1
|
Vives-Soto M, Puerta-García A, Rodríguez-Sánchez E, Pereira JL, Solera J. What risk do Brucella vaccines pose to humans? A systematic review of the scientific literature on occupational exposure. PLoS Negl Trop Dis 2024; 18:e0011889. [PMID: 38190394 PMCID: PMC10830018 DOI: 10.1371/journal.pntd.0011889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/31/2024] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Currently, vaccination of livestock with attenuated strains of Brucella remains an essential measure for controlling brucellosis, although these vaccines may be dangerous to humans. The aim of this study was to review the risk posed to humans by occupational exposure to vaccine strains and the measures that should be implemented to minimize this risk. METHODS This article reviewed the scientific literature indexed in PubMed up to September 30, 2023, following "the PRISMA guidelines". Special emphasis was placed on the vaccine strain used and the route of exposure. Non-occupational exposure to vaccine strains, intentional human inoculation, publications on exposure to wild strains, and secondary scientific sources were excluded from the study. RESULTS Nineteen primary reports were found and classified in three subgroups: safety accidents in vaccine factories that led to an outbreak (n = 2), survellaince studies on vaccine manufacturing workers with a serologic diagnosis of Brucella infection (n = 3), and publications of infection by vaccine strains during their administration, including case reports, records of occupational accidents and investigations of outbreaks in vaccination campaigns (n = 14). Although accidental exposure during vaccine manufacturing were uncommon, they could provoke large outbreaks through airborne spread with risk of spread to the neighboring population. Besides, despite strict protection measures, a percentage of vaccine manufacturing workers developed positive Brucella serology without clinical infection. The most frequent type of exposure with symptomatic infection was needle injury during vaccine administration. Prolonged contact with the pathogen, lack of information and a low adherence to personal protective equipment (PPE) use in the work environment were commonly associated with infection. CONCLUSIONS Brucella vaccines pose occupational risk of contagion to humans from their production to their administration to livestock, although morbidity is low and deaths were not reported. Recommended protective measures and active surveillance of exposed workers appeared to reduce this risk. It would be advisable to carry out observational studies and/or systematic registries using solid diagnostic criteria.
Collapse
|
2
|
Wang S, Yin Y, Zai X, Gu Y, Guo F, Shao F, Zhang Y, Li Y, Li R, Zhang J, Xu J, Chen W. A novel Galleria mellonella experimental model for zoonotic pathogen Brucella. Virulence 2023; 14:2268496. [PMID: 37817444 PMCID: PMC10599192 DOI: 10.1080/21505594.2023.2268496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
Brucellosis is a major threat to public health and animal husbandry. Several in vivo vertebrate models, such as mice, guinea pigs, and nonhuman primates, have been used to study Brucella pathogenesis, bacteria-host interactions, and vaccine efficacy. However, these models have limitations whereas the invertebrate Galleria mellonella model is a cost-effective and ethical alternative. The aim of the present study was to examine the invertebrate G. mellonella as an in vivo infection model for Brucella. Infection assays were employed to validate the fitness of the larval model for Brucella infection and virulence evaluation. The protective efficacy of immune sera was evaluated by pre-incubated with a lethal dose of bacteria before infection. The consistency between the mouse model and the larval model was confirmed by assessing the protective efficacy of two Brucella vaccine strains. The results show that G. mellonella could be infected by Brucella strains, in a dose- and temperature-dependent way. Moreover, this larval model can effectively evaluate the virulence of Brucella strains in a manner consistent with that of mammalian infection models. Importantly, this model can assess the protective efficacy of vaccine immune sera within a day. Further investigation implied that haemolymph played a crucial role in the protective efficacy of immune sera. In conclusion, G. mellonella could serve as a quick, efficient, and reliable model for evaluating the virulence of Brucella strains and efficacy of immune sera in an ethical manner.
Collapse
Affiliation(s)
- Shuyi Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yanfei Gu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fengyu Guo
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fangze Shao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yue Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
3
|
Li LM, Wang Q, Shi JF, Li T, Zhao B, Ma QX, Liu HY, Su N, Cai RP, Zeng FL, Gong QL, Shi K, Li JM, Liu F, Du R. Seroprevalence and potential risk factors of brucellosis in sheep from America, Africa and Asia regions: A systematic review and meta-analysis. Res Vet Sci 2023; 165:105048. [PMID: 37866007 DOI: 10.1016/j.rvsc.2023.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Brucellosis, a neglected and global zoonotic disease, infect a variety of mammals, among which sheep are one of the main hosts. This disease results in huge economic losses and is a widespread concern around the world. RESULT Based on the selection criteria, 40 articles from 2010 to 2021 of five databases (CNKI, Wanfang, VIP, PubMed and Science Direct) reported in America, Africa and Asia were included. The data showed that during this period, the overall seroprevalence of sheep brucellosis on these three continents was 6.2%. At the regional level, sheep brucellosis had the highest seroprevalence (8.5%) in Africa and the lowest seroprevalence (1.9%) in the Americas. With regard to the age of the sheep, the seroprevalence was significantly higher in adult sheep (15.5%) than in lambs (8.6%). Further, the seroprevalence was significantly higher in sheep that had abortion (44.3%) than in pregnant (13.0%) and non-pregnant sheep (9.5%). With regard to herd size, herds with >20 sheep (35.4%) had a significantly higher seroprevalence than herds with <20 sheep (16.8%). In terms of farming and grazing mode, free-range rearing (8.4%) was associated with a significantly higher seroprevalence than intensive farming (2.8%), and mixed grazing (37.0%) was associated with a significantly higher seroprevalence than single grazing (5.7%). CONCLUSION Sheep brucellosis is widely distributed in sheep-rearing regions of America, Africa and Asia, and sheep are susceptible to brucellosis by themselves or from other infectious sources. Therefore, timely monitoring of ovine brucellosis and improving farming and grazing patterns are critical to reducing the prevalence of brucellosis.
Collapse
Affiliation(s)
- Lian-Min Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Jun-Feng Shi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Ting Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Bo Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Qing-Xia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Hong-Ying Liu
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Nuo Su
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Ruo-Peng Cai
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Fan-Li Zeng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China
| | - Jian-Ming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China.
| | - Fei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China.
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, Jilin Province 130118, China; Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin Province 130118, China.
| |
Collapse
|
4
|
Dawood AS, Elrashedy A, Nayel M, Salama A, Guo A, Zhao G, Algharib SA, Zaghawa A, Zubair M, Elsify A, Mousa W, Luo W. Brucellae as resilient intracellular pathogens: epidemiology, host-pathogen interaction, recent genomics and proteomics approaches, and future perspectives. Front Vet Sci 2023; 10:1255239. [PMID: 37876633 PMCID: PMC10591102 DOI: 10.3389/fvets.2023.1255239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Brucellosis is considered one of the most hazardous zoonotic diseases all over the world. It causes formidable economic losses in developed and developing countries. Despite the significant attempts to get rid of Brucella pathogens in many parts of the world, the disease continues to spread widely. Recently, many attempts proved to be effective for the prevention and control of highly contagious bovine brucellosis, which could be followed by others to achieve a prosperous future without rampant Brucella pathogens. In this study, the updated view for worldwide Brucella distribution, possible predisposing factors for emerging Brucella pathogens, immune response and different types of Brucella vaccines, genomics and proteomics approaches incorporated recently in the field of brucellosis, and future perspectives for prevention and control of bovine brucellosis have been discussed comprehensively. So, the current study will be used as a guide for researchers in planning their future work, which will pave the way for a new world without these highly contagious pathogens that have been infecting and threatening the health of humans and terrestrial animals.
Collapse
Affiliation(s)
- Ali Sobhy Dawood
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Alyaa Elrashedy
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed Nayel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Samah Attia Algharib
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues (HZAU), Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ahmed Zaghawa
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Muhammed Zubair
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ahmed Elsify
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Walid Mousa
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
5
|
Benítez-Serrano JC, Hernández-Castro R, Martínez-Pérez L, Palomares-Resendiz G, Díaz-Aparicio E, Suárez-Güemes F, Arellano-Reynoso B. Effect of the Lacticaseibacillus paracasei JLM Strain Against Brucella abortus Strains in Ripened Cheese. Foodborne Pathog Dis 2023; 20:169-176. [PMID: 37172300 DOI: 10.1089/fpd.2022.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
This study evaluated the antagonistic effect of the Lacticaseibacillus paracasei JLM strain isolated from aguamiel, against Brucella abortus RB51, S19, and 2308 strains, during the manufacture of soft-ripened cheese. First, the tolerance of Lc. paracasei JLM was tested with pH values and bile salt concentrations for 3 h to simulate digestive tract conditions. The antagonistic effect against B. abortus strains was evaluated through double-layer diffusion and agar well diffusion assays. In addition, the stability of the cell-free supernatant (CFS) was tested with the agar well diffusion method under different conditions of temperature, pH, and treatment with digestive enzymes. Finally, the antagonistic effect against B. abortus strains was observed during the manufacture of ripened cheese for 31 days at 4°C and 25°C using the Lc. paracasei JLM strain as starter culture. The results showed that the Lc. paracasei JLM strain remains viable after exposure to different pH values (from 3.00 to 7.00) and concentrations of bile salts (from 0.5% to 7%). Moreover, the results demonstrate that the growth of the three B. abortus strains was inhibited in both antagonism tests and that CFS maintained 86% activity after heat treatment at 100°C, 121°C, or enzymatic digestion (proteinase K, trypsin, chymotrypsin), but it was inactivated at pH levels above 6. Finally, Lc. paracasei JLM completely inhibited the growth of B. abortus in ripened cheese at 25°C from day 17 and showed greater inhibition on the B. abortus RB51 strain in the ripened cheese at 4°C, showing statistical differences for the B. abortus S19 and B. abortus 2308 strains. The current research concluded that the Lc. paracasei JLM strain has an antagonistic effect on B. abortus, enhancing the potential of its use in the future as a probiotic.
Collapse
Affiliation(s)
- Juan Carlos Benítez-Serrano
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González," Ciudad de México, México
| | - Laura Martínez-Pérez
- Laboratorio de Microbiología Aplicada, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Gabriela Palomares-Resendiz
- CENID Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México, México
| | - Efrén Díaz-Aparicio
- CENID Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México, México
| | - Francisco Suárez-Güemes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Beatriz Arellano-Reynoso
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
6
|
Islam MS, Islam MA, Rahman MM, Islam K, Islam MM, Kamal MM, Islam MN. Presence of Brucella spp. in Milk and Dairy Products: A Comprehensive Review and Its Perspectives. J FOOD QUALITY 2023; 2023:1-19. [DOI: 10.1155/2023/2932883] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Consuming raw milk and milk-based products that have not been produced under strict control conditions can cause brucellosis, a highly contagious zoonotic disease. It is a significant global public health concern, particularly in regions with poor management and limited resources, such as Latin America, North and East Africa, the Middle East, and South and Central Asia. The study aims to summarize the occurrence of human brucellosis linked to milk and milk products and the presence of Brucella species in dairy foods. To achieve this goal, a meta-analysis was conducted on 69 studies ranging from 2001 to 2022, which were categorized into two groups: the incidence of Brucella species in milk and milk products and the prevalence of human brucellosis resulting from the consumption of contaminated milk. The following milk and milk products showed the highest incidence of Brucella species: cow milk (1.86%–81.7%), buffalo milk (10.4%–61.67%), camel milk (0%–24%), goat milk (0%–88.8%), and cheese (0%–39.1%). Consuming unpasteurized milk and milk products has been identified as the leading cause of human brucellosis, with incidence rates varying from 33.9% to 100%. Several human brucellosis cases have been linked to consuming raw milk and cheese in Spain, Israel, and other countries. Various serological techniques are employed to detect Brucella-specific antibodies in milk. The milk ring test (MRT) and enzyme-linked immunoassay (ELISA) are the two most widely utilized methods for detecting these antibodies in milk. Recently developed dual biosensors are a powerful approach for early diagnosis of Brucella from milk. Real-time PCR can rapidly detect organisms, reducing the risk of lab contamination and false positive results. To prevent and control brucellosis, essential steps include proper pasteurization of milk and dairy products, using the milk ring test (MRT) to detect Brucella in individual and bulk milk, immunization, education, and increasing public awareness of the disease. The consumption of raw milk and milk-made products that are not produced under strictly controlled conditions poses a significant risk to human health, mainly due to the high incidence of Brucella contamination. Therefore, ensuring strict control measures in producing milk and milk-made products is crucial to preventing the spread of this disease and safeguarding human health.
