1
|
Ghanem R, Youf R, Haute T, Buin X, Riool M, Pourchez J, Montier T. The (re)emergence of aerosol delivery: Treatment of pulmonary diseases and its clinical challenges. J Control Release 2025; 379:421-439. [PMID: 39800241 DOI: 10.1016/j.jconrel.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Aerosol delivery represents a rapid and non-invasive way to directly reach the lungs while escaping the hepatic first-pass effect. The development of pulmonary drugs for respiratory diseases such as cystic fibrosis, lung infections, pulmonary fibrosis or lung cancer requires an enhanced understanding of the relationships between the natural physiology of the respiratory system and the pathophysiology of these conditions. This knowledge is crucial to better predict and thereby control drug deposition. Moreover, aerosol administration faces several challenges, including the pulmonary tract, immune system, mucociliary clearance, the presence of fluid on the airway surfaces, and, in some cases, bacterial colonisation. Each of them directly influences on the bioavailability of the active molecule. In addition to these challenges, particle size and the device used to administer the treatment are critical factors that can significantly impact the biodistribution of the drugs. Nanoparticles are very promising in the development of new formulations for aerosol drug delivery, as they can be fine-tuned to reach the entire pulmonary tract and overcome the difficulties encountered along the way. However, to properly assess drug delivery, preclinical studies need to be more thorough to efficiently enhance drug delivery.
Collapse
Affiliation(s)
- Rosy Ghanem
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France
| | - Raphaëlle Youf
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Tanguy Haute
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Xavier Buin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Tristan Montier
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France.
| |
Collapse
|
2
|
Baldry M, Costa C, Zeroual Y, Cayet D, Pardessus J, Soulard D, Wallet F, Beury D, Hot D, MacLoughlin R, Heuzé-Vourc’h N, Sirard JC, Carnoy C. Targeted delivery of flagellin by nebulization offers optimized respiratory immunity and defense against pneumococcal pneumonia. Antimicrob Agents Chemother 2024; 68:e0086624. [PMID: 39480071 PMCID: PMC11619323 DOI: 10.1128/aac.00866-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Novel therapeutic strategies are urgently needed to combat pneumonia caused by Streptococcus pneumoniae strains resistant to standard-of-care antibiotics. Previous studies have shown that targeted stimulation of lung innate immune defenses through intranasal administration of the Toll-like receptor 5 agonist flagellin improves the treatment of pneumonia when combined with antibiotics. To promote translation to the clinic application, this study assessed the direct delivery of flagellin to the airways through nebulization using a vibrating mesh nebulizer in mice. Intranasal delivery achieved approximately 40% lung deposition of the administered flagellin dose, whereas nebulization yielded less than 1%. Despite these differences, nebulized flagellin induced transient activation of lung innate immunity characterized by cytokine/chemokine production and neutrophil infiltration into airways analogous to intranasal administration. Furthermore, inhalation by nebulization resulted in an accelerated resolution of systemic pro-inflammatory responses. Lastly, adjunct therapy combining nebulized flagellin and amoxicillin proved effective against antibiotic-resistant pneumococcal pneumonia in mice. We posit that flagellin aerosol therapy represents a safe and promising approach to address bacterial pneumonia within the context of antimicrobial resistance.
Collapse
Affiliation(s)
- Mara Baldry
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Charlotte Costa
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Yasmine Zeroual
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Delphine Cayet
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jeoffrey Pardessus
- INSERM, Respiratory Disease Research Centre, Tours, France
- University of Tours, Tours, France
| | - Daphnée Soulard
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Frédéric Wallet
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Delphine Beury
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 – PLBS - Plateformes Lilloises de Biologie & Santé, Lille, France
| | - David Hot
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 – PLBS - Plateformes Lilloises de Biologie & Santé, Lille, France
| | | | - Nathalie Heuzé-Vourc’h
- INSERM, Respiratory Disease Research Centre, Tours, France
- University of Tours, Tours, France
| | - Jean-Claude Sirard
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Christophe Carnoy
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
3
|
Berkenfeld K, Carneiro S, Corzo C, Laffleur F, Salar-Behzadi S, Winkeljann B, Esfahani G. Formulation strategies, preparation methods, and devices for pulmonary delivery of biologics. Eur J Pharm Biopharm 2024; 204:114530. [PMID: 39393712 DOI: 10.1016/j.ejpb.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Biological products, including vaccines, blood components, and recombinant therapeutic proteins, are derived from natural sources such as humans, animals, or microorganisms and are typically produced using advanced biotechnological methods. The success of biologics, particularly monoclonal antibodies, can be attributed to their favorable safety profiles and target specificity. However, their large molecular size presents significant challenges in drug delivery, particularly in overcoming biological barriers. Pulmonary delivery has emerged as a promising route for administering biologics, offering non-invasive delivery with rapid absorption, high systemic bioavailability, and avoidance of first-pass metabolism. This review first details the anatomy and physiological barriers of the respiratory tract and the associated challenges of pulmonary drug delivery (PDD). It further discusses innovations in PDD, the impact of particle size on drug deposition, and the use of secondary particles, such as nanoparticles, to enhance bioavailability and targeting. The review also explains various devices used for PDD, including dry powder inhalers (DPIs) and nebulizers, highlighting their advantages and limitations in delivering biologics. The role of excipients in improving the stability and performance of inhalation products is also addressed. Since dry powders are considered the suitable format for delivering biomolecules, particular emphasis is placed on the excipients used in DPI development. The final section of the article reviews and compares various dry powder manufacturing methods, clarifying their clinical relevance and potential for future applications in the field of inhalable drug formulation.
