1
|
Mansjur KQ, Erwansyah E, Pawinru AS, Nasir M, Djais AI, Sumule VC, Attaya NS, Arinawaty DY, Hutami IR, Permana AD. Chitosan from sea urchin ( Diadema setosum) spines for orthodontic miniscrews: Antibacterial effects against key oral pathogens. J Oral Biol Craniofac Res 2025; 15:463-471. [PMID: 40144647 PMCID: PMC11938134 DOI: 10.1016/j.jobcr.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Objective Peri-implantitis, exacerbated microbial growth characterized by progressive bone loss and soft-tissue inflammation, significantly contributes to miniscrew failure during orthodontic treatment. Using a natural antibacterial coating presents an innovative approach to combat bacterial colonization. Sea urchin (Diadema setosum) spines containing chitosan (CS) exhibit notable antibacterial properties and biocompatibility effects. This study investigates the antimicrobial potential of CS from sea urchin spines applied onto the surfaces of orthodontic miniscrews, aiming to mitigate the impact of peri-implantitis. Materials and methods The surface functional groups, phase composition, and crystal structure of CS were investigated using traditional examination methods alongside energy-dispersive X-ray analysis. The antibacterial activity of CS was evaluated against three bacteria by the disk diffusion method, minimum bacterial concentration (MBC), and minimum inhibitory concentration (MIC). Stainless steel miniscrews were coated with CS, and the surface was characterized by scanning electron microscopy (SEM). Results and discussion Sea urchin-derived chitosan demonstrated significant antibacterial effects against key oral pathogens associated with peri-implantitis, with minimum inhibitory concentrations (MICs) of 16 ppm against Fusobacterium nucleatum and 32 ppm for both Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. The minimum bactericidal concentrations (MBCs) were 4 ppm for A. actinomycetemcomitans and 16 ppm for both F. nucleatum and P. gingivalis, indicating its strong bactericidal potential. Scanning electron microscopy (SEM) revealed that sea urchin chitosan effectively adhered to the surface of orthodontic miniscrews, showcasing its potential as a functional antimicrobial coating. These results emphasize the capability of sea urchin chitosan to target key oral pathogens, offering a promising approach to enhance microbial resistance and improve outcomes in orthodontic treatments.
Collapse
Affiliation(s)
| | - Eka Erwansyah
- Department of Orthodontics, Faculty of Dentistry, Hasanuddin University, Indonesia
| | - Ardiansyah S Pawinru
- Department of Orthodontics, Faculty of Dentistry, Hasanuddin University, Indonesia
| | - Mansjur Nasir
- Department of Orthodontics, Faculty of Dentistry, Hasanuddin University, Indonesia
| | - Arni Irawaty Djais
- Department of Periodontology, Faculty of Dentistry, Hasanuddin University, Indonesia
| | | | | | - Dian Yosi Arinawaty
- Department of Oral Biology, Faculty of Dentistry, Universitas Muhammadiyah Yogyakarta, Indonesia
| | - Islamy Rahma Hutami
- Department of Orthodontics, Faculty of Dentistry, Islamic University of Sultan Agung, Indonesia
| | | |
Collapse
|
2
|
Abdelrahman F, Makky S, Teba HE, Agwa MM, Abd ElAziz MM, Awad R, Hassan YY, Abdelsattar AS, Connerton IF, El-Shibiny A. Potential of vB_Pa_ZCPS1 phage embedded in situ gelling formulations as an ocular delivery system to attenuate Pseudomonas aeruginosa keratitis in a rabbit model. J Control Release 2025; 380:52-70. [PMID: 39892651 DOI: 10.1016/j.jconrel.2025.01.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Pseudomonas aeruginosa keratitis (or pink eye) is a challenging ocular infection that causes serious complications due to the deficiency of effective antibiotic treatment. Thus, in this study we isolated and characterized a specific bacteriophage, phage vB_Pa_ZCPS1, to be used to formulate an in situ- gel loaded bacteriophage for an in vivo rabbit infection treatment model. Phage vB_Pa_ZCPS1 is a double-stranded DNA bacterial virus, of 46,135 bp encoding 75 open reading frames (ORFs) with no antibiotic resistance genes detected. Moreover, it has a podoviral morphotype from the Caudoviricetes class with a 62.4 nm capsid and a short inflexible tail of around 18.8 nm, as indicated by the transmission electron microscope (TEM). Phage vB_Pa_ZCPS1 presented good stability to the UV exposure and a wide range of pH values from 3.0 to 11.0. In addition, the phage-bacteria dynamics study showed that phage vB_Pa_ZCPS1 was effective against P. aeruginosa, especially at low multiplicities of infections (MOIs), including 0.001, 0.01, and 0.1. Respectively, it was loaded to the characterized in situ gel composed of 14 % Pluronic F-127 and 1.5 % HPMC K4M polymer. The in situ-gel has a gelling time of 30 s ± 1, and a temperature of 33 °C ± 1, where the viscosity of the gel increases 10-fold. For the in vivo trial, the infected group treated with phage presented improved clinical outcomes, where the histopathological analysis revealed normal corneal thickness and intact corneal stratified squamous epithelium. Thus, the in situ-gel loaded phage vB_Pa_ZCPS1 could be a potential candidate approach to treat P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Hoda E Teba
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Marwa M Abd ElAziz
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Ramy Awad
- Department of Ophthalmology, Faculty of Medicine, Delta University for Science and Technology, Dakahlia, Egypt; Department of Ophthalmology, Alexandria General Ophthalmology Hospital, Alexandria, Egypt
| | - Yara Y Hassan
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ian F Connerton
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, UK
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt.
| |
Collapse
|
3
|
Li Y, Gong L, Wu J, Hung W, Zhen M, Gao S. UBR-1 deficiency leads to ivermectin resistance in Caenorhabditis elegans. eLife 2025; 13:RP103718. [PMID: 40167441 PMCID: PMC11961118 DOI: 10.7554/elife.103718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Resistance to anthelmintics, particularly the macrocyclic lactone ivermectin (IVM), presents a substantial global challenge for parasite control. We found that the functional loss of an evolutionarily conserved E3 ubiquitin ligase, UBR-1, leads to IVM resistance in Caenorhabditis elegans. Multiple IVM-inhibiting activities, including viability, body size, pharyngeal pumping, and locomotion, were significantly ameliorated in various ubr-1 mutants. Interestingly, exogenous application of glutamate induces IVM resistance in wild-type animals. The sensitivity of all IVM-affected phenotypes of ubr-1 is restored by eliminating proteins associated with glutamate metabolism or signaling: GOT-1, a transaminase that converts aspartate to glutamate, and EAT-4, a vesicular glutamate transporter. We demonstrated that IVM-targeted GluCls (glutamate-gated chloride channels) are downregulated and that the IVM-mediated inhibition of serotonin-activated pharynx Ca2+ activity is diminished in ubr-1. Additionally, enhancing glutamate uptake in ubr-1 mutants through ceftriaxone completely restored their IVM sensitivity. Therefore, UBR-1 deficiency-mediated aberrant glutamate signaling leads to ivermectin resistance in C. elegans.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Long Gong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Jing Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of TorontoTorontoCanada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of TorontoTorontoCanada
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Sahoo M, Behera DU, Gaur M, Subudhi E. Molecular docking, molecular dynamics simulation, and MM/PBSA analysis of ginger phytocompounds as a potential inhibitor of AcrB for treating multidrug-resistant Klebsiella pneumoniae infections. J Biomol Struct Dyn 2025; 43:3585-3601. [PMID: 38165647 DOI: 10.1080/07391102.2023.2299741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
The emergence of Multidrug resistance (MDR) in human pathogens has defected the existing antibiotics and compelled us to understand more about the basic science behind alternate anti-infective drug discovery. Soon, proteome analysis identified AcrB efflux pump protein as a promising drug target using plant-driven phytocompounds used in traditional medicine systems with lesser side effects. Thus, the present study aims to explore the novel, less toxic, and natural inhibitors of Klebsiella pneumoniae AcrB pump protein from 69 Zingiber officinale phyto-molecules available in the SpiceRx database through computational-biology approaches. AcrB protein's homology-modelling was carried out to get a 3D structure. The multistep-docking (HTVS, SP, and XP) were employed to eliminate less-suitable compounds in each step based on the docking score. The chosen hit-compounds underwent induced-fit docking (IFD). Based on the XP GScore, the top three compounds, epicatechin (-10.78), 6-gingerol (-9.71), and quercetin (-9.09) kcal/mol, were selected for further calculation of binding free energy (MM/GBSA). Furthermore, the short-listed compounds were assessed for their drug-like properties based on in silico ADMET properties and Pa, Pi values. In addition, the molecular dynamics simulation (MDS) studies for 250 ns elucidated the binding mechanism of epicatechin, 6-gingerol, and quercetin to AcrB. From the dynamic binding free energy calculations using MM/PBSA, 6-gingerol exhibited a strong binding affinity towards AcrB. Further, the 6-gingerol complex's energy fluctuation was observed from the free energy landscape. In conclusion, 6-gingerol has a promising inhibiting potential against the AcrB efflux pump and thus necessitates further validation through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Maheswata Sahoo
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | | | - Mahendra Gaur
- Drug Development, and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
- Department of Biotechnology, Punjabi University, Patiala, India
| | - Enketeswara Subudhi
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Gohain BB, Mazumder B, Rajkhowa S, Al-Hussain SA, Zaki MEA. Subtractive genomics and drug repurposing strategies for targeting Streptococcus pneumoniae: insights from molecular docking and dynamics simulations. Front Microbiol 2025; 16:1534659. [PMID: 40170924 PMCID: PMC11958985 DOI: 10.3389/fmicb.2025.1534659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction Streptococcus pneumoniae is a Gram-positive bacterium responsible for severe infections such as meningitis and pneumonia. The increasing prevalence of antibiotic resistance necessitates the identification of new therapeutic targets. This study aimed to discover potential drug targets against S. pneumoniae using an in silico subtractive genomics approach. Methods The S. pneumoniae genome was compared to the human genome to identify non-homologous sequences using CD-HIT and BLASTp. Essential genes were identified using the Database of Essential Genes (DEG), with consideration for human gut microflora. Protein-protein interaction analyses were conducted to identify key hub genes, and gene ontology (GO) studies were performed to explore associated pathways. Due to the lack of crystal structure data, a potential target was modeled in silico and subjected to structure-based virtual screening. Results Approximately 2,000 of the 2,027 proteins from the S. pneumoniae genome were identified as non-homologous to humans. The DEG identified 48 essential genes, which was reduced to 21 after considering human gut microflora. Key hub genes included gpi, fba, rpoD, and trpS, associated with 20 pathways. Virtual screening of 2,509 FDA-approved compounds identified Bromfenac as a leading candidate, exhibiting a binding energy of -26.335 ± 29.105 kJ/mol. Discussion Bromfenac, particularly when conjugated with AuAgCu2O nanoparticles, has demonstrated antibacterial and anti-inflammatory properties against Staphylococcus aureus. This suggests that Bromfenac could be repurposed as a potential therapeutic agent against S. pneumoniae, pending further experimental validation. The approach highlights the potential for drug repurposing by targeting proteins essential in pathogens but absent in the host.
Collapse
Affiliation(s)
- Borakha Bura Gohain
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam, India
| | - Sami A. Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Zhang K, Wang T, Huang X, Wu P, Shen L, Yang Y, Wan W, Sun S, Zhang Z. Ultrasound-mediated nanomaterials for the treatment of inflammatory diseases. ULTRASONICS SONOCHEMISTRY 2025; 114:107270. [PMID: 39961217 DOI: 10.1016/j.ultsonch.2025.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Sterile and infection-associated inflammatory diseases are becoming increasingly prevalent worldwide. Conventional drug therapies often entail significant drawbacks, such as the risk of drug overdose, the development of drug resistance in pathogens, and systemic adverse reactions, all of which can undermine the effectiveness of treatments for these conditions. Nanomaterials (NMs) have emerged as a promising tool in the treatment of inflammatory diseases due to their precise targeting capabilities, tunable characteristics, and responsiveness to external stimuli. Ultrasound (US), a non-invasive and effective treatment method, has been explored in combination with NMs to achieve enhanced therapeutic outcomes. This review provides a comprehensive overview of the recent advances in the use of US-mediated NMs for treating inflammatory diseases. A comprehensive introduction to the application and classification of US was first presented, emphasizing the advantages of US-mediated NMs and the mechanisms through which US and NMs interact to enhance anti-inflammatory therapy. Subsequently, specific applications of US-mediated NMs in sterile and infection-associated inflammation were summarized. Finally, the challenges and prospects of US-mediated NMs in clinical translation were discussed, along with an outline of future research directions. This review aims to provide insights to guide the development and improvement of US-mediated NMs for more effective therapeutic interventions in inflammatory diseases.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Xingyong Huang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, PR China; Key Laboratory of Immunodermatology, National Health Commission of the People's Republic of China, The First Hospital of China Medical University, PR China; National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, PR China.