Collapse
Affiliation(s)
- Md. Sadequl Islam
- Department of Anatomy and Histology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Ariful Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Moshiur Rahman
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Khaleda Islam
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Md. Mominul Islam
- Department of Pathology and Parasitology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Murtuza Kamal
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Nazrul Islam
- Department of Pathology and Parasitology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|
7
|
Hans R, Yadav PK, Zaman MB, Poolla R, Thavaselvam D. A rapid direct-differential agglutination assay for Brucella detection using antibodies conjugated with functionalized gold nanoparticles. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2023.1132783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Brucellosis is the most widespread and serious zoonotic disease worldwide which affects livestock, sylvatic wildlife, marine dwellers, and humans. It is acquired through Alphaproteobacteria which belong to the genus Brucella and is categorized as a potential bio-threat agent. In this study, we developed a rapid and direct differential whole cell (WC) agglutination-based assay for its on-field detection. The recombinant outer membrane (rOmp28) protein-derived specific mice IgG polyclonal antibodies (pAbs) of Brucella were purified using affinity chromatography and conjugated with functionalized gold nanoparticles (AuNPs) for rapid agglutination. A positive blot of 32 kDa protein revealed specific immuno-reactivity of rOmp28-pAbs using immunoblot analysis. For the synthesis of AuNPs, the conventional “Turkevich method” was optimized at a concentration < 1 mM of gold precursor for obtaining 50-nm-sized particles. Also, their physico-chemical characteristics were analyzed using UV-visible spectrophotometry, Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential (ζ, ZP), and fluorescence spectroscopy. Furthermore, these AuNPs were functionalized with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to prepare modified carboxylated AuNPs. For bioconjugation with Brucella rOmp28 IgG pAbs, antibody-conjugated functionalized AuNP constructs were prepared and characterized using FT-IR analysis with strong N–H deformations. Subsequently, these bioconjugated AuNPs were used to develop a direct-differential slide agglutination assay with a detection limit of 104 CFU mL−1. The sensitivity of this assay was compared with standard double-antibody sandwich ELISA (S-ELISA) using rOmp28 IgG pAbs with an LOD of 103 CFU mL−1 and a detection range of 102–108 CFU mL−1. No intraspecies cross-reactivity was observed based on evaluation of its specificity with a battery of closely related bacterial species. In conclusion, the increased sensitivity and specificity of the developed agglutination assay obtained using bioconjugated functionalized AuNPs is ≥ 98% for the detection of Brucella. Therefore, it can be used as an alternate rapid method of direct WC detection of bacteria as it is simple, robust, and cost-effective, with minimal time of reaction in the case of early disease diagnosis.
Collapse
|
8
|
Shi D, Chen Y, Chen M, Zhou T, Xu F, Zhang C, Wang C, Li Z. Bioinformatics analysis of Omp19 and Omp25 proteins for designing multi-epitope vaccines against Brucella. Medicine (Baltimore) 2023; 102:e33182. [PMID: 36930131 PMCID: PMC10019172 DOI: 10.1097/md.0000000000033182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
Brucellosis is a zoonotic disease caused by Brucella. There is no effective vaccine against human brucellosis. Omp19 and Omp25 are the outer membrane proteins of Brucella. They are widely expressed and highly conserved in Brucella and have high immunogenicity. Herein, we aim to identify multi-epitope vaccine candidates based on Omp19 and Omp25. We analyzed the physicochemical properties and protein structure of Omp19 and Omp25, and predicted the corresponding B cell and T cell epitopes using bioinformatics analysis. Omp19 and Omp25 were composed of 177 amino acids and 213 amino acids, respectively. They were both stable hydrophilic proteins. The instability indices were 44.8 and 23, respectively. The hydrophilicity was -0.1 and -0.317, respectively. In the secondary structure of Omp19 and Omp25 proteins, the α-helix accounted for 12.43% and 23.94%, the β-sheet was 18.64% and 23.47%, the β-turn was 6.78% and 4.23%, and the random coil was 62.15% and 48.36%. Finally, 5 B cell epitopes, 3 Th-cell epitopes and 5 CTL cell epitopes of Omp19 protein, and 4 B cell epitopes, 3 Th-cell epitopes, and 5 CTL cell epitopes of Omp25 protein were selected as vaccine candidates. In conclusion, we obtained potential B cell and T cell epitopes of the Brucella outer membrane Omp19 and Omp25 proteins. This lays the foundation for the further design of multi-epitope vaccine of Brucella.
Collapse
Affiliation(s)
- Donghao Shi
- Clinical Laboratory Center, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, P.R. China
| | - Yuan Chen
- Clinical Laboratory Center, People`s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, P.R. China
| | - Muzhi Chen
- Department of Rheumatology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, P.R. China
| | - Tingting Zhou
- Department of Public Health, People`s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, P.R. China
| | - Feili Xu
- Clinical Laboratory Center, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, P.R. China
| | - Chao Zhang
- Urumqi OE Biotech Co., Ltd., Urumqi, Xinjiang, P.R. China
| | - Changmin Wang
- Clinical Laboratory Center, People`s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, P.R. China
| | - Zhiwei Li
- Clinical Laboratory Center, People`s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, P.R. China
| |
Collapse
|
9
|
Khoshnood S, Pakzad R, Koupaei M, Shirani M, Araghi A, Irani GM, Moradi M, Pakzad I, Sadeghifard N, Heidary M. Prevalence, diagnosis, and manifestations of brucellosis: A systematic review and meta-analysis. Front Vet Sci 2022; 9:976215. [PMID: 36619963 PMCID: PMC9813401 DOI: 10.3389/fvets.2022.976215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives Brucellosis is one of the most prevalent zoonotic diseases common between humans and animals. Despite eradication efforts, the burden of the disease is well-known in endemic countries and in countries where brucellosis has not been an important health issue until recently. The aim of this study was to evaluate the prevalence, diagnosis, and manifestations of brucellosis. Methods In this study, PubMed, Web of Science, Scopus, Embase, and Google scholar databases were systematically searched to find studies published from 2011 to 2021. The search was conducted using text words and Medical Subject Headings (MeSH) Terms on the prevalence of brucellosis. Stata software 14.0 was used for all analyses. Results Based on the results, the pooled prevalence of brucellosis was 15.27% (95% CI: 9.68-21.86; heterogeneity I 2 index: 97.43; p < 0.001) for man and 15.33% (95% CI: 7.19-25.75; heterogeneity I 2 index: 98.19; p < 0.001) for woman. Age (coefficient: 0.240; p = 0.480), gender (coefficient: -0.017; p = 0.800), and publication year (coefficient: 0.114; p = 0.861) showed no significant effect on heterogeneity among studies. Egger's test indicated a significant publication bias for the prevalence of brucellosis (coefficient 3.894; p < 0.001). Moreover, the trim-and-fill method exhibited that the adjusted prevalence of brucellosis (18.30%, 95% CI: 14.10-22.52) was not significantly different from the original prevalence of brucellosis. Conclusion The pooled estimate for brucellosis prevalence was estimated as 15.53%. To better understand the epidemiology of brucellosis globally, more extensive studies are needed to be conducted throughout the world, especially in developing and low-income countries.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza Pakzad
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
- Department of Epidemiology, Faculty of Health, Ilam University Medical Sciences, Ilam, Iran
| | - Maryam Koupaei
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Almas Araghi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Islamic Azad University, Tehran, Iran
| | - Golnaz Mokhtari Irani
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Melika Moradi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Iraj Pakzad
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
10
|
Charypkhan D, Rüegg SR. One Health evaluation of brucellosis control in Kazakhstan. PLoS One 2022; 17:e0277118. [PMID: 36322602 PMCID: PMC9629608 DOI: 10.1371/journal.pone.0277118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Brucellosis is one of the main livestock disease risks in Kazakhstan. It's been endemic there since 1930, accounting for over 1300 human cases per annum. The economic loss was 45 million USD in 2015 alone. Since 1952, Kazakhstan has implemented various control strategies with little success. One Health approaches have been suggested to tackle brucellosis, however, there is a lack of evidence for best practices to operationalise One Health in the literature, and methods for implementation are not established. The intention of this study was to introduce the One Health approach during the evaluation phase of the policy cycle. A two-day workshop was organized by the authors to familiarize participants with the evaluation methodology. Twenty-one specialists representing veterinary and public health sector, together with researchers, took part in this study. For two weeks following the workshop, first author conducted individual interviews with workshop participants to obtain individual scorings to assess knowledge integration capacity (One Health-ness). The evaluation results show that there is a lack of knowledge about the perceived damage caused by brucellosis to animal owners and other stakeholders. There is insufficient data available about farmers' practices, interests and motivations, and also data is missing for important transmission processes such as the amount of unsafe dairy consumption. The absence of such data illustrates the extent of the uncertainty to which decision-makers are exposed despite well-elaborated transmission models and supports the importance of co-producing solutions with participatory methods. The results suggest the need for broader involvement of stakeholders. Outputs of this study could help navigate the initial stages of One Health operationalization.
Collapse
Affiliation(s)
- Duriya Charypkhan
- Vetsuisse Faculty, Section of Epidemiology, University of Zurich, Zurich, Switzerland
- Laboratory of Brucellosis, Kazakh Scientific Research Veterinary Institute, Almaty, Kazakhstan
- * E-mail:
| | - Simon R. Rüegg
- Vetsuisse Faculty, Section of Epidemiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Baron-Epel O, Obeid S, Kababya D, Bord S, Myers V. A health promotion perspective for the control and prevention of Brucellosis (Brucella melitensis); Israel as a case study. PLoS Negl Trop Dis 2022; 16:e0010816. [PMID: 36155492 PMCID: PMC9536624 DOI: 10.1371/journal.pntd.0010816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/06/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Brucellosis (Brucella melitensis) is endemic in many countries around the world, therefore, identifying what is required to control and prevent the disease is essential. The health promotion concept and five areas of action, presented in the Ottawa Charter (1986) may help understand how to go forward in the prevention of the disease. Israel serves as a case study. AIM To identify barriers to the control and prevention of brucellosis (Brucella melitensis) in Israel by analyzing trends in incidence in conjunction with interventions implemented over the last seven decades, applying the health promotion areas of action. METHODS 1. A document review approach was adopted to develop a list of interventions implemented in Israel to prevent and control brucellosis and identify barriers to implementation. These were analysed using the health promotion areas of action. 2. Data from the mandatory reporting of infectious diseases in Israel regarding brucellosis in humans between 1951 and 2021 are presented and analyzed in conjunction with the interventions implemented. RESULTS A large range of interventions were implemented following outbreaks of the disease. These interventions followed the health promotion areas of action, including mainly: policy, education and environment and brought about a decrease in the disease among both animals and humans. However, major interventions were discontinued after a few years. In addition, we identified some areas of action that could be much improved on. The interventions, in many cases were not simultaneously implemented or coordinated, decreasing the chances of them having the expected long term impact. CONCLUSIONS Control and prevention of the disease in Israel is partial. Areas of action that could be improved include enforcement of regulations, strengthening community action and improving personal skills. Simultaneous and continuous implementation of the interventions may achieve the goals of sustained prevention and control. There seems to be a lack of a long-term strategy and an integrated holistic intervention approach that may contribute to the control and prevention of the disease.
