1
|
Scrima S, Lambrughi M, Favaro L, Maeda K, Jäättelä M, Papaleo E. Acidic sphingomyelinase interactions with lysosomal membranes and cation amphiphilic drugs: A molecular dynamics investigation. Comput Struct Biotechnol J 2024; 23:2516-2533. [PMID: 38974886 PMCID: PMC11226985 DOI: 10.1016/j.csbj.2024.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Lysosomes are pivotal in cellular functions and disease, influencing cancer progression and therapy resistance with Acid Sphingomyelinase (ASM) governing their membrane integrity. Moreover, cation amphiphilic drugs (CADs) are known as ASM inhibitors and have anti-cancer activity, but the structural mechanisms of their interactions with the lysosomal membrane and ASM are poorly explored. Our study, leveraging all-atom explicit solvent molecular dynamics simulations, delves into the interaction of glycosylated ASM with the lysosomal membrane and the effects of CAD representatives, i.e., ebastine, hydroxyebastine and loratadine, on the membrane and ASM. Our results confirm the ASM association to the membrane through the saposin domain, previously only shown with coarse-grained models. Furthermore, we elucidated the role of specific residues and ASM-induced membrane curvature in lipid recruitment and orientation. CADs also interfere with the association of ASM with the membrane at the level of a loop in the catalytic domain engaging in membrane interactions. Our computational approach, applicable to various CADs or membrane compositions, provides insights into ASM and CAD interaction with the membrane, offering a valuable tool for future studies.
Collapse
Affiliation(s)
- Simone Scrima
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen 2100, Denmark
- Cancer System Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby 2800, Denmark
| | - Matteo Lambrughi
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen 2100, Denmark
| | - Lorenzo Favaro
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen 2100, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen 2100, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen 2100, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen 2100, Denmark
- Cancer System Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby 2800, Denmark
| |
Collapse
|
2
|
Bayoumy AB, Derijks LJJ, Oldenburg B, de Boer NKH. The Use of Tissue Concentrations of Biological and Small-Molecule Therapies in Clinical Studies of Inflammatory Bowel Diseases. Pharmaceutics 2024; 16:1497. [PMID: 39771479 PMCID: PMC11676153 DOI: 10.3390/pharmaceutics16121497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
The introduction of biological therapies has revolutionized inflammatory bowel disease (IBD) management. A critical consideration in developing these therapies is ensuring adequate drug concentrations at the site of action. While blood-based biomarkers have shown limited utility in optimizing treatment (except for TNF-alpha inhibitors and thiopurines), tissue drug concentrations may offer valuable insights. In antimicrobial therapies, tissue concentration monitoring is standard practice and could provide a new avenue for understanding the pharmacokinetics of biological and small-molecule therapies in IBD. Various methods exist for measuring tissue concentrations, including whole tissue sampling, MALDI-MSI, microdialysis, and fluorescent labeling. These techniques offer unique advantages, such as spatial drug-distribution mapping, continuous sampling, or cellular-level analysis. However, challenges remain, including sampling invasiveness, heterogeneity in tissue compartments, and a lack of standardized bioanalytical guidelines. Drug pharmacokinetics are influenced by multiple factors, including molecular properties, disease-induced changes in the gastrointestinal tract, and the timing of sample collection. For example, drug permeability, solubility, and interaction with transporters may vary between Crohn's disease and ulcerative colitis. Research into the tissue concentrations of drugs like anti-TNF agents, ustekinumab, vedolizumab, and tofacitinib has shown variable correlations with clinical outcomes, suggesting potential roles for tissue concentration monitoring in therapeutic drug management. Although routine clinical application is not yet established, exploring tissue drug concentrations may enhance understanding of IBD pharmacotherapy.
Collapse
Affiliation(s)
- Ahmed B. Bayoumy
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, 1105 AZ Amsterdam, The Netherlands
| | - Luc J. J. Derijks
- Department of Clinical Pharmacy & Pharmacology, Máxima Medical Centre, 5631 BM Eindhoven, The Netherlands
- Department of Clinical Pharmacy & Toxicology and NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nanne K. H. de Boer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Lou Z, Mu C, Corpstein CD, Li T. In vivo deposition of poorly soluble drugs. Adv Drug Deliv Rev 2024; 211:115358. [PMID: 38851590 DOI: 10.1016/j.addr.2024.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Administered drug molecules, whether dissolved or solubilized, have the potential to precipitate and accumulate as solid forms in tissues and cells within the body. This phase transition can significantly impact the pharmacokinetics of treatment. It is thus crucial to gain an understanding of how drug solubility/permeability, drug formulations and routes of administration affect in vivo behaviors of drug deposition. This review examines literature reports on the drug deposition in tissues and cells of poorly water-soluble drugs, as well as underlying physical mechanisms that lead to precipitation. Our work particularly highlights drug deposition in macrophages and the subcellular fate of precipitated drugs. We also propose a tissue permeability-based classification framework to evaluate precipitation potentials of poorly soluble drugs in major organs and tissues. The impact on pharmacokinetics is further discussed and needs to be considered in developing drug delivery systems. Finally, bioimaging techniques that are used to examine aggregated states and the intracellular trafficking of absorbed drugs are summarized.
Collapse
Affiliation(s)
- Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA.
| |
Collapse
|
4
|
Munan S, Mondal A, Shailja S, Pati S, Samanta A. Unique Synthetic Strategy for Probing in Situ Lysosomal NO for Screening Neuroinflammatory Phenotypes against SARS-CoV-2 RNA in Phagocytotic Microglia. Anal Chem 2024; 96:7479-7486. [PMID: 38689560 DOI: 10.1021/acs.analchem.3c05981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In the pathogenesis of microglia, brain immune cells promote nitrergic stress by overproducing nitric oxide (NO), leading to neuroinflammation. Furthermore, NO has been linked to COVID-19 progression, which has caused significant morbidity and mortality. SARS-CoV-2 infection activates inflammation by releasing excess NO and causing cell death in human microglial clone 3 (HMC3). In addition, NO regulates lysosomal functions and complex machinery to neutralize pathogens through phagocytosis. Therefore, developing lysosome-specific NO probes to monitor phagocytosis in microglia during the COVID-19 infection would be a significant study. Herein, a unique synthetic strategy was adopted to develop a NO selective fluorescent probe, PDM-NO, which can discriminate activated microglia from their resting state. The nonfluorescent PDM-NO exhibits a turn-on response toward NO only at lysosomal pH (4.5-5.5). Quantum chemical calculations (DFT/TD-DFT/PCM) and photophysical study revealed that the photoinduced electron transfer (PET) process is pivotal in tuning optical properties. PDM-NO demonstrated good biocompatibility and lysosomal specificity in activated HMC3 cells. Moreover, it can effectively map the dynamics of lysosomal NO against SARS-CoV-2 RNA-induced neuroinflammation in HMC3. Thus, PDM-NO is a potential fluorescent marker for detecting RNA virus infection and monitoring phagocytosis in HMC3.
Collapse
Affiliation(s)
- Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University (SNIoE), Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Abir Mondal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University (SNIoE), Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Singh Shailja
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University (SNIoE), Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University (SNIoE), Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
5
|
Usatov MS, Dobrynin SA, Polienko YF, Morozov DA, Glazachev YI, An’kov SV, Tolstikova TG, Gatilov YV, Bagryanskaya IY, Raizvikh AE, Bagryanskaya EG, Kirilyuk IA. Hydrophilic Reduction-Resistant Spin Labels of Pyrrolidine and Pyrroline Series from 3,4-Bis-hydroxymethyl-2,2,5,5-tetraethylpyrrolidine-1-oxyl. Int J Mol Sci 2024; 25:1550. [PMID: 38338825 PMCID: PMC10855552 DOI: 10.3390/ijms25031550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 02/12/2024] Open
Abstract
Highly resistant to reduction nitroxides open new opportunities for structural studies of biological macromolecules in their native environment inside living cells and for functional imaging of pH and thiols, enzymatic activity and redox status in living animals. 3,4-Disubstituted nitroxides of 2,2,5,5-tetraethylpyrrolidine and pyrroline series with a functional group for binding to biomolecules and a polar moiety for higher solubility in water and for more rigid attachment via additional coordination to polar sites were designed and synthesized. The EPR spectra, lipophilicities, kinetics of the reduction in ascorbate-containing systems and the decay rates in liver homogenates were measured. The EPR spectra of all 3,4-disubstituted pyrrolidine nitroxides showed additional large splitting on methylene hydrogens of the ethyl groups, while the spectra of similar pyrroline nitroxides were represented with a simple triplet with narrow lines and hyperfine structure of the nitrogen manifolds resolved in oxygen-free conditions. Both pyrrolidine and pyrroline nitroxides demonstrated low rates of reduction with ascorbate, pyrrolidines being a bit more stable than similar pyrrolines. The decay of positively charged nitroxides in the rat liver homogenate was faster than that of neutral and negatively charged radicals, with lipophilicity, rate of reduction with ascorbate and the ring type playing minor role. The EPR spectra of N,N-dimethyl-3,4-bis-(aminomethyl)-2,2,5,5-tetraethylpyrrolidine-1-oxyl showed dependence on pH with pKa = 3, ΔaN = 0.055 mT and ΔaH = 0.075 mT.
Collapse
Affiliation(s)
- Mikhail S. Usatov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 1, Novosibirsk 630090, Russia
| | - Sergey A. Dobrynin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Yuliya F. Polienko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Denis A. Morozov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Yurii I. Glazachev
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, Novosibirsk 630090, Russia;
| | - Sergey V. An’kov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Tatiana G. Tolstikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Yuri V. Gatilov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Irina Yu. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Arthur E. Raizvikh
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
- Department of Physics, Novosibirsk State University, Pirogova Str. 1, Novosibirsk 630090, Russia
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| | - Igor A. Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, Novosibirsk 630090, Russia; (M.S.U.); (S.A.D.); (Y.F.P.); (D.A.M.); (S.V.A.); (T.G.T.); (Y.V.G.); (I.Y.B.); (A.E.R.); (E.G.B.)
| |
Collapse
|
6
|
Shirbhate E, Singh V, Mishra A, Jahoriya V, Veerasamy R, Tiwari AK, Rajak H. Targeting Lysosomes: A Strategy Against Chemoresistance in Cancer. Mini Rev Med Chem 2024; 24:1449-1468. [PMID: 38343053 DOI: 10.2174/0113895575287242240129120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 07/23/2024]
Abstract
Chemotherapy is still the major method of treatment for many types of cancer. Curative cancer therapy is hampered significantly by medication resistance. Acidic organelles like lysosomes serve as protagonists in cellular digestion. Lysosomes, however, are gaining popularity due to their speeding involvement in cancer progression and resistance. For instance, weak chemotherapeutic drugs of basic nature permeate through the lysosomal membrane and are retained in lysosomes in their cationic state, while extracellular release of lysosomal enzymes induces cancer, cytosolic escape of lysosomal hydrolases causes apoptosis, and so on. Drug availability at the sites of action is decreased due to lysosomal drug sequestration, which also enhances cancer resistance. This review looks at lysosomal drug sequestration mechanisms and how they affect cancer treatment resistance. Using lysosomes as subcellular targets to combat drug resistance and reverse drug sequestration is another method for overcoming drug resistance that is covered in this article. The present review has identified lysosomal drug sequestration as one of the reasons behind chemoresistance. The article delves deeper into specific aspects of lysosomal sequestration, providing nuanced insights, critical evaluations, or novel interpretations of different approaches that target lysosomes to defect cancer.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Varsha Jahoriya
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy; UAMS - University of Arkansas for Medical Sciences, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
7
|
Hu H, Tjaden A, Knapp S, Antolin AA, Müller S. A machine learning and live-cell imaging tool kit uncovers small molecules induced phospholipidosis. Cell Chem Biol 2023; 30:1634-1651.e6. [PMID: 37797617 DOI: 10.1016/j.chembiol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/09/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Drug-induced phospholipidosis (DIPL), characterized by excessive accumulation of phospholipids in lysosomes, can lead to clinical adverse effects. It may also alter phenotypic responses in functional studies using chemical probes. Therefore, robust methods are needed to predict and quantify phospholipidosis (PL) early in drug discovery and in chemical probe characterization. Here, we present a versatile high-content live-cell imaging approach, which was used to evaluate a chemogenomic and a lysosomal modulation library. We trained and evaluated several machine learning models using the most comprehensive set of publicly available compounds and interpreted the best model using SHapley Additive exPlanations (SHAP). Analysis of high-quality chemical probes extracted from the Chemical Probes Portal using our algorithm revealed that closely related molecules, such as chemical probes and their matched negative controls can differ in their ability to induce PL, highlighting the importance of identifying PL for robust target validation in chemical biology.