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China.
| | - Zhan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, PR China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
7
|
Joshi P, Soares JM, Martins GM, Zucolotto Cocca LH, De Boni L, de Oliveira KT, Bagnato VS, Blanco KC. Enhancing the efficacy of antimicrobial photodynamic therapy through curcumin modifications. Photochem Photobiol 2025; 101:359-372. [PMID: 39049138 DOI: 10.1111/php.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/04/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024]
Abstract
Curcumin serves as a photosensitizer (PS) in the context of microbial inactivation when subjected to light exposure, to produce reactive oxygen species, which exhibit efficacy in eradicating microorganisms. This remarkable property underscores the growing potential of antimicrobial photodynamic therapy (aPDT) in the ongoing fight against bacterial infections. Considering this, we investigate the efficacy of various in vitro curcumin formulations within a PDT protocol designed to target Staphylococcus aureus. Specifically, we conduct a comparative analysis involving synthetic curcumin (Cur-Syn) and curcumin derivatives modified with chlorine (Cl), selenium (Se), and iodine (I) (Cur-Cl, Cur-Se, Cur-I). To assess the impact of aPDT, we subject S. aureus to incubation with curcumin, followed by irradiation at 450 nm with energy doses of 3.75, 7.5, and 15 J/cm2. Our investigation encompasses an evaluation of PS uptake and photobleaching across the various curcumin variants. Notably, all three modifications (Cur-Cl, Cur-Se, Cur-I) induce a significant reduction in bacterial viability, approximately achieving a 3-log reduction. Interestingly, the uptake kinetics of Cur-Syn and Cur-Se exhibit similarities, reaching saturation after 20 min. Our findings suggest that modifications to curcumin have a discernible impact on the photodynamic properties of the PS molecule.
Collapse
Affiliation(s)
- Priyanka Joshi
- PPGBiotec, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Jennifer M Soares
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Guilherme M Martins
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Leandro H Zucolotto Cocca
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
- Grupo de Fotônica, Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Leonardo De Boni
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Vanderlei S Bagnato
- PPGBiotec, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
- Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Kate C Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
8
|
Saha S, Hossain MA, Ferdousi H, Deen JI, Chowdhury A, Mannan M, Khan MAN, Rahman MA. Capsicum chinense Jacq. fruit plays an immunomodulatory role in cytokine attenuation and DNA damage protection. PLoS One 2025; 20:e0319251. [PMID: 39999222 PMCID: PMC11856283 DOI: 10.1371/journal.pone.0319251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Capsicum chinense (C. chinense) Jacq., recognized for its bioactive compounds, has attracted interest due to its possible immunomodulatory and DNA-damage-protective effects. This study aimed to assess the immunomodulatory, anti-inflammatory, and DNA protection abilities of organic extracts (methanol, ethyl acetate, and petroleum ether) from C. chinense. The immunomodulatory effects were evaluated in Long Evans rats induced with SRBC. At the same time, the anti-inflammatory potential was investigated in LPS-stimulated RAW264.7 macrophages by quantifying pro-inflammatory mediators such as COX-2, iNOS, TNF-α, IL-β, and IL-6. Protective activity against DNA damage was assessed using a method that induces damage with a Fenton reagent. Cytotoxicity was tested on the Hela cell line to gauge the cellular effects of the extracts. The results demonstrated that higher doses (200 mg) of C. chinense methanol extract inhibited immune responses, whereas lower doses helped restore them. The extracts significantly decreased pro-inflammatory mediators and cytokines in LPS-activated macrophages. Both petroleum ether and methanol extracts showed higher cytotoxicity against Hela cells compared to the ethyl acetate extract. The protein levels recorded in the serological parameters were 5.74 ± 0.19, 5.36 ± 0.11, 5.74 ± 0.26, 6.02 ± 0.16, 6.18 ± 0.18, and 6.22 ± 0.20 gm/dL for NC, DC, ML, MLMExCC100, MLMExCC200, and MExCC100, respectively. These findings suggest that C. chinense extracts possess strong immunomodulatory effects and potential protection against DNA damage, supporting their therapeutic application in regulating the innate immunity system.
Collapse
Affiliation(s)
- Srabonti Saha
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Md. Altaf Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Humayra Ferdousi
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Jobaier Ibne Deen
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Akhlak Chowdhury
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Md. Mannan
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
9
|
Li FL, He CY, Chen HY, Cheng SM, Liu Y, Ding HZ, Zhang HL. In vivo Pharmacokinetic/pharmacodynamic relationship of florfenicol in combination with doxycycline against Riemerella anatipestifer in ducks and the effect upon resistance development. Poult Sci 2025; 104:104922. [PMID: 39985898 PMCID: PMC11904534 DOI: 10.1016/j.psj.2025.104922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/09/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025] Open
Abstract
Antimicrobial chemotherapy is necessary to control Riemerella anatipestifer (RA), among which florfenicol (FF) is regarded as one of the preferred options. Based on the consideration of drug combination to improve efficacy, the pharmacokinetics and pharmacodynamics of FF combined with doxycycline (DOX) against RA were studied. FF was administered at doses of 20 or 40 mg/kg in combination with DOX (1, 2.5, 5, 10, or 20 mg/kg) via a single intramuscular injection (i.m.). DOX showed slow elimination in ducks with elimination half-life (T1/2kel) in plasma, lung, and liver of 11.21, 11.53, and 13.01 h, respectively. A single dose of DOX (≥10 mg/kg) combined with FF (20 mg/kg) could exert a bactericidal effect on some tissues (heart, liver, spleen, lungs) in a model of RA strain CVCC3857 (minimum inhibitory concentration (MIC) of FF = 1 µg/mL, MIC of DOX = 2 µg/mL) infection within 24 h, and bactericidal effects (3.01-4.36 log10 CFU/mL) were achieved in various tissues at a FF dose of 40 mg/kg. The AUC24h/MIC of DOX combined with FF at 20 mg/kg required to produce a drop of 3 Log10CFU/mL was 39.19 h (predicted dose of 25.03 mg/kg) and the value was 19.98 h (predicted dose of 12.76 mg/kg) when the dose of FF was 40 mg/kg. Combination of these two drugs could be used against insensitive strains (RA38 infection model with MIC of FF = 4 µg/mL, MIC of DOX = 2 µg/mL) by administering them twice for 24 h. Continuous passage under antibiotic pressure for 30 days suggested that resistance to FF was delayed in the presence of DOX. Genome resequencing and analyses of single-nucleotide polymorphisms revealed seven mutated genes (fahA, pfam, TonB-dependent receptor gene, proS, porU, RpiB). TonB-dependent receptor genes play a role in bacterial susceptibility. Additionally, both TonB-dependent receptor genes and fahA are involved in bacterial virulence and biofilm formation capabilities. Antimicrobial-treated strains were different from ancestor strains in terms of growth and virulence. Our study provides a data basis for the clinical use of FF and DOX against RA.
Collapse
Affiliation(s)
- Fa-Lei Li
- School of Biological and Food Engineering, Fuyang Normal University, 236037 Fuyang, PR China
| | - Chao-Yue He
- School of Biological and Food Engineering, Fuyang Normal University, 236037 Fuyang, PR China
| | - Hui-Yang Chen
- School of Biological and Food Engineering, Fuyang Normal University, 236037 Fuyang, PR China
| | - Shi-Mei Cheng
- School of Biological and Food Engineering, Fuyang Normal University, 236037 Fuyang, PR China
| | - Yong Liu
- School of Biological and Food Engineering, Fuyang Normal University, 236037 Fuyang, PR China
| | - Huan-Zhong Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, PR China
| | - Hui-Lin Zhang
- School of Biological and Food Engineering, Fuyang Normal University, 236037 Fuyang, PR China.
| |
Collapse
|
10
|
Gonçalves R, Monges BE, Oshiro KGN, Cândido EDS, Pimentel JP, Franco OL, Cardoso MH. Advantages and Challenges of Using Antimicrobial Peptides in Synergism with Antibiotics for Treating Multidrug-Resistant Bacteria. ACS Infect Dis 2025; 11:323-334. [PMID: 39855154 PMCID: PMC11833863 DOI: 10.1021/acsinfecdis.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Multidrug-resistant bacteria (MDR) have become a global threat, impairing positive outcomes in many cases of infectious diseases. Treating bacterial infections with antibiotic monotherapy has become a huge challenge in modern medicine. Although conventional antibiotics can be efficient against many bacteria, there is still a need to develop antimicrobial agents that act against MDR bacteria. Bioactive peptides, particularly effective against specific types of bacteria, are recognized for their selective and effective action against microorganisms and, at the same time, are relatively safe and well tolerated. Therefore, a growing number of works have proposed the use of antimicrobial peptides (AMPs) in synergism with commercial antibiotics as an alternative therapeutic strategy. This review provides an overview of the critical parameters for using AMPs in synergism with antibiotics as well as addressing the strengths and weaknesses of this combination therapy using in vitro and in vivo models of infection. We also cover the challenges and perspectives of using this approach for clinical practice and the advantages of applying artificial intelligence strategies to predict the most promising combination therapies between AMPs and antibiotics.
Collapse
Affiliation(s)
- Regina
Meneses Gonçalves
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| | - Bruna Estéfani
Dutra Monges
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| | - Karen Garcia Nogueira Oshiro
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| | - Elizabete de Souza Cândido
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
- Centro
de Análises Proteômicas e Bioquímicas, Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, DF 71966700, Brazil
| | - João Pedro
Farias Pimentel
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| | - Octávio Luiz Franco
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
- Centro
de Análises Proteômicas e Bioquímicas, Programa
de Pós-Graduação em Ciências Genômicas
e Biotecnologia, Universidade Católica
de Brasília, Brasília, DF 71966700, Brazil
| | - Marlon Henrique Cardoso
- S-Inova
Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
- Programa
de Pós-Graduação em Ciências Ambientais
e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| |
Collapse
|
11
|
Farooq A, Rafique A, Han E, Park SM. Global dissemination of the beta-lactam resistance gene blaTEM-1 among pathogenic bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178521. [PMID: 39824112 DOI: 10.1016/j.scitotenv.2025.178521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Antibiotic resistance presents a burgeoning global health crisis, with over 70 % of pathogenic bacteria now exhibiting resistance to at least one antibiotic. This study leverages a vast dataset of 618,853 pathogenic bacterial genomes from the NCBI pathogen detection database, offering comprehensive insights into antibiotic resistance patterns, species-specific profiles, and transmission dynamics of resistant pathogens. We centered our investigation on the beta-lactam resistance gene blaTEM-1, found in 43,339 genomes, revealing its extensive distribution across diverse species and isolation sources. The study unveiled the prevalence of 15 prominent antibiotic resistance genes (ARGs), including those conferring resistance to beta-lactam, aminoglycoside, and tetracycline antibiotics. Distinct resistance patterns were observed between Gram-positive and Gram-negative bacteria, indicating the influence of phylogeny on resistance dissemination. Notably, the blaTEM-1 gene demonstrated substantial prevalence across a wide array of bacterial species (8) and a high number of isolation sources (11). Genetic context analysis revealed associations between blaTEM-1 and mobile genetic elements (MGEs) like transposons and insertion sequences. Additionally, we observed recent horizontal transfer events involving clusters of blaTEM-1 genes and MGEs underscore the potential of MGEs in facilitating the mobilization of ARGs. Our findings underscore the importance of adopting a One Health approach to global genomic pathogen surveillance, aiming to uncover the transmission routes of ARGs and formulate strategies to address the escalating antibiotic resistance crisis.
Collapse
Affiliation(s)
- Adeel Farooq
- Research Institute for Basic Sciences (RIBS), Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Republic of Korea.
| | - Asma Rafique
- Department of Microbiology and Immunology, College of Medicine, Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eunyoung Han
- Department of Biotechnology, College of Applied Life Sciences, Inje University, 197 Inje-ro, Gimhae, Gyeongsangnam 50834, Republic of Korea
| | - Soo-Min Park
- Department of Biotechnology, College of Applied Life Sciences, Inje University, 197 Inje-ro, Gimhae, Gyeongsangnam 50834, Republic of Korea
| |
Collapse
|
12
|
Sharma V, Das R, Mehta DK, Sharma D, Aman S, Khan MU. Quinolone scaffolds as potential drug candidates against infectious microbes: a review. Mol Divers 2025; 29:711-737. [PMID: 38683488 DOI: 10.1007/s11030-024-10862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Prevalence of microbial infections and new rising pathogens are signified as causative agent for variety of serious and lethal health crisis in past years. Despite medical advances, bacterial and fungal infections continue to be a rising problem in the health care system. As more bacteria develop resistance to antibiotics used in therapy, and as more invasive microbial species develop resistance to conventional antimicrobial drugs. Relevant published publications from the last two decades, up to 2024, were systematically retrieved from the MEDLINE/PubMed, SCOPUS, EMBASE, and WOS databases using keywords such as quinolones, anti-infective, antibacterial, antimicrobial resistance and patents on quinolone derivatives. With an approach of considerable interest towards novel heterocyclic derivatives as novel anti-infective agents, researchers have explored these as essential tools in vistas of drug design and development. Among heterocycles, quinolones have been regarded extremely essential for the development of novel derivatives, even able to tackle the associated resistance issues. The quinolone scaffold with its bicyclic structure and specific functional groups such as the carbonyl and acidic groups, is indeed considered a valuable functionalities for further lead generation and optimization in drug discovery. Besides, the substitution at N-1, C-3 and C-7 positions also subjected to be having a significant role in anti-infective potential. In this article, we intend to highlight recent quinolone derivatives based on the SAR approach and anti-infective potential such as antibacterial, antifungal, antimalarial, antitubercular, antitrypanosomal and antiviral activities. Moreover, some recent patents granted on quinolone-containing derivatives as anti-infective agents have also been highlighted in tabular form. Due consideration of this, future research in this scaffold is expected to be useful for aspiring scientists to get pharmacologically significant leads.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Rina Das
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| | - Diksha Sharma
- Swami Devidyal College of Pharmacy, Barwala, 134118, India
| | - Shahbaz Aman
- Department of Microbiology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - M U Khan
- Department of pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah, Al Qassim, Saudi Arabia
| |
Collapse
|
13
|
Hayes J, Lee SS, Carnevale J, Shamir D, Bohbot M, Kirk AG, Paliouras M, Trifiro MA. Performance and functional assessment of the Kimera P-IV point-of-care plasmonic qPCR prototype for ultra rapid pathogen detection of chlamydia trachomatis. Epidemiol Infect 2025; 153:e27. [PMID: 39881625 PMCID: PMC11869076 DOI: 10.1017/s0950268825000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Current standard microbiological techniques are generally very time consuming, usually requiring 24-72 h to establish a diagnosis. Consequentially, contemporary clinical practices implement broad-spectrum antibiotic administration prior to pathogen detection, prompting the emergence of extremely dangerous antibiotic-resistant bacteria. Additionally, lengthy test-to-result turnover times can greatly exacerbate the rate of disease spread. Rapid point-of-care (POC) diagnostics has quickly gained importance since the SARS-CoV-2 pandemic; accordingly, we have developed a rapid four-channel POC plasmonic quantitative polymerase chain reaction (qPCR) machine (Kimera P-IV) to respond to the deficiencies in infection control. Utilizing gold nanorods (GNRs) as nano-heaters and integrating vertical cavity surface emitting lasers (VCSEL) to replace traditional Peltier blocks, the Kimera P-IV has also incorporated quantitative real-time fluorescent monitoring. Using Chlamydia trachomatis genetic material to evaluate the rapid thermocycling performance of the platform, we have generated positive amplicons in less than 13 min; however, to achieve these results, several biological reagent considerations needed to be taken into account, specifically primer design. The device can achieve a limit of detection (LoD) of <101 DNA copies, a PCR efficiency of 88.3%, and can differentiate positive from negative results with 100% accuracy. Moreover, it can also analyze C. trachomatis DNA spiked urine samples via a simple dilution, suggesting that a separate nucleic acid step may not be needed for diagnosing infections. In conclusion, the operation of the Kimera P-IV prototype places it in a unique position of POC devices to revolutionize infectious disease diagnosis.
