1
|
Pate S, Taujanskas J, Wells R, Robertson CM, O'Neill PM, Stachulski AV. Convenient syntheses of 2-acylamino-4-halothiazoles and acylated derivatives using a versatile Boc-intermediate. RSC Adv 2024; 14:27894-27903. [PMID: 39224653 PMCID: PMC11367624 DOI: 10.1039/d4ra04959d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The 2-aminothiazole grouping is a significant feature of many series of biologically active molecules, including antibiotics, anticancer agents and NSAIDs. We have a longstanding interest in the synthesis and biological evaluation of thiazolides, viz. [2-hydroxyaroyl-N-(thiazol-2-yl)-amides] which have broad spectrum antiinfective, especially antiviral, properties. However, 2-amino-4-substituted thiazoles, especially 4-halo examples, are not easily available. We now report practical, efficient syntheses of this class from readily available pseudothiohydantoin, or 2-aminothiazol-4(5H)-one: the key intermediate was its Boc derivative, from which, under Appel-related conditions, Br, Cl and I could all be introduced at C(4). Whereas 2-amino-4-Br/4-Cl thiazoles gave low yields of mixed products on acylation, including a bis-acyl product, further acylation of the Boc intermediates, with a final mild deprotection step, afforded the desired thiazolides cleanly and in good yields. In contrast, even mild hydrolysis of 2-acetamido-4-chlorothiazole led to decomposition with fast reversion to 2-aminothiazol-4(5H)-one. We also present a correction of a claimed synthesis of 2-acetamido-4-chlorothiazole, which in fact produces its 5-chloro isomer.
Collapse
Affiliation(s)
- Sophie Pate
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK +44-(0)151-794-3482 +44-(0)151-794-3482
| | - Joshua Taujanskas
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK +44-(0)151-794-3482 +44-(0)151-794-3482
| | - Robyn Wells
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK +44-(0)151-794-3482 +44-(0)151-794-3482
| | - Craig M Robertson
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK +44-(0)151-794-3482 +44-(0)151-794-3482
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK +44-(0)151-794-3482 +44-(0)151-794-3482
| | - Andrew V Stachulski
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK +44-(0)151-794-3482 +44-(0)151-794-3482
| |
Collapse
|
2
|
Stachulski AV, Rossignol JF, Pate S, Taujanskas J, Iggo JA, Aerts R, Pascal E, Piacentini S, La Frazia S, Santoro MG, van Vooren L, Sintubin L, Cooper M, Swift K, O’Neill PM. Thiazolide Prodrug Esters and Derived Peptides: Synthesis and Activity. ACS BIO & MED CHEM AU 2023; 3:327-334. [PMID: 37599793 PMCID: PMC10436260 DOI: 10.1021/acsbiomedchemau.2c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 08/22/2023]
Abstract
Amino acid ester prodrugs of the thiazolides, introduced to improve the pharmacokinetic parameters of the parent drugs, proved to be stable as their salts but were unstable at pH > 5. Although some of the instability was due to simple hydrolysis, we have found that the main end products of the degradation were peptides formed by rearrangement. These peptides were stable solids: they maintained significant antiviral activity, and in general, they showed improved pharmacokinetics (better solubility and reduced clearance) compared to the parent thiazolides. We describe the preparation and evaluation of these peptides.
Collapse
Affiliation(s)
- Andrew V. Stachulski
- Donnan
and Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | | | - Sophie Pate
- Donnan
and Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Joshua Taujanskas
- Donnan
and Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Jonathan A. Iggo
- Donnan
and Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Rudi Aerts
- Romark
Belgium BVBA, Roosveld
6, 3400 Landen, Belgium
| | | | - Sara Piacentini
- Department
of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simone La Frazia
- Department
of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - M. Gabriella Santoro
- Department
of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Institute
of Translational Pharmacology, CNR, Area della Ricerca di Roma 2, Via Fosso del Cavaliere, 00133 Roma, Italy
| | | | | | - Mark Cooper
- Bio-Techne, Avonmouth, Bristol BS11 9QD, U.K.
| | - Karl Swift
- Bio-Techne, Avonmouth, Bristol BS11 9QD, U.K.
