoA–I, apolipoprotein A–I
- ApoB LPs, apolipoprotein-B-containing lipoproteins
- Atherosclerosis
- BMPR-II, bone morphogenetic protein type II receptor
- Biologics
- Bregs, regulatory B lymphocytes
- CAR, chimeric antigen receptor
- CCR9–CCL25, CC receptor 9–CC chemokine ligand 25
- CD, Crohn's disease
- CETP, cholesterol ester transfer protein
- CTLA-4, cytotoxic T-lymphocyte-associated protein-4
- CX3CL1, CXXXC-chemokine ligand 1
- CXCL 16, CXC-chemokine ligand 16
- CXCR 2, CXC-chemokine receptor 2
- Cancer immunotherapy
- CpG ODNs, CpG oligodeoxynucleotides
- DAMPs, danger-associated molecular patterns
- DCs, dendritic cells
- DDS, drug delivery system
- DMARDs, disease-modifying antirheumatic drugs
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine
- DSS, dextran sulfate sodium
- Dex, dexamethasone
- Drug delivery
- ECM, extracellular matrix
- ECs, endothelial cells
- EGFR, epidermal growth factor receptor
- EPR, enhanced permeability and retention effect
- ET-1, endothelin-1
- ETAR, endothelin-1 receptor type A
- FAO, fatty acid oxidation
- GM-CSF, granulocyte–macrophage colony-stimulating factor
- HA, hyaluronic acid
- HDL, high density lipoprotein
- HER2, human epidermal growth factor-2
- IBD, inflammatory bowel diseases
- ICOS, inducible co-stimulator
- ICP, immune checkpoint
- IFN, interferon
- IL, interleukin
- IT-hydrogel, inflammation-targeting hydrogel
- Immune targets
- Inflammatory diseases
- JAK, Janus kinase
- LAG-3, lymphocyte-activation gene 3
- LDL, low density lipoprotein
- LPS, lipopolysaccharide
- LTB4, leukotriene B4
- MCP-1, monocyte chemotactic protein-1
- MCT, monocrotaline
- MDSC, myeloid-derived suppressor cell
- MHCs, major histocompatibility complexes
- MHPC, 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine
- MIF, migration inhibitory factor
- MM, multiple myeloma
- MMP, matrix metalloproteinase
- MOF, metal–organic framework
- MPO, myeloperoxidase
- MSCs, mesenchymal stem cells
- NF-κB, nuclear factor κ-B
- NK, natural killer
- NPs, nanoparticles
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PAECs, pulmonary artery endothelial cells
- PAH, pulmonary arterial hypertension
- PASMCs, pulmonary arterial smooth muscle cells
- PBMCs, peripheral blood mononuclear cells
- PCSK9, proprotein convertase subtilisin kexin type 9
- PD-1, programmed death protein-1
- PD-L1, programmed cell death-ligand 1
- PLGA, poly lactic-co-glycolic acid
- Pulmonary artery hypertension
- RA, rheumatoid arthritis
- ROS, reactive oxygen species
- SHP-2, Src homology 2 domain–containing tyrosine phosphatase 2
- SLE, systemic lupus erythematosus
- SMCs, smooth muscle cells
- Src, sarcoma gene
- TCR, T cell receptor
- TGF-β, transforming growth factor β
- TILs, tumor-infiltrating lymphocytes
- TIM-3, T-cell immunoglobulin mucin 3
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- Teff, effector T cell
- Th17, T helper 17
- Tph, T peripheral helper
- Tregs, regulatory T cells
- UC, ulcerative colitis
- VEC, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- VISTA, V-domain immunoglobulin-containing suppressor of T-cell activation
- YCs, yeast-derived microcapsules
- bDMARDs, biological DMARDs
- hsCRP, high-sensitivity C-reactive protein
- mAbs, monoclonal antibodies
- mPAP, mean pulmonary artery pressure
- nCmP, nanocomposite microparticle
- rHDL, recombinant HDL
- rhTNFRFc, recombinant human TNF-α receptor II-IgG Fc fusion protein
- scFv, single-chain variable fragment
- α1D-AR, α1D-adrenergic receptor
Collapse
Affiliation(s)
- Qingqing Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
10
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
11
|
Christofi M, Le Sommer S, Mölzer C, Klaska IP, Kuffova L, Forrester JV. Low-dose 2-deoxy glucose stabilises tolerogenic dendritic cells and generates potent in vivo immunosuppressive effects. Cell Mol Life Sci 2020; 78:2857-2876. [PMID: 33074350 PMCID: PMC8004500 DOI: 10.1007/s00018-020-03672-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Cell therapies for autoimmune diseases using tolerogenic dendritic cells (tolDC) have been promisingly explored. A major stumbling block has been generating stable tolDC, with low risk of converting to mature immunogenic DC (mDC), exacerbating disease. mDC induction involves a metabolic shift to lactate production from oxidative phosphorylation (OXPHOS) and β-oxidation, the homeostatic energy source for resting DC. Inhibition of glycolysis through the administration of 2-deoxy glucose (2-DG) has been shown to prevent autoimmune disease experimentally but is not clinically feasible. We show here that treatment of mouse bone marrow-derived tolDC ex vivo with low-dose 2-DG (2.5 mM) (2-DGtolDC) induces a stable tolerogenic phenotype demonstrated by their failure to engage lactate production when challenged with mycobacterial antigen (Mtb). ~ 15% of 2-DGtolDC express low levels of MHC class II and 30% express CD86, while they are negative for CD40. 