Collapse
Affiliation(s)
- Joshua Hayes
- Lady Davis Institute for Medical for Medical Research – Jewish General Hospital, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Seung Soo Lee
- Lady Davis Institute for Medical for Medical Research – Jewish General Hospital, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Jason Carnevale
- Department of Biology, Concordia University, Montreal, QC, Canada
| | | | | | - Andrew G. Kirk
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| | - Miltiadis Paliouras
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Mark A. Trifiro
- Lady Davis Institute for Medical for Medical Research – Jewish General Hospital, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Kassem AF, Ragab SS, Omar MA, Altwaijry NA, Abdelraof M, Temirak A, Saleh A, Srour AM. New quinazolone-sulfonate conjugates with an acetohydrazide linker as potential antimicrobial agents: design, synthesis and molecular docking simulations. RSC Adv 2025; 15:1033-1048. [PMID: 39807202 PMCID: PMC11726445 DOI: 10.1039/d4ra07563c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
A novel molecular design based on a quinazolinone scaffold was developed via the attachment of aryl alkanesulfonates to the quinazolinone core through a thioacetohydrazide azomethine linker, leading to a new series of quinazolinone-alkanesulfonates 5a-r. The antimicrobial properties of the newly synthesized quinazolinone derivatives 5a-r were investigated to examine their bactericidal and fungicidal activities against bacterial pathogens like Bacillus subtilis, Staphylococcus aureus (Gram-positive), Pseudomonas aeruginosa, Klebsiella pneumonia, Sallmonella Typhimurium (Gram-negative), in addition to Candida albicans (unicellular fungal). The tested compounds demonstrated reasonable bactericidal activities compared to standard drugs. Notably, derivatives 5g and 5k exhibited the greatest MIC values against Candida albicans, while 5g was the best against Staphylococcus aureus with MIC of 11.3 ± 2.38 μg mL-1, two-fold efficacy more than that was recorded with sulfadiazine. Furthermore, 5k significantly prevented biofilm formation for all bacterial pathogens, with a percentage ratio reaching 63.9%, surpassing the standard drug Ciprofloxacin. Additionally, 5k caused elevated lipid peroxidation (LPO) when added to the tested microbial pathogens. Confocal Laser Scanning Microscopy (CLSM) visualization revealed fewer live cells after treatment. Molecular docking studies showed that the quinazolinone derivatives bind strongly to the DNA gyrase enzyme, with the acid hydrazide core interacting effectively with key residues GLU50, ASN46, GLY77, and ASP136, consistent with their antimicrobial activity. Additionally, these compounds exhibited promising physicochemical properties, paving the way for discovering new antimicrobial drugs.
Collapse
Affiliation(s)
- Asmaa F Kassem
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Giza 12622 Egypt
| | - Sherif S Ragab
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre (NRC) 33 El-Behouth St., P.O. 12622 Dokki Giza Egypt
| | - Mohamed A Omar
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Giza 12622 Egypt
| | - Najla A Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Mohamed Abdelraof
- Microbial Chemistry Department, National Research Centre, Biotechnology Research Institute Giza Egypt
| | - Ahmed Temirak
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Giza 12622 Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Giza 12622 Egypt
| |
Collapse
|
15
|
Shukla P, Srivastava P, Mishra A. On the potential activity of hyaluronic acid as an antimicrobial agent: experimental and computational validations. Bioprocess Biosyst Eng 2025; 48:27-42. [PMID: 39343852 DOI: 10.1007/s00449-024-03091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
This century has seen the rise of antibiotic resistance as a significant public health problem. In addition, oxidative stress may also be a factor in selecting resistant strains of bacteria. The current study analyzed microbially produced hyaluronic acid's antibacterial activity and antioxidant activity. It had significant antibacterial action against strains of Staphylococcus aureus and Escherichia coli, with the IC50 value obtained being 487.65 µg mL-1 for antioxidant assay. Our molecular docking investigations of hyaluronic acid on tyrosyl-tRNA synthetase (Staphylococcus aureus: -6.13 kcal/mol, Escherichia coli: -5.79 kcal/mol) and topoisomerase II DNA gyrase (Staphylococcus aureus: -5.02 kcal/mol, Escherichia coli: -4.90 kcal/mol) confirmed the ligands' possible binding mode to the appropriate targets' sites. We also employed molecular dynamics simulation and showed that HA binds more strongly with 1JIL (-85.455 ± 12.623 kJ/mol) compared to 2YXN (-49.907 ± 64.191 kJ/mol), 5CDP (-47.285 ± 13.925 kJ/mol), and 6RKS (-45.306 ± 21.338 kJ/mol). We also report that the ligand forms several hydrogen bonds in molecular simulation, implying regular interaction with key residues of the enzymes. The results in this study indicate the potential use of HA in the vast field of applications having both asthetic and medicinal values.
Collapse
Affiliation(s)
- Priya Shukla
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
16
|
Zhou F, Gu X, Wang W, Lin M, Wang L. Advancements in MRSA treatment: the role of berberine in enhancing antibiotic therapy. BMC Microbiol 2024; 24:540. [PMID: 39731013 DOI: 10.1186/s12866-024-03692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/08/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a significant public health problem. This study investigated the antimicrobial properties and mechanisms of berberine (BBR), a plant alkaloid, against MRSA, evaluating its potential to enhance antibiotic therapy. RESULTS Berberine only demonstrated variable but significant inhibitory effects on 50 clinical MRSA strains. When combined with antibiotics, synergistic effects were observed only with amikacin in 6 of the 50 MRSA strains. BBR disrupted MRSA cell wall integrity, leading to leakage of cellular contents. Network pharmacology analysis revealed that BBR targets multiple pathways essential for bacterial survival. CONCLUSION The study confirmed the potent antimicrobial activity of berberine against MRSA and its capability to act synergistically with traditional antibiotics. Berberine's impact on cell wall integrity and bacterial survival pathways highlights its potential as an adjunct therapy in MRSA treatment.
Collapse
Affiliation(s)
- Fangfang Zhou
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu, P.R. China
| | - Xuemei Gu
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China
| | - Wei Wang
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China
| | - Ming Lin
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China
| | - Lei Wang
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China.
| |
Collapse
|
17
|
Salahi-Niri A, Nabavi-Rad A, Monaghan TM, Rokkas T, Doulberis M, Sadeghi A, Zali MR, Yamaoka Y, Tacconelli E, Yadegar A. Global prevalence of Helicobacter pylori antibiotic resistance among children in the world health organization regions between 2000 and 2023: a systematic review and meta-analysis. BMC Med 2024; 22:598. [PMID: 39710669 DOI: 10.1186/s12916-024-03816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Helicobacter pylori infection causes gastritis, peptic ulcers, and gastric cancer. The infection is typically acquired in childhood and persists throughout life. The major impediment to successful therapy is antibiotic resistance. This systematic review and meta-analysis aimed to comprehensively assess the global prevalence of antibiotic resistance in pediatric H. pylori infection. METHODS We performed a systematic search of publication databases that assessed H. pylori resistance rates to clarithromycin, metronidazole, levofloxacin, amoxicillin, and tetracycline in children. The WHO region classification was used to group pooled primary and secondary resistance estimates along with 95% confidence interval (CI). H. pylori antibiotic resistance rates were retrieved and combined with odds ratios (95% CI) to investigate the global prevalence and temporal trends. Subgroup analysis of the prevalence of antibiotic resistance was conducted by country, age groups, and susceptibility testing methods. RESULTS Among 1417 records obtained initially, 152 studies were selected for eligibility assessment after applying exclusion criteria in multiple steps. Ultimately, 63 studies involving 15,953 individuals were included comprising data from 28 countries in 5 WHO regions. The primary resistance rates were metronidazole 35.3% (5482/15,529, 95% CI: 28.7-42.6), clarithromycin 32.6% (5071/15,555, 95% CI: 27.7-37.9), tetracycline 2.1% (148/7033, 95% CI: 1.3-3.6), levofloxacin 13.2% (1091/8271, 95% CI: 9.3-18.4), and amoxicillin 4.8% (495/10305, 95% CI: 2.5-8.8). Raising antibiotic resistance was detected in most WHO regions. CONCLUSIONS The escalating trend of H. pylori antibiotic resistance in children warrants urgent attention globally. National and regional surveillance networks are required for antibiotic stewardship in children infected with H. pylori.
Collapse
Affiliation(s)
- Aryan Salahi-Niri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tanya Marie Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Theodore Rokkas
- Gastroenterology Clinic, Henry Dunant Hospital, Athens, Greece
- Medical School, European University of Cyprus, Nicosia, Cyprus
| | - Michael Doulberis
- Gastroklinik, Private Gastroenterological Practice, Horgen, 8810, Switzerland
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau, 5001, Switzerland
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA
- Research Center for Global and Local Infectious Diseases, Oita University, Oita, Japan
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Shi Y, Liang M, Zeng J, Wang Z, Zhang L, He Z, Li M, Shu L, Ying G. Soil Amoebae Are Unexpected Hotspots of Environmental Antibiotics and Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21475-21488. [PMID: 39584452 DOI: 10.1021/acs.est.4c10455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Antibiotic resistance poses a significant threat to human health. While most studies focus on bacteria, interactions between antibiotics and other crucial microbial groups like protists remain uncertain. This study investigates how protists interact with antibiotics and examines how these interactions impact the fate of resistance genes. It reveals that amoebae exhibit high resistance to eight high-risk environmental antibiotics, accumulating significant quantities within their cells. Wild amoeboid strains from distant locations carry substantial antibiotic resistance genes (ARGs) and metal resistance genes (MRGs), with significant heterogeneity within a single species. Amoeboid symbionts and pathogens predominantly carry these genes. Paraburkholderia symbionts have reduced genomes and fewer resistance genes compared to free-living strains, while amoeba-endogenous Stenotrophomonas maltophilia does not exhibit a significantly reduced genome size. This suggests that the amoeboid hosts serve as a temporary medium facilitating its transmission. In summary, the study unveils that soil amoebae represent unexpected hotspots for antibiotics and resistance genes. Future research should assess the effects of antibiotics on often-overlooked protists and explore their role in spreading ARGs and MRGs in ecosystems. Incorporating protists into broader antibiotic resistance research is recommended, highlighting their significance within a One Health perspective.
Collapse
Affiliation(s)
- Yijing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Minxi Liang
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiaxiong Zeng
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zihe Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengyuan Li
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
19
|
Aqel AA, Al-Matarneh TM, Al-Tarawneh TK, Alnawayseh T, Alsbou M, Gaber Y. Monitoring of Antibiotic Resistance Patterns Within Al-Karak Governmental Hospital, Jordan, in 2022. Antibiotics (Basel) 2024; 13:1172. [PMID: 39766563 PMCID: PMC11672563 DOI: 10.3390/antibiotics13121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance is considered one of the foremost global public health challenges, and its prevalence is increasing. In Jordan, particularly in Al-Karak Governorate, there is a lack of sufficient data on antimicrobial resistance to make accurate assessments. The main aim of the current study was to evaluate antibiotic resistance trends in clinical specimens from 2022 and assess antibiotic resistance patterns. The emphasis on the WHO antibiotic classification as Access, Watch, and Reserved (AWaRe) was adopted in the current study. Results: Among Gram-positive bacteria, Enterococcus faecalis exhibited 100% susceptibility to nitrofurantoin and 96% to vancomycin, Streptococcus viridans exhibited 100% susceptibility to teicoplanin, while CoNS (coagulase-negative Staphylococci) showed moderate resistance to Trimethoprim + Sulfamethoxazole (63%) and clindamycin (47%). Among Gram-negative bacteria, Escherichia coli and Klebsiella pneumoniae displayed high susceptibility to fosfomycin (E. coli: 95%, K. pneumoniae: 80%) and amikacin (E. coli: 93%, K. pneumoniae: 81%). Resistance was notable for trimethoprim + sulfamethoxazole (E. coli: 47%, K. pneumoniae: 53%) and nitrofurantoin (K. pneumoniae: 30%). Pseudomonas aeruginosa exhibited the highest proportion of XDR strains (15%), followed by K. pneumoniae (11%) and E. coli (4%), while PDR strains were found in P. aeruginosa (6%), K. pneumoniae (3%), and E. coli (0.6%). XDR was observed in 4% of CoNS and 3% of S. viridans (α), with Staphylococcus aureus exhibiting both XDR and PDR at 1%. Methods: A cross-sectional retrospective study of bacterial species and their antimicrobial susceptibility was carried out at a hospital in Al Karak, Jordan, from January to December of 2022, the study included 1187 isolates from all locations in Al-Karak Governmental Hospital. Conclusions: The significant prevalence of XDR and PDR strains in key pathogens, particularly P. aeruginosa and K. pneumoniae, underscores the need for a robust Antimicrobial Stewardship Program (ASP) and infection control measures at Al-Karak Governmental Hospital. High susceptibility in several Access group antibiotics (e.g., amikacin and nitrofurantoin) supports their prioritization in empirical therapy, while the emergence of resistance in Watch and Reserved antibiotics highlights the necessity for rational use. These findings are very important for adjusting the local strategies to lower the spread of resistant strains and improve clinical outcomes.