| | - Paul M. O’Neill
- Donnan
and Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
3
|
Xu J, Xue Y, Bolinger AA, Li J, Zhou M, Chen H, Li H, Zhou J. Therapeutic potential of salicylamide derivatives for combating viral infections. Med Res Rev 2023; 43:897-931. [PMID: 36905090 PMCID: PMC10247541 DOI: 10.1002/med.21940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/09/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023]
Abstract
Since time immemorial human beings have constantly been fighting against viral infections. The ongoing and devastating coronavirus disease 2019 pandemic represents one of the most severe and most significant public health emergencies in human history, highlighting an urgent need to develop broad-spectrum antiviral agents. Salicylamide (2-hydroxybenzamide) derivatives, represented by niclosamide and nitazoxanide, inhibit the replication of a broad range of RNA and DNA viruses such as flavivirus, influenza A virus, and coronavirus. Moreover, nitazoxanide was effective in clinical trials against different viral infections including diarrhea caused by rotavirus and norovirus, uncomplicated influenza A and B, hepatitis B, and hepatitis C. In this review, we summarize the broad antiviral activities of salicylamide derivatives, the clinical progress, and the potential targets or mechanisms against different viral infections and highlight their therapeutic potential in combating the circulating and emerging viral infections in the future.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
4
|
Al-kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Nitazoxanide and COVID-19: A review. Mol Biol Rep 2022; 49:11169-11176. [PMID: 36094778 PMCID: PMC9465141 DOI: 10.1007/s11033-022-07822-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a current global illness triggered by severe acute respiratory coronavirus 2 (SARS-CoV-2) leading to acute viral pneumonia, acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and cytokine storm in severe cases. In the COVID-19 era, different unexpected old drugs are repurposed to find out effective and cheap therapies against SARS-CoV-2. One of these elected drugs is nitazoxanide (NTZ) which is an anti-parasitic drug with potent antiviral activity. It is effectively used in the treatment of protozoa and various types of helminths in addition to various viral infections. Thus, we aimed to elucidate the probable effect of NTZ on SARS-CoV-2 infections. Findings of the present study illustrated that NTZ can reduce SARS-CoV-2-induced inflammatory reactions through activation of interferon (IFN), restoration of innate immunity, inhibition of the release of pro-inflammatory cytokines, suppression of the mammalian target of rapamycin (mTOR), and induction of autophagic cell death. Moreover, it can inhibit the induction of oxidative stress which causes cytokine storm and is associated with ALI, ARDS, and multi-organ damage (MOD). This study concluded that NTZ has important anti-inflammatory and immunological properties that may mitigate SARS-CoV-2 infection-induced inflammatory disorders. Despite broad-spectrum antiviral properties of NTZ, the direct anti-SARS-CoV-2 effect was not evident and documented in recent studies. Then, in silico and in vitro studies in addition to clinical trials and prospective studies are needed to confirm the beneficial impact of NTZ on the pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| |
Collapse
|
5
|
Irabuena C, Scarone L, de Souza GE, Aguiar ACC, Mendes GR, Guido RVC, Serra G. Synthesis and antiplasmodial assessment of nitazoxanide and analogs as new antimalarial candidates. Med Chem Res 2022; 31:426-435. [PMID: 35106047 PMCID: PMC8794615 DOI: 10.1007/s00044-021-02843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/16/2021] [Indexed: 10/26/2022]
Abstract
During the last years, the progression to control malaria disease seems to be slowed and WHO (World Health Organization) reported a modeling analysis with the prediction of the increase in malaria morbidity and mortality in sub-Saharan Africa during the COVID-19 pandemic. A rapid way to the discovery of new drugs could be carried out by performing investigations to identify drugs based on repurposing of "old" drugs. The 5-nitrothiazole drug, Nitazoxanide was shown to be active against intestinal protozoa, human helminths, anaerobic bacteria, viruses, etc. In this work, Nitazoxanide and analogs were prepared using two methodologies and evaluated against P. falciparum 3D7. A bithiazole analog, showed attractive inhibitory activity with an EC50 value of 5.9 μM, low propensity to show toxic effect against HepG2 cells at 25 μM, and no cross-resistance with standard antimalarials.