2-DGtolDC also express increased immune checkpoint molecules PDL-1 and SIRP-1α. Antigen-specific T cell proliferation is reduced in response to 2-DGtolDC in vitro. Mtb-stimulated 2-DGtolDC do not engage aerobic glycolysis but respond to challenge via increased OXPHOS. They also have decreased levels of p65 phosphorylation, with increased phosphorylation of the non-canonical p100 pathway. A stable tolDC phenotype is associated with sustained SIRP-1α phosphorylation and p85-AKT and PI3K signalling inhibition. Further, 2-DGtolDC preferentially secrete IL-10 rather than IL-12 upon Mtb-stimulation. Importantly, a single subcutaneous administration of 2-DGtolDC prevented experimental autoimmune uveoretinitis (EAU) in vivo. Inhibiting glycolysis of autologous tolDC prior to transfer may be a useful approach to providing stable tolDC therapy for autoimmune/immune-mediated diseases.
Collapse
Affiliation(s)
- M Christofi
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - S Le Sommer
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - C Mölzer
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| | - I P Klaska
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - L Kuffova
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, Scotland, UK
| | - J V Forrester
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK. .,Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia. .,Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia.
| |
Collapse
|
12
|
Han J, Li X, Luo X, He J, Huang X, Zhou Q, Han Y, Jie H, Zhuang J, Li Y, Yang F, Zhai Z, Wu S, He Y, Yang B, Sun E. The mechanisms of hydroxychloroquine in rheumatoid arthritis treatment: Inhibition of dendritic cell functions via Toll like receptor 9 signaling. Biomed Pharmacother 2020; 132:110848. [PMID: 33049581 PMCID: PMC7547638 DOI: 10.1016/j.biopha.2020.110848] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
HCQ efficiently inhibited DC phenotypic and functional maturation stimulated by serum from RA patients. HCQ prevented progression of arthritis by inhibiting DC maturation and migration from peripheral blood to LNs. HCQ inhibited CpG ODN 1826-activated BMDC maturation and migration. The effect of HCQ on DCs was related to the block in TLR9 signaling. The development of arthritis was impaired in TLR9−/− mice.
Hydroxychloroquine (HCQ) is one of the most commonly prescribed immune-suppressants in treating rheumatoid arthritis (RA). Our previous research showed that HCQ suppressed RA development by inhibiting T follicular helper (Tfh) cells directly. Dendritic cells (DCs) serve as the link between innate and acquired immunity. Whether HCQ suppressed Tfh cell through DCs was not clear. In current study, we found that HCQ efficiently inhibited CD86, chemokine (C-X-C motif) receptor 4 (CXCR4) expression and interferon-α (IFN-α) secretion of healthy donor derived purified DCs stimulated by RA patient serum. To mimic RA, collagen-induced arthritis (CIA) mouse model was used and treated with HCQ daily for fifty-four days prior to sacrifice. We found HCQ inhibited DC maturation and migration to lymph nodes (LNs), manifested as down-regulated expression of CD40, CD80, CD86, MHCII (I-Aq) on LN DCs. In addition, HCQ reduced the level of chemokine receptor 7 (CCR7) and L-selectin on peripheral blood DCs and diminished percentage of LN DCs. Of note, HCQ only inhibited CpG ODN 1826-induced IL-12 secretion by bone marrow DCs (BMDCs) stimulated by various toll like receptor (TLR) agonists. Mechanistically, HCQ down-regulated the expression of TLR9 not only in healthy donor PBMC-derived DCs stimulated by RA patient serum, but also in LN DCs of CIA mice and CpG-activated BMDCs. Furthermore, arthritis scores in TLR9−/− mice were much lower than that in wild type mice with impaired maturity and migration capability of DCs. Collectively, activation of DCs contributes to the pathogenesis of RA and HCQ shows protective effects on RA by inhibition of DC activation via blocking TLR9.