Collapse
Affiliation(s)
- Huabin Hu
- Centre for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK; Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany
| | - Albert A Antolin
- Centre for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK; ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Catalonia Barcelona, Spain.
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Allgood SC, Su CC, Crooks AL, Meyer CT, Zhou B, Betterton MD, Barbachyn MR, Yu EW, Detweiler CS. Bacterial efflux pump modulators prevent bacterial growth in macrophages and under broth conditions that mimic the host environment. mBio 2023; 14:e0249223. [PMID: 37921493 PMCID: PMC10746280 DOI: 10.1128/mbio.02492-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Bacterial efflux pumps are critical for resistance to antibiotics and for virulence. We previously identified small molecules that inhibit efflux pumps (efflux pump modulators, EPMs) and prevent pathogen replication in host cells. Here, we used medicinal chemistry to increase the activity of the EPMs against pathogens in cells into the nanomolar range. We show by cryo-electron microscopy that these EPMs bind an efflux pump subunit. In broth culture, the EPMs increase the potency (activity), but not the efficacy (maximum effect), of antibiotics. We also found that bacterial exposure to the EPMs appear to enable the accumulation of a toxic metabolite that would otherwise be exported by efflux pumps. Thus, inhibitors of bacterial efflux pumps could interfere with infection not only by potentiating antibiotics, but also by allowing toxic waste products to accumulate within bacteria, providing an explanation for why efflux pumps are needed for virulence in the absence of antibiotics.
Collapse
Affiliation(s)
- Samual C. Allgood
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Amy L. Crooks
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Christian T. Meyer
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
- Duet Biosystems, Nashville, Tennessee, USA
- Antimicrobial Research Consortium (ARC) Labs, Boulder, Colorado, USA
| | - Bojun Zhou
- Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Meredith D. Betterton
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Physics, University of Colorado, Boulder, Colorado, USA
- Center for Computational Biology, Flatiron Institute, New York, New York, USA
| | | | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Corrella S. Detweiler
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
9
|
Hirata Y, Hashimoto T, Ando K, Kamatari YO, Takemori H, Furuta K. Structural features localizing the ferroptosis inhibitor GIF-2197-r to lysosomes. RSC Adv 2023; 13:32276-32281. [PMID: 37928844 PMCID: PMC10620646 DOI: 10.1039/d3ra06611h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
We previously reported that N,N-dimethylaniline derivatives are potent ferroptosis inhibitors. Among them, the novel aminoindan derivative GIF-2197-r (the racemate of GIF-2115 (R-form) and GIF-2196 (S-form)) is effective at a concentration of 0.01 μM due to its localization to lysosomes and ferrous ion coordination capacity. The current study demonstrates that the aliphatic tertiary amine moiety of GIF-2197-r is responsible for lysosomal localization. Although N,N-dimethylaniline derivatives cannot form chelate structures with Fe2+, density functional theory computation demonstrates that they can form stable monodentate complexes with a hydrated ferrous ion, likely due to the highly electron-rich nature of the (dialkylamino)phenyl ring. Furthermore, the results suggest that the aliphatic tertiary amine moiety contributes to stabilizing the complexation. These findings could prove useful for developing improved lysosomotropic ferroptosis inhibitors for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoko Hirata
- Life Science Research Center, Institute for Advanced Study, Gifu University Yanagido Gifu 501-1193 Japan
| | - Tomohiro Hashimoto
- Faculty of Regional Studies, Gifu University Yanagido Gifu 501-1193 Japan
| | - Kaori Ando
- Faculty of Regional Studies, Gifu University Yanagido Gifu 501-1193 Japan
| | - Yuji O Kamatari
- Life Science Research Center, Institute for Advanced Study, Gifu University Yanagido Gifu 501-1193 Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University Yanagido Gifu 501-1193 Japan
- Graduate School of Natural Science and Technology, Gifu University Yanagido Gifu 501-1193 Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University Yanagido Gifu 501-1193 Japan
| | - Kyoji Furuta
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University Yanagido Gifu 501-1193 Japan
| |
Collapse
|
10
|
Yu X, Wu Y, Tang W, Duan X. A lysosome-targeted triazole near-infrared cyanine fluorescent probe for in vivo long-term cell tracking. Analyst 2023; 148:5117-5123. [PMID: 37675662 DOI: 10.1039/d3an01238g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In vivo visualization of cell migration and engraftment in small animals provides crucial information for the development and clinical translation of cell-based therapies. Therefore, a good quality near-infrared (NIR) fluorescent probe with high optical properties and excellent cellular retention ability is desired for in vivo cell tracking. Herein, we designed and synthesized a lysosome-targeted triazole NIR cyanine fluorescent probe, named IR780-NT-NH2, for in vivo long-term cell tracking. For the design, the heptamethine cyanine dye IR780 was used as the NIR fluorescent skeleton to ensure that the absorption and emission wavelengths fall within the NIR window. The substituent N-triazole group endowed the probe with high photostability and brightness. It has a quantum yield of 17.3% and the brightness remained above 85% after continuous illumination for 30 min. Due to the primary amine docking group, IR780-NT-NH2 has excellent lysosomal targeting and retention abilities as it becomes protonated in an acidic environment. The strong signal strength of IR780-NT-NH2 was maintained in well-shaped cells after an additional 12 h incubation. Moreover, this NIR probe exhibited ideal cellular permeability and biosafety. Finally, we realized long-term cell tracking with IR780-NT-NH2 labeled PC-3 cells using a NIR imaging system. The present study provides evidence that IR780-NT-NH2 exhibits ideal optical properties, excellent cellular permeation and retention, and good biosafety, which are useful for in vivo long-term observation of cells, and thus it shows promising potential for visualization in cell-based therapy.
Collapse
Affiliation(s)
- Xianrong Yu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Yu Wu
- College of Life Science, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| |
Collapse
|
11
|
Allgood SC, Su CC, Crooks AL, Meyer CT, Zhou B, Betterton MD, Barbachyn MR, Yu EW, Detweiler CS. Bacterial Efflux Pump Modulators Prevent Bacterial Growth in Macrophages and Under Broth Conditions that Mimic the Host Environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558466. [PMID: 37786697 PMCID: PMC10541609 DOI: 10.1101/2023.09.20.558466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
New approaches for combatting microbial infections are needed. One strategy for disrupting pathogenesis involves developing compounds that interfere with bacterial virulence. A critical molecular determinant of virulence for Gram-negative bacteria are efflux pumps of the resistance-nodulation-division (RND) family, which includes AcrAB-TolC. We previously identified small molecules that bind AcrB, inhibit AcrAB-TolC, and do not appear to damage membranes. These efflux pump modulators (EPMs) were discovered in an in-cell screening platform called SAFIRE (Screen for Anti-infectives using Fluorescence microscopy of IntracellulaR Enterobacteriaceae). SAFIRE identifies compounds that disrupt the growth of a Gram-negative human pathogen, Salmonella enterica serotype Typhimurium (S. Typhimurium) in macrophages. We used medicinal chemistry to iteratively design ~200 EPM35 analogs and test them for activity in SAFIRE, generating compounds with nanomolar potency. Analogs were demonstrated to bind AcrB in a substrate binding pocket by cryo-electron microscopy (cryo-EM). Despite having amphipathic structures, the EPM analogs do not disrupt membrane voltage, as monitored by FtsZ localization to the cell septum. The EPM analogs had little effect on bacterial growth in standard Mueller Hinton Broth. However, under broth conditions that mimic the micro-environment of the macrophage phagosome, acrAB is required for growth, the EPM analogs are bacteriostatic, and increase the potency of antibiotics. These data suggest that under macrophage-like conditions the EPM analogs prevent the export of a toxic bacterial metabolite(s) through AcrAB-TolC. Thus, compounds that bind AcrB could disrupt infection by specifically interfering with the export of bacterial toxic metabolites, host defense factors, and/or antibiotics.
Collapse
Affiliation(s)
- Samual C Allgood
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Amy L Crooks
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Christian T Meyer
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- Duet Biosystems, Nashville, TN, USA
- Antimicrobial Research Consortium (ARC) Labs, Boulder, CO, USA
| | - Bojun Zhou
- Department of Physics, University of Colorado, Boulder, CO, USA
| | - Meredith D Betterton
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, CO, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Corrella S Detweiler
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
12
|
Cheng W, Fukuda M, Kim S, Liu Y, Chen X, Holmes C, Li Y, Chung H, Ren Y, Guan J. Osmotically Rupturing Phagosomes in Macrophages Using PNIPAM Microparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24244-24256. [PMID: 37186785 PMCID: PMC10426762 DOI: 10.1021/acsami.3c05335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The rupture of macrophage phagosomes has been implicated in various human diseases and plays a critical role in immunity. However, the mechanisms underlying this process are complex and not yet fully understood. This study describes the development of a robust engineering method for rupturing phagosomes based on a well-defined mechanism. The method utilizes microfabricated microparticles composed of uncrosslinked linear poly(N-isopropylacrylamide) (PNIPAM) as phagocytic objects. These microparticles are internalized into phagosomes at 37 °C. By exposing the cells to a cold shock at 0 °C, the vast majority of the microparticle-containing phagosomes rupture. The percentage of phagosomal rupture decreases with the increase of the cold-shock temperature. The osmotic pressure in the phagosomes and the tension in the phagosomal membrane are calculated using the Flory-Huggins theory and the Young-Laplace equation. The modeling results indicate that the osmotic pressure generated by dissolved microparticles is probably responsible for phagosomal rupture, are consistent with the experimentally observed dependence of phagosomal rupture on the cold-shock temperature, and suggest the existence of a cellular mechanism for resisting phagosomal rupture. Moreover, the effects of various factors including hypotonic shock, chloroquine, tetrandrine, colchicine, and l-leucyl-l-leucine O-methyl ester (LLOMe) on phagosomal rupture have been studied with this method. The results further support that the osmotic pressure generated by the dissolved microparticles causes phagosomal rupture and demonstrated usefulness of this method for studying phagosomal rupture. This method can be further developed, ultimately leading to a deeper understanding of phagosomal rupture.
Collapse
Affiliation(s)
- Wenhao Cheng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Masahiro Fukuda
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Sundol Kim
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Yuan Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Christina Holmes
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| | - Yi Ren
- College of Medicine, Florida State University, Tallahassee, Florida 32306-4370, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, USA
| |
Collapse
|
13
|
Takahashi K, Morita Y, Udagawa S, Higashi E, Nakajima M, Miyamoto Y, Oshida K. Lysosomal trapping of 4-dimethylamino-1-{3-(1-methyl-1H-imidazole-2-yl)propanoyl}piperidine, a hydrophilic and weakly basic amine, in human aortic vascular smooth muscle cells. Toxicol In Vitro 2023; 91:105614. [PMID: 37187212 DOI: 10.1016/j.tiv.2023.105614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
Some weakly basic compounds lead to cell death accompanied by cellular vacuolation. The novel analgesic agent, 4-dimethylamino-1-{3-(1-methyl-1H-imidazole-2-yl)propanoyl}piperidine (DMIP), is a hydrophilic and weakly basic compound that induces vacuolation in the vascular smooth muscle cells in dogs. Here, we investigated the vacuolation mechanism and the potential cytotoxicity of DMIP using human aortic vascular smooth muscle cells. When cells were treated with DMIP (0.1, 0.3, and 1 mM) for 6, 24, and 48 h, clear cytoplasmic vacuolation was observed at 1 mM after 24 and 48 h, along with an increase in the intracellular DMIP concentration. The vacuolation and intracellular DMIP were markedly reduced by bafilomycin A1, a vacuolar H+-ATPase inhibitor. The late endosome marker Rab7 and lysosome marker LAMP-2 were highly expressed but the early endosome marker Rab5 and autophagosome marker LC3 were not expressed specifically on the vacuolar membranes. These results suggested that the most vacuoles were enlarged late endosomes/lysosomes, resulting from the accumulation of DMIP by ion trapping. Moreover, DMIP did not affect lysosomal membrane integrity and was less cytotoxic than chloroquine, an inducer of phospholipidosis. The current study provides further insight into the mechanisms of vacuolation and lysosomal trapping induced by the hydrophilic and weakly basic amine DMIP.