Collapse
Affiliation(s)
- Orna Baron-Epel
- School of Public Health, Faculty of Social Welfare and Health Studies, University of Haifa, Mount Carmel, Israel
| | - Samira Obeid
- North District Health Office, Ministry of Health, Israel
- Nursing Faculty, The Max Stern Yezreel Valley College, Yezreel Valley, Israel
| | - Dorit Kababya
- Ministry of Agriculture and Rural Development, Beit Dagan, Israel
| | - Shiran Bord
- Health Systems Management Department, The Max Stern Yezreel Valley College, Yezreel Valley, Israel
| | - Vicki Myers
- School of Public Health, Faculty of Social Welfare and Health Studies, University of Haifa, Mount Carmel, Israel
| |
Collapse
|
12
|
Zhang H, Lu S, Chao J, Lu D, Zhao G, Chen Y, Chen H, Faisal M, Yang L, Hu C, Guo A. The attenuated Mycoplasma bovis strain promotes apoptosis of bovine macrophages by upregulation of CHOP expression. Front Microbiol 2022; 13:925209. [PMID: 35992665 PMCID: PMC9381834 DOI: 10.3389/fmicb.2022.925209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Mycoplasma bovis (M. bovis) is one of the major pathogens in the bovine respiratory disease complex, which includes pneumonia, mastitis, and arthritis and causes a great economic loss in the cattle industry. In China, a live-attenuated vaccine strain M. bovis P150 was obtained by a continuous culture of the wild-type strain M. bovis HB0801 (P1) in vitro for 150 passages. Using the infected bovine macrophage cell line BoMac, this work attempted to investigate the mechanism of P150 attenuation and protective immune response. To begin, we show that M. bovis P150 effectively triggered cytotoxicity and apoptosis in BoMac, although with lower intracellular survival than P1. The transcriptomes of BoMac after infection with M. bovis strains P1 and P150 were sequenced, and bioinformatic analysis identified 233 differentially expressed genes (DEGs), with 185 upregulated and 48 downregulated. Further Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses revealed that the majority of the DEGs were linked to CHOP complex, MAP kinase phosphatase activity and were involved in the IL-17 signaling pathway in immune response, MAPK signaling pathway in signal transduction, and p53 signaling pathway in cell growth and death. Among them, the level of C/EBP homologous protein (CHOP) was significantly upregulated in P150-infected BoMac compared to P1-infected cells at different time points, along with its upstream and downstream genes phosphorylated-PERK, phosphorylated-EIF2α, ATF4, and GADD45A increased in the PERK-dependent ER stress response. The role of CHOP in apoptosis was further verified by M. bovis-induced siCHOP knockdown in BoMac cells. The results showed that CHOP knockdown enhanced P150-induced apoptosis and dramatically increased the M. bovis P1 and P150 intracellular survival, particularly for P150. These data suggest that P150 infection upregulates CHOP expression, which can increase apoptosis and mediate a crosstalk between ER stress and apoptosis during infection, and hence, contribute to high cytotoxicity and low intracellular survival.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Siyi Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jin Chao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Faisal
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liguo Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Changmin Hu,
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Aizhen Guo,
| |
Collapse
|
13
|
Zhang H, Wang Y, Wang Y, Deng X, Ji T, Ma Z, Yang N, Xu M, Li H, Yi J, Wang Y, Wang Y, Sheng J, Wang Z, Chen C. Using a Relative Quantitative Proteomic Method to Identify Differentially Abundant Proteins in Brucella melitensis Biovar 3 and Brucella melitensis M5-90. Front Immunol 2022; 13:929040. [PMID: 35928811 PMCID: PMC9343586 DOI: 10.3389/fimmu.2022.929040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Brucellosis, caused by Brucella spp., is one of the most widespread bacterial zoonoses worldwide. Vaccination is still considered the best way to control brucellosis. An investigation into the differential proteome expression patterns of wild and vaccine strains may help researchers and clinicians differentiate between the strains to diagnose and better understand the mechanism(s) underlying differences in virulence. In the present study, a mass spectrometry-based, label-free relative quantitative proteomics approach was used to investigate the proteins expressed by the wild strain, B. melitensis biovar 3 and compare it with those expressed by B. melitensis M5-90. The higher level of virulence for B. melitensis biovar 3 compared to B. melitensis M5-90 was validated in vitro and in vivo. A total of 2133 proteins, encompassing 68% of the theoretical proteome, were identified and quantified by proteomic analysis, resulting in broad coverage of the B. melitensis proteome. A total of 147 proteins were identified as differentially expressed (DE) between these two strains. In addition, 9 proteins and 30 proteins were identified as unique to B. melitensis M5-90 and B. melitensis biovar 3, respectively. Pathway analysis revealed that the majority of the DE proteins were involved in iron uptake, quorum sensing, pyrimidine metabolism, glycine betaine biosynthetic and metabolic processes, thiamine-containing compound metabolism and ABC transporters. The expression of BtpA and VjbR proteins (two well-known virulence factors) in B. melitensis biovar 3 was 8-fold and 2-fold higher than in B. melitensis M5-90. In summary, our results identified many unique proteins that could be selected as candidate markers for differentiating vaccinated animals from animals with wild-type infections. BtpA and VjbR proteins might be responsible for the residual virulence of B. melitensis M5-90, while ABC transporters and thiamine metabolism associated proteins may be newly identified Brucella virulence factors. All of the identified DE proteins provide valuable information for the development of vaccines and the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Huan Zhang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Yueli Wang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Yifan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine Huazhong Agricultural University, Wuhan, China
| | - Xiaoyu Deng
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Taiwang Ji
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Zhongchen Ma
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Ningning Yang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Mingguo Xu
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Honghuan Li
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Jihai Yi
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Yong Wang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Shihezi City, China
- *Correspondence: Yuanzhi Wang, ; Zhen Wang, ; Chuangfu Chen,
| | - Jinliang Sheng
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Zhen Wang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
- *Correspondence: Yuanzhi Wang, ; Zhen Wang, ; Chuangfu Chen,
| | - Chuangfu Chen
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
- *Correspondence: Yuanzhi Wang, ; Zhen Wang, ; Chuangfu Chen,
| |
Collapse
|
14
|
Carpenter A, Waltenburg MA, Hall A, Kile J, Killerby M, Knust B, Negron M, Nichols M, Wallace RM, Behravesh CB, McQuiston JH. Vaccine Preventable Zoonotic Diseases: Challenges and Opportunities for Public Health Progress. Vaccines (Basel) 2022; 10:vaccines10070993. [PMID: 35891157 PMCID: PMC9319643 DOI: 10.3390/vaccines10070993] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 01/18/2023] Open
Abstract
Zoonotic diseases represent a heavy global burden, causing important economic losses, impacting animal health and production, and costing millions of human lives. The vaccination of animals and humans to prevent inter-species zoonotic disease transmission is an important intervention. However, efforts to develop and implement vaccine interventions to reduce zoonotic disease impacts are often limited to the veterinary and agricultural sectors and do not reflect the shared burden of disease. Multisectoral collaboration, including co-development opportunities for human and animal vaccines, expanding vaccine use to include animal reservoirs such as wildlife, and strategically using vaccines to interrupt complex transmission cycles is needed. Addressing zoonoses requires a multi-faceted One Health approach, wherein vaccinating people and animals plays a critical role.
Collapse
|
15
|
Pellegrini JM, Gorvel JP, Mémet S. Immunosuppressive Mechanisms in Brucellosis in Light of Chronic Bacterial Diseases. Microorganisms 2022; 10:1260. [PMID: 35888979 PMCID: PMC9324529 DOI: 10.3390/microorganisms10071260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Brucellosis is considered one of the major zoonoses worldwide, constituting a critical livestock and human health concern with a huge socio-economic burden. Brucella genus, its etiologic agent, is composed of intracellular bacteria that have evolved a prodigious ability to elude and shape host immunity to establish chronic infection. Brucella's intracellular lifestyle and pathogen-associated molecular patterns, such as its specific lipopolysaccharide (LPS), are key factors for hiding and hampering recognition by the immune system. Here, we will review the current knowledge of evading and immunosuppressive mechanisms elicited by Brucella species to persist stealthily in their hosts, such as those triggered by their LPS and cyclic β-1,2-d-glucan or involved in neutrophil and monocyte avoidance, antigen presentation impairment, the modulation of T cell responses and immunometabolism. Attractive strategies exploited by other successful chronic pathogenic bacteria, including Mycobacteria, Salmonella, and Chlamydia, will be also discussed, with a special emphasis on the mechanisms operating in brucellosis, such as granuloma formation, pyroptosis, and manipulation of type I and III IFNs, B cells, innate lymphoid cells, and host lipids. A better understanding of these stratagems is essential to fighting bacterial chronic infections and designing innovative treatments and vaccines.
Collapse
|
16
|
Benítez-Serrano JC, Palomares-Resendiz G, Díaz-Aparicio E, Hernández-Castro R, Martínez-Pérez L, Suárez-Güemes F, Arellano-Reynoso B. Survival of Brucella abortus RB51 and S19 Vaccine Strains in Fresh and Ripened Cheeses. Foodborne Pathog Dis 2022; 19:535-542. [PMID: 35675662 DOI: 10.1089/fpd.2022.0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brucellosis is a zoonotic infection caused by the consumption of contaminated raw milk and dairy products. This study aims to compare survival rates of Brucella abortus RB51 and S19 vaccine strains to that of virulent B. abortus 2308 strain during the manufacture of fresh and ripened cheeses. To do this, we inoculated fresh pasteurized milk with B. abortus RB51, S19, or 2308 at a 6 × 108 colony-forming unit per milliliter concentration during the cheese making process. Cheese was manufactured at room temperature, then, fresh cheeses were conserved at either 4°C or 25°C for 7 days, while ripened cheeses were conserved for 31 days at the same temperatures. We measured B. abortus survival and pH values during different stages of the process. Our results confirm that all three strains can maintain viable cells in both types of cheeses throughout the process. Survival of B. abortus RB51 was 10 times lower than was the survival of the B. abortus S19 and B. abortus 2308 strains in both fresh and ripened cheeses. Our results also suggest that both temperature and pH can condition Brucella survival. In conclusion, B. abortus RB51 and S19 vaccine strains can survive throughout the manufacture and conservation processes of both fresh and ripened cheeses. In turn, this implies a potential health risk if cheeses contaminated with these strains were to be consumed.
Collapse
Affiliation(s)
- Juan Carlos Benítez-Serrano
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gabriela Palomares-Resendiz
- CENID Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México, México
| | - Efrén Díaz-Aparicio
- CENID Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México, México
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Laura Martínez-Pérez
- Laboratorio de Microbiología Aplicada, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Francisco Suárez-Güemes
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Beatriz Arellano-Reynoso
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
17
|
Liu Z, Kong Z, Chen M, Shang Y. Design of live-attenuated animal vaccines based on pseudorabies virus platform. ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00044-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractPseudorabies virus (PRV) is a double-stranded DNA virus with a genome approximating 150 kb in size. PRV contains many non-essential genes that can be replaced with genes encoding heterogenous antigens without affecting viral propagation. With the ability to induce cellular, humoral and mucosal immune responses in the host, PRV is considered to be an ideal and potential live vector for generation of animal vaccines. In this review, we summarize the advances in attenuated recombinant PRVs and design of PRV-based live vaccines as well as the challenge of vaccine application.
Collapse
|
18
|
Darbandi A, Koupaei M, Navidifar T, Shahroodian S, Heidary M, Talebi M. Brucellosis control methods with an emphasis on vaccination: a systematic review. Expert Rev Anti Infect Ther 2022; 20:1025-1035. [PMID: 35416090 DOI: 10.1080/14787210.2022.2066521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Brucellosis is considered as one of the main zoonotic infections and a major public health concern worldwide. The aim of the present study was to evaluate various strategies for controlling brucellosis with an especial emphasis on efficacy of vaccination. AREAS COVERED International databanks (Web of Science, PubMed, Embase) were searched for potentially relevant studies published from January 1, 2011 to March 25, 2021 using the following keywords: "Brucella", "Brucella abortus", "Brucella melitensis", "Brucella canis", "Brucella suis", "brucellosis", "Bang disease", "undulant fever", "Malta fever", "vaccination", "vaccine", and "immunization". The literature search was restricted to original articles published in English. EXPERT OPINION Various methods are employed to prevent and control brucellosis, such as removing sick animals by slaughtering, separating sick animals from the herd, and vaccination. Preventing, controlling, and eradicating brucellosis requires a lot of financial support, perseverance, and time. In order to conduct a detailed study, it is recommended that more studies be conducted in developing countries and different parts of the world.
Collapse
Affiliation(s)
- Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Koupaei
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Soheila Shahroodian
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.,Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
19
|
Saidu AS, Singh M, Kumar A, Mahajan NK, Mittal D, Chhabra R, Joshi VG, Musallam II, Sadiq U. Studies on intra-ocular vaccination of adult cattle with reduced dose Brucella abortus strain-19 vaccine. Heliyon 2022; 8:e08937. [PMID: 35243062 PMCID: PMC8881662 DOI: 10.1016/j.heliyon.2022.e08937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/26/2021] [Accepted: 02/08/2022] [Indexed: 11/06/2022] Open
Abstract
Brucella abortus vaccines play a central role in bovine brucellosis control with tremendous success worldwide for decades. The study was aimed to evaluate the efficacy of reduced dose (5.0 × 10 9 cfu) of S19 vaccine in adult cattle and its shedding in the milk of vaccinated cattle using molecular techniques. The OIE recommended tests (RBPT, SAT, and iELISA) for brucellosis screening in cattle were used. Seronegative cattle (n = 90) of different age groups (young, old heifers & milking cows, n = 30 each) were selected for the vaccine trials. Antibody titers were recorded at 7th, 21st, 30th, 60th, 90th and 120th days post-vaccination (DPV) to monitor the immune responses following vaccination and at 150th, 180th, 210th and 240th DPB following booster-dose to an intraocular group. The humoral immune responses observed by RBPT and ELISA, proved that antibody titers persisted in s/c group compared to the i/o group in all categories. The IFN-γ stimulation (CMI) due to reduced dose vaccination was noticed early as 30th in all groups and declined after 90th DPV, with higher IFN-γ stimulation among the s/c group. The Bcsp31 and IS711 targeted PCR detected the presence of Brucella DNA in milk samples (n = 120) from the vaccinated cows (n = 30) and confirmed by qPCR (TaqMan assay) at 30th, 60th, 90th and 120th DPV. A Significant number, 70% (7/10) was detected in s/c by qPCR. BCSP31 sequence was deposited at NCBI GenBank (accession no. MK881173-6). PCR and qPCR techniques could provide a reliable diagnosis of brucellosis from milk. The intraocular route remains the safer route for vaccinating adult cattle than subcutaneous.