Collapse
Affiliation(s)
- Kai Berkenfeld
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Simone Carneiro
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; RNhale GmbH, München 81371, Germany; Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Munich, German Center for Lung Research (DZL), 81377 Munich, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Golbarg Esfahani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle 06120, Saale, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS).
| |
Collapse
|
4
|
D’Agnano V, Perrotta F, Fomez R, Carrozzo VM, Schiattarella A, Sanduzzi Zamparelli S, Pagliaro R, Bianco A, Mariniello DF. Pharmacological Treatment of Interstitial Lung Diseases: A Novel Landscape for Inhaled Agents. Pharmaceutics 2024; 16:1391. [PMID: 39598515 PMCID: PMC11597590 DOI: 10.3390/pharmaceutics16111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Interstitial lung diseases (ILDs) encompass a heterogeneous group of over 200 disorders that require individualized treatment. Antifibrotic agents, such as nintedanib and pirfenidone, have remarkably revolutionized the treatment landscape of patients with idiopathic pulmonary fibrosis (IPF). Moreover, the approval of nintedanib has also expanded the therapeutic options for patients with progressive pulmonary fibrosis other than IPF. However, despite recent advances, current therapeutic strategies based on antifibrotic agents and/or immunomodulation are associated with non-negligible side effects. Therefore, several studies have explored the inhalation route aiming to spread higher local concentrations while limiting systemic toxicity. In this review, we examined the currently available literature about preclinical and clinical studies testing the efficacy and safety of inhalation-based antifibrotics, immunomodulatory agents, antioxidants, mucolytics, bronchodilators, and vasodilator agents in ILDs.
Collapse
Affiliation(s)
- Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Ramona Fomez
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Valerio Maria Carrozzo
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Angela Schiattarella
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | | | - Raffaella Pagliaro
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (R.F.); (V.M.C.); (A.S.); (R.P.); (A.B.)
- Unit of Respiratory Medicine “L. Vanvitelli”, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | | |
Collapse
|
5
|
Kassaee SN, Richard D, Ayoko GA, Islam N. Lipid polymer hybrid nanoparticles against lung cancer and their application as inhalable formulation. Nanomedicine (Lond) 2024; 19:2113-2133. [PMID: 39143915 PMCID: PMC11486133 DOI: 10.1080/17435889.2024.2387530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Lung cancer is a leading cause of global cancer mortality, often treated with chemotherapeutic agents. However, conventional approaches such as oral or intravenous administration of drugs yield low bioavailability and adverse effects. Nanotechnology has unlocked new gateways for delivering medicine to their target sites. Lipid-polymer hybrid nanoparticles (LPHNPs) are one of the nano-scaled delivery platforms that have been studied to exploit advantages of liposomes and polymers, enhancing stability, drug loading, biocompatibility and controlled release. Pulmonary administration of drug-loaded LPHNPs enables direct lung deposition, rapid onset of action and heightened efficacy at low doses of drugs. In this manuscript, we will review the potential of LPHNPs in management of lung cancer through pulmonary administration.