Collapse
Affiliation(s)
- Jiaochan Han
- Department of Rheumatology and Immunology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China; Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xing Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqing Luo
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Juan He
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xuechan Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qingyou Zhou
- Department of Neurology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanping Han
- Clinical Lab, Hospital of South China Normal University, Guangzhou, China
| | - Hongyu Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhuang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yehao Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fangyuan Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zeqing Zhai
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shufan Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi He
- Department of Rheumatology and Immunology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China; Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bin Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Erwei Sun
- Department of Rheumatology and Immunology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China; Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Not only anti-inflammation, etanercept abrogates collagen-induced arthritis by inhibiting dendritic cell migration and maturation. Cent Eur J Immunol 2019; 44:237-245. [PMID: 31871415 PMCID: PMC6925567 DOI: 10.5114/ceji.2019.89595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/05/2018] [Indexed: 12/31/2022] Open
Abstract
The application of tumor necrosis factor inhibitors (TNFi) is a major breakthrough in the treatment of rheumatoid arthritis (RA). While the anti-inflammatory nature of TNFi is thought to contribute to the therapeutic effects, recent data show that the pharmacology of TNF-α blockade is probably more complex than previously thought. This study investigates whether etanercept (ETN), one of the TNF antagonists, suppresses arthritis development through modulation of dendritic cell (DC) functions. Bone marrow-derived DCs (BMDCs) were stimulated with lipopolysaccharide (LPS) and treated with ETN for 24 hrs. DC functions, including maturation and migration, were determined. DCs from the lymph nodes (LNs) of ETN-treated collagen-induced arthritis (CIA) mice were analyzed for phenotypes and subsets. ETN efficiently inhibited the phenotypic maturation both in vitro and in vivo. ETN treatment delayed the onset and reduced the severity of arthritis in CIA mice. Moreover, ETN treatment strongly down regulated the number of both myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in LNs, possibly due to the depressive effect on the expression of CXCR4 on DCs in peripheral blood. The impaired DC migration to local LNs by ETN down regulated the number of T cells and B cells, and changed the LN cellular composition. The data show that TNF-α blockade has profound effects on DC maturation and migration, which may contribute to its immune regulatory effects in RA patients.
Collapse
|
14
|
Zhao X, Long J, Liang F, Liu N, Sun Y, Xi Y. Dynamic profiles, biodistribution and integration evaluation after intramuscular/intravenous delivery of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in vaccinated normal rodent. J Nanobiotechnology 2019; 17:94. [PMID: 31492169 PMCID: PMC6729025 DOI: 10.1186/s12951-019-0528-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/28/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The persistence, biodistribution, and risk of integration into the host genome of any new therapeutic DNA vaccine must be established in preclinical studies. We previously developed the DNA vaccine pcDNA-CCOL2A1 encoding chicken type II collagen (CCII) for the treatment of rheumatoid arthritis (RA). In the present study, we characterized its dynamic profile, biodistribution, and potential for genomic DNA integration in normal vaccinated rodent. RESULTS A real-time quantitative PCR analysis (RT-qPCR) of animals administered a single dose of pcDNA-CCOL2A1 (300 μg/kg by intramuscular injection) showed that CCOL2A1 mRNA level in the blood peaked between 2 and 6 h post-immunization and then rapidly declined, and was undetectable between day 1-42. CCOL2A1 transcript was detected at the muscle injection site on days 3-14 post-immunization. Starting from day 14, the transcript was detected in the heart, liver, lung, and kidney but not in the spleen or thymus, and was expressed only in the lung on day 28. There was no CCOL2A1 mRNA present in the testes or ovaries at any time point. Non-invasive in vivo fluorescence imaging revealed CCII protein expression from 2 h up to day 10 and from 2 h up to day 35 after administration of pcDNA-CCOL2A1 via the intravenous and intramuscular routes, respectively; the protein had disappeared by day 42. Importantly, CCOL2A1 was not integrated into the host genome. CONCLUSIONS These results indicate that pcDNA-CCOL2A1 vaccine is rapidly cleared within a short period of time and is therefore safe, and merits further development as a therapeutic vaccine for RA treatment.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Juan Long
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Fei Liang
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Nan Liu
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yuying Sun
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yongzhi Xi
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China.