Collapse
Affiliation(s)
- Kei Takahashi
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro Kamakura Kanagawa 248-8555, Japan
| | - Yasuhiro Morita
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro Kamakura Kanagawa 248-8555, Japan
| | - Shuji Udagawa
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro Kamakura Kanagawa 248-8555, Japan
| | - Eriko Higashi
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro Kamakura Kanagawa 248-8555, Japan
| | - Mayumi Nakajima
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro Kamakura Kanagawa 248-8555, Japan
| | - Yohei Miyamoto
- Pharmaceutical Clinical Research Department, Toray Industries, Inc, 1-1, Nihonbashi muromachi 2-chome, Chuo-ku, Tokyo 103-8666, Japan
| | - Keiyu Oshida
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro Kamakura Kanagawa 248-8555, Japan.
| |
Collapse
|
14
|
Kim MS, Yang SH, Kim MS. Role of ABCA2 and its single nucleotide polymorphisms (4873T>A and 4879G>C) in the regulation of multi-drug resistance in oral squamous carcinoma cells. Biochem Biophys Res Commun 2023; 666:1-9. [PMID: 37167718 DOI: 10.1016/j.bbrc.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Lysosomal exocytosis is an essential cellular event for remodeling the extracellular matrix through secreting lysosomal enzymes and developing drug resistance. However, the detailed mechanism underlying the lysosomal exocytosis-driven acquisition of drug resistance is not completely understood. Genetic variations in gefitinib-sensitive (HSC3) and -resistant (HSC3/GR) oral squamous carcinoma cell lines were identified using whole-exome sequencing (WES). The physiological role of the ATP-binding cassette subfamily A member 2 (ABCA2) in gefitinib-induced lysosomal trafficking was evaluated in vitro, through overexpressing ABCA2 and its single nucleotide polymorphisms (SNPs). WES analysis showed that the 554 SNPs harboring 244 genes appeared to be differentially generated depending on gefitinib resistance. Among these genes, ABCA2 was enriched in 24 of 39 gene ontology terms. Two missense SNPs of ABCA2, 4873T > A (rs1831123356) and 4873T > A, were generated only in gefitinib-sensitive cells. Furthermore, HEK293 cells expressing the wild-type ABCA2 (WT ABCA2) acquired tolerance for gefitinib-induced cytotoxicity by increasing gefitinib sequestration in lysosomes and lysosomal exocytosis. Conversely, cells expressing each ABCA2 SNP exhibited lower efficacy in developing tolerance to gefitinib-induced responses than those expressing WT ABCA2. Notably, HSC3/GR cells were also tolerant to erlotinib and sunitinib but not osimertinib. Furthermore, tolerance for multiple tyrosine kinase inhibitors was attenuated by the deletion of ABCA2. These findings demonstrate that ABCA2 and its SNPs should be considered prominent targets for overcoming multi-drug resistance and enhancing the efficacy of chemotherapeutics.
Collapse
Affiliation(s)
- Mi Seong Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea; Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Sei Hoon Yang
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| | - Min Seuk Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
15
|
Liu YZ, Zhang H, Zhou DH, Liu YH, Ran XY, Xiang FF, Zhang LN, Chen YJ, Yu XQ, Li K. Migration from Lysosome to Nucleus: Monitoring Lysosomal Alkalization-Related Biological Processes with an Aminofluorene-Based Probe. Anal Chem 2023; 95:7294-7302. [PMID: 37104743 DOI: 10.1021/acs.analchem.3c00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Aberrant lysosomal alkalization is associated with various biological processes, such as oxidative stress, cell apoptosis, ferroptosis, etc. Herein, we developed a novel aminofluorene-based fluorescence probe named FAN to monitor the lysosomal alkalization-related biological processes by its migration from lysosome to nucleus. FAN possessed NIR emission, large Stokes shift, high pH stability, and high photostability, making it suitable for real-time and long-term bioimaging. As a lysosomotropic molecule, FAN can accumulate in lysosomes first and then migrate to the nucleus by right of its binding capability to DNA after lysosomal alkalization. In this manner, FAN was successfully used to monitor these physiological processes which triggered lysosomal alkalization in living cells, including oxidative stress, cell apoptosis, and ferroptosis. More importantly, at higher concentrations, FAN could also serve as a stable nucleus dye for the fluorescence imaging of the nucleus in living cells and tissues. This novel multifunctional fluorescence probe shows great promise for application in lysosomal alkalization-related visual research and nucleus imaging.
Collapse
Affiliation(s)
- Yan-Zhao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Hong Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Ding-Heng Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Fei-Fan Xiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Li-Na Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Yu-Jin Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| |
Collapse
|
16
|
Kelm JM, Pandey DS, Malin E, Kansou H, Arora S, Kumar R, Gavande NS. PROTAC'ing oncoproteins: targeted protein degradation for cancer therapy. Mol Cancer 2023; 22:62. [PMID: 36991452 PMCID: PMC10061819 DOI: 10.1186/s12943-022-01707-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 03/31/2023] Open
Abstract
Molecularly targeted cancer therapies substantially improve patient outcomes, although the durability of their effectiveness can be limited. Resistance to these therapies is often related to adaptive changes in the target oncoprotein which reduce binding affinity. The arsenal of targeted cancer therapies, moreover, lacks coverage of several notorious oncoproteins with challenging features for inhibitor development. Degraders are a relatively new therapeutic modality which deplete the target protein by hijacking the cellular protein destruction machinery. Degraders offer several advantages for cancer therapy including resiliency to acquired mutations in the target protein, enhanced selectivity, lower dosing requirements, and the potential to abrogate oncogenic transcription factors and scaffolding proteins. Herein, we review the development of proteolysis targeting chimeras (PROTACs) for selected cancer therapy targets and their reported biological activities. The medicinal chemistry of PROTAC design has been a challenging area of active research, but the recent advances in the field will usher in an era of rational degrader design.
Collapse
Affiliation(s)
- Jeremy M Kelm
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Deepti S Pandey
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Evan Malin
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Hussein Kansou
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
17
|
Mlejnek P. What Is the Significance of Lysosomal-Mediated Resistance to Imatinib? Cells 2023; 12:cells12050709. [PMID: 36899844 PMCID: PMC10000661 DOI: 10.3390/cells12050709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The lysosomal sequestration of hydrophobic weak-base anticancer drugs is one proposed mechanism for the reduced availability of these drugs at target sites, resulting in a marked decrease in cytotoxicity and consequent resistance. While this subject is receiving increasing emphasis, it is so far only in laboratory experiments. Imatinib is a targeted anticancer drug used to treat chronic myeloid leukaemia (CML), gastrointestinal stromal tumours (GISTs), and a number of other malignancies. Its physicochemical properties make it a typical hydrophobic weak-base drug that accumulates in the lysosomes of tumour cells. Further laboratory studies suggest that this might significantly reduce its antitumor efficacy. However, a detailed analysis of published laboratory studies shows that lysosomal accumulation cannot be considered a clearly proven mechanism of resistance to imatinib. Second, more than 20 years of clinical experience with imatinib has revealed a number of resistance mechanisms, none of which is related to its accumulation in lysosomes. This review focuses on the analysis of salient evidence and raises a fundamental question about the significance of lysosomal sequestration of weak-base drugs in general as a possible resistance mechanism both in clinical and laboratory settings.
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77515 Olomouc, Czech Republic
| |
Collapse
|
18
|
Sfera A, Hazan S, Anton JJ, Sfera DO, Andronescu CV, Sasannia S, Rahman L, Kozlakidis Z. Psychotropic drugs interaction with the lipid nanoparticle of COVID-19 mRNA therapeutics. Front Pharmacol 2022; 13:995481. [PMID: 36160443 PMCID: PMC9503827 DOI: 10.3389/fphar.2022.995481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
The messenger RNA (mRNA) vaccines for COVID-19, Pfizer-BioNTech and Moderna, were authorized in the US on an emergency basis in December of 2020. The rapid distribution of these therapeutics around the country and the world led to millions of people being vaccinated in a short time span, an action that decreased hospitalization and death but also heightened the concerns about adverse effects and drug-vaccine interactions. The COVID-19 mRNA vaccines are of particular interest as they form the vanguard of a range of other mRNA therapeutics that are currently in the development pipeline, focusing both on infectious diseases as well as oncological applications. The Vaccine Adverse Event Reporting System (VAERS) has gained additional attention during the COVID-19 pandemic, specifically regarding the rollout of mRNA therapeutics. However, for VAERS, absence of a reporting platform for drug-vaccine interactions left these events poorly defined. For example, chemotherapy, anticonvulsants, and antimalarials were documented to interfere with the mRNA vaccines, but much less is known about the other drugs that could interact with these therapeutics, causing adverse events or decreased efficacy. In addition, SARS-CoV-2 exploitation of host cytochrome P450 enzymes, reported in COVID-19 critical illness, highlights viral interference with drug metabolism. For example, patients with severe psychiatric illness (SPI) in treatment with clozapine often displayed elevated drug levels, emphasizing drug-vaccine interaction.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | - Sabine Hazan
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | - Jonathan J. Anton
- Patton State Hospital, San Bernardino, CA, United States
- Department of Biology, California Baptist University, Riverside, CA, United States
| | - Dan O. Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | - Leah Rahman
- Department of Medicine, University of Oregon, Eugene, OR, United States
| | - Zisis Kozlakidis
- International Agency For Research On Cancer (IARC), Lyon, France
| |
Collapse
|
19
|
Berg AL, Rowson-Hodel A, Wheeler MR, Hu M, Free SR, Carraway KL. Engaging the Lysosome and Lysosome-Dependent Cell Death in Cancer. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-lysosome] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Mlejnek P, Havlasek J, Pastvova N, Dolezel P, Dostalova K. Lysosomal sequestration of weak base drugs, lysosomal biogenesis, and cell cycle alteration. Biomed Pharmacother 2022; 153:113328. [PMID: 35785701 DOI: 10.1016/j.biopha.2022.113328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022] Open
Abstract
Lysosomes, now known to take part in multiple cellular functions, also respond to various stress stimuli. These include biogenesis in response to nanomolar concentrations of hydrophobic weak-base anticancer drugs. However, since lysosomal stress mediated by accumulation of weak-base drugs at such concentrations has never been proven and these drugs have diverse effects on malignant cells, we investigated whether the interpretation of the data was true. We found that lysosomal accumulation of the drugs daunorubicin, doxorubicin, mitoxantrone, symadex, chloroquine, clomipramine and sunitinib alone, was insufficient to induce lysosomal alkalization i.e., lysosomal stress-mediated biogenesis at nanomolar concentrations. Instead, we found that some of the drugs used induced G2 phase arrest and lysosomal biogenesis that is associated with activation of transcription factor EB (TFEB). Similarly, cantharidin, a control compound that does not belong to the weak base drugs, induced cell cycle arrest in the G2 phase associated with TFEB-driven lysosomal biogenesis. Overall none of the tested drugs caused stress-induced lysosomal biogenesis at nanomolar concentrations. However, daunorubicin, doxorubicin, mitoxantrone, symadex and cantharidin induced a massive block in the G2 phase of the cell cycle which is naturally associated with TFEB-driven lysosomal biogenesis.