Collapse
Affiliation(s)
- Amin A. Aqel
- Department of Microbiology and Immunology, Faculty of Medicine, Mutah University, Al-Karak 61710, Jordan;
| | - Tala M. Al-Matarneh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt;
| | - Tayf K. Al-Tarawneh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan; (T.K.A.-T.); (Y.G.)
| | - Tahrir Alnawayseh
- Infection Prevention and Control Al-Karak Governmental Hospital, Al-Karak 61710, Jordan;
| | - Mohammed Alsbou
- Department of Pathological Sciences, College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak 61710, Jordan
| | - Yasser Gaber
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan; (T.K.A.-T.); (Y.G.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
20
|
Vanga MK, Bhukya R, Thumma V, Tamalapakula V, Boddu LS, Manga V. Antioxidant and Antimicrobial Activities of 4H-Chromene Based Indole-Pyrimidine Hybrids: Synthesis and Molecular Docking Studies. Chem Biodivers 2024; 21:e202401583. [PMID: 39133616 DOI: 10.1002/cbdv.202401583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 10/11/2024]
Abstract
A series of 4H-Chromene Based Indole-Pyrimidine Hybrids synthesized using simple and efficient multicomponent reaction. The title molecules were evaluated for their invitro antioxidant and antimicrobial activities. Compounds 8 g containing bromo substituted naphthalene displayed potent antioxidant activity with IC50 value of 1.09±0.34 μM and 1.10±0.36 μM. Compound 10 a, a 4-methylphenyl derivative presented potent activity with antioxidant activity with IC50 value of 1.29±0.35 μM and 1.43±0.38 μM. Subsequently, compounds 8 a, 8 b, 8 d and 10 g had shown prominent percentage of inhibition and derived effective IC50 values in comparison to reference drug Ascorbic Acid. The invitro antimicrobial activity carried out against two gram positive and two gram-negative bacteria, and two fungal strains using Ampicillin and Itraconazole as refence drugs. Compound 10 f exhibited exceptional efficacy against all types of bacterial and fungal strains compared to Ampicillin and Itraconazole, compounds 8 e and 8 g showed activity against bacterial strains whereas compound 10 g exhibited the most effective zone of inhibition against fungal strains. The molecular docking study against crystal structure of NADPH oxidase obtained supporting docking scores and showed notable binding interactions such as H-bond and hydrophobic.
Collapse
Affiliation(s)
- Murali Krishna Vanga
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| | - Rambabu Bhukya
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| | - Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, 500059, Telangana, India
| | - Vani Tamalapakula
- University College of Technology, Osmania University, Hyderabad, Telangana, 500007, India
| | - Lakshmi Satya Boddu
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Telangana, 502313, India
| | - Vijjulatha Manga
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
- Telangana Mahila Viswavidyalayam, Hyderabad, Hyderabad, Telangana, 500095, India
| |
Collapse
|
21
|
Gamelas SRD, Bartolomeu M, Vieira C, Faustino MAF, Tomé JPC, Tomé AC, Almeida A, Lourenço LMO. Bacterial Photodynamic Inactivation: Eradication of Staphylococcus aureus and Escherichia coli Mediated by Pyridinium-Pyrazolyl Zinc(II) Phthalocyanines. ACS APPLIED BIO MATERIALS 2024; 7:7748-7757. [PMID: 39432009 DOI: 10.1021/acsabm.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Antimicrobial resistance remains an enduring global health issue, manifested when microorganisms, such as bacteria, lack responsiveness to antimicrobial treatments. Photodynamic inactivation (PDI) of microorganisms arises as a noninvasive, nontoxic, and repeatable alternative for the inactivation of a broad range of pathogens. So, this study reports the synthesis, structural characterization, and photophysical properties of a new tetra-β-substituted pyridinium-pyrazolyl zinc(II) phthalocyanine (ZnPc 1a) that was compared with two previously described pyridinium-pyrazolyl ZnPcs 2a and 3a. The PDI efficacy of these three ZnPcs (1a-3a) against a drug-resistant Gram-positive bacterium (as Staphylococcus aureus) and a Gram-negative bacterium (as Escherichia coli) is also reported. The PDI efficacy toward these bacteria was examined with ZnPcs 1a-3a in the 5.0-10.0 μM range using a white light source with an irradiance of 150 mW/cm2. All ZnPcs displayed a significant PDI activity against S. aureus, with reductions superior to 3 Log CFU/mL. Increasing the treatment time, the E. coli was inactivated until the detection limit of the method (>6.3 Log CFU/mL) using the quaternized ZnPcs 1a-3a (10.0 μM, 120 min) being the inactivation time was reduced when added the KI for ZnPcs 1a and 3a. These findings demonstrate the effective PDI performance of pyridinium-pyrazolyl group-bearing PSs, indicating their potential use as a versatile antimicrobial agent for managing infections induced by Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Sara R D Gamelas
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Bartolomeu
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catia Vieira
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João P C Tomé
- CQE, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leandro M O Lourenço
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
22
|
Kuhn EMA, Sominsky LA, Chittò M, Schwarz EM, Moriarty TF. Antibacterial Mechanisms and Clinical Impact of Sitafloxacin. Pharmaceuticals (Basel) 2024; 17:1537. [PMID: 39598446 PMCID: PMC11597390 DOI: 10.3390/ph17111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Sitafloxacin is a 4th generation fluoroquinolone antibiotic with broad activity against a wide range of Gram-negative and Gram-positive bacteria. It is approved in Japan and used to treat pneumonia and urinary tract infections (UTIs) as well as other upper and lower respiratory infections, genitourinary infections, oral infections and otitis media. Compared to other fluoroquinolones, sitafloxacin displays a low minimal inhibitory concentration (MIC) for many bacterial species but also activity against anaerobes, intracellular bacteria, and persisters. Furthermore, it has also shown strong activity against biofilms of P. aeruginosa and S. aureus in vitro, which was recently validated in vivo with murine models of S. aureus implant-associated bone infection. Although limited in scale at present, the published literature supports the further evaluation of sitafloxacin in implant-related infections and other biofilm-related infections. The aim of this review is to summarize the chemical-positioning-based mechanisms, activity, resistance profile, and future clinical potential of sitafloxacin.
Collapse
Affiliation(s)
- Elian M. A. Kuhn
- AO Research Institute Davos, 7270 Davos, Switzerland; (E.M.A.K.); (M.C.)
- Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Levy A. Sominsky
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA (E.M.S.)
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Marco Chittò
- AO Research Institute Davos, 7270 Davos, Switzerland; (E.M.A.K.); (M.C.)
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA (E.M.S.)
| | - T. Fintan Moriarty
- AO Research Institute Davos, 7270 Davos, Switzerland; (E.M.A.K.); (M.C.)
| |
Collapse
|
23
|
Myakala N, Thumma V, Kandula K, Rayala N, Boddu LS, Anagani KDB. Screening for antimicrobial and antioxidant activities of quinazolinone based isoxazole and isoxazoline derivatives, synthesis and In silico studies. Mol Divers 2024:10.1007/s11030-024-11032-2. [PMID: 39487898 DOI: 10.1007/s11030-024-11032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Two novel series of quinazolinone based isoxazole and isoxazoline hybrid compounds were synthesized from 6-aminoquinazolinone as a key precursor. The title compounds were achieved in synthetic routes via propargylation and allylation reactions of the precursor followed by cyclization with various chloroximes. The new compounds 4a-g and 6a-g were screened for their antimicrobial activity against two Gram-positive bacteria, two Gram-negative bacteria and two fungi by employing Ampicillin and Itraconazole as standard reference. Among all, the 4-bromosubstituted analogues in isoxazole series 4d and in isoxazoline series 6d demonstrated potent activity against all bacterial and fungal strains compared to Ampicillin as well as Itraconazole. The MIC of these compounds were determined as 0.012 μM. The antioxidant investigation revealed that compounds 4f and 6f with dimethyl substitution, exhibited significant activity. Their respective IC50 values were 1.28 ± 0.33, 1.39 ± 0.38 µM and 1.07 ± 0.24, 1.10 ± 0.26 µM, when compared to Ascorbic acid. The compounds 4 g and 6 g with dichloro substitution, exhibited promising results with IC50 values were 2.72 ± 0.34 µM and 2.78 ± 0.41 µM for 4 g, and 2.24 ± 0.93 µM and 2.45 ± 0.53 µM for 6 g, respectively. Their antimicrobial and antioxidant activities were authenticated by the molecular docking study against crystal structure of DNA gyrase and NADPH oxidase. The predicted ADME properties of these molecules progressed favourable drug-likeness properties.
Collapse
Affiliation(s)
- Nagaraju Myakala
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, Telangana, 500059, India
| | - Kotaiah Kandula
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Nagamani Rayala
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Lakshmi Satya Boddu
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Telangana, 502313, India
| | - Kanaka Durga Bhavani Anagani
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
24
|
Wang Z, Ding W, Shi D, Chen X, Ma C, Jiang Y, Wang T, Chen T, Shaw C, Wang L, Zhou M. Functional characterisation and modification of a novel Kunitzin peptide for use as an anti-trypsin antimicrobial peptide against drug-resistant Escherichia coli. Biochem Pharmacol 2024; 229:116508. [PMID: 39186954 DOI: 10.1016/j.bcp.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
In recent decades, antimicrobial peptides (AMPs) have emerged as highly promising candidates for the next generation of antibiotic agents, garnering significant attention. Although their potent antimicrobial activities and ability to combat drug resistance make them stand out among alternative agents, their poor stability has presented a great challenge for further development. In this work, we report a novel Kunitzin AMP, Kunitzin-OL, from the frog Odorrana lividia, exhibiting dual antimicrobial and anti-trypsin activities. Through functional screening and comparison with previously reported Kunitzin peptides, we serendipitously discovered a unique motif (-KVKF-) and unveiled its crucial role in the antibacterial functions of Kunitzin-OL by modifying it through motif removal and duplication. Among the designed derivatives, peptides 4 and 8 demonstrated remarkable antimicrobial activities and low cytotoxicity, with high therapeutic index (TI) values (TI4 = 20.8, TI8 = 20.8). Furthermore, they showed potent antibacterial efficacy against drug-resistant Escherichia coli strains and exhibited lipopolysaccharide (LPS)-neutralising activity, effectively alleviating LPS-induced inflammatory responses. Overall, our findings provide a new short motif for designing effective AMP drugs and highlight the potential of the Kunitztin trypsin inhibitory loop as a valuable motif for the design of AMPs with enhancing proteolytic stability.
Collapse
Affiliation(s)
- Zhizhong Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Wenjing Ding
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Daning Shi
- Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, PR China.
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
25
|
Kot B, Witeska M. Review: Antimicrobial resistance of Klebsiella pneumoniae isolated from poultry, cattle and pigs. Animal 2024; 18:101345. [PMID: 39490087 DOI: 10.1016/j.animal.2024.101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024] Open
Abstract
Klebsiella pneumoniae, common pathogenic bacteria, cause dangerous infectious diseases in animals and humans. Klebsiella pneumoniae have numerous resistance mechanisms to antibacterials and the frequency of resistant K. pneumoniae isolates increases, making treatment of K. pneumoniae-induced infections difficult. Farm animals are a possible source of antibacterial resistant K. pneumoniae. The aim of this literature review (2018-2024) was to evaluate the antibacterial resistance of K. pneumoniae isolated from poultry, cattle and pigs in various countries. The analysis shows that farm animals are an important source of antibacterial-resistant and multidrug-resistant K. pneumoniae and that resistance patterns differ among antibacterial groups, animals and locations. In poultry, high resistance to penicillins (91%), III and IV generation cephalosporins (> 50%) occurred, and low to carbapenems (5%) and polymyxins (6%). In cattle, high resistance to sulphonamides (76%), IV generation cephalosporins, macrolides and lincosamides, and penicillins occurred (> 50%), and low to carbapenems (10%) and polymyxins (1%). Isolates from pigs showed high resistance to I and II-generation cephalosporins, I-generation fluoroquinolones, macrolides and lincosamides, tetracyclines (> 50%) and carbapenems (> 20%), and low to polymyxins (5%). The highest resistance rates to most antibacterial groups occurred in pigs, and in Africa and Asia, while the lowest in cattle, and in North and South America. Particularly, the relatively high resistance of K. pneumoniae to carbapenems and polymyxins in Africa poses a threat to animal and human health as these antibiotics are the last resort therapeutics used to treat severe infections. Different rates of K. pneumoniae resistance to antibacterials among isolates from farm animals probably result from differences in the treatment of each animal group with various antibacterial agents and different regimes of their use in various locations.