Collapse
Affiliation(s)
- A S Saidu
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India.,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, P.M.B., 1069, Maiduguri, 600230, Borno State, Nigeria
| | - Mahavir Singh
- College Central Laboratory, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India
| | - Aman Kumar
- Department of Animal Biotechnology, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India
| | - N K Mahajan
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India
| | - Dinesh Mittal
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India
| | - Rajesh Chhabra
- College Central Laboratory, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, College of Veterinary Sciences, LUVAS, Hisar, 125004, Haryana, India
| | - Imadidden I Musallam
- Department of Pathobiology and Population Sciences, Veterinary Epidemiology, Economics and Public Health Group, The Royal Veterinary College, University of London, AL9 7TA, Hertfordshire, United Kingdom
| | - Usman Sadiq
- Northwick Park Hospital, Radiology Department, Watford Road, Harrow, HA1 3UJ, United Kingdom
| |
Collapse
|
20
|
Wareth G, Dadar M, Ali H, Hamdy MER, Al-Talhy AM, Elkharsawi AR, Tawab AAAE, Neubauer H. The perspective of antibiotic therapeutic challenges of brucellosis in the Middle East and North African (MENA) countries: Current situation and therapeutic management. Transbound Emerg Dis 2022; 69:e1253-e1268. [PMID: 35244335 DOI: 10.1111/tbed.14502] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
Brucellosis is among the most prevalent zoonotic infections in Middle Eastern and North African (MENA) countries, critically impacting human and animal health. A comprehensive review of studies on antibiotic susceptibility and therapeutic regimes for brucellosis in ruminants and humans in the MENA region was conducted to evaluate the current therapeutic management in this region. Different scientific databases were searched for peer-reviewed original English articles published from January 1989 to February 2021. Reports from research organizations and health authorities have been taken into consideration. Brucella melitensis and Brucella abortus have been reported from the majority of MENA countries, suggesting a massive prevalence particularly of B. melitensis across these countries. Several sporadic cases of brucellosis relapse, therapeutic failure, and antibiotic resistance of animal and human isolates have been reported from the MENA region. However, several studies proved that brucellae are still in-vitro susceptible to the majority of antibiotic compounds and combinations in current recommended WHO treatment regimens, e.g. levofloxacin, tetracyclines, doxycycline, streptomycin, ciprofloxacin, chloramphenicol, gentamicin, tigecycline, and trimethoprim/sulfamethoxazole. The current review presents an overview on resistance development of brucellae and highlights the current knowledge on effective antibiotics regimens for treating human brucellosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gamal Wareth
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, Jena, 07743, Germany.,Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Moshtohor, 13736, Egypt
| | - Maryam Dadar
- Department of Brucellosis, Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman.,Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud E R Hamdy
- Animal Health Research Institute, Agricultural Research Center, P.O. Box 264-Giza, Cairo, 12618, Egypt
| | | | - Ahmed R Elkharsawi
- Jena University Hospital, Department of Gastroenterology, Hepatology and Infectious diseases, Am Klinikum 1, Jena, 07747, Germany
| | - Ashraf A Abd El Tawab
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Moshtohor, 13736, Egypt
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, Jena, 07743, Germany
| |
Collapse
|
21
|
Dastani M, Mardaneh J, Pouresmaeil O. Detecting Latent Topics and Trends in Global Publications on Brucellosis Disease Using Text Mining. Interdiscip Perspect Infect Dis 2022; 2022:7274734. [PMID: 35251165 PMCID: PMC8896154 DOI: 10.1155/2022/7274734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/29/2022] [Accepted: 02/12/2022] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Brucellosis is widespread globally and one of the most important zoonotic diseases. Therefore, to fully comprehend the disease and discover ways of prevention and treatment, researchers have conducted some research in this field. Hence, this study will focus on the topic trend of scientific publications of brucellosis. METHODS This study is an applied research using text mining techniques with an analytical approach. The statistical population of the present research is all global publications related to brucellosis. For data extraction, the Scopus citation database was used in the period from 1900 to 2020. The main keywords for search strategy design have been extracted from consultation with thematic specialists and using MESH. Python programming language has been applied to analyze data and implement text mining algorithms. RESULTS According to results, eight main topics of "Prevention," "Clinical symptoms," "Diagnosis," "Control," "Treatment," "Immunology," "Structural Features," and "Pathogenicity" have been identified for brucellosis publications. Moreover, the topics "Prevention" and "Pathogenicity" had the highest and lowest prevalence in the field of brucellosis over time, respectively. CONCLUSION This study has revealed the topics published in the global publications of brucellosis; the findings can be useful for research centers and universities in determining research priorities in the field of brucellosis.
Collapse
Affiliation(s)
- Meisam Dastani
- Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Jalal Mardaneh
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Omid Pouresmaeil
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Poveda-Urkixo I, Ramírez GA, Grilló MJ. Kinetics of Placental Infection by Different Smooth Brucella Strains in Mice. Pathogens 2022; 11:pathogens11030279. [PMID: 35335603 PMCID: PMC8955611 DOI: 10.3390/pathogens11030279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 01/18/2023] Open
Abstract
Abortion and reproductive failures induced by Brucella are the main symptoms of animal brucellosis. Laboratory animal models are essential tools of research to study the Brucella pathogenesis before experimentation in natural hosts. To extend the existing knowledge, we studied B. melitensis 16M (virulent) and Rev1 (attenuated) as well as B. suis bv2 infections in pregnant mice. Here, we report new information about kinetics of infection (in spleens, blood, placentas, vaginal shedding, and foetuses), serum cytokine profiles, and histopathological features in placentas and the litter throughout mice pregnancy. Both B. melitensis strains showed a marked placental tropism and reduced viability of pups (mainly in 16M infections), which was preceded by an intense Th1-immune response during placental development. In contrast, B. suis bv2 displayed lower placental tropism, mild proinflammatory immune response, and scarce bacterial transmission to the litter, thus allowing foetal viability. Overall, our studies revealed three different smooth Brucella patterns of placental and foetal pathogenesis in mice, providing a useful animal model for experimental brucellosis.
Collapse
Affiliation(s)
- Irati Poveda-Urkixo
- Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Avda. Pamplona 123, 31192 Mutilva, Spain;
| | - Gustavo A. Ramírez
- Departamento de Sanidad Animal, Universidad de Lleida, 25198 Lleida, Spain;
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Avda. Pamplona 123, 31192 Mutilva, Spain;
- Correspondence:
| |
Collapse
|
23
|
Zhi F, Fang J, Zheng W, Li J, Zhang G, Zhou D, Jin Y, Wang A. A Brucella Omp16 Conditional Deletion Strain Is Attenuated in BALB/c Mice. J Microbiol Biotechnol 2022; 32:6-14. [PMID: 34675138 PMCID: PMC9628832 DOI: 10.4014/jmb.2107.07016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/26/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023]
Abstract
Brucella spp. are facultative intracellular pathogens that invade, survive and proliferate in numerous phagocytic and non-phagocytic cell types, thereby leading to human and animal brucellosis. Outer membrane proteins (Omps) are major immunogenic and protective antigens that are implicated in Brucella virulence. A strain deleted of the omp16 gene has not been obtained which suggests that the Omp16 protein is vital for Brucella survival. Nevertheless, we previously constructed an omp16 conditional deletion strain of Brucella, ΔOmp16. Here, the virulence and immune response elicted by this strain were assessed in a mouse model of infection. Splenomegaly was significantly reduced at two weeks post-infection in ΔOmp16-infected mice compared to infection with the parental strain. The bacterial load in the spleen also was significantly decreased at this post-infection time point in ΔOmp16-infected mice. Histopathological changes in the spleen were observed via hematoxylineosin staining and microscopic examination which showed that infection with the ΔOmp16 strain alleviated spleen histopathological alterations compared to mice infected with the parental strain. Moreover, the levels of humoral and cellular immunity were similar in both ΔOmp16-infected mice and parental strain-infected mice. The results overall show that the virulence of ΔOmp16 is attenuated markedly, but that the immune responses mediated by the deletion and parental strains in mice are indistinguishable. The data provide important insights that illuminate the pathogenic strategies adopted by Brucella.
Collapse
Affiliation(s)
- Feijie Zhi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Jiaoyang Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Weifang Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Guangdong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, P.R. China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, P.R. China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, P.R. China,Corresponding author Phone: +862987082869 E-mail:
| |
Collapse
|
24
|
Al-Mariri A, Al-Hallab L, Alabras R, Kherbik H, Khawajkiah M. Protection against virulent Brucella spp. by gamma-irradiated B. ovis in BALB/c mice model. Clin Exp Vaccine Res 2022; 11:53-62. [PMID: 35223665 PMCID: PMC8844668 DOI: 10.7774/cevr.2022.11.1.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/20/2021] [Indexed: 01/18/2023] Open
Abstract
Purpose Brucella spp. is a zoonosis that causes undulant fever in humans and abortion in livestock worldwide. Lately, it was conveyed that vaccines developed by irradiation have induced a strong cellular and humoral immune response which have made these types of vaccines highly effective. Materials and Methods In this study, we aimed to use the gamma-irradiated B. ovis as a vaccine and to study the humoral immune response and cytokines production in order to evaluate it for protecting mice against B. abortus 544, B. melitensis 16M, and B. ovis. Results The humoral immune response in immunized mice with gamma-irradiated B. ovis showed a lasting for 8 weeks after immunization. Moreover, immunoglobulin G (IgG), IgG1, IgG2a, and IgG2b isotypes antibodies against B. ovis were observed after 4 and 8 weeks of the last immunization. It was noticed that the production of tumor necrosis factor-α, interferon-γ, and interleukin (IL)-10 continued after 4 and 8 weeks by splenocytes from immunized BALB/c mice, while no production of IL-4 or IL-5 was observed. Conclusion Our results indicate that the protection of BALB/c mice against B. melitensis 16M, B. abortus 544, and B. ovis was induced and the developed vaccine at our laboratory could stimulate similar protection to those induced by the traditional vaccine.
Collapse
Affiliation(s)
- Ayman Al-Mariri
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Laila Al-Hallab
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Rasha Alabras
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Heba Kherbik
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Marwa Khawajkiah
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| |
Collapse
|
25
|
Chaudhuri P, Saminathan M, Ali SA, Kaur G, Singh SV, Lalsiamthara J, Goswami TK, Singh AK, Singh SK, Malik P, Singh RK. Immunization with Brucella abortus S19Δper Conferred Protection in Water Buffaloes against Virulent Challenge with B. abortus Strain S544. Vaccines (Basel) 2021; 9:vaccines9121423. [PMID: 34960169 PMCID: PMC8708995 DOI: 10.3390/vaccines9121423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/18/2023] Open
Abstract
Vaccination of cattle and buffaloes with Brucella abortus strain 19 has been the mainstay for control of bovine brucellosis. However, vaccination with S19 suffers major drawbacks in terms of its safety and interference with serodiagnosis of clinical infection. Brucella abortus S19∆per, a perosamine synthetase wbkB gene deletion mutant, overcomes the drawbacks of the S19 vaccine strain. The present study aimed to evaluate the potential of Brucella abortus S19Δper vaccine candidate in the natural host, buffaloes. Safety of S19∆per, for animals use, was assessed in guinea pigs. Protective efficacy of vaccine was assessed in buffaloes by immunizing with normal dose (4 × 1010 colony forming units (CFU)/animal) and reduced dose (2 × 109 CFU/animal) of S19Δper and challenged with virulent strain of B. abortus S544 on 300 days post immunization. Bacterial persistency of S19∆per was assessed in buffalo calves after 42 days of inoculation. Different serological, biochemical and pathological studies were performed to evaluate the S19∆per vaccine. The S19Δper immunized animals showed significantly low levels of anti-lipopolysaccharides (LPS) antibodies. All the immunized animals were protected against challenge infection with B. abortus S544. Sera from the majority of S19Δper immunized buffalo calves showed moderate to weak agglutination to RBPT antigen and thereby, could apparently be differentiated from S19 vaccinated and clinically-infected animals. The S19Δper was more sensitive to buffalo serum complement mediated lysis than its parent strain, S19. Animals culled at 6-weeks-post vaccination showed no gross lesions in organs and there was comparatively lower burden of infection in the lymph nodes of S19Δper immunized animals. With attributes of higher safety, strong protective efficacy and potential of differentiating infected from vaccinated animals (DIVA), S19Δper would be a prospective alternate to conventional S19 vaccines for control of bovine brucellosis as proven in buffaloes.