Collapse
Affiliation(s)
- P Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic.
| | - J Havlasek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - N Pastvova
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - P Dolezel
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - K Dostalova
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| |
Collapse
|
21
|
Ramesh D, Sarkar D, Joji A, Singh M, Mohanty AK, G Vijayakumar B, Chatterjee M, Sriram D, Muthuvel SK, Kannan T. First-in-class pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones against leishmaniasis and tuberculosis: Rationale, in vitro, ex vivo studies and mechanistic insights. Arch Pharm (Weinheim) 2022; 355:e2100440. [PMID: 35106845 DOI: 10.1002/ardp.202100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
Pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones were synthesized, for the first time, from indole chalcones and 6-aminouracil, and their ability to inhibit leishmaniasis and tuberculosis (Tb) infections was evaluated. The in vitro antileishmanial activity against promastigotes of Leishmania donovani revealed exceptional activities of compounds 3, 12 and 13, with IC50 values ranging from 10.23 ± 1.50 to 15.58 ± 1.67 µg/ml, which is better than the IC50 value of the standard drug pentostam of 500 μg/ml. The selectivity of the compounds towards Leishmania parasites was evaluated via ex vivo studies in Swiss albino mice. The efficiency of these compounds against Tb infection was then evaluated using the in vitro anti-Tb microplate Alamar Blue assay. Five compounds, 3, 7, 8, 9 and 12, showed MIC100 values against the Mycobacterium tuberculosis H37 Rv strain at 25 µg/ml, and compound 20 yielded an MIC100 value of 50 µg/ml. Molecular modelling of these compounds highlighted interactions with binding sites of dihydrofolate reductase, pteridine reductase and thymidylate kinase, thus establishing the rationale of their pharmacological activity against both pathogens, which is consistent with the in vitro results. From the above results, it is clear that compounds 3 and 12 are promising lead candidates for Leishmania and Mycobacterium infections and may be promising for coinfections.
Collapse
Affiliation(s)
- Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Annu Joji
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Monica Singh
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Amaresh K Mohanty
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Suresh K Muthuvel
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | |
Collapse
|
22
|
A Simple Method of Synthesis of 3-Carboxy-2,2,5,5-Tetraethylpyrrolidine-1-oxyl and Preparation of Reduction-Resistant Spin Labels and Probes of Pyrrolidine Series. Molecules 2021; 26:molecules26195761. [PMID: 34641310 PMCID: PMC8510269 DOI: 10.3390/molecules26195761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/31/2023] Open
Abstract
Stable free radicals are widely used as molecular probes and labels in various biophysical and biomedical research applications of magnetic resonance spectroscopy and imaging. Among these radicals, sterically shielded nitroxides of pyrrolidine series demonstrate the highest stability in biological systems. Here, we suggest new convenient procedure for preparation of 3-carboxy-2,2,5,5-tetraethylpyrrolidine-1-oxyl, a reduction-resistant analog of widely used carboxy-Proxyl, from cheap commercially available reagents with the yield exceeding the most optimistic literature data. Several new spin labels and probes of 2,2,5,5-tetraethylpyrrolidine-1-oxyl series were prepared and reduction of these radicals in ascorbate solutions, mice blood and tissue homogenates was studied.
Collapse
|
23
|
Fernández-Suárez ME, Daimiel L, Villa-Turégano G, Pavón MV, Busto R, Escolà-Gil JC, Platt FM, Lasunción MA, Martínez-Botas J, Gómez-Coronado D. Selective estrogen receptor modulators (SERMs) affect cholesterol homeostasis through the master regulators SREBP and LXR. Biomed Pharmacother 2021; 141:111871. [PMID: 34225017 DOI: 10.1016/j.biopha.2021.111871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
Selective estrogen receptor modulators (SERMs) are nonsteroidal drugs that display an estrogen-agonist or estrogen-antagonist effect depending on the tissue targeted. SERMs have attracted great clinical interest for the treatment of several pathologies, most notably breast cancer and osteoporosis. There is strong evidence that SERMs secondarily affect cholesterol metabolism, although the mechanism has not been fully elucidated. In this study, we analysed the effect of the SERMs tamoxifen, raloxifene, and toremifene on the expression of lipid metabolism genes by microarrays and quantitative PCR in different cell types, and ascertained the main mechanisms involved. The three SERMs increased the expression of sterol regulatory element-binding protein (SREBP) target genes, especially those targeted by SREBP-2. In consonance, SERMs increased SREBP-2 processing. These effects were associated to the interference with intracellular LDL-derived cholesterol trafficking. When the cells were exposed to LDL, but not to cholesterol/methyl-cyclodextrin complexes, the SERM-induced increases in gene expression were synergistic with those induced by lovastatin. Furthermore, the SERMs reduced the stimulation of the transcriptional activity of the liver X receptor (LXR) by exogenous cholesterol. However, their impact on the expression of the LXR canonical target ABCA1 in the presence of LDL was cell-type dependent. These actions of SERMs were independent of estrogen receptors. We conclude that, by inhibiting the intracellular trafficking of LDL-derived cholesterol, SERMs promote the activation of SREBP-2 and prevent the activation of LXR, two master regulators of cellular cholesterol metabolism. This study highlights the impact of SERMs on lipid homeostasis regulation beyond their actions as estrogen receptor modulators.
Collapse
Affiliation(s)
- María E Fernández-Suárez
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
| | - Lidia Daimiel
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Gemma Villa-Turégano
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain
| | - María Vázquez Pavón
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Joan C Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. de Colmenar, km 9, 28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
24
|
Hussein NA, Malla S, Pasternak MA, Terrero D, Brown NG, Ashby CR, Assaraf YG, Chen ZS, Tiwari AK. The role of endolysosomal trafficking in anticancer drug resistance. Drug Resist Updat 2021; 57:100769. [PMID: 34217999 DOI: 10.1016/j.drup.2021.100769] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) remains a major obstacle towards curative treatment of cancer. Despite considerable progress in delineating the basis of intrinsic and acquired MDR, the underlying molecular mechanisms remain to be elucidated. Emerging evidences suggest that dysregulation in endolysosomal compartments is involved in mediating MDR through multiple mechanisms, such as alterations in endosomes, lysosomes and autophagosomes, that traffic and biodegrade the molecular cargo through macropinocytosis, autophagy and endocytosis. For example, altered lysosomal pH, in combination with transcription factor EB (TFEB)-mediated lysosomal biogenesis, increases the sequestration of hydrophobic anti-cancer drugs that are weak bases, thereby producing an insufficient and off-target accumulation of anti-cancer drugs in MDR cancer cells. Thus, the use of well-tolerated, alkalinizing compounds that selectively block Vacuolar H⁺-ATPase (V-ATPase) may be an important strategy to overcome MDR in cancer cells and increase chemotherapeutic efficacy. Other mechanisms of endolysosomal-mediated drug resistance include increases in the expression of lysosomal proteases and cathepsins that are involved in mediating carcinogenesis and chemoresistance. Therefore, blocking the trafficking and maturation of lysosomal proteases or direct inhibition of cathepsin activity in the cytosol may represent novel therapeutic modalities to overcome MDR. Furthermore, endolysosomal compartments involved in catabolic pathways, such as macropinocytosis and autophagy, are also shown to be involved in the development of MDR. Here, we review the role of endolysosomal trafficking in MDR development and discuss how targeting endolysosomal pathways could emerge as a new therapeutic strategy to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Mariah A Pasternak
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Noah G Brown
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA; Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, 43614, OH, USA.
| |
Collapse
|
25
|
Bianchetti G, Azoulay-Ginsburg S, Keshet-Levy NY, Malka A, Zilber S, Korshin EE, Sasson S, De Spirito M, Gruzman A, Maulucci G. Investigation of the Membrane Fluidity Regulation of Fatty Acid Intracellular Distribution by Fluorescence Lifetime Imaging of Novel Polarity Sensitive Fluorescent Derivatives. Int J Mol Sci 2021; 22:ijms22063106. [PMID: 33803648 PMCID: PMC8002861 DOI: 10.3390/ijms22063106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/27/2022] Open
Abstract
Free fatty acids are essential structural components of the cell, and their intracellular distribution and effects on membrane organelles have crucial roles in regulating the metabolism, development, and cell cycle of most cell types. Here we engineered novel fluorescent, polarity-sensitive fatty acid derivatives, with the fatty acid aliphatic chain of increasing length (from 12 to 18 carbons). As in the laurdan probe, the lipophilic acyl tail is connected to the environmentally sensitive dimethylaminonaphthalene moiety. The fluorescence lifetime imaging analysis allowed us to monitor the intracellular distribution of the free fatty acids within the cell, and to simultaneously examine how the fluidity and the microviscosity of the membrane environment influence their localization. Each of these probes can thus be used to investigate the membrane fluidity regulation of the correspondent fatty acid intracellular distribution. We observed that, in PC-12 cells, fluorescent sensitive fatty acid derivatives with increased chain length compartmentalize more preferentially in the fluid regions, characterized by a low microviscosity. Moreover, fatty acid derivatives with the longest chain compartmentalize in lipid droplets and lysosomes with characteristic lifetimes, thus making these probes a promising tool for monitoring lipophagy and related events.
Collapse
Affiliation(s)
- Giada Bianchetti
- Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.B.); (M.D.S.)
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, 00168 Rome, Italy
| | - Salome Azoulay-Ginsburg
- Department of Chemistry, Bar-Ilan University, Ramat Gan 59290002, Israel; (S.A.-G.); (N.Y.K.-L.); (A.M.); (E.E.K.)
| | - Nimrod Yosef Keshet-Levy
- Department of Chemistry, Bar-Ilan University, Ramat Gan 59290002, Israel; (S.A.-G.); (N.Y.K.-L.); (A.M.); (E.E.K.)
- Department of Pathology, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
| | - Aviv Malka
- Department of Chemistry, Bar-Ilan University, Ramat Gan 59290002, Israel; (S.A.-G.); (N.Y.K.-L.); (A.M.); (E.E.K.)
| | - Sofia Zilber
- Department of Pathology, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
| | - Edward E. Korshin
- Department of Chemistry, Bar-Ilan University, Ramat Gan 59290002, Israel; (S.A.-G.); (N.Y.K.-L.); (A.M.); (E.E.K.)
| | - Shlomo Sasson
- Institute for Drug Research, Faculty of Medicine, The Hebrew University, Jerusalem 911210, Israel;
| | - Marco De Spirito
- Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.B.); (M.D.S.)
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, 00168 Rome, Italy
| | - Arie Gruzman
- Department of Chemistry, Bar-Ilan University, Ramat Gan 59290002, Israel; (S.A.-G.); (N.Y.K.-L.); (A.M.); (E.E.K.)
- Correspondence: (A.G.); (G.M.); Tel.: +972-54-7489041 (A.G.); +39-06-3015-4265 (G.M.)
| | - Giuseppe Maulucci
- Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.B.); (M.D.S.)
- Fondazione Policlinico Universitario “A. Gemelli” IRCSS, 00168 Rome, Italy
- Correspondence: (A.G.); (G.M.); Tel.: +972-54-7489041 (A.G.); +39-06-3015-4265 (G.M.)
| |
Collapse
|
26
|
Zhai X, El Hiani Y. Getting Lost in the Cell-Lysosomal Entrapment of Chemotherapeutics. Cancers (Basel) 2020; 12:E3669. [PMID: 33297435 PMCID: PMC7762281 DOI: 10.3390/cancers12123669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Despite extensive research, resistance to chemotherapy still poses a major obstacle in clinical oncology. An exciting strategy to circumvent chemoresistance involves the identification and subsequent disruption of cellular processes that are aberrantly altered in oncogenic states. Upon chemotherapeutic challenges, lysosomes are deemed to be essential mediators that enable cellular adaptation to stress conditions. Therefore, lysosomes potentially hold the key to disarming the fundamental mechanisms of chemoresistance. This review explores modes of action of classical chemotherapeutic agents, adaptive response of the lysosomes to cell stress, and presents physiological and pharmacological insights pertaining to drug compartmentalization, sequestration, and extracellular clearance through the lens of lysosomes.