Collapse
Affiliation(s)
- B Kot
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, University of Siedlce, 14 Bolesława Prusa Str., 08-110 Siedlce, Poland.
| | - M Witeska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
26
|
Prabhu D, Shankari G, Rajamanikandan S, Jeyakanthan J, Velusamy P, Gopinath SCB, Pattabi S. Designing potential lead compounds targeting aminoglycoside N (6')-acetyltransferase in Serratia marcescens: A drug discovery strategy. Int J Biol Macromol 2024; 281:136976. [PMID: 39490491 DOI: 10.1016/j.ijbiomac.2024.136976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Serratia marcescens is an opportunistic human pathogen that causes urinary tract infections, ocular lens infections, and respiratory tract infections. S. marcescens employs various defense mechanisms to evade antibiotics, one of which is mediated by aminoglycoside N-acetyltransferase (AAC). In this mechanism, the enzyme AAC facilitates the transfer and linkage of the acetyl moiety from the donor substrate acetyl-coenzyme A to specific positions on antibiotics. This modification alters the antibiotic's structure, leading to the inactivation of aminoglycoside antibiotics. In the current scenario, antibiotic resistance has become a global threat, and targeting the enzymes that mediate resistance is considered crucial to combat this issue. The study aimed to address the increasing global threat of antibiotic resistance in Serratia marcescens by targeting the aminoglycoside N-acetyltransferase (AAC (6')) enzyme, which inactivates aminoglycoside antibiotics through acetylation. Due to the absence of experimental structure, we constructed a homology model of aminoglycoside N (6')-acetyltransferase (AAC (6')) of S. marcescens using the atomic structure of aminoglycoside N-acetyltransferase AAC (6')-Ib (PDB ID: 1V0C) as a template. The stable architecture and integrity of the modelled AAC (6') structure were analyzed through a 100 ns simulation. Structure-guided high-throughput screening of four small molecule databases (Binding, Life Chemicals, Zinc, and Toslab) resulted in the identification of potent inhibitors against AAC (6'). The hits obtained from screening were manually clustered, and the five hit molecules were shortlisted based on the docking score, which are observed in the range of -17.09 kcal/mol to -11.95 kcal/mol. These selected five molecules displayed acceptable pharmacological properties in ADME predictions. The binding free energy calculations, and molecular dynamics simulations of ligand bound AAC (6') complexes represented higher affinity and stable binding. The selected molecules demonstrated stable binding with AAC (6'), indicating their strong potential to hamper the binding of aminoglycoside in the respective site. and thereby inhibit. This process mitigates enzyme mediated AAC (6') activity on aminoglycosides and reverse the bactericidal function of aminoglycosides, and also this method could serve as a platform for the development of potential antimicrobials.
Collapse
Affiliation(s)
- Dhamodharan Prabhu
- Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore 641021, India; Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, India.
| | - Gopalakrishnan Shankari
- Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore 641021, India; Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Sundararaj Rajamanikandan
- Centre for Bioinformatics, Karpagam Academy of Higher Education, Coimbatore 641021, India; Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | | | - Palaniyandi Velusamy
- Innovation and Incubation Centre for Health Sciences (IICHS), Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chromepet 600 044, Tamil Nadu, India.
| | - Subash C B Gopinath
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India; Faculty of Chemical Engineering & Technology and Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia; Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sasikumar Pattabi
- Department of General Surgery, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chromepet, 600 044 Chennai, Tamil Nadu, India
| |
Collapse
|
27
|
Ngaini Z, Hissam MA, Mortadza NA, Abd Halim AN, Daud AI. In vitro antimicrobial activities, molecular docking and density functional theory (DFT) evaluation of natural product-based vanillin derivatives featuring halogenated azo dyes. Nat Prod Res 2024; 38:3762-3772. [PMID: 37752781 DOI: 10.1080/14786419.2023.2262713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Chemical modification of active scaffolds from natural products has gained interest in pharmaceutical industries. Nevertheless, the metabolites extraction is time-consuming while the lead is frequently mismatched with the receptor. Here, the diazo coupling approach was introduced to generate a series of vanillin derivatives featuring halogenated azo dyes (1a-h). The vanillin derivatives showed effective inhibition of S. aureus (7-9 mm) and E. coli (7-8 mm) compared to the parent vanillin, while 1b had the highest inhibition zone (9 mm) against S. aureus comparable to the reference ampicillin. The presence of N = N, C = O, -OH, -OCH3 and halogens established strategic binding interactions with the receptor. The potential vanillin-azo as an antimicrobial drug was supported by in silico docking with penicillin-binding proteins and DFT (using Gaussian 09) with binding affinity -7.5 kcal/mol and energy gap (Egap) 3.77 eV, respectively. This study represents a significant advancement in drug discovery for effective antibiotics with excellent properties.
Collapse
Affiliation(s)
- Zainab Ngaini
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Mohamad Azmeer Hissam
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Nur Arif Mortadza
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Ainaa Nadiah Abd Halim
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Adibah Izzati Daud
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Padang Besar, Perlis, Malaysia
| |
Collapse
|
28
|
Shafiq M, Guo X, Wang M, Bilal H, Xin L, Yuan Y, Yao F, Sheikh TMM, Khan MN, Jiao X. Integrative metagenomic dissection of last-resort antibiotic resistance genes and mobile genetic elements in hospital wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174930. [PMID: 39067608 DOI: 10.1016/j.scitotenv.2024.174930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Hospital wastewater is a critical source of antimicrobial resistance (AMR), which facilitates the proliferation and spread of clinically significant antimicrobial resistance genes (ARGs) and pathogenic bacteria. This study utilized metagenomic approaches, including advanced binning techniques, such as MetaBAT2, MaxBin2, and CONCOCT, which offer significant improvements in accuracy and completeness over traditional binning methods. These methods were used to comprehensively assess the dynamics and composition of resistomes and mobilomes in untreated wastewater samples taken from two general hospitals and one cancer hospital. This study revealed a diverse bacterial landscape, largely consisting of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, with notable variations in microbial composition among hospitals. Analysis of the top 15 genera showed unique microbial pattern distribution in each hospital: Aeromonas was predominant in 1stHWTS (49.39 %), Acidovorax in the CAHWTS at 16.85 %, and Escherichia and Bacteroides in the 2ndHWTS at 11.44 % and 11.33 %, respectively. A total of 114 pathogenic bacteria were identified, with drug-resistant Aeromonas caviae and Escherichia coli being the most prevalent. The study identified 34 types and 1660 subtypes of ARGs, including important last-resort antibiotic resistance genes (LARGs), such as blaNDM, mcr, and tet(X). Using metagenomic binning, this study uncovered distinct patterns of host-resistance associations, particularly with Proteobacteria and Firmicutes. Network analysis highlighted the complex interactions among ARGs, mobile genetic elements (MGEs), and bacterial species, all contributing to the dissemination of AMR. These findings emphasize the intricate nature of AMR in hospital wastewater and the influence of hospital-specific factors on microbial resistance patterns. This study provides support for implementing integrated management strategies, including robust surveillance, advanced wastewater treatment, and strict antibiotic stewardship, to control the dissemination of AMR. Understanding the interplay among bacterial communities, ARGs, and MGEs is important for developing effective public health measures against AMR.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Meimei Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Hazrat Bilal
- Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, Jiangxi 330029, PR China
| | - Li Xin
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Fen Yao
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | | | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
29
|
Itani R, Khojah HMJ, Kibrit R, Raychouni H, Shuhaiber P, Dib C, Hassan M, Mukattash TL, El-Lakany A. Risk factors associated with multidrug-resistant Klebsiella pneumoniae infections: a multicenter observational study in Lebanese hospitals. BMC Public Health 2024; 24:2958. [PMID: 39449026 PMCID: PMC11515809 DOI: 10.1186/s12889-024-20474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a significant global public health burden, especially in low-income countries and regions with fragile healthcare infrastructures, due to its ability to cause severe infections, increase mortality rates, and its rising antimicrobial resistance. This study aimed to estimate the proportion of multidrug-resistant (MDR) K. pneumoniae infections and identify associated risk factors. METHODS Data were retrospectively collected from three academic hospitals in Beirut, Lebanon, between January 2021 and September 2023 using a standardized form. Binary logistic regression was used to determine risk factors associated with MDR, extended-spectrum beta-lactamase (ESBL)-producing, and carbapenem-resistant K. pneumoniae (CRKP) infections. RESULTS Out of 2,655 K. pneumoniae cases, 410 met the inclusion criteria. The primary infection sources were the urinary tract (58.3%) and the respiratory tract (12.4%). Among the isolates, 61% were MDR K. pneumoniae, with 7.3% being extensively drug-resistant, and 0.5% pandrug-resistant. Additionally, 36.8% were ESBL-producing, while 6.3% were CRKP. Predictors significantly associated with MDR K. pneumoniae infections included male sex (adjusted odds ratio [AOR] = 3.46, 95% CI = 1.01-11.86, P = 0.04), recent antibiotics use (AOR = 4.52, 95% CI = 1.65-12.36, P = 0.003), and recent cancer chemotherapy (AOR = 3.43, 95% CI = 1.25-9.42, P = 0.01). ESBL-producing infections were associated with age ≥ 65 years, higher Charlson Comorbidity Index (CCI), and recent antibiotic use. CRKP infections were linked to male sex, prior antibiotic use, and longer hospital stays prior to infection (all P < 0.05). CONCLUSIONS MDR K. pneumoniae infections are steadily rising in Lebanon, along with an increase in ESBL-producing and CRKP cases. The main risk factors for MDR K. pneumoniae infections were male sex, recent antibiotic use, and cancer chemotherapy. ESBL-producing infections were associated with advanced age, higher CCI, and recent antibiotic use, while CRKP infections were linked to male sex, prior antibiotic use, and prolonged hospital stays. This situation is further exacerbated by inadequate healthcare infrastructure and suboptimal national surveillance. Strengthening local surveillance and implementing effective antibiotic stewardship programs are critical to managing this growing threat..
Collapse
Affiliation(s)
- Rania Itani
- Pharmacy Practice Department, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Hani M J Khojah
- Department of Pharmacy Practice, College of Pharmacy, Taibah University, Madinah, Kingdom of Saudi Arabia
| | - Rahaf Kibrit
- Pharmacy Department, Lebanese Hospital Geitaoui University Medical Center, Beirut, Lebanon
| | - Hamza Raychouni
- Intensive Care Unit, Anesthesia Department, Central Military Hospital, Military Healthcare, Lebanese Army, Beirut, Lebanon
- Intensive Care Unit, Respiratory Care Department, American University of Beirut Medical Center, Beirut, Lebanon
- Intensive Care Unit, Aboujaoudé Hospital, Maten, Lebanon
| | - Patricia Shuhaiber
- Pharmacy Department, Mount Lebanon Hospital Balamand University Medical Center, Hazmieh, Lebanon
| | - Carole Dib
- Pharmacy Department, Lebanese Hospital Geitaoui University Medical Center, Beirut, Lebanon
| | - Mariam Hassan
- Emergency Department, Sahel General Hospital, Beirut, Lebanon
| | - Tareq L Mukattash
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdalla El-Lakany
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Mera-Banguero C, Orduz S, Cardona P, Orrego A, Muñoz-Pérez J, Branch-Bedoya JW. AmpClass: an Antimicrobial Peptide Predictor Based on Supervised Machine Learning. AN ACAD BRAS CIENC 2024; 96:e20230756. [PMID: 39383429 DOI: 10.1590/0001-3765202420230756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/07/2024] [Indexed: 10/11/2024] Open
Abstract
In the last decades, antibiotic resistance has been considered a severe problem worldwide. Antimicrobial peptides (AMPs) are molecules that have shown potential for the development of new drugs against antibiotic-resistant bacteria. Nowadays, medicinal drug researchers use supervised learning methods to screen new peptides with antimicrobial potency to save time and resources. In this work, we consolidate a database with 15945 AMPs and 12535 non-AMPs taken as the base to train a pool of supervised learning models to recognize peptides with antimicrobial activity. Results show that the proposed tool (AmpClass) outperforms classical state-of-the-art prediction models and achieves similar results compared with deep learning models.
Collapse
Affiliation(s)
- Carlos Mera-Banguero
- Instituto Tecnológico Metropolitano, Departamento de Sistemas de Información, Facultad de Ingeniería, Calle 54A # 30-01, 050013, Medellín, Antioquia, Colombia
- Universidad de Antioquia, Departamento de Ingeniería de Sistemas, Facultad de Ingenierías, Calle 67 # 53 - 108, 050010, Medellín, Antioquia, Colombia
| | - Sergio Orduz
- Universidad Nacional de Colombia, sede Medellín, Departamento de Biociencias, Facultad de Ciencias, Carrera 65 # 59A - 110, 050034, Medellín, Antioquia, Colombia
| | - Pablo Cardona
- Universidad Nacional de Colombia, sede Medellín, Departamento de Biociencias, Facultad de Ciencias, Carrera 65 # 59A - 110, 050034, Medellín, Antioquia, Colombia
| | - Andrés Orrego
- Universidad Nacional de Colombia, sede Medellín, Departamento de Ciencias de la Computación y de la Decisión, Facultad de Minas, Av. 80 # 65 - 223, 050041, Medellín, Antioquia, Colombia
| | - Jorge Muñoz-Pérez
- Universidad Nacional de Colombia, sede Medellín, Departamento de Biociencias, Facultad de Ciencias, Carrera 65 # 59A - 110, 050034, Medellín, Antioquia, Colombia
| | - John W Branch-Bedoya
- Universidad Nacional de Colombia, sede Medellín, Departamento de Ciencias de la Computación y de la Decisión, Facultad de Minas, Av. 80 # 65 - 223, 050041, Medellín, Antioquia, Colombia
| |
Collapse
|
31
|
Marfavi Z, Cai Y, Lv Q, Han Y, Yang R, Sun K, Yuan C, Tao K. The Synergy between Antibiotics and the Nanoparticle-Based Photodynamic Effect. NANO LETTERS 2024. [PMID: 39356053 DOI: 10.1021/acs.nanolett.4c03668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Antimicrobial resistance (AMR) is a growing global health concern, necessitating innovative strategies beyond the development of new antibiotics. Here, we employed NdYVO4:Eu3+ nanoparticles, which can persistently produce reactive oxygen species (ROS) after stopping the light, as a model of photodynamic nanoparticles and demonstrated that the photodynamic effect can serve as an adjuvant with antibiotics to effectively reduce their minimum inhibitory concentration. These preirradiated nanoparticles could penetrate the bacterial cell membrane, significantly enhancing the potency of antibiotics. We showed that the synergy effect could be attributed to disrupting crucial cellular processes by ROS, including damaging cell membrane proteins, interfering with energy supply, and inhibiting antibiotic metabolism. Our findings suggested that complementing the photodynamic effect might be a robust strategy to enhance antibiotic potency, providing an alternative antibacterial treatment paradigm.