Collapse
Affiliation(s)
- Pallab Chaudhuri
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; (S.A.A.); (G.K.); (S.V.S.)
- Correspondence: ; Tel.: +91-9897806310
| | - Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India;
| | - Syed Atif Ali
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; (S.A.A.); (G.K.); (S.V.S.)
| | - Gurpreet Kaur
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; (S.A.A.); (G.K.); (S.V.S.)
| | - Shiv Varan Singh
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India; (S.A.A.); (G.K.); (S.V.S.)
| | - Jonathan Lalsiamthara
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Tapas K. Goswami
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India;
| | - Ashwini K. Singh
- Chaudhary Charan Singh National Institute of Animal Health, Baghpat, Uttar Pradesh 250609, India; (A.K.S.); (S.K.S.); (P.M.)
| | - Sandeep K. Singh
- Chaudhary Charan Singh National Institute of Animal Health, Baghpat, Uttar Pradesh 250609, India; (A.K.S.); (S.K.S.); (P.M.)
| | - Praveen Malik
- Chaudhary Charan Singh National Institute of Animal Health, Baghpat, Uttar Pradesh 250609, India; (A.K.S.); (S.K.S.); (P.M.)
| | - Raj K. Singh
- Division of Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India;
| |
Collapse
|
26
|
Use of Agriculturally Important Animals as Models in Biomedical Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:315-333. [PMID: 34807449 DOI: 10.1007/978-3-030-85686-1_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Livestock have contributed significantly to advances in biomedicine and offer unique advantages over rodent models. The human is the ideal biomedical model; however, ethical reasons limit the testing of hypotheses and treatments in humans. Rodent models are frequently used as alternatives to humans due to size, low cost, and ease of genetic manipulation, and have contributed tremendously to our understanding of human health and disease. However, the use of rodents in translational research pose challenges for researchers due to physiological differences to humans. The use of livestock species as biomedical models can address these challenges as livestock have several similarities to human anatomy, physiology, genetics, and metabolism and their larger size permits collection of more frequent and often larger samples. Additionally, recent advances in genetics in livestock species allow for studies in genomics, proteomics, and metabolomics, which have the added benefit of applications to both humans in biomedical research and livestock in improving production. In this review, we provide an overview of scientific findings using livestock and benefits of each model to the livestock industry and to biomedical research.
Collapse
|
27
|
Deng X, He J, Wang Y, Yang Q, Yi JH, Zhang H, Wang Y, Miao Y, Wang Z, Chen C. Deletion of the type IV secretion system promoter VirB in Brucella abortus A19 strain attenuated the virulence of the bacteria and promotes autophagy. Can J Microbiol 2021; 68:165-176. [PMID: 34644507 DOI: 10.1139/cjm-2021-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brucella abortus is a Gram-negative intracellular parasite bacteria causing serious health hazards in humans and animals. The type IV secretion system (T4SS), encoded by the virB promoter, has been identified as an important virulence factor for Brucella abortus, but the impact on Brucella abortus A19 remains unclear. In this study, the T4SS of Brucella abortus A19 was inactivated by deleting the virB promoter, resulting in a mutant strain A19ΔvirB. Real-time PCR and Western-blotting analysis demonstrated that T4SS-related proteins were not expressed after virB promoter deletion. Moreover, the survival rate of A19 in high salt and strong acidic environments was decreased after virB promoter deletion. Compared to the parental strain A19, the A19ΔvirB mutant strain showed reduced growth rate in TSB, decreased invasion ability to macrophages and dendritic cells, and reduced virulence of the mutant strain in macrophages, dendritic cells and mice. In addition, the A19ΔvirB mutant strain showed enhanced autophagy on macrophages and dendritic cells compared with A19, and the A19ΔvirB mutant strain was able to upregulate IL-6 and downregulate IL-10 in macrophages. These data help us to better understand the T4SS of the A19 vaccine strain and contribute to our efforts to improve Brucella vaccines.
Collapse
Affiliation(s)
- XiaoYu Deng
- Shihezi University, 70586, Shihezi, Xinjiang, China;
| | - Jinke He
- Xinjiang Second Medical College, Shihe zi, China;
| | - Yueli Wang
- Shihezi University, 70586, Shihezi, Xinjiang, China;
| | - Qin Yang
- Shihezi University, 70586, Shihezi, China;
| | - Ji Hai Yi
- Shihezi University, 70586, Shihezi, Xinjiang, China;
| | - Huan Zhang
- Shihezi University, 70586, Xinjiang Shihezi University, Shihezi, China, 832003;
| | - Yong Wang
- Shihezi University, 70586, Shihezi, Xinjiang, China;
| | | | - Zhen Wang
- Shihezi University, 70586, Shihezi, Xinjiang, China;
| | | |
Collapse
|
28
|
Vlasova AN, Saif LJ. Bovine Immunology: Implications for Dairy Cattle. Front Immunol 2021; 12:643206. [PMID: 34267745 PMCID: PMC8276037 DOI: 10.3389/fimmu.2021.643206] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
The growing world population (7.8 billion) exerts an increased pressure on the cattle industry amongst others. Intensification and expansion of milk and beef production inevitably leads to increased risk of infectious disease spread and exacerbation. This indicates that improved understanding of cattle immune function is needed to provide optimal tools to combat the existing and future pathogens and improve food security. While dairy and beef cattle production is easily the world's most important agricultural industry, there are few current comprehensive reviews of bovine immunobiology. High-yielding dairy cattle and their calves are more vulnerable to various diseases leading to shorter life expectancy and reduced environmental fitness. In this manuscript, we seek to fill this paucity of knowledge and provide an up-to-date overview of immune function in cattle emphasizing the unresolved challenges and most urgent needs in rearing dairy calves. We will also discuss how the combination of available preventative and treatment strategies and herd management practices can maintain optimal health in dairy cows during the transition (periparturient) period and in neonatal calves.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda J Saif
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
29
|
Zai X, Yin Y, Guo F, Yang Q, Li R, Li Y, Zhang J, Xu J, Chen W. Screening of potential vaccine candidates against pathogenic Brucella spp. using compositive reverse vaccinology. Vet Res 2021; 52:75. [PMID: 34078437 PMCID: PMC8170439 DOI: 10.1186/s13567-021-00939-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in humans and various animals. The threat of brucellosis has increased, yet currently available live attenuated vaccines still have drawbacks. Therefore, subunit vaccines, produced using protein antigens and having the advantage of being safe, cost-effective and efficacious, are urgently needed. In this study, we used core proteome analysis and a compositive RV methodology to screen potential broad-spectrum antigens against 213 pathogenic strains of Brucella spp. with worldwide geographic distribution. Candidate proteins were scored according to six biological features: subcellular localization, antigen similarity, antigenicity, mature epitope density, virulence, and adhesion probability. In the RV analysis, a total 32 candidate antigens were picked out. Of these, three proteins were selected for assessment of immunogenicity and preliminary protection in a mouse model: outer membrane protein Omp19 (used as a positive control), type IV secretion system (T4SS) protein VirB8, and type I secretion system (T1SS) protein HlyD. These three antigens with a high degree of conservation could induce specific humoral and cellular immune responses. Omp19, VirB8 and HlyD could substantially reduce the organ bacterial load of B. abortus S19 in mice and provide varying degrees of protection. In this study, we demonstrated the effectiveness of this unique strategy for the screening of potential broad-spectrum antigens against Brucella. Further evaluation is needed to identify the levels of protection conferred by the vaccine antigens against wild-type pathogenic Brucella species challenge.
Collapse
Affiliation(s)
- Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fengyu Guo
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qiaoling Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
30
|
Improvement of the attenuated mutant strain of Brucella melitensis Rev1 as a potential vaccine candidate. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Tilocca B, Soggiu A, Greco V, Sacchini F, Garofolo G, Paci V, Bonizzi L, Urbani A, Tittarelli M, Roncada P. Comparative proteomics of Brucella melitensis is a useful toolbox for developing prophylactic interventions in a One-Health context. One Health 2021; 13:100253. [PMID: 33997237 PMCID: PMC8100217 DOI: 10.1016/j.onehlt.2021.100253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/28/2022] Open
Abstract
Brucellosis caused by Brucella melitensis is a zoonosis frequently reported in the Mediterranean and Middle-East regions and responsible for important economic losses and reduced animal welfare. To date, current strategies applied to control or eradicate the disease relies on diagnostic tests that suffer from limited specificity in non-vaccinated animals; while prophylactic measures, when applied, use a live attenuated bacterial strain characterized by residual virulence on adult pregnant animals and difficulties in distinguishing vaccinated from infected animals. To overcome these issues, studies are desired to elucidate the bacterial biology and the pathogenetic mechanisms of both the vaccinal strain and the pathogenic strains. Proteomics has a potential in tackling issues of One-Health concern; here, we employed label-free shotgun proteomics to investigate the protein repertoire of the vaccinal strain B. melitensis Rev.1 and compare it with the proteome of the Brucella melitensis 16 M, a reference strain representative of B. melitensis field strains. Comparative proteomics profiling underlines common and diverging traits between the two strains. Common features suggest the potential biochemical routes responsible for the residual virulence of the vaccinal strain, whilst the diverging traits are suggestive biochemical signatures to be further investigated to provide an optimized diagnostic capable of discriminating the vaccinated from infected animals. The data presented in this study are openly available in PRIDE data repository at https://www.ebi.ac.uk/pride/, reference number PXD022472.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Alessio Soggiu
- Department of Biomedical, Surgical and Dental Sciences- One Health Unit, University of Milano, via Celoria 10, 20133 Milano, Italy
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Flavio Sacchini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Centro di Referenza Nazionale per le brucellosi animali, Via Campo Boario 1, 64100 Teramo, Italy
| | - Giuliano Garofolo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Centro di Referenza Nazionale per le brucellosi animali, Via Campo Boario 1, 64100 Teramo, Italy
| | - Valentina Paci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Centro di Referenza Nazionale per le brucellosi animali, Via Campo Boario 1, 64100 Teramo, Italy
| | - Luigi Bonizzi
- Department of Biomedical, Surgical and Dental Sciences- One Health Unit, University of Milano, via Celoria 10, 20133 Milano, Italy
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Centro di Referenza Nazionale per le brucellosi animali, Via Campo Boario 1, 64100 Teramo, Italy
| | - Paola Roncada
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
32
|
Sun S, Jiang H, Li Q, Liu Y, Gao Q, Liu W, Qin Y, Feng Y, Peng X, Xu G, Shen Q, Fan X, Ding J, Zhu L. Safety and Transcriptome Analysis of Live Attenuated Brucella Vaccine Strain S2 on Non-pregnant Cynomolgus Monkeys Without Abortive Effect on Pregnant Cynomolgus Monkeys. Front Vet Sci 2021; 8:641022. [PMID: 33768120 PMCID: PMC7985263 DOI: 10.3389/fvets.2021.641022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
Brucellosis, caused by Brucella spp., is an important zoonotic disease leading to enormous economic losses in livestock, posing a great threat to public health worldwide. The live attenuated Brucella suis (B. suis) strain S2, a safe and effective vaccine, is widely used in animals in China. However, S2 vaccination in animals may raise debates and concerns in terms of safety to primates, particularly humans. In this study, we used cynomolgus monkey as an animal model to evaluate the safety of the S2 vaccine strain on primates. In addition, we performed transcriptome analysis to determine gene expression profiling on cynomolgus monkeys immunized with the S2 vaccine. Our results suggested that the S2 vaccine was safe for cynomolgus monkeys. The transcriptome analysis identified 663 differentially expressed genes (DEGs), of which 348 were significantly upregulated and 315 were remarkably downregulated. The Gene Ontology (GO) classification and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these DEGs were involved in various biological processes (BPs), including the chemokine signaling pathway, actin cytoskeleton regulation, the defense response, immune system processing, and the type-I interferon signaling pathway. The molecular functions of the DEGs were mainly comprised of 2'-5'-oligoadenylate synthetase activity, double-stranded RNA binding, and actin-binding. Moreover, the cellular components of these DEGs included integrin complex, myosin II complex, and blood microparticle. Our findings alleviate the concerns over the safety of the S2 vaccine on primates and provide a genetic basis for the response from a mammalian host following vaccination with the S2 vaccine.