Collapse
Affiliation(s)
- Camila Irabuena
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, CC1157 Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Laura Scarone
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, CC1157 Montevideo, Uruguay
| | - Guilherme Eduardo de Souza
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo 13563-120 Brazil
| | - Anna Caroline Campos Aguiar
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo 13563-120 Brazil
| | - Giovana Rossi Mendes
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo 13563-120 Brazil
| | - Rafael Victorio Carvalho Guido
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo 13563-120 Brazil
| | - Gloria Serra
- Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, CC1157 Montevideo, Uruguay
| |
Collapse
|
6
|
Synthesis, antiviral activity, preliminary pharmacokinetics and structural parameters of thiazolide amine salts. Future Med Chem 2021; 13:1731-1741. [PMID: 34402654 DOI: 10.4155/fmc-2021-0055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: The thiazolides, typified by nitazoxanide, are an important class of anti-infective agents. A significant problem with nitazoxanide and its active circulating metabolite tizoxanide is their poor solubility. Results: We report the preparation and evaluation of a series of amine salts of tizoxanide and the corresponding 5-Cl thiazolide. These salts demonstrated improved aqueous solubility and absorption, as shown by physicochemical and in vivo measurements. They combine antiviral activity against influenza A virus with excellent cell safety indices. We also report the x-ray crystal structural data of the ethanolamine salt. Conclusion: The ethanol salt of thiazolide retains the activity of the parent together with an improved cell safety index, making it a good candidate for further evaluation.
Collapse
|
7
|
Stachulski AV, Taujanskas J, Pate SL, Rajoli RKR, Aljayyoussi G, Pennington SH, Ward SA, Hong WD, Biagini GA, Owen A, Nixon GL, Leung SC, O’Neill PM. Therapeutic Potential of Nitazoxanide: An Appropriate Choice for Repurposing versus SARS-CoV-2? ACS Infect Dis 2021; 7:1317-1331. [PMID: 33352056 PMCID: PMC7771247 DOI: 10.1021/acsinfecdis.0c00478] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/16/2022]
Abstract
The rapidly growing COVID-19 pandemic is the most serious global health crisis since the "Spanish flu" of 1918. There is currently no proven effective drug treatment or prophylaxis for this coronavirus infection. While developing safe and effective vaccines is one of the key focuses, a number of existing antiviral drugs are being evaluated for their potency and efficiency against SARS-CoV-2 in vitro and in the clinic. Here, we review the significant potential of nitazoxanide (NTZ) as an antiviral agent that can be repurposed as a treatment for COVID-19. Originally, NTZ was developed as an antiparasitic agent especially against Cryptosporidium spp.; it was later shown to possess potent activity against a broad range of both RNA and DNA viruses, including influenza A, hepatitis B and C, and coronaviruses. Recent in vitro assessment of NTZ has confirmed its promising activity against SARS-CoV-2 with an EC50 of 2.12 μM. Here we examine its drug properties, antiviral activity against different viruses, clinical trials outcomes, and mechanisms of antiviral action from the literature in order to highlight the therapeutic potential for the treatment of COVID-19. Furthermore, in preliminary PK/PD analyses using clinical data reported in the literature, comparison of simulated TIZ (active metabolite of NTZ) exposures at two doses with the in vitro potency of NTZ against SARS-CoV-2 gives further support for drug repurposing with potential in combination chemotherapy approaches. The review concludes with details of second generation thiazolides under development that could lead to improved antiviral therapies for future indications.
Collapse
Affiliation(s)
| | - Joshua Taujanskas
- Department of Chemistry, University of
Liverpool, Liverpool L69 7ZD, U.K.
| | - Sophie L. Pate
- Department of Chemistry, University of
Liverpool, Liverpool L69 7ZD, U.K.
| | - Rajith K. R. Rajoli
- Department of Molecular and Clinical Pharmacology,
Materials Innovation Factory, University of Liverpool,
Liverpool L7 3NY, U.K.
| | - Ghaith Aljayyoussi
- Centre for Drugs and Diagnostics, Department of Tropical
Disease Biology, Liverpool School of Tropical Medicine,
Liverpool L3 5QA, U.K.
| | - Shaun H. Pennington
- Centre for Drugs and Diagnostics, Department of Tropical
Disease Biology, Liverpool School of Tropical Medicine,
Liverpool L3 5QA, U.K.
| | - Stephen A. Ward
- Centre for Drugs and Diagnostics, Department of Tropical
Disease Biology, Liverpool School of Tropical Medicine,
Liverpool L3 5QA, U.K.
| | - Weiqian David Hong
- Department of Chemistry, University of
Liverpool, Liverpool L69 7ZD, U.K.
| | - Giancarlo A. Biagini
- Centre for Drugs and Diagnostics, Department of Tropical
Disease Biology, Liverpool School of Tropical Medicine,
Liverpool L3 5QA, U.K.