Collapse
Affiliation(s)
- Zeinab Marfavi
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuhao Cai
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yijun Han
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Congli Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
32
|
Sawant AM, Navale VD, Vamkudoth KR. Genome sequencing and analysis of penicillin V producing Penicillium rubens strain BIONCL P45 isolated from India. Int Microbiol 2024; 27:1473-1484. [PMID: 38388812 DOI: 10.1007/s10123-024-00491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND A filamentous fungus Penicillium rubens is widely recognized for producing industrially important antibiotic, penicillin at industrial scale. OBJECTIVE To better comprehend, the genetic blueprint of the wild-type P. rubens was isolated from India to identify the genetic/biosynthetic pathways for phenoxymethylpenicillin (penicillin V, PenV) and other secondary metabolites. METHOD Genomic DNA (gDNA) was isolated, and library was prepared as per Illumina platform. Whole genome sequencing (WGS) was performed according to Illumina NovoSeq platform. Further, SOAPdenovo was used to assemble the short reads validated by Bowtie-2 and SAMtools packages. Glimmer and GeneMark were used to dig out total genes in genome. Functional annotation of predicted proteins was performed by NCBI non-redundant (NR), UniProt, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) databases. Moreover, secretome analysis was performed by SignalP 4.1 and TargetP v1.1 and carbohydrate-active enzymes (CAZymes) and protease families by CAZy database. Comparative genome analysis was performed by Mauve 2.4.0. software to find genomic correlation between P. rubens BIONCL P45 and Penicillium chrysogenum Wisconsin 54-1255; also phylogeny was prepared with known penicillin producing strains by ParSNP tool. RESULTS Penicillium rubens BIONCL P45 strain was isolated from India and is producing excess PenV. The 31.09 Mb genome was assembled with 95.6% coverage of the reference genome P. chrysogenum Wis 54-1255 with 10687 protein coding genes, 3502 genes had homologs in NR, UniProt, KEGG, and GO databases. Additionally, 358 CAZymes and 911 transporter coding genes were found in genome. Genome contains complete pathways for penicillin, homogentisate pathway of phenyl acetic acid (PAA) catabolism, Andrastin A, Sorbicillin, Roquefortine C, and Meleagrin. Comparative genome analysis of BIONCL P45 and Wis 54-1255 revealed 99.89% coverage with 2952 common KEGG orthologous protein-coding genes. Phylogenetic analysis revealed that BIONCL P45 was clustered with Fleming's original isolate P. rubens IMI 15378. CONCLUSION This genome can be a helpful resource for further research in developing fermentation processes and strain engineering approaches for high titer penicillin production.
Collapse
Affiliation(s)
- Amol M Sawant
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishwambar D Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
33
|
Pawar A, Konwar C, Jha P, Kant R, Chopra M, Chaudhry U, Saluja D. Bactericidal activity of esculetin is associated with impaired cell wall synthesis by targeting glutamate racemase of Neisseria gonorrhoeae. Mol Divers 2024; 28:3181-3198. [PMID: 37880544 DOI: 10.1007/s11030-023-10745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023]
Abstract
Neisseria gonorrhoeae (NG), the causative organism of gonorrhea, has been classified by the World Health Organization as 'Priority' two organism owing to its increased resistance to antibiotics and even failure of recommended dual therapy with ceftriaxone and azithromycin. As a result, the general and reproductive health of infected individuals is severely compromised. The imminent public health catastrophe of antimicrobial-resistant gonococci cannot be understated, as t he of severe complications and sequelae of infection are not only increasing but their treatment has also become more expensive. Tenacious attempts are underway to discover novel drug targets as well as new drugs to fight against NG. Therefore, a considerable number of phytochemicals have been tested for their remedial intercession via targeting bacterial proteins. The MurI gene encodes for an enzyme called glutamate racemase (MurI) that is primarily involved in peptidoglycan (PG) biosynthesis and is specific to the bacterial kingdom and hence can be exploited as a potential drug target for the treatment of bacterial diseases. Accordingly, diverse families of phytochemicals were screened in silico for their binding affinity with N. Gonorrhoeae MurI (NG-MurI) protein. Esculetin, one of the shortlisted compounds, was evaluated for its functional, structural, and anti-bacterial activity. Treatment with esculetin resulted in growth inhibition, cell wall damage, and altered permeability as revealed by fluorescence and electron microscopy. Furthermore, esculetin inhibited the racemization activity of recombinant, purified NG-MurI protein, one of the enzymes required for peptidoglycan biosynthesis. Our results suggest that esculetin could be further explored as a lead compound for developing new drug molecules against multidrug-resistant strains.
Collapse
Affiliation(s)
- Alka Pawar
- Dr. B. R. Ambedkar Center for Biomedical Research, Delhi School of Public Health, IoE, University of Delhi, Delhi, 110007, India
| | - Chandrika Konwar
- Dr. B. R. Ambedkar Center for Biomedical Research, Delhi School of Public Health, IoE, University of Delhi, Delhi, 110007, India
| | - Prakash Jha
- Dr. B. R. Ambedkar Center for Biomedical Research, Delhi School of Public Health, IoE, University of Delhi, Delhi, 110007, India
| | - Ravi Kant
- Dr. B. R. Ambedkar Center for Biomedical Research, Delhi School of Public Health, IoE, University of Delhi, Delhi, 110007, India
| | - Madhu Chopra
- Dr. B. R. Ambedkar Center for Biomedical Research, Delhi School of Public Health, IoE, University of Delhi, Delhi, 110007, India
| | - Uma Chaudhry
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, 110075, India
| | - Daman Saluja
- Dr. B. R. Ambedkar Center for Biomedical Research, Delhi School of Public Health, IoE, University of Delhi, Delhi, 110007, India.
- Delhi School of Public Health, IoE, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
34
|
Mukomena PN, Simuunza M, Munsaka S, Kwenda G, Bumbangi F, Yamba K, Kabwe J, Kayembe JM, Muma JB. Antimicrobial resistance profiles of and associated risk factors for Pseudomonas aeruginosa nosocomial infection among patients at two tertiary healthcare facilities in Lusaka and Copperbelt Provinces, Zambia. JAC Antimicrob Resist 2024; 6:dlae139. [PMID: 39286817 PMCID: PMC11403203 DOI: 10.1093/jacamr/dlae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/28/2024] [Indexed: 09/19/2024] Open
Abstract
Background Antimicrobial resistance (AMR) of pathogens such as Pseudomonas aeruginosa is among the top 10 threats to global health. However, clinical and molecular data are scarce in Zambia. We, therefore, evaluated the AMR profiles of P. aeruginosa nosocomial infections (NIs). Methods A year-long hospital-based cross-sectional study was conducted at two large tertiary-level hospitals in Zambia. Patients with current or previous hospital contact were screened for NIs. The current study focused on patients diagnosed with P. aeruginosa NIs. Clinical specimens were collected for bacteriological culture, and PCR amplification of 16S rRNA gene fragments was performed on pure isolates. Hospital or NIs were defined as infections that arise during hospitalization, occurring at least 48 h after admission. The Kirby-Bauer's disk diffusion method was used to evaluate antibiotic resistance patterns. The association between AMR and risk factors was analysed using the χ2 test. Results Eight hundred and forty-one patients were screened, and clinical specimens were collected and analysed. Of them, 116 (13.7%) were diagnosed with P. aeruginosa NIs. The participants' ages ranged from 15 to 98 years, with a mean of 51 (SD ± 18). Catheter-associated urinary tract infections (57%) were the most common, followed by pressure sores (38.7%). P. aeruginosa isolates were primarily susceptible to amikacin, which had the highest resistance to FEP. We observed a high prevalence of multidrug resistance (73.6%). The AMR was associated with carbapenem-hydrolysing β-lactamase gene blaOXA-51 and surgical care. Conclusions This study has demonstrated that multidrug-resistant P. aeruginosa is prevalent in hospitals in Zambia's Lusaka and Ndola districts and possibly countrywide.
Collapse
Affiliation(s)
- Patrice Ntanda Mukomena
- Department of Medicine, School of Medicine, Eden University, Lusaka, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Flavien Bumbangi
- Department of Medicine, School of Medicine, Eden University, Lusaka, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Kaunda Yamba
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Josephine Kabwe
- Department of Medicine, School of Medicine, Eden University, Lusaka, Zambia
| | - Jean-Marie Kayembe
- Department of Medicine, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
35
|
Park J, Hassan MA, Nabawy A, Li CH, Jiang M, Parmar K, Reddivari A, Goswami R, Jeon T, Patel R, Rotello VM. Engineered Bacteriophage-Polymer Nanoassemblies for Treatment of Wound Biofilm Infections. ACS NANO 2024; 18:26928-26936. [PMID: 39287559 PMCID: PMC11618879 DOI: 10.1021/acsnano.4c08671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The antibacterial efficacy and specificity of lytic bacteriophages (phages) make them promising therapeutics for treatment of multidrug-resistant bacterial infections. Restricted penetration of phages through the protective matrix of biofilms, however, may limit their efficacy against biofilm infections. Here, engineered polymers were used to generate noncovalent phage-polymer nanoassemblies (PPNs) that penetrate bacterial biofilms and kill resident bacteria. Phage K, active against multiple strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), was assembled with cationic poly(oxanorbornene) polymers into PPNs. The PPNs retained phage infectivity, while demonstrating enhanced biofilm penetration and killing relative to free phages. PPNs achieved 3-log10 bacterial reduction (∼99.9%) against MRSA biofilms in vitro. PPNs were then incorporated into Poloxamer 407 (P407) hydrogels and applied onto in vivo wound biofilms, demonstrating controlled and sustained release. Hydrogel-incorporated PPNs were effective in a murine MRSA wound biofilm model, showing a 1.5-log10 reduction in bacterial load compared to a 0.5 log reduction with phage K in P407 hydrogel. Overall, this work showcases the therapeutic potential of phage K engineered with cationic polymers for treating wound biofilm infections.
Collapse
Affiliation(s)
- Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Cheng Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Krupa Parmar
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, 55905, United States
| | - Annika Reddivari
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, 55905, United States
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
36
|
Pattnaik A, Pati S, Samal SK. Bacteriophage as a potential biotherapeutics to combat present-day crisis of multi-drug resistant pathogens. Heliyon 2024; 10:e37489. [PMID: 39309956 PMCID: PMC11416503 DOI: 10.1016/j.heliyon.2024.e37489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The rise of Multi-Drug Resistant (MDR) bacterial pathogens to most, if not all, currently available antibacterial agents has become a global threat. As a consequence of the antibiotic resistance epidemic, phage therapy has emerged as a potential alternative to conventional antibiotics. Despite the high therapeutic advantages of phage therapy, they have not yet been successfully used in the clinic due to various limitations of narrow host specificity compared to antibiotics, poor adhesion on biofilm surface, and susceptibility to both human and bacterial defences. This review focuses on the antibacterial effect of bacteriophage and their recent clinical trials with a special emphasis on the underlying mechanism of lytic phage action with the help of endolysin and holin. Furthermore, recent clinical trials of natural and modified endolysins and some marketed products have also been emphasized with future prospective.
Collapse
Affiliation(s)
- Ananya Pattnaik
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
- KSBT, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
| | | |
Collapse
|
37
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
38
|
Eyasu M, Benedí J, Romero JA, Martín-Aragón S. Antioxidant and Antibacterial Activities of Selected Medicinal Plants from Addis Ababa against MDR-Uropathogenic Bacteria. Int J Mol Sci 2024; 25:10281. [PMID: 39408611 PMCID: PMC11477075 DOI: 10.3390/ijms251910281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
This study determined the antioxidant and antibacterial activities of Thymus schimperi (Ts), Rhamnus prinoides (Rp), and Justicia schimperiana (Js) from Addis Ababa against MDR-Uropathogenic bacteria. Accordingly, Thymus schimperi had the highest total phenolic (TPC), flavonoid (TFC) and proanthocyanidin content. In Ts, the GC-MS analyses predicted 14 bioactive compounds. And among these, hexanedioic acid, bis(2-ethylhexyl) ester, thymol, and o-cymen-5-ol were the most predominant compounds, respectively. Six compounds were also predicted in Rp, where hexanedioic acid, bis(2-ethylhexyl) ester, β-D-glucopyranoside, methyl, and desulphosinigrin were the predominant, respectively. Whereas in the Js extract, five bioactive compounds were predicted, with hexanedioic acid, mono (2-ethylhexyl) ester, debrisoquine, and 8,11,14-heptadecatrienoate, methyl ester being predominant compounds, respectively. The extracts' TPC showed a strong negative correlation with the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay (r = -0.999; p = 0.023). In addition, the TFC correlated significantly with the ABTS (2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid)) assay (r = 0.999; p = 0.032). Thymus schimperi showed the highest antibacterial activity against clinical isolates of Escherichia coli and Klebsiella pneumoniae ESBL at 1000 mg/mL, and Ts had the lowest MIC (4 mg/mL) among evaluated extracts against E. coli (ATCC25922). In conclusion, Ts and Rp possess higher predicted bioactive molecules, including antioxidant and antibacterial activities, which are potentially useful in treating urinary tract infections.