Collapse
Affiliation(s)
- Shijing Sun
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Hui Jiang
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Qiaoling Li
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Yufu Liu
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Qiang Gao
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Wei Liu
- Academy of Agriculture and Animal Husbandry Sciences, Hohhot, China
| | - Yuming Qin
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Yu Feng
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Xiaowei Peng
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Guanlong Xu
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Qingchun Shen
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Xuezheng Fan
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Jiabo Ding
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Liangquan Zhu
- National/OIE Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control (IVDC), Beijing, China
| |
Collapse
|
33
|
Zhou D, Zhi F, Fang J, Zheng W, Li J, Zhang G, Chen L, Jin Y, Wang A. RNA-Seq Analysis Reveals the Role of Omp16 in Brucella-Infected RAW264.7 Cells. Front Vet Sci 2021; 8:646839. [PMID: 33748220 PMCID: PMC7970042 DOI: 10.3389/fvets.2021.646839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Brucellosis is an endemic zoonotic infectious disease in the majority of developing countries, which causes huge economic losses. As immunogenic and protective antigens at the surface of Brucella spp., outer membrane proteins (Omps) are particularly attractive for developing vaccine and could have more relevant role in host–pathogen interactions. Omp16, a homolog to peptidoglycan-associated lipoproteins (Pals), is essential for Brucella survival in vitro. At present, the functions of Omp16 have been poorly studied. Here, the gene expression profile of RAW264.7 cells infected with Brucella suis vaccine strain 2 (B. suis S2) and ΔOmp16 was analyzed by RNA-seq to investigate the cellular response immediately after Brucella entry. The RNA-sequence analysis revealed that a total of 303 genes were significantly regulated by B. suis S2 24 h post-infection. Of these, 273 differentially expressed genes (DEGs) were upregulated, and 30 DEGs were downregulated. These DEGs were mainly involved in innate immune signaling pathways, including pattern recognition receptors (PRRs), proinflammatory cytokines, and chemokines by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In ΔOmp16-infected cells, the expression of 52 total cells genes was significantly upregulated and that of 9 total cells genes were downregulated compared to B. suis S2-infected RAW264.7 cells. The KEGG pathway analysis showed that several upregulated genes were proinflammatory cytokines and chemokines, such as interleukin (IL)-6, IL-11, IL-12β, C–C motif chemokine (CCL2), and CCL22. All together, we clearly demonstrate that ΔOmp16 can alter macrophage immune-related pathways to increase proinflammatory cytokines and chemokines, which provide insights into illuminating the Brucella pathogenic strategies.
Collapse
Affiliation(s)
- Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Feijie Zhi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Jiaoyang Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Weifang Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Guangdong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Lei Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
34
|
Senevirathne A, Hewawaduge C, Kim S, Lee JH. The C-terminus of Brucella abortus MviN induces humoral and cell mediated immune responses in BALB/c mice that protects against the virulent Brucella 544 challenge. J Immunol Methods 2021; 493:113005. [PMID: 33662364 DOI: 10.1016/j.jim.2021.113005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022]
Abstract
The present study investigates the C-terminus portion of the Brucella MviN protein for its protective immune responses. The C-terminus, Brucella mivN was amplified from the Brucella abortus genome and cloned into asd complemented constitutive expression vector pJHL65. The resultant recombinant plasmid was transformed into asd auxotrophic Salmonella Typhimurium JOL1800 and the novel strain was designated as JOL2213. The MviN induced humoral, cell-mediated, and protective immune responses were assessed in the BALB/c mice model. We demonstrated that single immunization of mice with JOL2213 via intramuscular route elicit significantly high (p < 0.05) MviN-c specific humoral and cell-mediated immunity compared to mice immunized with JOL1818 strain containing pJHL65 vector alone. Further to determine the MviN-c induced type of immune response, Th1 and Th2 cytokine markers, IFN-γ and IL-4, and CD4+/CD8+ T-cell differentiation were quantified. Results demonstrated, MviN-c could significantly induce IFN- γ response in immunized mice, however, showed higher proficiency towards Th2 immune induction marked by IL-4 induction and significant CD4+ T-cell differentiation compared to the vector control group. On challenge with the virulent Brucella strain, B. abortus 544 on 14th-day post-immunization, mice immunized with JOL2213 resulted in a significantly low number of challenged Brucella colonization in spleen and liver tissues than the vector alone group. Further investigation can be conducted to investigate cross-protection that can deliver against main Brucella species pathogenic to humans and animals.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea
| | - Suk Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 54596 Iksan, Republic of Korea.
| |
Collapse
|
35
|
Hewawaduge C, Senevirathne A, Yang MS, Jeong TW, Kim B, Lee JH. Comparative study of sodium bicarbonate- and magnesium hydroxide-based gastric antacids for the effectiveness of Salmonella delivered Brucella antigens against wild type challenge in BALB/c mice. Pathog Dis 2021; 79:6126344. [PMID: 33527985 DOI: 10.1093/femspd/ftab002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/11/2021] [Indexed: 11/14/2022] Open
Abstract
We compared the effects of two antacid formulations based on sodium bicarbonate and magnesium hydroxide on a Salmonella-delivered oral Brucella live attenuated vaccine. We conducted a series of in vitro and in vivo experiments to investigate the pH buffering capacity, buffering longevity and the effects of these formulations on the survival of Salmonella under neutralized pH conditions and its impact on immune responses. Magnesium hydroxide had a greater, stable and prolonged buffering capacity than sodium bicarbonate and was safer when administered orally. Oral administration of sodium bicarbonate resulted in discomfort as reflected by mouse behavior and mild muscle tremors, whereas mice treated with magnesium hydroxide and PBS were completely normal. Gastric survival studies using BALB/c mice revealed that a higher number of Salmonella reached the intestine when the magnesium hydroxide-based antacid buffer was administrated. Co-administration with attenuated Salmonella secreting Brucella antigens, SodC and Omp19 along with individual antacid formulations, significantly enhanced the antigen-specific protective immune responses against virulent Brucella challenge. Together, our results indicated that the pre vaccinated oral administration of bicarbonate-citric acid or magnesium hydroxide-based neutralizing buffers significantly counteract stomach acidity by maintaining the viability of an oral enteric vaccine formulation.
Collapse
Affiliation(s)
- Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Myeon-Sik Yang
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Tae-Won Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| |
Collapse
|
36
|
Yanti Y, Sumiarto B, Kusumastuti TA, Panus A, Sodirun S. Seroprevalence and risk factors of brucellosis and the brucellosis model at the individual level of dairy cattle in the West Bandung District, Indonesia. Vet World 2021; 14:1-10. [PMID: 33642780 PMCID: PMC7896884 DOI: 10.14202/vetworld.2021.1-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023] Open
Abstract
Background and Aim Brucellosis is a zoonotic bacterial infectious disease. West Bandung is a center for dairy farming in West Java Province District and endemic for brucellosis. The aim of the study was to determine the prevalence, the associated risk factors, and the brucellosis model at the individual level of dairy cattle in the West Bandung District. Materials and Methods The research was conducted through a cross-sectional study. The samples were collected from the serum blood of dairy cattle. Data obtained from the questionnaire were used to investigate risk factors. Multistage random sampling was applied as the sampling technique; therefore, a sample size of 540 cows was selected. The number of farms and cattle on each farm was calculated using a variant effect design of the farm as well as 108 farms was selected with five cattle samples per farm. The results in regard of the research sample acquisition in the West Bandung District included 588 dairy cows from 116 farms, exceeds the number of samples calculated (540 dairy cows and 108 farms). The rose Bengal test (RBT) and the complement fixation test (CFT) were performed for brucellosis testing. Data associated with brucellosis cases at the individual level of the dairy cattle were analyzed using descriptive statistics univariate, bivariate with Chi-square, and odds ratio (OR). Moreover, multivariate logistic regression was used for the analysis during modeling. Results The results showed that the prevalence of brucellosis at the individual level in the West Bandung District was 5.10%. Risk factors associated with brucellosis in cattle included the history of abortion (p=0.000; OR=9.9), the history of placental retention (p=0.000; OR=6.6), the history of endometritis (p=0.000; OR=5.5), the history of stillbirth (p=0.043; OR=3.0), the history of pregnancy abortion age at 7-8 months (p=0.000; OR=15.2), and the history of pregnancy abortion at the age of 4-6 months (p=0.007; OR=3.8). The model of brucellosis in dairy cows was the following: = -3.2843+3.41033 the history of pregnancy abortion at the age of 7-8 months +2.54503 the history of pregnancy abortion at the age of 4-6 months +1.86185 age of cattle >2 years - 1.0469 Calving interval 12 months. The model showed the factors that were associated with brucellosis at the individual level of dairy cattle included the history of pregnancy abortion at the age of 7-8 months (β=+3.41033; OR=30.3), the history of pregnancy abortion at the age of 4-6 months (β=+2.54503; OR=12.7); age of cattle >2 years (β=+1.86185; OR=1.2), and Calving interval ≤12 months (β=-1.04691; OR=0.34). Conclusion The results of this research showed that the prevalence of brucellosis at the individual level of dairy cattle in the West Bandung district was 5.10%. The risk factors could contribute to the increase of the brucellosis cases, that is, the history of pregnancy abortion at the age of 7-8, the history of pregnancy abortion at the age of 4-6 months, and the age of cattle >2 years. The risk factors can be decreased in the brucellosis cases, that is, calving intervals ≤12 months.
Collapse
Affiliation(s)
- Yuli Yanti
- Graduate Student of Veterinary Science, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia.,Epidemiology Laboratory, Disease Investigation Center of Subang, Subang, Indonesia
| | - Bambang Sumiarto
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Tri Anggraeni Kusumastuti
- Department of Social economic, Faculty of Livestock, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Aprizal Panus
- Epidemiology Laboratory, Disease Investigation Center of Subang, Subang, Indonesia
| | | |
Collapse
|
37
|
Al Jindan R. Scenario of pathogenesis and socioeconomic burden of human brucellosis in Saudi Arabia. Saudi J Biol Sci 2021; 28:272-279. [PMID: 33424306 PMCID: PMC7783673 DOI: 10.1016/j.sjbs.2020.09.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is considered a prevailing endemic infectious disease in the Kingdom of Saudi Arabia and represents a health problem with socio-economic burden. There are two main Brucella species that cause human brucellosis; Brucella abortus, and Brucella melitensis. The clinical features range from asymptomatic to the acute symptoms of fever, joint pain, muscle pain, headache, nausea/vomiting, anorexia and malaise in addition to the subsequent complications that might occur. The endemicity of brucellosis might be explained due to obstacles in controlling the importation of animals for slaughtering during Hajj periods and for several other predisposing factors. The distribution of the disease is all over the country and the most prevalent part is the south followed by north and then the east and central parts. However, in the complexity of brucellosis control measures, there are several activities which have been implemented to tackle the disease such as mass vaccination of animals, regulating importation of slaughter animals, and improving public awareness. This review provides a detailed description of the status of brucellosis in Saudi Arabia, which includes epidemiology, clinical characteristics, virulence and pathophysiology, and prevention of the disease.
Collapse
Affiliation(s)
- Reem Al Jindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| |
Collapse
|
38
|
Development of Human Vectored Brucellosis Vaccine Formulation: Assessment of Safety and Protectiveness of Influenza Viral Vectors Expressing Brucella Immunodominant Proteins in Mice and Guinea Pigs. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1438928. [PMID: 33274194 PMCID: PMC7695499 DOI: 10.1155/2020/1438928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 01/18/2023]
Abstract
In this paper, we first used recombinant influenza viral vector (rIVV) subtype H5N1 expressing from the open reading frame of NS1 80 and NS1 124 amino acids of Brucella outer membrane proteins (Omp) 16 and 19, ribosomal L7/L12, and Cu-Zn superoxide dismutase (SOD) proteins to develop a human brucellosis vaccine. We made 18 combinations of IVVs in mono-, bi-, and tetravalent vaccine formulations and tested them on mice to select the safest and most effective vaccine samples. Then, the most effective vaccine candidates were further tested on guinea pigs. Safety of the rIVV-based vaccine candidate was evaluated by a mouse weight-gain test. Mice and guinea pigs were challenged with the virulent strain B. melitensis 16M. The protective effect of the rIVV-based vaccine candidate was assessed by quantitation of Brucella colonization in tissues and organs of challenged animals. All vaccine formulations were safe in mice. Tested vaccine formulations, as well as the commercial B. melitensis Rev.1 vaccine, have been found to protect mice from B. melitensis 16M infection within the range of 1.6 to 2.97 log10 units (P < 0.05). Tetravalent vaccine formulations from the position of NS1 80 amino acids (0.2 ± 0.4), as well as the commercial B. melitensis Rev.1 vaccine (1.2 ± 2.6), have been found to protect guinea pigs from B. melitensis 16M infection at a significant level (P < 0.05). Thus, tetravalent vaccine formulation Flu-NS1-80-Omp16+Flu-NS1-80-L7/L12+Flu-NS1-80-Omp19+Flu-NS1-80-SOD was chosen as a potential vaccine candidate for further development of an effective human vaccine against brucellosis. These results show a promising future for the development of a safe human vaccine against brucellosis based on rIVVs.