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology,
Materials Innovation Factory, University of Liverpool,
Liverpool L7 3NY, U.K.
| | - Gemma L. Nixon
- Department of Chemistry, University of
Liverpool, Liverpool L69 7ZD, U.K.
| | - Suet C. Leung
- Department of Chemistry, University of
Liverpool, Liverpool L69 7ZD, U.K.
| | - Paul M. O’Neill
- Department of Chemistry, University of
Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
8
|
Rasool N, Yasmin F, Sahai S, Hussain W, Inam H, Arshad A. Biological perspective of thiazolide derivatives against Mpro and MTase of SARS-CoV-2: Molecular docking, DFT and MD simulation investigations. Chem Phys Lett 2021; 771:138463. [PMID: 33716307 PMCID: PMC7936854 DOI: 10.1016/j.cplett.2021.138463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
Humans around the globe have been severely affected by SARS-CoV-2 and no treatment has yet been authorized for the treatment of this severe condition brought by COVID-19. Here, an in silico research was executed to elucidate the inhibitory potential of selected thiazolides derivatives against SARS-CoV-2 Protease (Mpro) and Methyltransferase (MTase). Based on the analysis; 4 compounds were discovered to have efficacious and remarkable results against the proteins of the interest. Primarily, results obtained through this study not only allude these compounds as potential inhibitors but also pave the way for in vivo and in vitro validation of these compounds.
Collapse
Affiliation(s)
- Nouman Rasool
- Center for Professional & Applied Studies, Lahore, Pakistan,Corresponding author
| | - Farkhanda Yasmin
- Department of Biotechnology, Khawaja Fareed University of Science and Technology, Rahim Yar Khan, Pakistan
| | | | - Waqar Hussain
- Center for Professional & Applied Studies, Lahore, Pakistan,National Center of Artificial Intelligence, Punjab University College of Information Technology, University of the Punjab, Lahore, Pakistan
| | - Hadiqa Inam
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Arooj Arshad
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
9
|
Ahmed T, Rahman SMA, Asaduzzaman M, Islam ABMMK, Chowdhury AKA. Synthesis, in vitro bioassays, and computational study of heteroaryl nitazoxanide analogs. Pharmacol Res Perspect 2021; 9:e00800. [PMID: 34086411 PMCID: PMC8177060 DOI: 10.1002/prp2.800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Antiprotozoal drug nitazoxanide (NTZ) has shown diverse pharmacological properties and has appeared in several clinical trials. Herein we present the synthesis, characterization, in vitro biological investigation, and in silico study of four hetero aryl amide analogs of NTZ. Among the synthesized molecules, compound 2 and compound 4 exhibited promising antibacterial activity against Escherichia coli (E. coli), superior to that displayed by the parent drug nitazoxanide as revealed from the in vitro antibacterial assay. Compound 2 displayed zone of inhibition of 20 mm, twice as large as the parent drug NTZ (10 mm) in their least concentration (12.5 µg/ml). Compound 1 also showed antibacterial effect similar to that of nitazoxanide. The analogs were also tested for in vitro cytotoxic activity by employing cell counting kit-8 (CCK-8) assay technique in HeLa cell line, and compound 2 was identified as a potential anticancer agent having IC50 value of 172 µg which proves it to be more potent than nitazoxanide (IC50 = 428 µg). Furthermore, the compounds were subjected to molecular docking study against various bacterial and cancer signaling proteins. The in vitro test results corroborated with the in silico docking study as compound 2 and compound 4 had comparatively stronger binding affinity against the proteins and showed a higher docking score than nitazoxanide toward human mitogen-activated protein kinase (MAPK9) and fatty acid biosynthesis enzyme (FabH) of E. coli. Moreover, the docking study demonstrated dihydrofolate reductase (DHFR) and thymidylate synthase (TS) as probable new targets for nitazoxanide and its synthetic analogs. Overall, the study suggests that nitazoxanide and its analogs can be a potential lead compound in the drug development.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Department of Clinical Pharmacy and PharmacologyFaculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and PharmacologyFaculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Muhammad Asaduzzaman