| |
Collapse
|
15
|
Kim SH, Moon JH, Jeong SU, Jung HH, Park CS, Hwang BY, Lee CK. Induction of antigen-specific immune tolerance using biodegradable nanoparticles containing antigen and dexamethasone. Int J Nanomedicine 2019; 14:5229-5242. [PMID: 31371958 PMCID: PMC6636315 DOI: 10.2147/ijn.s210546] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/04/2019] [Indexed: 01/21/2023] Open
Abstract
Purpose Dexamethasone (Dex) has long been used as a potent immunosuppressive agent in the treatment of inflammatory and autoimmune diseases, despite serious side effects. In the present study, Dex and model antigen ovalbumin (OVA) were encapsulated with poly(lactic-co-glycolic acid) to deliver Dex and OVA preferentially to phagocytic cells, reducing systemic side effects of Dex. The OVA-specific immune tolerance-inducing activity of the nanoparticles (NPs) was examined. Methods Polymeric NPs containing OVA and Dex (NP[OVA+Dex]) were prepared by the water-in-oil-in-water double emulsion solvent evaporation method. The effects of NP[OVA+Dex] on the maturation and function of immature dendritic cells (DCs) were examined in vitro. Furthermore, the OVA-specific immune tolerizing effects of NP[OVA+Dex] were confirmed in mice that were intravenously injected or orally fed with the NPs. Results Immature DCs treated in vitro with NP[OVA+Dex] did not mature into immunogenic DCs but instead were converted into tolerogenic DCs. Furthermore, profoundly suppressed generation of OVA-specific cytotoxic T cells and production of OVA-specific IgG were observed in mice injected with NP[OVA+Dex], whereas regulatory T cells were concomitantly increased. Feeding of mice with NP[OVA+Dex] also induced OVA-specific immune tolerance. Conclusion The present study demonstrates that oral feeding as well as intravenous injection of poly(lactic-co-glycolic acid) NPs encapsulating both antigen and Dex is a useful means of inducing antigen-specific immune tolerance, which is crucial for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Jun-Hyeok Moon
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Seong-Un Jeong
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Ho-Hyun Jung
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Chan-Su Park
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Chong-Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
16
|
Chuang CH, Cheng YC, Lin SC, Lehman CW, Wang SP, Chen DY, Tsai SW, Lin CC. Atractylodin Suppresses Dendritic Cell Maturation and Ameliorates Collagen-Induced Arthritis in a Mouse Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6773-6784. [PMID: 31154759 DOI: 10.1021/acs.jafc.9b01163] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this study was to evaluate the immunomodulatory effects of atractylodin, a polyethylene alkyne, on the maturation of bone marrow-derived dendritic cells (BM-DC) as well as its antirheumatic effect on collagen-induced arthritis (CIA) in DBA/1 mice. Our results indicate that atractylodin effectively suppressed the secretion of pro-inflammatory cytokines, expression of costimulatory molecules, and p38 MAPK, ERK, and NF-κBp65 signaling pathways in LPS-incubated dendritic cells (DCs). Additionally, the proliferation and cytokine secretion (IFN-γ and IL-17A) of CD8+ and CD4+ T cells were reduced. In a murine CIA model, intraperitoneal injection of atractylodin significantly alleviated the severity of the disease progression, as indicated by reduced paw swelling, clinical arthritis scores, and pathological changes of joint tissues. In addition, the overall proliferation of T cells stimulated by type II collagen and the abundance of Th1 and Th17 in the spleens were also significantly decreased with atractylodin treatments. Furthermore, atractylodin significantly downregulated the expression levels of CD40, CD80, and CD86 of DCs in the spleens. In conclusion, this study shows for the first time that atractylodin has potential to manipulate the maturation of BM-DCs and should be further explored as a therapeutic agent in the treatment of rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Cheng Hsuan Chuang
- Institute of Biomedical Science , National Chung-Hsing University , Taichung 402 , Taiwan
| | - Yu-Chieh Cheng
- Institute of Biomedical Science , National Chung-Hsing University , Taichung 402 , Taiwan
- Department of Orthopaedics , Tungs' Taichung Metro Harbor Hospital , Taichung 433 , Taiwan
| | - Shih-Chao Lin
- National Center for Biodefense and Infectious Diseases, School of Systems Biology , George Mason University , Manassas , Virginia 20110 , United States
| | - Caitlin W Lehman
- National Center for Biodefense and Infectious Diseases, School of Systems Biology , George Mason University , Manassas , Virginia 20110 , United States
| | - Shun-Ping Wang
- Department of Orthopaedics , Taichung Veterans General Hospital , Taichung 407 , Taiwan
| | - Der-Yuan Chen
- Division of Immunology and Rheumatology, Department of Internal Medicine , China Medical University Hospital , Taichung 404 , Taiwan