Collapse
Affiliation(s)
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
27
|
LZ-106, a potent lysosomotropic agent, causing TFEB-dependent cytoplasmic vacuolization. Gene 2020; 760:145017. [PMID: 32755655 DOI: 10.1016/j.gene.2020.145017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/01/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
Cytoplasmic vacuolization usually occurs in cells treated with different agents and substances. We found that LZ-106, an analog of enoxacin, is a potent lysosomotropic agent, contributing to the formation of cytoplasmic vacuoles in cells. Studies of LZ-106-induced vacuolization in H460 cells showed acid environment inside these vacuoles. Further study demonstrated that markers in the late endosomes and lysosomes, like LAMP1 and RAB7, on the surface of the vacuoles, implying that these vacuoles might derive from endosomes and/or lysosomes. By studying the fluorescence intensity of LZ-106, we discovered that LZ-106 tended to locate in acid organelles, and Bafilomycin A1, a V-ATPase inhibitor, was able to suppress its acid organelles localization. Also, we noticed that LZ-106 could induce lysosome stress, involving pH increment and lysosomal membrane damage. Moreover, the expression levels of some lysosome-related proteins, like LAMP1, EEA1, and Cathepsin B, were also altered upon LZ-106 treatment. At last, we confirmed LZ-106 can activate TFEB, a key regulator of lysosomes. Knockdown of TFEB could also reverse LZ-106's effect on vacuolization in H460 cells. Taken together, due to LZ-106's lysosomotropic properties, it is able to accumulate in the acid organelles and induce lysosomal dysfunction in H460 cells, leading to TFEB activation and the following cytoplasmic vacuolization.
Collapse
|
28
|
Vela JM. Repurposing Sigma-1 Receptor Ligands for COVID-19 Therapy? Front Pharmacol 2020; 11:582310. [PMID: 33364957 PMCID: PMC7751758 DOI: 10.3389/fphar.2020.582310] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Outbreaks of emerging infections, such as COVID-19 pandemic especially, confront health professionals with the unique challenge of treating patients. With no time to discover new drugs, repurposing of approved drugs or in clinical development is likely the only solution. Replication of coronaviruses (CoVs) occurs in a modified membranous compartment derived from the endoplasmic reticulum (ER), causes host cell ER stress and activates pathways to facilitate adaptation of the host cell machinery to viral needs. Accordingly, modulation of ER remodeling and ER stress response might be pivotal in elucidating CoV-host interactions and provide a rationale for new therapeutic, host-based antiviral approaches. The sigma-1 receptor (Sig-1R) is a ligand-operated, ER membrane-bound chaperone that acts as an upstream modulator of ER stress and thus a candidate host protein for host-based repurposing approaches to treat COVID-19 patients. Sig-1R ligands are frequently identified in in vitro drug repurposing screens aiming to identify antiviral compounds against CoVs, including severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Sig-1R regulates key mechanisms of the adaptive host cell stress response and takes part in early steps of viral replication. It is enriched in lipid rafts and detergent-resistant ER membranes, where it colocalizes with viral replicase proteins. Indeed, the non-structural SARS-CoV-2 protein Nsp6 interacts with Sig-1R. The activity of Sig-1R ligands against COVID-19 remains to be specifically assessed in clinical trials. This review provides a rationale for targeting Sig-1R as a host-based drug repurposing approach to treat COVID-19 patients. Evidence gained using Sig-1R ligands in unbiased in vitro antiviral drug screens and the potential mechanisms underlying the modulatory effect of Sig-1R on the host cell response are discussed. Targeting Sig-1R is not expected to reduce dramatically established viral replication, but it might interfere with early steps of virus-induced host cell reprogramming, aid to slow down the course of infection, prevent the aggravation of the disease and/or allow a time window to mature a protective immune response. Sig-1R-based medicines could provide benefit not only as early intervention, preventive but also as adjuvant therapy.
Collapse
Affiliation(s)
- José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals, Barcelona, Spain
| |
Collapse
|
29
|
Varalda M, Antona A, Bettio V, Roy K, Vachamaram A, Yellenki V, Massarotti A, Baldanzi G, Capello D. Psychotropic Drugs Show Anticancer Activity by Disrupting Mitochondrial and Lysosomal Function. Front Oncol 2020; 10:562196. [PMID: 33194631 PMCID: PMC7604408 DOI: 10.3389/fonc.2020.562196] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose: Drug repositioning is a promising strategy for discovering new therapeutic strategies for cancer therapy. We investigated psychotropic drugs for their antitumor activity because of several epidemiological studies reporting lower cancer incidence in individuals receiving long term drug treatment. Experimental Approach: We investigated 27 psychotropic drugs for their cytotoxic activity in colorectal carcinoma, glioblastoma and breast cancer cell lines. Consistent with the cationic amphiphilic structure of the most cytotoxic compounds, we investigated their effect on mitochondrial and lysosomal compartments. Results: Penfluridol, ebastine, pimozide and fluoxetine, fluspirilene and nefazodone showed significant cytotoxicity, in the low micromolar range, in all cell lines tested. In MCF7 cells these drugs caused mitochondrial membrane depolarization, increased the acidic vesicular compartments and induced phospholipidosis. Both penfluridol and spiperone induced AMPK activation and autophagy. Neither caspase nor autophagy inhibitors rescued cells from death induced by ebastine, fluoxetine, fluspirilene and nefazodone. Treatment with 3-methyladenine partially rescued cell death induced by pimozide and spiperone, whereas enhanced the cytotoxic activity of penfluridol. Conversely, inhibition of lysosomal cathepsins significantly reduced cell death induced by ebastin, penfluridol, pimozide, spiperone and mildly in fluoxetine treated cells. Lastly, Spiperone cytotoxicity was restricted to colorectal cancer and breast cancer and caused apoptotic cell death in MCF7 cells. Conclusions: The cytotoxicity of psychotropic drugs with cationic amphiphilic structures relied on simultaneous mitochondrial and lysosomal disruption and induction of cell death that not necessarily requires apoptosis. Since dual targeting of lysosomes and mitochondria constitutes a new promising therapeutic approach for cancer, particularly those in which the apoptotic machinery is defective, these data further support their clinical development for cancer therapy.
Collapse
Affiliation(s)
- Marco Varalda
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy.,UPO Biobank, University of Piemonte Orientale, Novara, Italy
| | - Annamaria Antona
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Valentina Bettio
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy.,UPO Biobank, University of Piemonte Orientale, Novara, Italy
| | - Konkonika Roy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Ajay Vachamaram
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy.,Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Vaibhav Yellenki
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Alberto Massarotti
- Department Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Gianluca Baldanzi
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy.,Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy.,UPO Biobank, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
30
|
Maciorowski D, Idrissi SZE, Gupta Y, Medernach BJ, Burns MB, Becker DP, Durvasula R, Kempaiah P. A Review of the Preclinical and Clinical Efficacy of Remdesivir, Hydroxychloroquine, and Lopinavir-Ritonavir Treatments against COVID-19. SLAS DISCOVERY 2020; 25:1108-1122. [PMID: 32942923 PMCID: PMC8960157 DOI: 10.1177/2472555220958385] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In December of 2019, an outbreak of a novel coronavirus flared in Wuhan, the capital city of the Hubei Province, China. The pathogen has been identified as a novel enveloped RNA beta-coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus SARS-CoV-2 is associated with a disease characterized by severe atypical pneumonia known as coronavirus 2019 (COVID-19). Typical symptoms of this disease include cough, fever, malaise, shortness of breath, gastrointestinal symptoms, anosmia, and, in severe cases, pneumonia.1 The high-risk group of COVID-19 patients includes people over the age of 60 years as well as people with existing cardiovascular disease and/or diabetes mellitus. Epidemiological investigations have suggested that the outbreak was associated with a live animal market in Wuhan. Within the first few months of the outbreak, cases were growing exponentially all over the world. The unabated spread of this deadly and highly infectious virus is a health emergency for all nations in the world and has led to the World Health Organization (WHO) declaring a pandemic on March 11, 2020. In this report, we consolidate and review the available clinically and preclinically relevant results emanating from in vitro animal models and clinical studies of drugs approved for emergency use as a treatment for COVID-19, including remdesivir, hydroxychloroquine, and lopinavir-ritonavir combinations. These compounds have been frequently touted as top candidates to treat COVID-19, but recent clinical reports suggest mixed outcomes on their efficacies within the current clinical protocol frameworks.
Collapse
Affiliation(s)
- Dawid Maciorowski
- Loyola University Chicago Stritch School of Medicine, Chicago, IL, USA.,Loyola University Chicago, Chicago, IL, USA
| | | | - Yash Gupta
- Loyola University Chicago Stritch School of Medicine, Chicago, IL, USA.,Department of Medicine, Loyola University Medical Center, Chicago, IL, USA
| | - Brian J Medernach
- Department of Medicine, Loyola University Medical Center, Chicago, IL, USA
| | | | | | - Ravi Durvasula
- Loyola University Chicago Stritch School of Medicine, Chicago, IL, USA.,Department of Medicine, Loyola University Medical Center, Chicago, IL, USA
| | - Prakasha Kempaiah
- Loyola University Chicago Stritch School of Medicine, Chicago, IL, USA.,Department of Medicine, Loyola University Medical Center, Chicago, IL, USA
| |
Collapse
|
31
|
Liu YA, Jin Q, Ding Q, Hao X, Mo T, Yan S, Zou Y, Huang Z, Zhang X, Gao W, Wu TYH, Li C, Bursalaya B, Di Donato M, Zhang YQ, Deaton L, Shen W, Taylor B, Kamireddy A, Harb G, Li J, Jia Y, Schumacher AM, Laffitte B, Glynne R, Pan S, McNamara P, Molteni V, Loren J. A Dual Inhibitor of DYRK1A and GSK3β for β-Cell Proliferation: Aminopyrazine Derivative GNF4877. ChemMedChem 2020; 15:1562-1570. [PMID: 32613743 DOI: 10.1002/cmdc.202000183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Loss of β-cell mass and function can lead to insufficient insulin levels and ultimately to hyperglycemia and diabetes mellitus. The mainstream treatment approach involves regulation of insulin levels; however, approaches intended to increase β-cell mass are less developed. Promoting β-cell proliferation with low-molecular-weight inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) offers the potential to treat diabetes with oral therapies by restoring β-cell mass, insulin content and glycemic control. GNF4877, a potent dual inhibitor of DYRK1A and glycogen synthase kinase 3β (GSK3β) was previously reported to induce primary human β-cell proliferation in vitro and in vivo. Herein, we describe the lead optimization that lead to the identification of GNF4877 from an aminopyrazine hit identified in a phenotypic high-throughput screening campaign measuring β-cell proliferation.
Collapse
Affiliation(s)
- Yahu A Liu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Qihui Jin
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Qiang Ding
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Xueshi Hao
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Tingting Mo
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Shanshan Yan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Yefen Zou
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Zhihong Huang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Xiaoyue Zhang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Wenqi Gao
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Tom Y-H Wu
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Chun Li
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Badry Bursalaya
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Michael Di Donato
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - You-Qing Zhang
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Lisa Deaton
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Weijun Shen
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Brandon Taylor
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Anwesh Kamireddy
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - George Harb
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Jing Li
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Yong Jia
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Andrew M Schumacher
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Bryan Laffitte
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Richard Glynne
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Shifeng Pan
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Peter McNamara
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Valentina Molteni
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Jon Loren
- Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| |
Collapse
|
32
|
Rolt A, Cox LS. Structural basis of the anti-ageing effects of polyphenolics: mitigation of oxidative stress. BMC Chem 2020; 14:50. [PMID: 32793891 PMCID: PMC7417423 DOI: 10.1186/s13065-020-00696-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
Ageing, and particularly the onset of age-related diseases, is associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Polyphenolic natural products such as stilbenoids, flavonoids and chalcones have been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis and cellular senescence, both in vitro and in vivo. Here we aim to identify the structural basis underlying the pharmacology of polyphenols towards ROS and related biochemical pathways involved in age-related disease. We compile and describe SAR trends across different polyphenol chemotypes including stilbenoids, flavonoids and chalcones, review their different molecular targets and indications, and identify common structural ground between chemotypes and mechanisms of action. In particular, we focus on the structural requirements for the direct scavenging of reactive oxygen/nitrogen species such as radicals as well as coordination of a broader antioxidant response. We further suggest that it is important to consider multiple (rather than single) biological activities when identifying and developing new medicinal chemistry entities with utility in modulating complex biological properties such as cell ageing.