Collapse
Affiliation(s)
- Mebrahtu Eyasu
- Department of Pharmacology, Saint Paul’s Hospital Millennium Medical College, Gulele Sub-City, Addis Ababa P.O. Box 1271, Ethiopia;
| | - Juana Benedí
- Department of Pharmacology, Pharmacognosy & Botany, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (J.B.); (J.A.R.)
| | - José Antonio Romero
- Department of Pharmacology, Pharmacognosy & Botany, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (J.B.); (J.A.R.)
| | - Sagrario Martín-Aragón
- Department of Pharmacology, Pharmacognosy & Botany, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; (J.B.); (J.A.R.)
| |
Collapse
|
39
|
Silva HM. Reckoning with COVID-19 denial: Brazil's exemplary model for global response. World J Methodol 2024; 14:92512. [PMID: 39310230 PMCID: PMC11230079 DOI: 10.5662/wjm.v14.i3.92512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/15/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
In the aftermath of the coronavirus disease 2019 (COVID-19) pandemic in Brazil, accountability is crucial for those who denied the severity of the virus, spreading false information and causing harm. Some individuals have already faced legal proceedings against them, revealing economic motivations behind their actions. It is equally important to hold doctors accountable for prescribing ineffective treatments, putting the population at risk. The leaders of the denial movement and the federal government, who mishandled the pandemic, should be held accountable for the high death toll. Seeking justice from the legislative and executive branches is necessary, along with exemplary measures for those who spread misinformation about COVID-19.
Collapse
Affiliation(s)
- Heslley Machado Silva
- Department of Science and Education, University Center of Formiga and State University of Minas Gerais, Minas Gerais 35570000, Brazil
| |
Collapse
|
40
|
Saikia S, Chetia P. Antibiotics: From Mechanism of Action to Resistance and Beyond. Indian J Microbiol 2024; 64:821-845. [PMID: 39282166 PMCID: PMC11399512 DOI: 10.1007/s12088-024-01285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/15/2024] [Indexed: 09/18/2024] Open
Abstract
Antibiotics are the super drugs that have revolutionized modern medicine by curing many infectious diseases caused by various microbes. They efficiently inhibit the growth and multiplication of the pathogenic microbes without causing adverse effects on the host. However, prescribing suboptimal antibiotic and overuse in agriculture and animal husbandry have led to the emergence of antimicrobial resistance, one of the most serious threats to global health at present. The efficacy of a new antibiotic is high when introduced; however, a small bacterial population attains resistance gradually and eventually survives. Understanding the mode of action of these miracle drugs, as well as their interaction with targets is very complex. However, it is necessary to fulfill the constant need for novel therapeutic alternatives to address the inevitable development of resistance. Therefore, considering the need of the hour, this article has been prepared to discuss the mode of action and recent advancements in the field of antibiotics. Efforts has also been made to highlight the current scenario of antimicrobial resistance and drug repurposing as a fast-track solution to combat the issue.
Collapse
Affiliation(s)
- Shyamalima Saikia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
41
|
Rajopadhye BD, Londhe VA, Pingle NA, Dhande PP. Community awareness initiative about antimicrobial resistance: An educational intervention by medical undergraduates. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2024; 13:321. [PMID: 39429841 PMCID: PMC11488779 DOI: 10.4103/jehp.jehp_1735_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a global problem and an important consequence of inappropriate use of antimicrobial agents (AMAs). Studies have observed that a lack of awareness of AMR among healthcare professionals as well as consumers results in the irrational use of AMAs, a significant driver of AMR. MATERIALS AND METHODS This educational intervention study was undertaken to assess community awareness regarding AMAs and AMR and to educate them. Ten volunteer students from II MBBS were made aware of AMR, its impact and measures to reduce resistance through a lecture by Pharmacology faculty. Students interacted with 220 family representatives in the community to assess their knowledge about AMAs and AMR using a 15-item pre-validated questionnaire. Charts, videos, and role-play were used to impart knowledge about the rational use of AMAs, AMR, and its consequences. Participants' understanding was ensured with feedback taken on Lickert scale. RESULTS Students interacted with the study participants and found that most were aware of the term 'antibiotic' (90.8%), but 67% were clueless regarding antibiotic resistance. The purpose of AMA use was not adequately known to 43% as they mentioned using these for diarrhea, viral fever, cough, cold, and sore throat. AMAs were purchased by 40% of participants as OTC medicine, whereas Azithromycin and Amoxicillin were the AMAs they could remember by name. The reasons for buying OTC antibiotics were the inconvenience of doctors' clinic timings, unaffordable consultation charges, and easy antibiotic availability. Students also learned about communication etiquette during this community interaction. This educational intervention proved helpful as the participants agreed that the unnecessary use of AMAs makes them ineffective and AMR is preventable by simple measures. CONCLUSION A multifactorial approach involving prescribers, regulatory Government authorities and general public is needed to control irrational use of antimicrobials. Timely interventions are necessary to increase the awareness of AMR in the community.
Collapse
Affiliation(s)
| | - Vasundhara A. Londhe
- Department of Pharmacology, Bharati Vidyapeeth (DTU) Medical College, Pune, Maharashtra, India
| | - Nivedita A. Pingle
- Department of Pharmacology, Bharati Vidyapeeth (DTU) Medical College, Pune, Maharashtra, India
| | - Priti P. Dhande
- Department of Pharmacology, Bharati Vidyapeeth (DTU) Medical College, Pune, Maharashtra, India
| |
Collapse
|
42
|
Oluwo AO, Lawal MA, Mabogunje CA, Okurame OT. Antibiotic susceptibility pattern among children admitted to a hospital in Nigeria: A retrospective study. Afr J Lab Med 2024; 13:2362. [PMID: 39228901 PMCID: PMC11369577 DOI: 10.4102/ajlm.v13i1.2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 09/05/2024] Open
Abstract
Background The impact of antimicrobial resistance on children living in resource-limited countries has been underreported, despite its established global threat. Objective This retrospective study aimed to describe the trend of antibiotic susceptibility in the paediatric age group. Methods Sensitivity test report data consisting of 300 paediatric patients aged 18 hours to 192 months were retrieved from the microbiology laboratory records at a state-owned children's hospital in Nigeria over a period of 4 months starting from December 2021 to March 2022. Five genera (Escherichia coli, Klebsiella spp., Pseudomonas spp., Staphylococcus aureus and Streptococcus spp.) were cultured as recommended by the Clinical Laboratory Standard Institute, using the Kirby Bauer disc diffusion method. Antimicrobial susceptibility testing was carried out on isolates using 15 different antibiotics. Results Staphylococcus aureus was the most frequent pathogen isolated 32.1% (50/156) and Pseudomonas spp. was the least frequent pathogen isolated 7.1% (11/156) in all samples. The isolates with the highest rate of resistance to the tested antibiotics were S. aureus 32.1% (50/156), E. coli 28.2% (44/156) and Klebsiella spp. 20.5% (32/156). Isolates in all age groups were more resistant to ampicillin, amoxicillin + clavulanic acid, cefuroxime and cefepime. Conclusion Antibiotic resistance is high, especially the younger Nigerian children. Strict antibiotic protocols should be adhered to especially in the use of empirical antibiotic therapy in hospitals. What this study adds Our study reveals a higher trend of antibiotic resistance, especially in younger children. It further shows that the pathogens are most resistant to the most available empirical antibiotics in Nigeria.
Collapse
Affiliation(s)
- Aderonke O Oluwo
- Dental Division, Massey Street Children's Hospital, Lagos, Nigeria
| | - Mary A Lawal
- Medical Division, Massey Street Children's Hospital, Lagos, Nigeria
| | | | | |
Collapse
|
43
|
Santos AJDC, Dias RS, da Silva CHM, Vidigal PMP, de Sousa MP, da Silva CC, de Paula SO. Genomic analysis of Oceanotoga teriensis strain UFV_LIMV02, a multidrug-resistant thermophilic bacterium isolated from an offshore oil reservoir. Access Microbiol 2024; 6:000801.v3. [PMID: 39148687 PMCID: PMC11326445 DOI: 10.1099/acmi.0.000801.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Bacteria of the species Oceanotoga teriensis belong to the family Petrotogaceae, are Gram-negative bacilli, are moderately thermophilic and are included in the group of thiosulfate-reducing bacteria, being capable of significantly accelerating corrosion in metallic structures. However, no in-depth study on the genome, antibiotic resistance and mobile elements has been carried out so far. In this work, the isolation, phenotypic and genotypic characterization of the multi-resistant O. teriensis UFV_LIMV02 strain was carried out, from water samples from an offshore oil extraction platform in Rio de Janeiro (Brazil). We determined that the isolate has a genome of 2 812 778 bp in size, with 26 % GC content, organized into 34 contigs. Genomic annotation using Rapid Annotation using Subsystem Technology revealed the presence of genes related to resistance to antibiotics and heavy metals. By evaluating the antimicrobial resistance of the isolate using the disc diffusion technique, resistance was verified for the classes of antibiotics, beta-lactams, fluoroquinolones, aminoglycosides, sulfonamides, lincosamides and rifamycins, a total of 14 antibiotics. The search for genomic islands, prophages and defence systems against phage infection revealed the presence of five genomic islands in its genome, containing genes related to resistance to heavy metals and antibiotics, most of which are efflux pumps and several transposases. No prophage was found in its genome; however, nine different defence systems against phage infection were detected. When analysing the clustered regularly interspaced short palindromic repeat (CRISPR) systems, four CRISPR arrays, classified as types I-B and III-B, with 272 spacers, can provide the strain with immunity to different mobile genetic elements and bacteriophage infection. The results found in this study show that the isolate UFV_LIVM02 is an environmental bacterium, resistant to different classes of antibiotics, and that the proteins encoded by the predicted genomic islands may be associated with the development of greater resistance to antibiotics and heavy metals. They provide evidence that environmental bacteria found in offshore oil exploration residues may pose a risk for the spread of antibiotic resistance genes. More comprehensive studies on the microbial community present in oil waste are needed to assess the risks of horizontal gene transfer.
Collapse
Affiliation(s)
- Adriele Jéssica do Carmo Santos
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Carlos Henrique Martins da Silva
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Pedro Marcus Pereira Vidigal
- Center for Biomolecules Analysis (NuBIOMOL), Federal University of Viçosa, Vila Gianetti, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Maíra Paula de Sousa
- Leopoldo Américo Miguez de Mello Research and Development Center, Petrobras, Av. Horácio Macedo, 950, Federal University of Rio de Janeiro, 21941-915, Rio de Janeiro, Brazil
| | - Cynthia Canedo da Silva
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Sérgio Oliveira de Paula
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
44
|
Angelini P. Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:746. [PMID: 39200046 PMCID: PMC11350763 DOI: 10.3390/antibiotics13080746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Antibiotic resistance emerged shortly after the discovery of the first antibiotic and has remained a critical public health issue ever since. Managing antibiotic resistance in clinical settings continues to be challenging, particularly with the rise of superbugs, or bacteria resistant to multiple antibiotics, known as multidrug-resistant (MDR) bacteria. This rapid development of resistance has compelled researchers to continuously seek new antimicrobial agents to curb resistance, despite a shrinking pipeline of new drugs. Recently, the focus of antimicrobial discovery has shifted to plants, fungi, lichens, endophytes, and various marine sources, such as seaweeds, corals, and other microorganisms, due to their promising properties. For this review, an extensive search was conducted across multiple scientific databases, including PubMed, Elsevier, ResearchGate, Scopus, and Google Scholar, encompassing publications from 1929 to 2024. This review provides a concise overview of the mechanisms employed by bacteria to develop antibiotic resistance, followed by an in-depth exploration of plant secondary metabolites as a potential solution to MDR pathogens. In recent years, the interest in plant-based medicines has surged, driven by their advantageous properties. However, additional research is essential to fully understand the mechanisms of action and verify the safety of antimicrobial phytochemicals. Future prospects for enhancing the use of plant secondary metabolites in combating antibiotic-resistant pathogens will also be discussed.
Collapse
Affiliation(s)
- Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| |
Collapse
|
45
|
Ndegwa E, Elhadedy DE, Richey C, Kim C, Yousuf AB. Differential Age-Based Response Induced by a Commercial Probiotic Supplementation in Pastured Goats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10337-w. [PMID: 39098850 DOI: 10.1007/s12602-024-10337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
The potential benefit of probiotics in small ruminant production systems has largely been unexplored. We evaluated the effect of a goat commercial probiotic on health and performance indicators in pastured goats from birth until 10 months. We randomly allocated 26 newborn nursing goat kids to two groups: a control group that received saline and a treatment group that received a commercial probiotic paste orally. We evaluated select observable health indicators (inappetence, diarrhea, coughing), weight, immunity (IgA, IgG, and innate immune response), total protein, hematocrit (HCT), total lactic acid bacteria (LAB), total coliforms, and prevalence of Escherichia coli (E. coli) primary virulence genes (stx1, stx2, and eae) during the experimental period. The results revealed no significant differences in the health indicators, LAB count, and total E. coli count. Prevalence of stx1 at 1 week of age and both stx1 and stx2 genes 4 months post-weaning was significantly (P < 0.05) higher in probiotic-supplemented goats. Probiotic supplementation significantly (P < 0.05) increased the total protein and IgA 1 month post-supplementation during the pre-weaning period and innate immune markers 2 days post-weaning. The HCT in probiotic-supplemented goats was significantly (P < 0.05) higher at 1 and 2 months post-weaning. The growth rate was not affected by probiotic supplementation in pre- and peri-weaned goats but was significantly (P < 0.05) lowered in goats older than 4 months in the supplemented group. In this pastured goat production study, there were mixed responses to a commercial probiotic in healthy goats based on age. The study suggests that early daily probiotic supplementation in pre-weaned pastured goats may have immune stimulation benefits, but in older healthy animals, post-weaning net benefits are unclear and further research is recommended.