- Department of Clinical Pharmacy and PharmacologyFaculty of PharmacyUniversity of DhakaDhakaBangladesh
| | | | - A. K. Azad Chowdhury
- Department of Clinical Pharmacy and PharmacologyFaculty of PharmacyUniversity of DhakaDhakaBangladesh
| |
Collapse
|
10
|
Kannigadu C, N'Da DD. Recent Advances in the Synthesis and Development of Nitroaromatics as Anti-Infective Drugs. Curr Pharm Des 2021; 26:4658-4674. [PMID: 32228417 DOI: 10.2174/1381612826666200331091853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Infectious diseases commonly occur in tropical and sub-tropical countries. The pathogens of such diseases are able to multiply in human hosts, warranting their continual survival. Infections that are commonplace include malaria, chagas, trypanosomiasis, giardiasis, amoebiasis, toxoplasmosis and leishmaniasis. Malaria is known to cause symptoms, such as high fever, chills, nausea and vomiting, whereas chagas disease causes enlarged lymph glands, muscle pain, swelling and chest pain. People suffering from African trypanosomiasis may experience severe headaches, irritability, extreme fatigue and swollen lymph nodes. As an infectious disease progresses, the human host may also experience personality changes and neurologic problems. If left untreated, most of these diseases can lead to death. Parasites, microbes and bacteria are increasingly adapting and generating strains that are resistant to current clinical drugs. Drug resistance creates an urgency for the development of new drugs to treat these infections. Nitro containing drugs, such as chloramphenicol, metronidazole, tinidazole and secnidazole had been banned for use as antiparasitic agents due to their toxicity. However, recent discoveries of nitrocontaining anti-tuberculosis drugs, i.e. delamanid and pretonamid, and the repurposing of flexinidazole for use in combination with eflornithine for the treatment of human trypanosomiasis, have ignited interest in nitroaromatic scaffolds as viable sources of potential anti-infective agents. This review highlights the differences between old and new nitration methodologies. It furthermore offers insights into recent advances in the development of nitroaromatics as anti-infective drugs.
Collapse
Affiliation(s)
- Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Lokhande AS, Devarajan PV. A review on possible mechanistic insights of Nitazoxanide for repurposing in COVID-19. Eur J Pharmacol 2021; 891:173748. [PMID: 33227285 PMCID: PMC7678434 DOI: 10.1016/j.ejphar.2020.173748] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
The global pandemic of Coronavirus Disease 2019 (COVID-19) has brought the world to a grinding halt. A major cause of concern is the respiratory distress associated mortality attributed to the cytokine storm. Despite myriad rapidly approved clinical trials with repurposed drugs, and time needed to develop a vaccine, accelerated search for repurposed therapeutics is still ongoing. In this review, we present Nitazoxanide a US-FDA approved antiprotozoal drug, as one such promising candidate. Nitazoxanide which is reported to exert broad-spectrum antiviral activity against various viral infections, revealed good in vitro activity against SARS-CoV-2 in cell culture assays, suggesting potential for repurposing in COVID-19. Furthermore, nitazoxanide displays the potential to boost host innate immune responses and thereby tackle the life-threatening cytokine storm. Possibilities of improving lung, as well as multiple organ damage and providing value addition to COVID-19 patients with comorbidities, are other important facets of the drug. The review juxtaposes the role of nitazoxanide in fighting COVID-19 pathogenesis at multiple levels highlighting the great promise the drug exhibits. The in silico data and in vitro efficacy in cell lines confirms the promise of nitazoxanide. Several approved clinical trials world over further substantiate leveraging nitazoxanide for COVID-19 therapy.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
12
|