| | - Sen-Wei Tsai
- Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital , Buddhist Tzu Chi Medical Foundation , Taichung 427 , Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine , Tzu Chi University , Hualien 970 , Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Science , National Chung-Hsing University , Taichung 402 , Taiwan
- Department of Medical Research , China Medical University Hospital , Taichung 404 , Taiwan
- Department of Medical Research and Education , Taichung Veterans General Hospital , Taichung 407 , Taiwan
| |
Collapse
|
17
|
Khantakova J, Tereshchenko V, Kurilin V, Silkov A, Maksyutov A, Lopatnikova J, Shevchenko J, Knauer N, Kulikova E, Sennikov S. Comparison of CD4 +CD25 hiFoxP3 + Treg Induction by pIL-10-Transfected Dendritic Cells in Different Mouse Strains. J Interferon Cytokine Res 2019; 39:531-538. [PMID: 31070504 DOI: 10.1089/jir.2019.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) and T-regulatory cells (Tregs) are involved in maintaining tolerance to self-antigens and foreign antigens. The cells are used as therapeutic tools for inducing tolerance to transplanted organs or tissues. We investigated the possibility of inducing Tregs in splenocyte cultures using DCs transfected with a DNA construct encoding mouse interleukin-10 (DCpIL-10). DCs were derived from bone marrow cells in the presence of rmGM-CSF and rmIL-4 and electroporated with a plasmid encoding mouse IL-10. Furthermore, DCpIL-10 was cocultured with syngeneic splenocytes. The CD4+CD25hiFoxP3+ Treg frequency, IL-10 expression, and inhibition of the mixed lymphocyte reaction were evaluated. C57Bl/6 and CBA mice differ in their initial frequency of CD4+CD25hiFoxP3+ Tregs and baseline IL-10 production. Also, the effectiveness of CD4+CD25hiFoxP3+ Treg upregulation by tolDCpIL-10 was different. In this study, DCpIL-10 from C57Bl/6 mice induced CD4+CD25hiFoxP3+ Tregs in syngenic splenocytes, which was accompanied by an increase in the IL-10 production and a decrease in the proliferation of splenocytes in response to the alloantigen. DCpIL-10 may be used to induce CD4+CD25hiFoxP3+ Tregs and the regulatory potential of splenocytes.
Collapse
Affiliation(s)
- Julia Khantakova
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Vasiliy Kurilin
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Alexander Silkov
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Amir Maksyutov
- State Research Center of Virology and Biotechnology, Novosibirsk, Russia
| | - Julia Lopatnikova
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Julia Shevchenko
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Nadezda Knauer
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Ekaterina Kulikova
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Sergey Sennikov
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
18
|
Wu H, Shen J, Liu L, Lu X, Xue J. Vasoactive intestinal peptide-induced tolerogenic dendritic cells attenuated arthritis in experimental collagen-induced arthritic mice. Int J Rheum Dis 2019; 22:1255-1262. [PMID: 31062502 DOI: 10.1111/1756-185x.13578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/14/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
AIM Cumulative evidence has revealed that tolerogenic dendritic cells (tolDC) could relieve inflammation reactions in various autoimmune diseases. This study investigated the potential therapeutic application of vasoactive intestinal peptide (VIP)-induced tolDC (VIP-DC) on arthritis using collagen-induced arthritis (CIA) mice. METHODS Bone marrow cells were differentiated into dendritic cells (DC) using granulocyte macrophage colony-stimulating factor and interleukin (IL)-4. tolDC were induced by either VIP or Bay 11-7082 in vitro. Immunophenotypes and cytokine production of VIP-DC and Bay-DC were detected by fluorescence-activated cell sorting and enzyme-linked immunosorbent assay, respectively. Bay-DC, VIP-DC and untreated DC were ip administrated to CIA mice on day 40 when arthritis was onset. The treatment effects on arthritic and pathological changes, including synovial hyperplasia, pannus formation, inflammation and bone erosion, were assessed. RESULTS VIP-DC (40 ng/mL) and Bay-DC (0.5 µg/mL) had a lower level of major histocompatibility complex II, CD40 and CD86 expression, reduced γ-interferon and increased IL-4 production (P < 0.05 or 0.01), compared with untreated DC. The administration of VIP-DC and Bay-DC decreased the arthritis score clinically at the end of the therapy. Pathological assessments showed that bone erosion and inflammation were alleviated in the VIP-DC group compared with those in the untreated DC group (P < 0.05 and P < 0.01, respectively). CONCLUSION VIP-DC showed reduced immunogenicity and enhanced anti-inflammatory cytokine production. Both VIP-DC and Bay-DC could ameliorate arthritis in CIA mice clinically. VIP-DC were not inferior to Bay 11-7082-induced tolDC but may exert a better preventive effect on bone destruction.