Collapse
Affiliation(s)
- Adam Rolt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
33
|
Beauvarlet J, Nath Das R, Alvarez-Valadez K, Martins I, Muller A, Darbo E, Richard E, Soubeyran P, Kroemer G, Guillon J, Mergny JL, Djavaheri-Mergny M. Triarylpyridine Compounds and Chloroquine Act in Concert to Trigger Lysosomal Membrane Permeabilization and Cell Death in Cancer Cells. Cancers (Basel) 2020; 12:cancers12061621. [PMID: 32570977 PMCID: PMC7352983 DOI: 10.3390/cancers12061621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023] Open
Abstract
Lysosomes play a key role in regulating cell death in response to cancer therapies, yet little is known on the possible role of lysosomes in the therapeutic efficacy of G-quadruplex DNA ligands (G4L) in cancer cells. Here, we investigate the relationship between the modulation of lysosomal membrane damage and the degree to which cancer cells respond to the cytotoxic effects of G-quadruplex ligands belonging to the triarylpyridine family. Our results reveal that the lead compound of this family, 20A promotes the enlargement of the lysosome compartment as well as the induction of lysosome-relevant mRNAs. Interestingly, the combination of 20A and chloroquine (an inhibitor of lysosomal functions) led to a significant induction of lysosomal membrane permeabilization coupled to massive cell death. Similar effects were observed when chloroquine was added to three new triarylpyridine derivatives. Our findings thus uncover the lysosomal effects of triarylpyridines compounds and delineate a rationale for combining these compounds with chloroquine to increase their anticancer effects.
Collapse
Affiliation(s)
- Jennifer Beauvarlet
- Institut Bergonié, INSERM U1218, Université de Bordeaux, 33000 Bordeaux, France; (J.B.); (E.D.); (E.R.); (P.S.)
| | - Rabindra Nath Das
- ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR 5320, 33000 Bordeaux, France; (R.N.D.); (J.G.); (J.-L.M.)
| | - Karla Alvarez-Valadez
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France; (K.A.-V.); (A.M.); (G.K.)
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université de Paris, Equipe 11 labellisée par la Ligue contre le Cancer, 75006 Paris, France
| | - Isabelle Martins
- Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France;
| | - Alexandra Muller
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France; (K.A.-V.); (A.M.); (G.K.)
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Elodie Darbo
- Institut Bergonié, INSERM U1218, Université de Bordeaux, 33000 Bordeaux, France; (J.B.); (E.D.); (E.R.); (P.S.)
| | - Elodie Richard
- Institut Bergonié, INSERM U1218, Université de Bordeaux, 33000 Bordeaux, France; (J.B.); (E.D.); (E.R.); (P.S.)
| | - Pierre Soubeyran
- Institut Bergonié, INSERM U1218, Université de Bordeaux, 33000 Bordeaux, France; (J.B.); (E.D.); (E.R.); (P.S.)
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France; (K.A.-V.); (A.M.); (G.K.)
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université de Paris, Equipe 11 labellisée par la Ligue contre le Cancer, 75006 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou 215123, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jean Guillon
- ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR 5320, 33000 Bordeaux, France; (R.N.D.); (J.G.); (J.-L.M.)
| | - Jean-Louis Mergny
- ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR 5320, 33000 Bordeaux, France; (R.N.D.); (J.G.); (J.-L.M.)
| | - Mojgan Djavaheri-Mergny
- Institut Bergonié, INSERM U1218, Université de Bordeaux, 33000 Bordeaux, France; (J.B.); (E.D.); (E.R.); (P.S.)
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France; (K.A.-V.); (A.M.); (G.K.)
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université de Paris, Equipe 11 labellisée par la Ligue contre le Cancer, 75006 Paris, France
- Correspondence:
| |
Collapse
|
34
|
The Lysosomotropic Activity of Hydrophobic Weak Base Drugs is Mediated via Their Intercalation into the Lysosomal Membrane. Cells 2020; 9:cells9051082. [PMID: 32349204 PMCID: PMC7290590 DOI: 10.3390/cells9051082] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lipophilic weak base therapeutic agents, termed lysosomotropic drugs (LDs), undergo marked sequestration and concentration within lysosomes, hence altering lysosomal functions. This lysosomal drug entrapment has been described as luminal drug compartmentalization. Consistent with our recent finding that LDs inflict a pH-dependent membrane fluidization, we herein demonstrate that LDs undergo intercalation and concentration within lysosomal membranes. The latter was revealed experimentally and computationally by (a) confocal microscopy of fluorescent compounds and drugs within lysosomal membranes, and (b) molecular dynamics modeling of the pH-dependent membrane insertion and accumulation of an assortment of LDs, including anticancer drugs. Based on the multiple functions of the lysosome as a central nutrient sensory hub and a degradation center, we discuss the molecular mechanisms underlying the alteration of morphology and impairment of lysosomal functions as consequences of LDs’ intercalation into lysosomes. Our findings bear important implications for drug design, drug induced lysosomal damage, diseases and pertaining therapeutics.
Collapse
|
35
|
Iida H, Fujikawa R, Kozaki R, Harada R, Hosokawa Y, Ogawara KI, Ohno T. Pharmacokinetic-Pharmacodynamic-Efficacy Modeling of ONO-7579, a Novel Pan-Tropomyosin Receptor Kinase Inhibitor, in a Murine Xenograft Tumor Model. J Pharmacol Exp Ther 2020; 373:361-369. [PMID: 32217770 DOI: 10.1124/jpet.119.264499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/23/2020] [Indexed: 12/26/2022] Open
Abstract
The orally available and novel small molecule ONO-7579 (N-{2-[4-(2-amino-5-chloropyridin-3-yl)phenoxy]pyrimidin-5-yl}-N'-[2-(methanesulfonyl)-5-(trifluoromethyl)phenyl]urea) is a highly potent and selective pan-tropomyosin receptor kinase (TRK) inhibitor. The objective of the present study was to characterize the pharmacokinetic (PK), pharmacodynamic (PD), and antitumor efficacy relationships of ONO-7579 in mice xenografted with a human colorectal cancer cell line, KM12 (harboring the tropomyosin 3 (TPM3) -neurotrophic tyrosine receptor kinase 1 fusion gene), via a PK/PD modeling approach. Plasma and tumor concentrations of ONO-7579, tumor levels of phosphorylated TPM3-TRKA (pTRKA), and tumor volumes in the murine model were measured with a single or multiple dose of ONO-7579 (0.06-0.60 mg/kg) administered once daily. The PK/PD/efficacy models were developed in a sequential manner. Changes in plasma concentrations of ONO-7579 were described with an oral one-compartment model. Tumor concentrations of ONO-7579 were higher than plasma concentrations, and changes in ONO-7579 tumor concentrations were described with an additional tumor compartment that had no influence on plasma concentrations. pTRKA in tumors was described with a direct Emax model, and the tumor ONO-7579 concentration causing 50% of the maximum effect was estimated to be 17.6 ng/g. In addition, a pTRKA-driven tumor growth inhibition model indicated that ONO-7579 started to sharply increase the antitumor effect at pTRKA inhibition rates >60% and required >91.5% to reduce tumors. In conclusion, the developed PK/PD/efficacy models revealed a "switch-like" relationship between pTRKA inhibition rate and antitumor effect in a murine KM12 xenograft model, demonstrating that pTRKA in tumors could serve as an effective biomarker for scheduling the dose regimen in early-stage clinical studies. SIGNIFICANCE STATEMENT: In recent years, clinical development of TRK inhibitors in patients with neurotrophic tyrosine receptor kinase fusion-positive solid tumors has been accelerated. This research found that phosphorylated TRKA was a useful biomarker for explaining the antitumor efficacy of TRK inhibitors using a pharmacokinetic/pharmacodynamic modeling approach in xenograft mice. This finding suggests a rational dosing regimen in early-stage clinical studies for ONO-7579 (N-{2-[4-(2-amino-5-chloropyridin-3-yl)phenoxy]pyrimidin-5-yl}-N'-[2-(methanesulfonyl)-5-(trifluoromethyl)phenyl]urea), a novel pan-TRK inhibitor.
Collapse
Affiliation(s)
- Hiroyuki Iida
- Clinical Pharmacology (H.I., T.O.), Research Center of Oncology (R.F., R.K.), and Pharmacokinetic Research Laboratories (R.H., Y.H.), Ono Pharmaceutical Company Limited, Osaka, Japan; and Laboratory of Pharmaceutics, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan (H.I., K.O.)
| | - Ryu Fujikawa
- Clinical Pharmacology (H.I., T.O.), Research Center of Oncology (R.F., R.K.), and Pharmacokinetic Research Laboratories (R.H., Y.H.), Ono Pharmaceutical Company Limited, Osaka, Japan; and Laboratory of Pharmaceutics, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan (H.I., K.O.)
| | - Ryohei Kozaki
- Clinical Pharmacology (H.I., T.O.), Research Center of Oncology (R.F., R.K.), and Pharmacokinetic Research Laboratories (R.H., Y.H.), Ono Pharmaceutical Company Limited, Osaka, Japan; and Laboratory of Pharmaceutics, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan (H.I., K.O.)
| | - Ryuichi Harada
- Clinical Pharmacology (H.I., T.O.), Research Center of Oncology (R.F., R.K.), and Pharmacokinetic Research Laboratories (R.H., Y.H.), Ono Pharmaceutical Company Limited, Osaka, Japan; and Laboratory of Pharmaceutics, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan (H.I., K.O.)
| | - Yuya Hosokawa
- Clinical Pharmacology (H.I., T.O.), Research Center of Oncology (R.F., R.K.), and Pharmacokinetic Research Laboratories (R.H., Y.H.), Ono Pharmaceutical Company Limited, Osaka, Japan; and Laboratory of Pharmaceutics, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan (H.I., K.O.)
| | - Ken-Ichi Ogawara
- Clinical Pharmacology (H.I., T.O.), Research Center of Oncology (R.F., R.K.), and Pharmacokinetic Research Laboratories (R.H., Y.H.), Ono Pharmaceutical Company Limited, Osaka, Japan; and Laboratory of Pharmaceutics, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan (H.I., K.O.)
| | - Tomoya Ohno
- Clinical Pharmacology (H.I., T.O.), Research Center of Oncology (R.F., R.K.), and Pharmacokinetic Research Laboratories (R.H., Y.H.), Ono Pharmaceutical Company Limited, Osaka, Japan; and Laboratory of Pharmaceutics, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan (H.I., K.O.)
| |
Collapse
|
36
|
Zeng M, Xiong Y, Safaee N, Nowak RP, Donovan KA, Yuan CJ, Nabet B, Gero TW, Feru F, Li L, Gondi S, Ombelets LJ, Quan C, Jänne PA, Kostic M, Scott DA, Westover KD, Fischer ES, Gray NS. Exploring Targeted Degradation Strategy for Oncogenic KRAS G12C. Cell Chem Biol 2019; 27:19-31.e6. [PMID: 31883964 DOI: 10.1016/j.chembiol.2019.12.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/15/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
KRAS is the most frequently mutated oncogene found in pancreatic, colorectal, and lung cancers. Although it has been challenging to identify targeted therapies for cancers harboring KRAS mutations, KRASG12C can be targeted by small-molecule inhibitors that form covalent bonds with cysteine 12 (C12). Here, we designed a library of C12-directed covalent degrader molecules (PROTACs) and subjected them to a rigorous evaluation process to rapidly identify a lead compound. Our lead degrader successfully engaged CRBN in cells, bound KRASG12Cin vitro, induced CRBN/KRASG12C dimerization, and degraded GFP-KRASG12C in reporter cells in a CRBN-dependent manner. However, it failed to degrade endogenous KRASG12C in pancreatic and lung cancer cells. Our data suggest that inability of the lead degrader to effectively poly-ubiquitinate endogenous KRASG12C underlies the lack of activity. We discuss challenges for achieving targeted KRASG12C degradation and proposed several possible solutions which may lead to efficient degradation of endogenous KRASG12C.