Collapse
|
39
|
Omp16, a conserved peptidoglycan-associated lipoprotein, is involved in Brucella virulence in vitro. J Microbiol 2020; 58:793-804. [PMID: 32870485 DOI: 10.1007/s12275-020-0144-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/02/2020] [Accepted: 07/09/2020] [Indexed: 01/31/2023]
Abstract
Brucella, the bacterial agent of common zoonotic brucellosis, primarily infects specific animal species. The Brucella outer membrane proteins (Omps) are particularly attractive for developing vaccine and improving diagnostic tests and are associated with the virulence of smooth Brucella strains. Omp16 is a homologue to peptidoglycan-associated lipoproteins (Pals), and an omp16 mutant has not been generated in any Brucella strain until now. Very little is known about the functions and pathogenic mechanisms of Omp16 in Brucella. Here, we confirmed that Omp16 has a conserved Pal domain and is highly conserved in Brucella. We attempted to delete omp16 in Brucella suis vaccine strain 2 (B. suis S2) without success, which shows that Omp16 is vital for Brucella survival. We acquired a B. suis S2 Omp16 mutant via conditional complementation. Omp16 deficiency impaired Brucella outer membrane integrity and activity in vitro. Moreover, inactivation of Omp16 decreased bacterial intracellular survival in macrophage RAW 264.7 cells. B. suis S2 and its derivatives induced marked expression of IL-1β, IL-6, and TNF-a mRNA in Raw 264.7 cells. Whereas inactivation of Omp16 in Brucella enhanced IL-1β and IL-6 expression in Raw 264.7 cells. Altogether, these findings show that the Brucella Omp16 mutant was obtained via conditional complementation and confirmed that Omp16 can maintain outer membrane integrity and be involved in bacterial virulence in Brucella in vitro and in vivo. These results will be important in uncovering the pathogenic mechanisms of Brucella.
Collapse
|
40
|
Baoshan L, Yinbo Y, Jingbo Z, Yi Z, Jianghua Y, Dawei C, Chi M, Donghai Y, Bohan Y, Rongnian Z, Sheng F, Jun Z, Han X, Chen Z. Combined nucleic acid assays for diagnosis of A19 vaccine-caused human brucellosis. Transbound Emerg Dis 2020; 68:368-374. [PMID: 32543112 DOI: 10.1111/tbed.13685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/19/2020] [Accepted: 06/07/2020] [Indexed: 01/18/2023]
Abstract
Brucellosis is a common zoonotic disease caused by Brucella and is an epidemic worldwide. Currently, the most effective way to prevent and control the disease in animals is to use live, attenuated vaccines A19 strain. In China, the live attenuated Brucella abortus vaccine is widely used in animal immunization. To detect and confirm which vaccine strain caused the infection, we developed a new method to distinguish A19 strain from non-A19 strains. By comparing the genomic sequences of A19 and wild strain 2,308, we identified signature sequences that are unique to A19. A PCR assay for specific A19 identification was developed based on the genetic marker ABC transporter permease gene. Samples from the outbreak patients were then analysed using the universal quantitative PCR and A19-specific PCR assay, and the A19 strain was successfully identified in them, providing pathogenic evidence of the vaccine-derived infection outbreak. This combined A19-specific differential diagnosis method can provide a means to distinguish between animal vaccine immunization, natural infection and human infection by the vaccine strain. This strategy also has applications in diagnosis, epidemiology and surveillance of A19-related immunizations or infections.
Collapse
Affiliation(s)
- Liu Baoshan
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, P. R. China
| | - Ye Yinbo
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, P. R. China
| | - Zhai Jingbo
- Innovative Institute of Zoonoses, Inner Mongolia University for the Nationalities, Tongliao, P. R. China
| | - Zhang Yi
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yang Jianghua
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, P. R. China.,School of Public Health, Sun Yat-sen University, Guangzhou, P. R. China
| | - Cheng Dawei
- Brucellosis Department, Heilongjiang Agricultural Reclamation General Hospital, Harbin, P. R. China
| | - Ma Chi
- Innovative Institute of Zoonoses, Inner Mongolia University for the Nationalities, Tongliao, P. R. China
| | - Yu Donghai
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yang Bohan
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, P. R. China
| | - Zhu Rongnian
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, P. R. China
| | - Feng Sheng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, P. R. China
| | - Zhang Jun
- Brucellosis Department, Heilongjiang Agricultural Reclamation General Hospital, Harbin, P. R. China
| | - Xiaohu Han
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, P. R. China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, P. R. China.,Innovative Institute of Zoonoses, Inner Mongolia University for the Nationalities, Tongliao, P. R. China.,School of Public Health, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
41
|
Hasenauer FC, Rossi UA, Caffaro ME, Raschia MA, Maurizio E, Poli MA, Rossetti CA. Association of TNF rs668920841 and INRA111 polymorphisms with caprine brucellosis: A case-control study of candidate genes involved in innate immunity. Genomics 2020; 112:3925-3932. [PMID: 32629097 DOI: 10.1016/j.ygeno.2020.06.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/25/2020] [Accepted: 06/28/2020] [Indexed: 01/24/2023]
Abstract
Caprine brucellosis is an infectious, contagious zoonotic disease caused by Brucella melitensis. Multiple factors, including host genetics, can influence the outcome of the exposure to Brucella; and it is expected that genetic variants that affect the host innate immune response could have a key role in Brucella infection and pathogenesis. In this study, we evaluated if polymorphisms in innate immunity-related genes are associated with results of Brucella infection in goats. Nine polymorphisms within interferon gamma (IFNG), tumor necrosis factor (TNF), MyD88 innate immune signal transduction adaptor (MYD88), interleukin 10 (IL10) and IL-10 receptor subunit alpha (IL10RA) genes and two molecular markers (BMS2753 and INRA111) were resolved by PCR-capillary electrophoresis in samples from 81 seronegative and 61 seropositive goats for brucellosis. A heterozygous genotype at INRA111, a microsatellite near the VRK serine/threonine kinase 2 (VRK2) gene, was associated with absence of Brucella-specific antibodies in goats naturally exposed to the pathogen (P = .004). Conversely, variants in the TNF gene (rs668920841) and near the IFN gamma receptor 1 (IFNGR1) gene (microsatellite BMS2753) were significantly associated with presence of Brucella-specific antibodies at allelic (P = .042 and P = .046) and genotypic level (P = .012 and P = .041, respectively). Moreover, an in silico analysis predicted a functional role of the insertion-deletion polymorphism rs668920841 on the transcriptional regulation of the caprine TNF gene. Altogether, these results contribute to the identification of genetic factors that have a putative effect on the resistance / susceptibility phenotype of goats to Brucella infection.
Collapse
Affiliation(s)
- F C Hasenauer
- Instituto de Patobiología, CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina; CONICET, Godoy Cruz 2290, C1425 CABA, Argentina
| | - U A Rossi
- Instituto de Patobiología, CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina; CONICET, Godoy Cruz 2290, C1425 CABA, Argentina
| | - M E Caffaro
- Instituto de Genética "Ewald A. Favret", CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina
| | - M A Raschia
- Instituto de Genética "Ewald A. Favret", CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina
| | - E Maurizio
- Instituto de Patobiología, CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina; CONICET, Godoy Cruz 2290, C1425 CABA, Argentina
| | - M A Poli
- Instituto de Genética "Ewald A. Favret", CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina
| | - C A Rossetti
- Instituto de Patobiología, CICVyA, INTA, Nicolás Repetto y de Los Reseros s/n, Hurlingham, B1686, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Sha T, Li Z, Zhang C, Zhao X, Chen Z, Zhang F, Ding J. Bioinformatics analysis of candidate proteins Omp2b, P39 and BLS for Brucella multivalent epitope vaccines. Microb Pathog 2020; 147:104318. [PMID: 32531499 DOI: 10.1016/j.micpath.2020.104318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
This study focuses on analyzing the physicochemical properties, structural characteristics and dominant epitopes of Brucella outer membrane protein 2b (Omp2b), periplasmic binding protein (P39) and Brucella lumazine synthase (BLS) proteins by bioinformatics methods, and to provide a theoretical basis for constructing multi-epitope vaccines. The amino acid sequences of three kinds of proteins were obtained from the UniProt database. The highest frequency alleles in northern China were obtained from the AlleleFrequencies database. Analysis of the physicochemical properties of the proteins by ProtParam online software. Analysis of the secondary structure of the proteins were predicted by SOMPA online software. Using SWISS-MODEL online software constructed and analyzed the tertiary structure of the proteins. Using ABCpred, BepiPred, BCPred and SVMTrip online software analyzed linear B cell epitopes of proteins, The T cell dominant epitope of the protein was analyzed using SYFPEITHI, RANKPEP and IEDB online software. Omp2b was identified three linear B cell dominant epitopes, five CD8+ T cell dominant epitopes, and three CD4+ T cell dominant epitopes. P39 was identified three linear B cell dominant epitopes, two CD8+ T cell dominant epitopes, and two CD4+ T cell dominant epitopes. BLS was identified one linear B cell dominant epitope, one CD8+ T cell dominant epitope, and two CD4+ T cell dominant epitopes. The results indicated that epitope prediction of three Brucella vaccine candidate proteins can provide a theoretical basis for the construction of an ideal multivalent epitope vaccine against Brucella.
Collapse
Affiliation(s)
- Tong Sha
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Zhiwei Li
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Clinical Laboratory Center, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Chuntao Zhang
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Xiao Zhao
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Zhiqiang Chen
- Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Basic Medical College, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
43
|
Verdiguel-Fernández L, Oropeza-Navarro R, Ortiz A, Robles-Pesina MG, Ramírez-Lezama J, Castañeda-Ramírez A, Verdugo-Rodríguez A. Brucella melitensis omp31 Mutant Is Attenuated and Confers Protection Against Virulent Brucella melitensis Challenge in BALB/c Mice. J Microbiol Biotechnol 2020; 30:497-504. [PMID: 31986561 PMCID: PMC9728373 DOI: 10.4014/jmb.1908.08056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
For control of brucellosis in small ruminants, attenuated B. melitensis Rev1 is used but it can be virulent for animals and human. Based on these aspects, it is essential to identify potential immunogens to avoid these problems in prevention of brucellosis. The majority of OMPs in the Omp25/31 family have been studied because these proteins are relevant in maintaining the integrity of the outer membrane but their implication in the virulence of the different species of this genus is not clearly described. Therefore, in this work we studied the role of Omp31 on virulence by determining the residual virulence and detecting lesions in spleen and testis of mice inoculated with the B. melitensis LVM31 mutant strain. In addition, we evaluated the conferred protection in mice immunized with the mutant strain against the challenge with the B. melitensis Bm133 virulent strain. Our results showed that the mutation of omp31 caused a decrease in splenic colonization without generating apparent lesions or histopathological changes apparent in both organs in comparison with the control strains and that the mutant strain conferred similar protection as the B. melitensis Rev1 vaccine strain against the challenge with B. melitensis Bm133 virulent strain. These results allow us to conclude that Omp31 plays an important role on the virulence of B. melitensis in the murine model, and due to the attenuation shown by the strain, it could be considered a vaccine candidate for the prevention of goat brucellosis.