Collapse
Affiliation(s)
- Eunice Ndegwa
- Agricultural Research Station, Virginia State University, Petersburg, VA, USA.
| | | | - Caitlyn Richey
- Agricultural Research Station, Virginia State University, Petersburg, VA, USA
| | - Chyer Kim
- Agricultural Research Station, Virginia State University, Petersburg, VA, USA
| | - Adnan B Yousuf
- Agricultural Research Station, Virginia State University, Petersburg, VA, USA
| |
Collapse
|
46
|
Aslan S, Demir C, Kurtoğlu EL, Altındiş M. Antibiotic Resistance Profiles of Escherichia coli and Salmonella spp. Isolated From Dairy Farms and Surroundings in a Rural Area of Western Anatolia, Turkey. Cureus 2024; 16:e65996. [PMID: 39221349 PMCID: PMC11366177 DOI: 10.7759/cureus.65996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background Antibiotic resistance is a significant public health issue worldwide. Antibiotic-resistant zoonotic bacteria such as Escherichia coli (E. coli), Campylobacter, Salmonella, Listeria, Coxiella, and Mycobacterium can be particularly isolated from biofertilizers. Epidemiological studies have shown that cases of foodborne infections and intoxications are significantly related to animal-derived foods. The presence of these species in aquatic environments indicates areas or organisms contaminated with animal or human feces. Especially, the presence of E. coli in aquatic environments has become a serious problem worldwide. Pathogenic strains of E. coli cause waterborne and foodborne diseases. Materials and methods This study included a total of 290 samples collected from five different dairy farms between April and September 2023 which comprised 20 samples of cow manure, 20 samples of milk, three samples of dairy workers' hand washing water, five samples of soil, five samples of water, and five samples of vegetables. The samples taken from the farms were homogenized with 0.1% peptone water at a ratio of 1/10. They were then cultured on xylose lysine deoxycholate (XLD), eosin methylene blue agar (EMB), and blood agar media, and gram-negative colonies were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and the VITEK2 automated system (BioMerieux Inc., Durham, NC). Amplification of the isolated DNA extracts was performed with A.B.T.™ 2X HS-PCR MasterMix (A.B.T Laboratory Industry, Arnavutköy, Turkey) in the SimpliAmp™ thermal cycler (Thermo Fischer Scientific Inc., Waltham, MA) and visualized by agarose gel electrophoresis. Results Among the 52 E. coli strains isolated in our study, the highest antibiotic sensitivity rate was observed in meropenem, while the lowest sensitivity rates were determined in cefazolin and cefuroxime. While two of the Salmonella spp. (n = 2) isolates were found to be resistant to tetracycline, and one was found to be resistant to penicillin and ampicillin. No resistance to trimethoprim/sulfamethoxazole was detected in either isolate. Extended-spectrum beta-lactamases (ESBLs) were detected in only four (7.7%) E. coli strains. While tetA, tetB, and TEM genes were seen in almost all E. coli strains, they were not found in Salmonella spp. Conclusion In conclusion, our study revealed the presence of antimicrobial resistance genes in E. coli and Salmonella spp. isolates collected from various farms and environmental samples, which render the antimicrobials used for disease treatment ineffective. Consequently, research should be undertaken to prevent the development of new resistance genes in our country, as creating new medications and treatment strategies for these diseases is costly and time-intensive.
Collapse
Affiliation(s)
- Savaş Aslan
- Health Policy, Medical Laboratory Techniques Program, Şuhut Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, TUR
| | - Cengiz Demir
- Medical Microbiology, Afyonkarahisar Health Sciences University, Afyonkarahisar, TUR
| | - Elçin L Kurtoğlu
- Medical Genetics, Medical Laboratory Techniques Program, Şuhut Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, TUR
| | | |
Collapse
|
47
|
Ly YT, Arndt F, Boschert AL, Pavletić B, Webner F, Kohl A, Grübbel H, Soltau J, Talai I, Diallo MD, Westhoff A, Schreiber A, Hecking T, Duschek F, Grünewald K, Meller F, Biedermann J, Rinderknecht F, Kraft W, Schmeling D, Jordan J, Moeller R. [After the pandemic is before the pandemic: And how interdisciplinary research can help here]. Laryngorhinootologie 2024; 103:570-577. [PMID: 38471543 DOI: 10.1055/a-2249-4201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Aviation is among the social sectors most impacted by the COVID-19 pandemic, and at the same time has contributed to the rapid global spread of the SARS-CoV-2 virus. SARS-CoV-2 is one of the coronaviruses that have led to outbreaks such as MERS-CoV in the past. This group of pathogens, as well as others that may be unknown at this time, will continue to challenge our society in the future. In order to be able to react better, a research training group was established at DLR in cooperation with 6 institutes, which will develop interdisciplinary approaches to researching and combating current and future pandemics. Engineers, physicists, software developers, biologists and physicians are working closely together on new concepts and the development of interdisciplinary knowledge in order to better control and contain future pandemics and to be able to react in a more targeted manner. One focus is the reduction of germ contamination in airplanes but also in other means of public transport such as buses and trains. In this review, we provide an overview of the baseline situation and possible approaches to address future pandemic challenges.
Collapse
Affiliation(s)
- Yen-Tran Ly
- Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln
| | - Franca Arndt
- Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln
| | - Alessa L Boschert
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene,, Universitätsklinikum, Köln
| | - Bruno Pavletić
- Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln
| | - Florian Webner
- Institut für Aerodynamik und Strömungstechnik, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Göttingen
| | - Andreas Kohl
- Institut für Aerodynamik und Strömungstechnik, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Göttingen
| | - Henrik Grübbel
- Institut für Fahrzeugkonzepte, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Stuttgart
| | - Julian Soltau
- Institut für Technische Physik, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Stuttgart
| | - Iman Talai
- Institut für Systemarchitekturen in der Luftfahrt, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Hamburg
| | | | - Andreas Westhoff
- Institut für Aerodynamik und Strömungstechnik, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Göttingen
| | - Andreas Schreiber
- Institut für Softwaretechnologie, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln
| | - Tobias Hecking
- Institut für Softwaretechnologie, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln
| | - Frank Duschek
- Institut für Technische Physik, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Stuttgart
| | - Karin Grünewald
- Institut für Technische Physik, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Stuttgart
| | - Frank Meller
- Institut für Systemarchitekturen in der Luftfahrt, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Hamburg
| | - Jörn Biedermann
- Institut für Systemarchitekturen in der Luftfahrt, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Hamburg
| | - Frank Rinderknecht
- Institut für Fahrzeugkonzepte, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Stuttgart
| | - Werner Kraft
- Institut für Fahrzeugkonzepte, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Stuttgart
| | - Daniel Schmeling
- Institut für Aerodynamik und Strömungstechnik, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Göttingen
| | - Jens Jordan
- Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln
| | - Ralf Moeller
- Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln
| |
Collapse
|
48
|
Abou-Jaoudeh C, Khalil J, El-Hayek E, Abou-Khalil R. Food safety control in poultry industry: prevalence and antimicrobial susceptibility of Escherichia coli isolated from raw chicken and the potential use of Origanum essential oils as alternative to antibiotics. Br Poult Sci 2024; 65:494-501. [PMID: 38994872 DOI: 10.1080/00071668.2024.2346307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/28/2024] [Indexed: 07/13/2024]
Abstract
1. The extensive use of antimicrobials in poultry production may contribute to the emergence of resistant bacteria. This study was conducted to determine the prevalence and resistance of different E. coli strains isolated from raw chicken meat and to investigate the possibility to use Lebanese native oregano essential oils as alternatives.2. In total, 250 chickens from Lebanese markets were examined for the presence of E. coli. Isolates were then screened for susceptibility using 19 antibiotics and two essential oils extracted from oregano plants.3. Of the 250 chickens tested, 80% were contaminated with E. coli. Main resistance was seen against amoxycillin, ampicillin, penicillin, tetracycline, tylosin, streptomycin and erythromycin. The highest rate of sensitivity was found in 86.1% of strains to Amoxycillin/Clavulanic acid, 80.09% to Tilmicosin. Both essential oils from Origanum syriacum (98%) and O. ehrenbergii (97.3%) showed promising potential in inhibiting the growth of the tested bacteria. Oil from O. syriacum exhibited superior efficacy against 200 E. coli strains, inhibiting 46.1% at 200 mg/l and all at 400 mg/l, while O. ehrenbergii oil showed slightly lower inhibition, affecting 41.6% at 200 mg/l and all at 400 mg/l.
Collapse
Affiliation(s)
- C Abou-Jaoudeh
- Faculty of Arts and Sciences, Biology Department, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - J Khalil
- Faculty of Arts and Sciences, Biology Department, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - E El-Hayek
- Faculty of Arts and Sciences, Biology Department, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - R Abou-Khalil
- Faculty of Arts and Sciences, Biology Department, Holy Spirit University of Kaslik, Jounieh, Lebanon
| |
Collapse
|
49
|
Khurana MP, Curran-Sebastian J, Bhatt S, Knight GM. Modelling the implementation of narrow versus broader spectrum antibiotics in the empiric treatment of E. coli bacteraemia. Sci Rep 2024; 14:16986. [PMID: 39043719 PMCID: PMC11266692 DOI: 10.1038/s41598-024-66193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
The implementation of new antimicrobial resistance stewardship programs is crucial in optimizing antibiotic use. However, prescription choices can be difficult during empiric therapy; clinicians must balance the survival benefits of broader spectrum antibiotics with associated increases in resistance. The aim of this study was to evaluate the overall feasibility of switching to narrow spectrum antibiotics during the empiric treatment of E. coli bacteraemia by quantifying changes in resistance rates, antibiotic usage, and mortality using a deterministic state-transition model. Three unique model scenarios (A, B, and C), each representing a progressively broader spectrum empiric treatment regimen, were used to compare outcomes at 5 years. We show that the empiric use of the narrowest spectrum (first-line) antibiotics can lead to reductions in resistance to second-line antibiotics and the use of third-line antibiotics, but they also lead to increases in resistance to first-line therapy and higher mortality. Crucially, we find that shortening the duration of empiric and overall treatment, as well as reducing the baseline mortality rate, are important for increasing the feasibility of switching to narrow spectrum antibiotics in the empiric treatment of E. coli bacteraemia. We provide a flexible model design to investigate optimal treatment approaches for other bacterial infections.
Collapse
Affiliation(s)
- Mark P Khurana
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1352, Copenhagen, Denmark.
| | - Jacob Curran-Sebastian
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1352, Copenhagen, Denmark
| | - Samir Bhatt
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1352, Copenhagen, Denmark
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, SW7 2AZ, UK
| | - Gwenan M Knight
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, AMR Centre, Centre for Mathematical Modeling of Infectious Diseases, London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| |
Collapse
|
50
|
Vukovic D, Gostimirovic S, Cvetanovic J, Gavric D, Aleksic Sabo V, Todorovic D, Medic D, Knezevic P. Antibacterial Potential of Non-Tailed Icosahedral Phages Alone and in Combination with Antibiotics. Curr Microbiol 2024; 81:215. [PMID: 38849666 DOI: 10.1007/s00284-024-03705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/13/2024] [Indexed: 06/09/2024]
Abstract
Non-tailed icosahedral phages belonging to families Fiersviridae (phages MS2 and Qbeta), Tectiviridae (PRD1) and Microviridae (phiX174) have not been considered in detail so far as potential antibacterial agents. The aim of the study was to examine various aspects of the applicability of these phages as antibacterial agents. Antibacterial potential of four phages was investigated via bacterial growth and biofilm formation inhibition, lytic spectra determination, and phage safety examination. The phage phiX174 was combined with different classes of antibiotics to evaluate potential synergistic interactions. In addition, the incidence of phiX174-insensitive mutants was analyzed. The results showed that only phiX174 out of four phages tested against their corresponding hosts inhibited bacterial growth for > 90% at different multiplicity of infection and that only this phage considerably prevented biofilm formation. Although all phages show the absence of potentially undesirable genes, they also have extremely narrow lytic spectra. The synergism was determined between phage phiX174 and ceftazidime, ceftriaxone, ciprofloxacin, macrolides, and chloramphenicol. It was shown that the simultaneous application of agents is more effective than successive treatment, where one agent is applied first. The analysis of the appearance of phiX174 bacteriophage-insensitive mutants showed that mutations occur with a frequency of 10-3. The examined non-tailed phages have a limited potential for use as antibacterial agents, primarily due to a very narrow lytic spectrum and the high frequency of resistant mutants appearance, but Microviridae can be considered in the future as biocontrol agents against susceptible strains of E. coli in combinations with conventional antimicrobial agents.
Collapse
Affiliation(s)
- Darija Vukovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Sonja Gostimirovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Cvetanovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Damir Gavric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Verica Aleksic Sabo
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | | - Deana Medic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| |
Collapse
|