Collapse
Affiliation(s)
- Mei Zeng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yuan Xiong
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nozhat Safaee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Christine J Yuan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas W Gero
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Frederic Feru
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Sudershan Gondi
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Lincoln J Ombelets
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Chunshan Quan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology and the Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Milka Kostic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - David A Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Smart DJ, Helbling FR, Verardo M, McHugh D, Vanscheeuwijck P. Mode-of-action analysis of the effects induced by nicotine in the in vitro micronucleus assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:778-791. [PMID: 31294873 PMCID: PMC6900147 DOI: 10.1002/em.22314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 05/02/2023]
Abstract
Nicotine's genotoxic potential has been extensively studied in vitro. While the results of mammalian cell-based studies have inferred that it can potentially damage chromosomes, in general and with few exceptions, adverse DNA effects have been observed primarily at supraphysiological concentrations in nonregulatory assays that provide little information on its mode-of-action (MoA). In this study, a modern-day regulatory genotoxicity assessment was conducted using a flow cytometry-based in vitro micronucleus (MN) assay, Good Laboratory Practice study conditions, Chinese hamster ovary cells of known provenance, and acceptance/evaluation criteria from the current OECD Test Guideline 487. Nicotine concentrations up to 3.95 mM had no effect on background levels of DNA damage; however, concentrations above the point-of-departure range of 3.94-4.54 mM induced increases in MN and hypodiploid nuclei, indicating a possible aneugenicity hazard. Follow-up experiments designed to elucidate nicotine's MoA revealed cellular vacuolization, accompanying distortions in microtubules, inhibition of tubulin polymerization, centromere-positive DNA, and multinucleate cells at MN-inducing concentrations. Vacuoles likely originated from acidic cellular compartments (e.g., lysosomes). Remarkably, genotoxicity was suppressed by chemicals that raised the luminal pH of these organelles. Other endpoints (e.g., changes in phosphorylated histones) measured in the study cast doubt on the biological relevance of this apparent genotoxicity. In addition, three major nicotine metabolites, including cotinine, had no MN effects but nornicotine induced a nicotine-like profile. It is possible that nicotine's lysosomotropic properties drive the genotoxicity observed in vitro; however, the potency and mechanistic insights revealed here indicate that it is likely of minimal physiological relevance for nicotine consumers. Environ. Mol. Mutagen. 2019. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
| | | | | | - Damian McHugh
- PMI R&DPhilip Morris Products S.A.NeuchâtelSwitzerland
| | | |
Collapse
|
38
|
Rolt A, Le D, Hu Z, Wang AQ, Shah P, Singleton M, Hughes E, Dulcey AE, He S, Imamura M, Uchida T, Chayama K, Xu X, Marugan JJ, Liang TJ. Preclinical Pharmacological Development of Chlorcyclizine Derivatives for the Treatment of Hepatitis C Virus Infection. J Infect Dis 2019; 217:1761-1769. [PMID: 29373739 DOI: 10.1093/infdis/jiy039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) is a small, single-stranded, positive-sense RNA virus that infects more than an estimated 70 million people worldwide. Untreated, persistent HCV infection often results in chronic hepatitis, cirrhosis, or liver failure, with progression to hepatocellular carcinoma. Current anti-HCV regimens comprising direct acting antivirals (DAAs) can provide curative treatment; however, due to high costs there remains a need for effective, shorter-duration, and affordable treatments. Recently, we disclosed anti-HCV activity of the cheap antihistamine chlorcyclizine, targeting viral entry. Following our hit-to-lead optimization campaign, we report evaluation of preclinical in vitro absorption, distribution, metabolism, and excretion properties, and in vivo pharmacokinetic profiles of lead compounds. This led to selection of a new lead compound and evaluation of efficacy in chimeric mice engrafted with primary human hepatocytes infected with HCV. Further development and incorporation of this compound into DAA regimens has the potential to improve treatment efficacy, affordability, and accessibility.
Collapse
Affiliation(s)
- Adam Rolt
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Derek Le
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Amy Q Wang
- Division of Pre-Clinical Innovations, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Pranav Shah
- Division of Pre-Clinical Innovations, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Marc Singleton
- Division of Pre-Clinical Innovations, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Emma Hughes
- Division of Pre-Clinical Innovations, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Andrés E Dulcey
- Division of Pre-Clinical Innovations, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Shanshan He
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michio Imamura
- Department of Medicine and Molecular Sciences, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Takuro Uchida
- Department of Medicine and Molecular Sciences, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Kazuaki Chayama
- Department of Medicine and Molecular Sciences, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | - Xin Xu
- Division of Pre-Clinical Innovations, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Juan J Marugan
- Division of Pre-Clinical Innovations, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
39
|
Breiden B, Sandhoff K. Emerging mechanisms of drug-induced phospholipidosis. Biol Chem 2019; 401:31-46. [DOI: 10.1515/hsz-2019-0270] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/01/2019] [Indexed: 11/15/2022]
Abstract
Abstract
Drug-induced phospholipidosis is a lysosomal storage disorder characterized by excessive accumulation of phospholipids. Its cellular mechanism is still not well understood, but it is known that cationic amphiphilic drugs can induce it. These drugs have a hydrophilic amine head group that can be protonated in the endolysosomal compartment. As cationic amphiphiles, they are trapped in lysosomes, where they interfere with negatively charged intralysosomal vesicles, the major platforms of cellular sphingolipid degradation. Metabolic principles observed in sphingolipid and phospholipid catabolism and inherited sphingolipidoses are of great importance for lysosomal function and physiological lipid turnover at large. Therefore, we also propose intralysosomal vesicles as major platforms for degradation of lipids and phospholipids reaching them by intracellular pathways like autophagy and endocytosis. Phospholipids are catabolized as components of vesicle surfaces by protonated, positively charged phospholipases, electrostatically attracted to the negatively charged vesicles. Model experiments suggest that progressively accumulating cationic amphiphilic drugs inserting into the vesicle membrane with their hydrophobic molecular moieties disturb and attenuate the main mechanism of lipid degradation as discussed here. By compensating the negative surface charge, cationic enzymes are released from the surface of vesicles and proteolytically degraded, triggering a progressive lipid storage and the formation of inactive lamellar bodies.
Collapse
Affiliation(s)
- Bernadette Breiden
- LIMES Institut , Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie , Universität Bonn, Gerhard-Domagk-Str. 1 , D-53121 Bonn , Germany
| | - Konrad Sandhoff
- LIMES Institut , Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie , Universität Bonn, Gerhard-Domagk-Str. 1 , D-53121 Bonn , Germany
| |
Collapse
|
40
|
Llanos S, Megias D, Blanco-Aparicio C, Hernández-Encinas E, Rovira M, Pietrocola F, Serrano M. Lysosomal trapping of palbociclib and its functional implications. Oncogene 2019; 38:3886-3902. [PMID: 30692638 PMCID: PMC6756094 DOI: 10.1038/s41388-019-0695-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 01/10/2023]
Abstract
Palbociclib is a selective inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6) approved for the treatment of some cancers. The main mechanism of action of palbociclib is to induce cell cycle arrest and senescence on responsive cells. Here, we report that palbociclib concentrates in intracellular acidic vesicles, where it can be readily observed due to its intrinsic fluorescence, and it is released from these vesicles upon dilution or washing out of the extracellular medium. This reversible storage of drugs into acidic vesicles is generally known as lysosomal trapping and, based on this, we uncover novel properties of palbociclib. In particular, a short exposure of cells to palbociclib is sufficient to produce a stable cell-cycle arrest and long-term senescence. Moreover, after washing out the drug, palbociclib-treated cells release the drug to the medium and this conditioned medium is active on susceptible cells. Interestingly, cancer cells resistant to palbociclib also accumulate and release the drug producing paracrine senescence on susceptible cells. Finally, other lysosomotropic drugs, such as chloroquine, interfere with the accumulation of palbociclib into lysosomes, thereby reducing the minimal dose of palbociclib required for cell-cycle arrest and senescence. In summary, lysosomal trapping explains the prolonged temporal activity of palbociclib, the paracrine activity of exposed cells, and the cooperation with lysosomotropic drugs. These are important features that may help to improve the therapeutic dosing and efficacy of palbociclib. Finally, two other clinically approved CDK4/6 inhibitors, ribociclib and abemaciclib, present a similar behavior as palbociclib, suggesting that lysosomal trapping is a property common to all three clinically-approved CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Susana Llanos
- Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Diego Megias
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | | | - Miguel Rovira
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Federico Pietrocola
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Manuel Serrano
- Spanish National Cancer Research Center (CNIO), Madrid, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
41
|
Stoyanovsky DA, Tyurina YY, Shrivastava I, Bahar I, Tyurin VA, Protchenko O, Jadhav S, Bolevich SB, Kozlov AV, Vladimirov YA, Shvedova AA, Philpott CC, Bayir H, Kagan VE. Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radic Biol Med 2019; 133:153-161. [PMID: 30217775 PMCID: PMC6555767 DOI: 10.1016/j.freeradbiomed.2018.09.008] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
Abstract
Duality of iron as an essential cofactor of many enzymatic metabolic processes and as a catalyst of poorly controlled redox-cycling reactions defines its possible biological beneficial and hazardous role in the body. In this review, we discuss these two "faces" of iron in a newly conceptualized program of regulated cell death, ferroptosis. Ferroptosis is a genetically programmed iron-dependent form of regulated cell death driven by enhanced lipid peroxidation and insufficient capacity of thiol-dependent mechanisms (glutathione peroxidase 4, GPX4) to eliminate hydroperoxy-lipids. We present arguments favoring the enzymatic mechanisms of ferroptotically engaged non-heme iron of 15-lipoxygenases (15-LOX) in complexes with phosphatidylethanolamine binding protein 1 (PEBP1) as a catalyst of highly selective and specific oxidation reactions of arachidonoyl- (AA) and adrenoyl-phosphatidylethanolamines (PE). We discuss possible role of iron chaperons as control mechanisms for guided iron delivery directly to their "protein clients" thus limiting non-enzymatic redox-cycling reactions. We also consider opportunities of loosely-bound iron to contribute to the production of pro-ferroptotic lipid oxidation products. Finally, we propose a two-stage iron-dependent mechanism for iron in ferroptosis by combining its catalytic role in the 15-LOX-driven production of 15-hydroperoxy-AA-PE (HOO-AA-PE) as well as possible involvement of loosely-bound iron in oxidative cleavage of HOO-AA-PE to oxidatively truncated electrophiles capable of attacking nucleophilic targets in yet to be identified proteins leading to cell demise.