Collapse
Affiliation(s)
- Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Lei Liu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyong Lu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Jia XY, Chang Y, Sun XJ, Wei F, Wu YJ, Dai X, Xu S, Wu HX, Wang C, Yang XZ, Wei W. Regulatory effects of paeoniflorin-6'-O-benzene sulfonate (CP-25) on dendritic cells maturation and activation via PGE2-EP4 signaling in adjuvant-induced arthritic rats. Inflammopharmacology 2019; 27:997-1010. [PMID: 30771056 DOI: 10.1007/s10787-019-00575-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/05/2019] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease. Dendritic cells (DCs) are one of the most powerful antigen-presenting cells, and they play an important role in RA pathogenesis. Prostaglandin E2 (PGE2) is a potent lipid mediator that can regulate the maturation and activation of DCs, but the molecular mechanisms have not been elucidated. In this study, both in vitro and in an RA rat model, we investigated the mechanisms involved by focusing on PGE2-mediated signaling and using a novel anti-inflammatory compound, paeoniflorin-6'-O-benzene sulfonate (CP-25). PGE2 combined with tumor necrosis factor-α promoted DC maturation and activation through EP4-cAMP signaling. Treatment with CP-25 increased the endocytic capacity of DCs induced by PGE2. CP-25 inhibited the potency of DCs induced by the EP4 receptor agonist, CAY10598, to stimulate allogeneic T cells. Consistent with these findings, the CAY10598-induced upregulation of DC surface activation markers and production of IL-23 was significantly inhibited by CP-25 in a concentration-dependent manner. In vivo administration of CP-25 alleviated adjuvant arthritis (AA) in rats through inhibition of DC maturation and activation. Our results indicate that PGE2-EP4-cAMP signal hyperfunction can lead to abnormal activation of DC functions, which correlates with the course of disease in AA rats and provides a possible treatment target. The inhibition of DC maturation and activation by CP-25 interference of the PGE2-EP4 pathway may significantly contribute to the immunoregulatory profile of CP-25 when used to treat RA and other immune cell-mediated disorders.
Collapse
MESH Headings
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Pharmaceutic/adverse effects
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Cyclic AMP/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Dinoprostone/metabolism
- Glucosides/pharmacology
- Male
- Monoterpenes/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Xiao-Yi Jia
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiao-Jing Sun
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Fang Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yu-Jing Wu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xing Dai
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Shu Xu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hua-Xun Wu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xue-Zhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
20
|
Kim SH, Jung HH, Lee CK. Generation, Characteristics and Clinical Trials of Ex Vivo Generated Tolerogenic Dendritic Cells. Yonsei Med J 2018; 59:807-815. [PMID: 30091313 PMCID: PMC6082979 DOI: 10.3349/ymj.2018.59.7.807] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DCs) play a key role not only in the initiation of primary immune responses, but also in the development and maintenance of immune tolerance. Numerous protocols have been developed to generate tolerogenic DCs (tolDCs) ex vivo, and the therapeutic efficacy of ex vivo-generated tolDCs has been demonstrated in autoimmune disease animal models. Based on successes in small animal models, several clinical trials have been completed or are on-going in patients with autoimmune diseases such as rheumatoid arthritis, type 1 diabetes, multiple sclerosis, and Crohn's disease. Here we describe the methods used to generate tolDCs ex vivo, and the common features shared by tolDCs. In addition, we overview five completed clinical trials with reported outcomes and summarize the tolDC-based clinical trials that are currently registered with the U.S. National Institutes of Health. Although the number of tolDC-based clinical trials is much smaller than the hundreds of clinical trials using immunogenic DCs, tolDC-based treatment of autoimmune diseases is becoming a reality, and could serve as an innovative cellular therapy in the future.