Lei K, Gu X, Alvarado AG, Du Y, Luo S, Ahn EH, Kang SS, Ji B, Liu X, Mao H, Fu H, Kornblum HI, Jin L, Li H, Ye K. Discovery of a dual inhibitor of NQO1 and GSTP1 for treating glioblastoma. J Hematol Oncol 2020; 13:141. [PMID: 33087132 PMCID: PMC7579906 DOI: 10.1186/s13045-020-00979-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a universally lethal tumor with frequently overexpressed or mutated epidermal growth factor receptor (EGFR). NADPH quinone oxidoreductase 1 (NQO1) and glutathione-S-transferase Pi 1 (GSTP1) are commonly upregulated in GBM. NQO1 and GSTP1 decrease the formation of reactive oxygen species (ROS), which mediates the oxidative stress and promotes GBM cell proliferation. METHODS High-throughput screen was used for agents selectively active against GBM cells with EGFRvIII mutations. Co-crystal structures were revealed molecular details of target recognition. Pharmacological and gene knockdown/overexpression approaches were used to investigate the oxidative stress in vitro and in vivo. RESULTS We identified a small molecular inhibitor, "MNPC," that binds to both NQO1 and GSTP1 with high affinity and selectivity. MNPC inhibits NQO1 and GSTP1 enzymes and induces apoptosis in GBM, specifically inhibiting the growth of cell lines and primary GBM bearing the EGFRvIII mutation. Co-crystal structures between MNPC and NQO1, and molecular docking of MNPC with GSTP1 reveal that it binds the active sites and acts as a potent dual inhibitor. Inactivation of both NQO1 and GSTP1 with siRNA or MNPC results in imbalanced redox homeostasis, leading to apoptosis and mitigated cancer proliferation in vitro and in vivo. CONCLUSIONS Thus, MNPC, a dual inhibitor for both NQO1 and GSTP1, provides a novel lead compound for treating GBM via the exploitation of specific vulnerabilities created by mutant EGFR.
Collapse
Affiliation(s)
- Kecheng Lei
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Xiaoxia Gu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Alvaro G Alvarado
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Atlanta, USA
| | - Shilin Luo
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Eun Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Ji
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Atlanta, USA
| | - Harley I Kornblum
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Lingjing Jin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China.
| | - Hua Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
13
|
Mahmoud DB, Shitu Z, Mostafa A. Drug repurposing of nitazoxanide: can it be an effective therapy for COVID-19? J Genet Eng Biotechnol 2020; 18:35. [PMID: 32725286 PMCID: PMC7385476 DOI: 10.1186/s43141-020-00055-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Background The current outbreak of pandemic coronavirus disease 2019 (COVID-19) aggravates serious need for effective therapeutics. Over recent years, drug repurposing has been accomplished as an important opportunity in drug development as it shortens the time consumed for development, besides sparing the cost and the efforts exerted in the research and development process. Main body of the abstract The FDA-approved antiparasitic drug, nitazoxanide (NTZ), has been found to have antiviral activity against different viral infections such as coronaviruses, influenza, hepatitis C virus (HCV), hepatitis B virus (HBV), and other viruses signifying its potential as a broad spectrum antiviral drug. Moreover, it has been recently reported that NTZ exhibited in vitro inhibition of SARS-CoV-2 at a small micromolar concentration. Additionally, NTZ suppresses the production of cytokines emphasizing its potential to manage COVID-19-induced cytokine storm. Furthermore, the reported efficacy of NTZ to bronchodilate the extremely contracted airways can be beneficial in alleviating COVID-19-associated symptoms. Short conclusion All these findings, along with the high safety record of the drug, have gained our interest to urge conductance of clinical trials to assess the potential benefits of using it in COVID-19 patients. Thus, in this summarized article, we review the antiviral activities of NTZ and highlight its promising therapeutic actions that make the drug worth clinical trials.
Collapse
Affiliation(s)
- Dina B Mahmoud
- Pharmaceutics Department, National Organization for Drug Control and Research, Giza, Egypt.