Collapse
Affiliation(s)
- D A Stoyanovsky
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA
| | - Y Y Tyurina
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA
| | - I Shrivastava
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA; Department of Computational and Systems Biology, University of Pittsburgh, USA
| | - I Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, USA
| | - V A Tyurin
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA
| | - O Protchenko
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, USA
| | - S Jadhav
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, USA
| | - S B Bolevich
- Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Russian Federation
| | - A V Kozlov
- L Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Russian Federation
| | - Y A Vladimirov
- Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Russian Federation
| | - A A Shvedova
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, WV, USA
| | - C C Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, USA
| | - H Bayir
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA; Departments of Critical Care Medicine, University of Pittsburgh, USA
| | - V E Kagan
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA; Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Russian Federation; Departments of Chemistry, University of Pittsburgh, USA; Departments of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Departments of Radiation Oncology, University of Pittsburgh, USA.
| |
Collapse
|
42
|
Merlos Rodrigo MA, Buchtelova H, de Los Rios V, Casal JI, Eckschlager T, Hrabeta J, Belhajova M, Heger Z, Adam V. Proteomic Signature of Neuroblastoma Cells UKF-NB-4 Reveals Key Role of Lysosomal Sequestration and the Proteasome Complex in Acquiring Chemoresistance to Cisplatin. J Proteome Res 2019; 18:1255-1263. [PMID: 30592607 DOI: 10.1021/acs.jproteome.8b00867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cisplatin (CDDP) is a widely used agent in the treatment of neuroblastoma. Unfortunately, the development of acquired chemoresistance limits its clinical use. To gain a detailed understanding of the mechanisms underlying the development of such chemoresistance, we comparatively analyzed established cisplatin-resistant neuroblastoma cell line (UKF-NB-4CDDP) and its sensitive counterpart (UKF-NB-4). First, using viability screenings, we confirmed the decreased sensitivity of tested cells to cisplatin and identified a cross-resistance to carboplatin and oxaliplatin. Then, the proteomic signatures were analyzed using nano liquid chromatography with tandem mass spectrometry. Among the proteins responsible for UKF-NB-4CDDP chemoresistance, ion channels transport family proteins, ATP-binding cassette superfamily proteins (ATP = adenosine triphosphate), solute carrier-mediated trans-membrane transporters, proteasome complex subunits, and V-ATPases were identified. Moreover, we detected markedly higher proteasome activity in UKF-NB-4CDDP cells and a remarkable lysosomal enrichment that can be inhibited by bafilomycin A to sensitize UKF-NB-4CDDP to CDDP. Our results indicate that lysosomal sequestration and proteasome activity may be one of the key mechanisms responsible for intrinsic chemoresistance of neuroblastoma to CDDP.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic.,Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic
| | - Hana Buchtelova
- Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic.,Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic
| | - Vivian de Los Rios
- Functional Proteomics, Department of Molecular Biomedicine and Proteomic Facility , Centro de Investigaciones Biológicas , Ramiro de Maeztu 9 , Madrid 280 40 , Spain
| | - José Ignacio Casal
- Functional Proteomics, Department of Molecular Biomedicine and Proteomic Facility , Centro de Investigaciones Biológicas , Ramiro de Maeztu 9 , Madrid 280 40 , Spain
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine , Charles University, and University Hospital Motol , V Uvalu 84 , 150 06 Prague 5 , Czech Republic
| | - Jan Hrabeta
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine , Charles University, and University Hospital Motol , V Uvalu 84 , 150 06 Prague 5 , Czech Republic
| | - Marie Belhajova
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine , Charles University, and University Hospital Motol , V Uvalu 84 , 150 06 Prague 5 , Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic.,Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry , Mendel University in Brno , Zemedelska 1 , 613 00 Brno , Czech Republic.,Central European Institute of Technology , Brno University of Technology , Purkynova 123 , 612 00 Brno , Czech Republic
| |
Collapse
|
43
|
Bolger MB, Macwan JS, Sarfraz M, Almukainzi M, Löbenberg R. The Irrelevance of In Vitro Dissolution in Setting Product Specifications for Drugs Like Dextromethorphan That are Subject to Lysosomal Trapping. J Pharm Sci 2019; 108:268-278. [DOI: 10.1016/j.xphs.2018.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 11/15/2022]
|
44
|
Rathi C, Lukka PB, Wagh S, Lee RE, Lenaerts AJ, Braunstein M, Hickey A, Gonzalez-Juarrero M, Meibohm B. Comparative pharmacokinetics of spectinamide 1599 after subcutaneous and intrapulmonary aerosol administration in mice. Tuberculosis (Edinb) 2018; 114:119-122. [PMID: 30711150 DOI: 10.1016/j.tube.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022]
Abstract
Spectinamides are a novel series of spectinomycin analogs being developed for the treatment of tuberculosis. Intrapulmonary aerosol (IPA) administration of lead spectinamide 1599 has previously been shown to be more efficacious than subcutaneous (SC) administration at comparable doses. The objective of the current study was to characterize the disposition of 1599 in plasma and lungs in mice in order to provide a potential rationale for the observed efficacy differences. 200 mg/kg of 1599 was administered to healthy BALB/c mice by SC injection or by IPA delivery. Plasma and major organs were collected at specified time points until 8 h after dosing. Drug concentrations were measured by LC-MS/MS and analyzed by noncompartmental pharmacokinetic analysis. 1599 demonstrated rapid absorption into plasma after IPA and SC administration, resulting in very similar plasma exposure for both routes. In contrast, drug exposure in the lungs was 48 times higher following IPA as compared to SC administration, which is highly desirable as the lungs are the main site of infection in pulmonary TB. The higher local exposure in the lungs is likely the basis for the increased efficacy after IPA compared to SC administration. Overall, this study supports the pulmonary route as a potential pathway for the treatment of tuberculosis with 1599.
Collapse
Affiliation(s)
- Chetan Rathi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pradeep B Lukka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Wagh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Richard E Lee
- Department of Chemical Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anne J Lenaerts
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, CO 80523, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anthony Hickey
- Discovery Science and Technology, RTI International, Durham, NC 27709, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacterial Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, CO 80523, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
45
|
Brewer PD, Romenskaia I, Mastick CC. A high-throughput chemical-genetics screen in murine adipocytes identifies insulin-regulatory pathways. J Biol Chem 2018; 294:4103-4118. [PMID: 30591588 DOI: 10.1074/jbc.ra118.006986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Pathways linking activation of the insulin receptor to downstream targets of insulin have traditionally been studied using a candidate gene approach. To elucidate additional pathways regulating insulin activity, we performed a forward chemical-genetics screen based on translocation of a glucose transporter 4 (Glut4) reporter expressed in murine 3T3-L1 adipocytes. To identify compounds with known targets, we screened drug-repurposing and natural product libraries. We identified, confirmed, and validated 64 activators and 65 inhibitors that acutely increase or rapidly decrease cell-surface Glut4 in adipocytes stimulated with submaximal insulin concentrations. These agents were grouped by target, chemical class, and mechanism of action. All groups contained multiple hits from a single drug class, and several comprised multiple structurally unrelated hits for a single target. Targets include the β-adrenergic and adenosine receptors. Agonists of these receptors increased and inverse agonists/antagonists decreased cell-surface Glut4 independently of insulin. Additional activators include insulin sensitizers (thiazolidinediones), insulin mimetics, dis-inhibitors (the mTORC1 inhibitor rapamycin), cardiotonic steroids (the Na+/K+-ATPase inhibitor ouabain), and corticosteroids (dexamethasone). Inhibitors include heterocyclic amines (tricyclic antidepressants) and 21 natural product supplements and herbal extracts. Mechanisms of action include effects on Glut4 trafficking, signal transduction, inhibition of protein synthesis, and dissipation of proton gradients. Two pathways that acutely regulate Glut4 translocation were discovered: de novo protein synthesis and endocytic acidification. The mechanism of action of additional classes of activators (tanshinones, dalbergiones, and coumarins) and inhibitors (flavonoids and resveratrol) remains to be determined. These tools are among the most sensitive, responsive, and reproducible insulin-activity assays described to date.
Collapse
Affiliation(s)
- Paul Duffield Brewer
- From the Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557
| | - Irina Romenskaia
- From the Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557
| | - Cynthia Corley Mastick
- From the Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557
| |
Collapse
|
46
|
Gowda R, Inamdar GS, Kuzu O, Dinavahi SS, Krzeminski J, Battu MB, Voleti SR, Amin S, Robertson GP. Identifying the structure-activity relationship of leelamine necessary for inhibiting intracellular cholesterol transport. Oncotarget 2018; 8:28260-28277. [PMID: 28423677 PMCID: PMC5438648 DOI: 10.18632/oncotarget.16002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/23/2017] [Indexed: 11/25/2022] Open
Abstract
Leelamine is an anticancer chemotherapeutic agent inhibiting intracellular cholesterol transport. Cell death mediated by leelamine occurs due to the lysosomotropic property of the compound, its accumulation in the lysosome, and inhibition of cholesterol transport leading to lack of availability for key processes required for functioning of cancer cells. The present study dissects the structure-activity-relationship of leelamine using synthesized derivatives of leelamine and abietic acid, a structurally similar compound, to identify the moiety responsible for anti-cancer activity. Similar to leelamine, all active derivatives had an amino group or a similar moiety that confers a lysosomotropic property to the compound enabling its accumulation in the lysosome. Active derivatives inhibited intracellular cholesterol transport and hindered xenografted melanoma tumor development without obvious systemic toxicity. In silico studies suggested that active derivatives accumulating in lysosomes bound to NPC1, a protein responsible for cholesterol export from the lysosome, to inhibit its activity that then caused accumulation, and lack of cholesterol availability for other key cellular activities. Thus, active derivatives of leelamine or abietic acid maintained lysosomotropic properties, bound to NPC1, and disrupted cellular cholesterol transport as well as availability to retard tumor development.
Collapse
Affiliation(s)
- Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Foreman Foundation for Melanoma Research Laboratory, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gajanan S Inamdar
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Omer Kuzu
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Saketh S Dinavahi
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jacek Krzeminski
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Madhu Babu Battu
- Drug Discovery Research Laboratory, INDRAS Private Limited, Hyderabad, India 500040
| | - Sreedhara R Voleti
- Drug Discovery Research Laboratory, INDRAS Private Limited, Hyderabad, India 500040
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Foreman Foundation for Melanoma Research Laboratory, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
47
|
Natale A, Boeckmans J, Desmae T, De Boe V, De Kock J, Vanhaecke T, Rogiers V, Rodrigues RM. Hepatic cells derived from human skin progenitors show a typical phospholipidotic response upon exposure to amiodarone. Toxicol Lett 2018; 284:184-194. [DOI: 10.1016/j.toxlet.2017.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
|
48
|
Sudheesh KV, Joseph MM, Philips DS, Samanta A, Kumar Maiti K, Ajayaghosh A. pH-Controlled Nanoparticles Formation and Tracking of Lysosomal Zinc Ions in Cancer Cells by Fluorescent Carbazole-Bipyridine Conjugates. ChemistrySelect 2018. [DOI: 10.1002/slct.201703131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Karivachery V. Sudheesh
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Manu M. Joseph
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Divya S. Philips
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Animesh Samanta
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Ayappanpillai Ajayaghosh
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| |
Collapse
|
49
|
Gulde R, Anliker S, Kohler HPE, Fenner K. Ion Trapping of Amines in Protozoa: A Novel Removal Mechanism for Micropollutants in Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:52-60. [PMID: 29182849 DOI: 10.1021/acs.est.7b03556] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To optimize removal of organic micropollutants from the water cycle, understanding the processes during activated sludge treatment is essential. In this study, we hypothesize that aliphatic amines, which are highly abundant among organic micropollutants, are partly removed from the water phase in activated sludge through ion trapping in protozoa. In ion trapping, which has been extensively investigated in medical research, the neutral species of amine-containing compounds diffuse through the cell membrane and further into acidic vesicles present in eukaryotic cells such as protozoa. There they become trapped because diffusion of the positively charged species formed in the acidic vesicles is strongly hindered. We tested our hypothesis with two experiments. First, we studied the distribution of the fluorescent amine acridine orange in activated sludge by confocal fluorescence imaging. We observed intense fluorescence in distinct compartments of the protozoa, but not in the bacterial biomass. Second, we investigated the distribution of 12 amine-containing and eight control micropollutants in both regular activated sludge and sludge where the protozoa had been inactivated. In contrast to most control compounds, the amine-containing micropollutants displayed a distinctly different behavior in the noninhibited sludge compared to the inhibited one: (i) more removal from the liquid phase; (ii) deviation from first-order kinetics for the removal from the liquid phase; and (iii) higher amounts in the solid phase. These results provide strong evidence that ion trapping in protozoa occurs and that it is an important removal mechanism for amine-containing micropollutants in batch experiments with activated sludge that has so far gone unnoticed. We expect that our findings will trigger further investigations on the importance of this process in full-scale wastewater treatment systems, including its relevance for accumulation of ammonium.
Collapse
Affiliation(s)
- Rebekka Gulde
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
| | - Sabine Anliker
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092 Zürich, Switzerland
| | - Hans-Peter E Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092 Zürich, Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092 Zürich, Switzerland
- Department of Chemistry, University of Zürich , 8057 Zürich, Switzerland
| |
Collapse
|
50
|
de Tezanos Pinto F, Adamo HP. The strategic function of the P5-ATPase ATP13A2 in toxic waste disposal. Neurochem Int 2018; 112:108-113. [DOI: 10.1016/j.neuint.2017.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/28/2022]
|