Collapse
Affiliation(s)
- Sang Hyun Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Ho Hyun Jung
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Chong Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Korea.
| |
Collapse
|
21
|
Flórez-Grau G, Zubizarreta I, Cabezón R, Villoslada P, Benitez-Ribas D. Tolerogenic Dendritic Cells as a Promising Antigen-Specific Therapy in the Treatment of Multiple Sclerosis and Neuromyelitis Optica From Preclinical to Clinical Trials. Front Immunol 2018; 9:1169. [PMID: 29904379 PMCID: PMC5990597 DOI: 10.3389/fimmu.2018.01169] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
The identification of activated T-lymphocytes restricted to myelin-derived immunogenic peptides in multiple sclerosis (MS) and aquaporin-4 water channel in neuromyelitis optica (NMO) in the blood of patients opened the possibility for developing highly selective and disease-specific therapeutic approaches. Antigen presenting cells and in particular dendritic cells (DCs) represent a strategy to inhibit pro-inflammatory T helper cells. DCs are located in peripheral and lymphoid tissues and are essential for homeostasis of T cell-dependent immune responses. The expression of a particular set of receptors involved in pathogen recognition confers to DCs the property to initiate immune responses. However, in the absence of danger signals different DC subsets have been revealed to induce active tolerance by inducing regulatory T cells, inhibiting pro-inflammatory T helper cells responses or both. Interestingly, several protocols to generate clinical-grade tolerogenic DC (Tol-DC) in vitro have been described, offering the possibility to restore the homeostasis to central nervous system-related antigens. In this review, we discuss about different DC subsets and their role in tolerance induction, the different protocols to generate Tol-DCs and preclinical studies in animal models as well as describe recent characterization of Tol-DCs for clinical application in autoimmune diseases and in particular in MS and NMO patients. In addition, we discuss the clinical trials ongoing based on Tol-DCs to treat different autoimmune diseases.
Collapse
Affiliation(s)
- Georgina Flórez-Grau
- Department of Immunology, Hospital Clinic i Provincial, Barcelona, Spain.,Neuroimmunology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Irati Zubizarreta
- Neuroimmunology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raquel Cabezón
- Department of Immunology, Hospital Clinic i Provincial, Barcelona, Spain.,Neuroimmunology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Villoslada
- Neuroimmunology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | |
Collapse
|
22
|
Franc BL, Goth S, MacKenzie J, Li X, Blecha J, Lam T, Jivan S, Hawkins RA, VanBrocklin H. In Vivo PET Imaging of the Activated Immune Environment in a Small Animal Model of Inflammatory Arthritis. Mol Imaging 2018. [PMID: 28625080 PMCID: PMC5480631 DOI: 10.1177/1536012117712638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Evolving immune-mediated therapeutic strategies for rheumatoid arthritis (RA) may benefit from an improved understanding of the complex role that T-cell activation plays in RA. This study assessed the potential of fluorine-18-labeled 9-β-d-arabinofuranosylguanine ([18F]F-AraG) positron emission tomography (PET) imaging to report immune activation in vivo in an adjuvant-induced arthritis (AIA) small animal model. METHODS Using positron emission tomography-computed tomography imaging, uptake of [18F]F-AraG in the paws of mice affected by arthritis at 6 (acute) and 20 (chronic) days following AIA induction in a single paw was assessed and compared to uptake in contralateral control paws. Fractions of T cells and B cells demonstrating markers of activation at the 2 time points were determined by flow cytometry. RESULTS Differential uptake of [18F]F-AraG was demonstrated on imaging of the affected joint when compared to control at both acute and chronic time points with corresponding changes in markers of T-cell activation observed on flow cytometry. CONCLUSION [18F]F-AraG may serve as an imaging biomarker of T-cell activation in inflammatory arthritis. Further development of this technique is warranted and could offer a tool to explore the temporal link between activated T cells and RA as well as to monitor immune-mediated therapies for RA in clinical trials.