| | - Zayyanu Shitu
- Hospital Services, Management Board, Ministry of Health, Zamfara State, Gusau, Nigeria
| | - Ahmed Mostafa
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Cairo, Egypt
| |
Collapse
|
14
|
LeMessurier KS, Tiwary M, Morin NP, Samarasinghe AE. Respiratory Barrier as a Safeguard and Regulator of Defense Against Influenza A Virus and Streptococcus pneumoniae. Front Immunol 2020; 11:3. [PMID: 32117216 PMCID: PMC7011736 DOI: 10.3389/fimmu.2020.00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022] Open
Abstract
The primary function of the respiratory system of gas exchange renders it vulnerable to environmental pathogens that circulate in the air. Physical and cellular barriers of the respiratory tract mucosal surface utilize a variety of strategies to obstruct microbe entry. Physical barrier defenses including the surface fluid replete with antimicrobials, neutralizing immunoglobulins, mucus, and the epithelial cell layer with rapidly beating cilia form a near impenetrable wall that separates the external environment from the internal soft tissue of the host. Resident leukocytes, primarily of the innate immune branch, also maintain airway integrity by constant surveillance and the maintenance of homeostasis through the release of cytokines and growth factors. Unfortunately, pathogens such as influenza virus and Streptococcus pneumoniae require hosts for their replication and dissemination, and prey on the respiratory tract as an ideal environment causing severe damage to the host during their invasion. In this review, we outline the host-pathogen interactions during influenza and post-influenza bacterial pneumonia with a focus on inter- and intra-cellular crosstalk important in pulmonary immune responses.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Pulmonology, Allergy-Immunology, and Sleep, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| | - Meenakshi Tiwary
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Pulmonology, Allergy-Immunology, and Sleep, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| | - Nicholas P Morin
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Critical Care Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amali E Samarasinghe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Pulmonology, Allergy-Immunology, and Sleep, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| |
Collapse
|
15
|
Ripani P, Delp J, Bode K, Delgado ME, Dietrich L, Betzler VM, Yan N, von Scheven G, Mayer TU, Leist M, Brunner T. Thiazolides promote G1 cell cycle arrest in colorectal cancer cells by targeting the mitochondrial respiratory chain. Oncogene 2019; 39:2345-2357. [PMID: 31844249 DOI: 10.1038/s41388-019-1142-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/10/2023]
Abstract
Systemic toxicity and tumor cell resistance still limit the efficacy of chemotherapy in colorectal cancer. Therefore, alternative treatments are desperately needed. The thiazolide Nitazoxanide (NTZ) is an FDA-approved drug for the treatment of parasite-mediated infectious diarrhea with a favorable safety profile. Interestingly, NTZ and the thiazolide RM4819-its bromo-derivative lacking antibiotic activity-are also promising candidates for cancer treatment. Yet the exact anticancer mechanism(s) of these compounds still remains unclear. In this study, we systematically investigated RM4819 and NTZ in 2D and 3D colorectal cancer culture systems. Both compounds strongly inhibited proliferation of colon carcinoma cell lines by promoting G1 phase cell cycle arrest. Thiazolide-induced cell cycle arrest was independent of the p53/p21 axis, but was mediated by inhibition of protein translation via the mTOR/c-Myc/p27 pathway, likely caused by inhibition of mitochondrial respiration. While both thiazolides demonstrated mitochondrial uncoupling activity, only RM4819 inhibited the mitochondrial respiratory chain complex III. Interestingly, thiazolides also potently inhibited the growth of murine colonic tumoroids in a comparable manner with cisplatin, while in contrast to cisplatin thiazolides did not affect the growth of primary intestinal organoids. Thus, thiazolides appear to have a tumor-selective antiproliferative activity, which offers new perspectives in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- P Ripani
- Department of Biology, Biochemical Pharmacology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology KORS-CB, University of Konstanz, Konstanz, Germany
| | - J Delp
- Konstanz Research School Chemical Biology KORS-CB, University of Konstanz, Konstanz, Germany.,Chair for In Vitro Toxicology and Biomedicine, inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - K Bode
- Department of Biology, Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - M E Delgado
- Department of Biology, Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - L Dietrich
- Department of Biology, Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - V M Betzler
- Department of Biology, Biochemical Pharmacology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau, University of Konstanz, Konstanz, Germany
| | - N Yan
- Department of Medicinal Chemistry, Peking University Health Science Centre, Beijing, China
| | - G von Scheven