Collapse
Affiliation(s)
- L Verdiguel-Fernández
- Laboratorio de Microbiología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, colonia UNAM CU, Coyoacán C.P 04510, CdMx, México
| | - R Oropeza-Navarro
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Adolfo Ortiz
- Unidad de Bioseguridad de Brucella, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, México
| | - MG Robles-Pesina
- Centro Nacional de Servicios de Diagnóstico en Salud Animal (CENASA), Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Tecámac, México
| | - J Ramírez-Lezama
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, CdMx, México
| | - A Castañeda-Ramírez
- Departamento de Zootecnia, Universidad Autónoma de Chapingo, Texcoco, México
| | - A Verdugo-Rodríguez
- Laboratorio de Microbiología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, colonia UNAM CU, Coyoacán C.P 04510, CdMx, México,Corresponding author Phone: +52-1-555622-58-97 E-mail:
| |
Collapse
|
44
|
Eckstein C, Mol JPS, Costa FB, Nunes PP, Lima PA, Melo MM, Carvalho TP, Santos DO, Silva MF, Carvalho TF, Costa LF, Melo Júnior OAO, Giunchette RC, Paixão TA, Santos RL. Brucella ovis mutant in ABC transporter protects against Brucella canis infection in mice and it is safe for dogs. PLoS One 2020; 15:e0231893. [PMID: 32298378 PMCID: PMC7162469 DOI: 10.1371/journal.pone.0231893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/02/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND/OBJECTIVES Vaccination is the most important tool for controlling brucellosis, but currently there is no vaccine available for canine brucellosis, which is a zoonotic disease of worldwide distribution caused by Brucella canis. This study aimed to evaluate protection and immune response induced by Brucella ovis ΔabcBA (BoΔabcBA) encapsulated with alginate against the challenge with Brucella canis in mice and to assess the safety of this strain for dogs. METHODS Intracellular growth of the vaccine strain BoΔabcBA was assessed in canine and ovine macrophages. Protection induced by BoΔabcBA against virulent Brucella canis was evaluated in the mouse model. Safety of the vaccine strain BoΔabcBA was assessed in experimentally inoculated dogs. RESULTS Wild type B. ovis and B. canis had similar internalization and intracellular multiplication profiles in both canine and ovine macrophages. The BoΔabcBA strain had an attenuated phenotype in both canine and ovine macrophages. Immunization of BALB/c mice with alginate-encapsulated BoΔabcBA (108 CFU) induced lymphocyte proliferation, production of IL-10 and IFN-γ, and protected against experimental challenge with B. canis. Dogs immunized with alginate-encapsulated BoΔabcBA (109 CFU) seroconverted, and had no hematologic, biochemical or clinical changes. Furthermore, BoΔabcBA was not detected by isolation or PCR performed using blood, semen, urine samples or vaginal swabs at any time point over the course of this study. BoΔabcBA was isolated from lymph nodes near to the site of inoculation in two dogs at 22 weeks post immunization. CONCLUSION Encapsulated BoΔabcBA protected mice against experimental B. canis infection, and it is safe for dogs. Therefore, B. ovis ΔabcBA has potential as a vaccine candidate for canine brucellosis prevention.
Collapse
Affiliation(s)
- Camila Eckstein
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana P. S. Mol
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabíola B. Costa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Philipe P. Nunes
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pâmela A. Lima
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marília M. Melo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaynara P. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel O. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Monique F. Silva
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane F. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana F. Costa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Otoni A. O. Melo Júnior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodolfo C. Giunchette
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
45
|
Gupta S, Mohan S, Somani VK, Aggarwal S, Bhatnagar R. Simultaneous Immunization with Omp25 and L7/L12 Provides Protection against Brucellosis in Mice. Pathogens 2020; 9:pathogens9020152. [PMID: 32102449 PMCID: PMC7175130 DOI: 10.3390/pathogens9020152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 01/18/2023] Open
Abstract
Currently used Brucella vaccines, Brucella abortus strain 19 and RB51, comprises of live attenuated Brucella strains and prevent infection in animals. However, these vaccines pose potential risks to recipient animals such as attenuation reversal and virulence in susceptible hosts on administration. In this context, recombinant subunit vaccines emerge as a safe and competent alternative in combating the disease. In this study, we formulated a divalent recombinant vaccine consisting of Omp25 and L7/L12 of B. abortus and evaluated vaccine potential individually as well as in combination. Sera obtained from divalent vaccine (Omp25+L7/L12) immunized mice group exhibited enhanced IgG titers against both components and indicated specificity upon immunoblotting reiterating its authenticity. Further, the IgG1/IgG2a ratio obtained against each antigen predicted a predominant Th2 immune response in the Omp25+L7/L12 immunized mice group. Upon infection with virulent B. abortus 544, Omp25+L7/L12 infected mice exhibited superior Log10 protection compared to individual vaccines. Consequently, this study recommends that simultaneous immunization of Omp25 and L7/L12 as a divalent vaccine complements and triggers a Th2 mediated immune response in mice competent of providing protection against brucellosis.
Collapse
Affiliation(s)
- Sonal Gupta
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
| | - Surender Mohan
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
| | - Vikas Kumar Somani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
- Department of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Somya Aggarwal
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
- Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
- Correspondence: ; Tel.: +91-11-26704079; Fax: +91-11-26717040
| |
Collapse
|
46
|
Gupta S, Singh D, Gupta M, Bhatnagar R. A combined subunit vaccine comprising BP26, Omp25 and L7/L12 against brucellosis. Pathog Dis 2020; 77:5714751. [DOI: 10.1093/femspd/ftaa002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/22/2020] [Indexed: 01/27/2023] Open
Abstract
ABSTRACT
The current vaccines against brucellosis, namely Brucella abortus strains 19 and RB51, prevent infection in animals but pose potential risks like virulence and attenuation reversal. In this milieu, although subunit vaccination using a single potent immunogen of B. abortus, e.g. BP26 or Omp25 or L7/L12 etc., appears as a safer alternative, nonetheless it confers inadequate protection against the zoonosis compared to attenuated vaccines. Hence, we have investigated the prophylactic potential of a combined subunit vaccine (CSV) comprising the BP26, Omp25 and L7/L12 antigens of B. abortus, in mice model. Sera obtained from CSV immunized mice groups showed heightened IgG titers against all the three components and exhibited specificity upon immunoblotting, reiterating their authenticity. Further, the IgG1/IgG2a ratio obtained against each antigen revealed a predominant Th2 immune response in CSV immunized mice group. However, on assessing the levels of Th1-dependent (IFN-γ and TNF-α) and Th2-dependent (IL-4 and IL-10) cytokines in different formulations, prominent IFN-γ levels were elicited in CSV immunized mice. Further, upon infection with virulent B. abortus 544, the combined subunit vaccinated mice displayed superior degree of protection (Log10 reduction) than the individual vaccines; however, B. abortus S19 showed the highest protection. Altogether, this study suggests that co-immunization of three B. abortus immunogens as a CSV complements and triggers a mixed Th1/Th2 immune response leading to superior degree of protection against pathogenic B. abortus 544 infection.
Collapse
Affiliation(s)
- Sonal Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Damini Singh
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manish Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
47
|
Boggiatto PM, Olsen SC. Tulathromycin treatment does not affect bacterial dissemination or clearance of Brucella melitensis 16M following experimental infection of goats. PLoS One 2019; 14:e0226242. [PMID: 31821358 PMCID: PMC6903718 DOI: 10.1371/journal.pone.0226242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/22/2019] [Indexed: 11/18/2022] Open
Abstract
Brucellosis in sheep and goats, a zoonotic disease primarily associated with Brucella melitensis infections, causes significant economic losses and public health concerns worldwide. Although control measures are effective, economic limitations and nomadic lifestyles may limit vaccination coverage, and test and removal policies may not be feasible. In this study, we evaluated the effects of therapy with a long acting antimicrobial tulathromycin on the pathogenesis of brucellosis. Thirty-five goats were randomly assigned for experimental infection with B. melitensis strain 16M while open or during mid-gestation. Approximately half of the animals in each group were then treated with tulathromycin and subsequently assessed for the development of humoral responses to infection, clinical presentation, and bacterial dissemination and colonization. All animals, regardless of treatment group were successfully challenged with B. melitensis 16M demonstrated by bacterial recovery from conjunctival swabs and development of positive antibody titers. In goats infected while open, no animals aborted and Brucella was recovered from only one animal in tulathromycin-treated and one animal from the untreated group. Tulathromycin treatment of pregnant goats did not prevent abortion nor did it reduce bacterial dissemination, colonization, or shedding. Our data suggests that treatment of goats in mid-gestation with tulathromycin at the labeled dose does not influence disease pathogenesis or tissue colonization after experimental B. melitensis challenge.
Collapse
Affiliation(s)
- Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, United States of America
- * E-mail:
| | - Steven C. Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, United States of America
| |
Collapse
|
48
|
Shi Q, Zhao L, Zhang L. Astragalus polysaccharide strengthens the inflammatory and immune responses of Brucella suis S2-infected mice and macrophages. Exp Ther Med 2019; 18:4295-4302. [PMID: 31777537 PMCID: PMC6862205 DOI: 10.3892/etm.2019.8084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/13/2019] [Indexed: 01/18/2023] Open
Abstract
Brucella infection is one of the most serious zoonoses worldwide, affecting humans and domestic and wild animals. Astragalus polysaccharide (APS) is extracted from astragalus, which exhibits bioactive properties, including immunomodulation and anti-tumour and antiviral activity. The present study revealed that APS treatment promoted macrophage activation, the production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-12 and interferon-γ, and Brucella clearance in murine macrophages and spleens. APS treatment was also demonstrated to protect the integrity of macrophages during infection with live attenuated Brucella suis strain 2 (B. suis S2). The results from in vitro experiments were consistent with the findings from the in vivo study, showing the elevated secretion of TNF-α and nitric oxide in APS-treated murine peritoneal macrophages following B. suis S2 infection. The current study demonstrated the potential of APS in the control and treatment of Brucella infection, and the enhancement of host inflammatory and immune responses.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Lan Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Leifang Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.,Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, P.R. China
| |
Collapse
|
49
|
Shi F, Sun Y, Wu Y, Zhu M, Feng D, Zhang R, Peng L, Chen C. A novel, rapid and simple method for detecting brucellosis based on rapid vertical flow technology. J Appl Microbiol 2019; 128:794-802. [PMID: 31715073 DOI: 10.1111/jam.14519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 12/29/2022]
Abstract
AIMS To prevent the spread of brucellosis, a simple and rapid vertical flow technology (RVFT) for the detection of antibodies targeting brucellosis was developed. METHODS AND RESULTS In this study, Brucella sp. lipopolysaccharide was purified and used to detect brucellosis antibodies. Sheep IgG was used as a negative control. Colloidal gold-labeled recombinant staphylococcus aureus protein A was sprayed on a fibreglass membrane to prepare immunogold pads. Rapid vertical flow technology was used to detect Brucella in 1668 Sheep, 2743 bovine, 674 red deer and 420 human samples. The results indicated that the accuracy of this assay can reach 98%. CONCLUSIONS The established RVFT uses a single multifunctional buffer that can be used to detect antibodies in serum, plasma, whole blood and other biological samples while preserving the advantages of lateral-flow immunoassays. SIGNIFICANCE AND IMPACT OF THE STUDY This technology would be of great use in primary medical units and veterinary stations, and it is of great significance for the control of epidemic diseases.
Collapse
Affiliation(s)
- F Shi
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi, P.R. China
| | - Y Sun
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi, P.R. China
| | - Y Wu
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi, P.R. China
| | - M Zhu
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi, P.R. China
| | - D Feng
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi, P.R. China
| | - R Zhang
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi, P.R. China
| | - L Peng
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi, P.R. China
| | - C Chen
- College of Animal Science and Technology, Shihezi University, Xinjiang, Shihezi, P.R. China
| |
Collapse
|
50
|
Deng Y, Liu X, Duan K, Peng Q. Research Progress on Brucellosis. Curr Med Chem 2019; 26:5598-5608. [PMID: 29745323 DOI: 10.2174/0929867325666180510125009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Brucellosis is a debilitating febrile illness caused by an intracellular Brucella. The disease is distributed in humans and animals widely, especially in developing countries. Ten species are included in the genus Brucella nowadays; four species of them are pathogenic to humans, which make brucellosis a zoonosis with more than 500,000 new cases reported annually. For human brucellosis, the most pathogenic species is B. melitensis followed by B. suis, while B. abortus is the mildest type of brucellosis. The infection mechanism of Brucella is complicated and mostly relies on its virulence factors. The therapy of the disease contains vaccination and antibiotic. However, there are some defects in currently available vaccines such as the lower protective level and safety. Thus, safe and efficient vaccines for brucellosis are still awaited. The dual therapy of antibacterial is effective in the treatment of brucellosis if a rapid and exact detection method is found.
Collapse
Affiliation(s)
- Yuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Xinyue Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Kaifang Duan
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| |
Collapse
|