Collapse
Affiliation(s)
- Benjamin L Franc
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Sam Goth
- 2 Cellsight Technologies, Inc, San Francisco, CA, USA
| | - John MacKenzie
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Xiaojuan Li
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Joseph Blecha
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Tina Lam
- 2 Cellsight Technologies, Inc, San Francisco, CA, USA
| | - Salma Jivan
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Randall A Hawkins
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Henry VanBrocklin
- 1 Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Safari F, Farajnia S, Arya M, Zarredar H, Nasrolahi A. CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis. Immunopharmacol Immunotoxicol 2018; 40:201-211. [DOI: 10.1080/08923973.2018.1437625] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Arya
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ava Nasrolahi
- Molecular Medicine Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Pozsgay J, Szekanecz Z, Sármay G. Antigen-specific immunotherapies in rheumatic diseases. Nat Rev Rheumatol 2017; 13:525-537. [DOI: 10.1038/nrrheum.2017.107] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Adoptive Cell Therapy of Induced Regulatory T Cells Expanded by Tolerogenic Dendritic Cells on Murine Autoimmune Arthritis. J Immunol Res 2017; 2017:7573154. [PMID: 28702462 PMCID: PMC5494067 DOI: 10.1155/2017/7573154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/01/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
Objective Tolerogenic dendritic cells (tDCs) can expand TGF-β-induced regulatory T cells (iTregs); however, the therapeutic utility of these expanded iTregs in autoimmune diseases remains unknown. We sought to determine the properties of iTregs expanded by mature tolerogenic dendritic cells (iTregmtDC) in vitro and explore their potential to ameliorate collagen-induced arthritis (CIA) in a mouse model. Methods After induction by TGF-β and expansion by mature tDCs (mtDCs), the phenotype and proliferation of iTregmtDC were assessed by flow cytometry. The ability of iTregs and iTregmtDC to inhibit CD4+ T cell proliferation and suppress Th17 cell differentiation was compared. Following adoptive transfer of iTregs and iTregmtDC to mice with CIA, the clinical and histopathologic scores, serum levels of IFN-γ, TNF-α, IL-17, IL-6, IL-10, TGF-β and anti-CII antibodies, and the distribution of the CD4+ Th subset were assessed. Results Compared with iTregs, iTregmtDC expressed higher levels of Foxp3 and suppressed CD4+ T cell proliferation and Th17 cell differentiation to a greater extent. In vivo, iTregmtDC reduced the severity and progression of CIA more significantly than iTregs, which was associated with a modulated inflammatory cytokine profile, reduced anti-CII IgG levels, and polarized Treg/Th17 balance. Conclusion This study highlights the potential therapeutic utility of iTregmtDC in autoimmune arthritis and should facilitate the future design of iTreg immunotherapeutic strategies.
Collapse
|
26
|
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches.
Collapse
|
27
|
Li R, Zhang Y, Zheng X, Peng S, Yuan K, Zhang X, Min W. Synergistic suppression of autoimmune arthritis through concurrent treatment with tolerogenic DC and MSC. Sci Rep 2017; 7:43188. [PMID: 28230210 PMCID: PMC5322386 DOI: 10.1038/srep43188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/20/2017] [Indexed: 01/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by progressive immune-mediated joint deterioration. Current treatments are not antigen specific and are associated with various adverse. We have previously demonstrated that tolerogenic dendritic cells (Tol-DC) are potent antigen-specific immune regulators, which hold great promise in immunotherapy of autoimmune diseases. In this study, we aimed to develop new immunotherapy by combining Tol-DC and mesenchymal stem cells (MSC). We demonstrated that RelB gene silencing resulted in generation of Tol-DC that suppressed T cell responses and selectively promoted Treg generation. The combination of MSC synergized the tolerogenic capacity of Tol-DC in inhibition of T cell responses. In murine collagen-induced arthritis (CIA) model, we demonstrated that progression of arthritis was inhibited with administration of RelB gene-silenced Tol-DC or MSC. This therapeutic effect was remarkably enhanced with concurrent treatment of combination Tol-DC and MSC as demonstrated by improved clinical symptoms, decreased clinical scores and attenuated joint damage. These therapeutic effects were associated with suppression of CII-specific T cell responses, polarization of Th and inhibition of proinflammatory cytokines, and reduced cartilage degeneration. This study for the first time demonstrates a new approach to treat autoimmune inflammatory joint disease with concurrent treatment of RelB gene-silenced Tol-DC and MSC.
Collapse
Affiliation(s)
- Rong Li
- College of Basic Medical Sciences and Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yujuan Zhang
- College of Basic Medical Sciences and Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Xiufen Zheng
- Departments of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| | - Shanshan Peng
- College of Basic Medical Sciences and Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Keng Yuan
- College of Basic Medical Sciences and Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Xusheng Zhang
- Departments of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| | - Weiping Min
- College of Basic Medical Sciences and Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,Departments of Surgery, Pathology, and Oncology, University of Western Ontario, London, Canada
| |
Collapse
|
28
|
Abstract
Dendritic cells are the most potent antigen-presenting cells, and are critical for the generation of an antigen-specific immune response and protective immunity. These unique features have been applied to dendritic cell-based immunization in a number of disease conditions. Our published results have demonstrated that the immunity induced by intranasal immunization with DNA-transfected dendritic cells results in reduced fungal burden, and alleviated lung tissue damage in a mouse model of pulmonary fungal infection. In this article, approaches for the preparation and characterization of DNA-transfected dendritic cells and intranasal immunization in mice are described.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|