- Department of Biology, Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - T U Mayer
- Konstanz Research School Chemical Biology KORS-CB, University of Konstanz, Konstanz, Germany.,Department of Biology, Molecular Genetics, University of Konstanz, Konstanz, Germany
| | - M Leist
- Konstanz Research School Chemical Biology KORS-CB, University of Konstanz, Konstanz, Germany.,Chair for In Vitro Toxicology and Biomedicine, inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - T Brunner
- Department of Biology, Biochemical Pharmacology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology KORS-CB, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
16
|
Behzadi MA, Leyva-Grado VH. Overview of Current Therapeutics and Novel Candidates Against Influenza, Respiratory Syncytial Virus, and Middle East Respiratory Syndrome Coronavirus Infections. Front Microbiol 2019; 10:1327. [PMID: 31275265 PMCID: PMC6594388 DOI: 10.3389/fmicb.2019.01327] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/28/2019] [Indexed: 01/26/2023] Open
Abstract
Emergence and re-emergence of respiratory virus infections represent a significant threat to global public health, as they occur seasonally and less frequently (such as in the case of influenza virus) as pandemic infections. Some of these viruses have been in the human population for centuries and others had recently emerged as a public health problem. Influenza viruses have been affecting the human population for a long time now; however, their ability to rapidly evolve through antigenic drift and antigenic shift causes the emergence of new strains. A recent example of these events is the avian-origin H7N9 influenza virus outbreak currently undergoing in China. Human H7N9 influenza viruses are resistant to amantadines and some strains are also resistant to neuraminidase inhibitors greatly limiting the options for treatment. Respiratory syncytial virus (RSV) may cause a lower respiratory tract infection characterized by bronchiolitis and pneumonia mainly in children and the elderly. Infection with RSV can cause severe disease and even death, imposing a severe burden for pediatric and geriatric health systems worldwide. Treatment for RSV is mainly supportive since the only approved therapy, a monoclonal antibody, is recommended for prophylactic use in high-risk patients. The Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging respiratory virus. The virus was first recognized in 2012 and it is associated with a lower respiratory tract disease that is more severe in patients with comorbidities. No licensed vaccines or antivirals have been yet approved for the treatment of MERS-CoV in humans. It is clear that the discovery and development of novel antivirals that can be used alone or in combination with existing therapies to treat these important respiratory viral infections are critical. In this review, we will describe some of the novel therapeutics currently under development for the treatment of these infections.
Collapse
Affiliation(s)
- Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Victor H Leyva-Grado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
17
|
Colella M, Musci P, Carlucci C, Lillini S, Tomassetti M, Aramini A, Degennaro L, Luisi R. 1,3-Dibromo-1,1-difluoro-2-propanone as a Useful Synthon for a Chemoselective Preparation of 4-Bromodifluoromethyl Thiazoles. ACS OMEGA 2018; 3:14841-14848. [PMID: 31458153 PMCID: PMC6644220 DOI: 10.1021/acsomega.8b02273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/22/2018] [Indexed: 06/10/2023]
Abstract
We report herein a synthetic protocol for the preparation of 1,3-dibromo-1,1-difluoro-2-propanone, a new synthon used for the first time in a reaction with aromatic amines and sodium thiocyanate, leading to thiazoles which are useful candidates in drug discovery programs. The new synthon allows to introduce a bromodifluoromethyl group at the C4 of the thiazole, and it is amenable of further transformation such as the Br/F exchange useful in radiopharmaceutics. Application of the strategy to the preparation of a precursor of the biologically relevant DF2755Y is also reported.
Collapse
Affiliation(s)
- Marco Colella
- Department
of Pharmacy—Drug Sciences, University
of Bari “A. Moro” Via E. Orabona 4, Bari 70125, Italy
| | - Pantaleo Musci
- Department
of Pharmacy—Drug Sciences, University
of Bari “A. Moro” Via E. Orabona 4, Bari 70125, Italy
| | - Claudia Carlucci
- Department
of Pharmacy—Drug Sciences, University
of Bari “A. Moro” Via E. Orabona 4, Bari 70125, Italy
| | - Samuele Lillini
- Department
of Discovery, Dompé Farmaceutici
S.p.A., Via Pietro Castellino, Napoli 80131, Italy
| | - Mara Tomassetti
- Department
of Discovery, Dompé Farmaceutici
S.p.A., Via Pietro Castellino, Napoli 80131, Italy
| | - Andrea Aramini
- Department
of Discovery, Dompé Farmaceutici
S.p.A., Via Campo di
Pile, L’Aquila 67100, Italy
- Department
of Discovery, Dompé Farmaceutici
S.p.A., Via Pietro Castellino, Napoli 80131, Italy
| | - Leonardo Degennaro
- Department
of Pharmacy—Drug Sciences, University
of Bari “A. Moro” Via E. Orabona 4, Bari 70125, Italy
| | - Renzo Luisi
- Department
of Pharmacy—Drug Sciences, University
of Bari “A. Moro” Via E. Orabona 4, Bari 70125, Italy
| |
Collapse
|