Collapse
Affiliation(s)
- Seyedeh Negin Kassaee
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Derek Richard
- Centre for Genomics & Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Godwin A. Ayoko
- School of Chemistry & Physics & Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| |
Collapse
|
6
|
Satti I, Marshall JL, Harris SA, Wittenberg R, Tanner R, Lopez Ramon R, Wilkie M, Ramos Lopez F, Riste M, Wright D, Peralta Alvarez MP, Williams N, Morrison H, Stylianou E, Folegatti P, Jenkin D, Vermaak S, Rask L, Cabrera Puig I, Powell Doherty R, Lawrie A, Moss P, Hinks T, Bettinson H, McShane H. Safety of a controlled human infection model of tuberculosis with aerosolised, live-attenuated Mycobacterium bovis BCG versus intradermal BCG in BCG-naive adults in the UK: a dose-escalation, randomised, controlled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:909-921. [PMID: 38621405 DOI: 10.1016/s1473-3099(24)00143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Mycobacterium tuberculosis is the main causative agent of tuberculosis. BCG, the only licensed vaccine, provides inadequate protection against pulmonary tuberculosis. Controlled human infection models are useful tools for vaccine development. We aimed to determine a safe dose of aerosol-inhaled live-attenuated Mycobacterium bovis BCG as a surrogate for M tuberculosis infection, then compare the safety and tolerability of infection models established using aerosol-inhaled and intradermally administered BCG. METHODS This phase 1 controlled human infection trial was conducted at two clinical research facilities in the UK. Healthy, immunocompetent adults aged 18-50 years, who were both M tuberculosis-naive and BCG-naive and had no history of asthma or other respiratory diseases, were eligible for the trial. Participants were initially enrolled into group 1 (receiving the BCG Danish strain); the trial was subsequently paused because of a worldwide shortage of BCG Danish and, after protocol amendment, was restarted using the BCG Bulgaria strain (group 2). After a dose-escalation study, during which participants were sequentially allocated to receive either 1 × 103, 1 × 104, 1 × 105, 1 × 106, or 1 × 107 colony-forming units (CFU) of aerosol BCG, the maximum tolerated dose was selected for the randomised controlled trial. Participants in this trial were randomly assigned (9:12), by variable block randomisation and using sequentially numbered sealed envelopes, to receive aerosol BCG (1 × 107 CFU) and intradermal saline or intradermal BCG (1 × 106 CFU) and aerosol saline. Participants were masked to treatment allocation until day 14. The primary outcome was to compare the safety of a controlled human infection model based on aerosol-inhaled BCG versus one based on intradermally administered BCG, and the secondary outcome was to evaluate BCG recovery in the airways of participants who received aerosol BCG or skin biopsies of participants who received intradermal BCG. BCG was detected by culture and by PCR. The trial is registered at ClinicalTrials.gov, NCT02709278, and is complete. FINDINGS Participants were assessed for eligibility between April 7, 2016, and Sept 29, 2018. For group 1, 15 participants were screened, of whom 13 were enrolled and ten completed the study; for group 2, 60 were screened and 33 enrolled, all of whom completed the study. Doses up to 1 × 107 CFU aerosol-inhaled BCG were sufficiently well tolerated. No significant difference was observed in the frequency of adverse events between aerosol and intradermal groups (median percentage of solicited adverse events per participant, post-aerosol vs post-intradermal BCG: systemic 7% [IQR 2-11] vs 4% [1-13], p=0·62; respiratory 7% [1-19] vs 4% [1-9], p=0·56). More severe systemic adverse events occurred in the 2 weeks after aerosol BCG (15 [12%] of 122 reported systemic adverse events) than after intradermal BCG (one [1%] of 94; difference 11% [95% CI 5-17]; p=0·0013), but no difference was observed in the severity of respiratory adverse events (two [1%] of 144 vs zero [0%] of 97; 1% [-1 to 3]; p=0·52). All adverse events after aerosol BCG resolved spontaneously. One serious adverse event was reported-a participant in group 2 was admitted to hospital to receive analgesia for a pre-existing ovarian cyst, which was deemed unrelated to BCG infection. On day 14, BCG was cultured from bronchoalveolar lavage samples after aerosol infection and from skin biopsy samples after intradermal infection. INTERPRETATION This first-in-human aerosol BCG controlled human infection model was sufficiently well tolerated. Further work will evaluate the utility of this model in assessing vaccine efficacy and identifying potential correlates of protection. FUNDING Bill & Melinda Gates Foundation, Wellcome Trust, National Institute for Health Research Oxford Biomedical Research Centre, Thames Valley Clinical Research Network, and TBVAC2020.
Collapse
Affiliation(s)
- Iman Satti
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | | | | | - Rachel Tanner
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Morven Wilkie
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Michael Riste
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Daniel Wright
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Nicola Williams
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | | | | | - Daniel Jenkin
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Linnea Rask
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | | | - Alison Lawrie
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Timothy Hinks
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Henry Bettinson
- Oxford Centre for Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Yu J, Meng Y, Wen Z, Jiang Y, Guo Y, Du S, Liu Y, Xia X. Investigation of Factors Influencing the Effectiveness of Deformable Nanovesicles for Insulin Nebulization Inhalation. Pharmaceutics 2024; 16:879. [PMID: 39065576 PMCID: PMC11280345 DOI: 10.3390/pharmaceutics16070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Nebulized inhalation offers a noninvasive method for delivering drugs to treat both local respiratory and systemic diseases. In this study, insulin was used as a model drug to design a series of deformable nanovesicles (DNVs) with key quality attributes, including particle size, deformability, and drug load capacity. We investigated the effects of these properties on aerosol generation, macrophage phagocytosis, and bloodstream penetration. The results showed that deformability improved nebulization performance and reduced macrophage phagocytosis, benefiting local and systemic delivery. However, the advantage of DNVs for transmembrane penetration was not evident in the alveolar epithelium. Within the size range of 80-490 nm, the smaller the particle size of IPC-DNVs, the easier it is to evade clearance by macrophages and the more effective the in vivo hypoglycemic efficacy will be. In the drug load range of 3-5 mg/mL, a lower drug load resulted in better hypoglycemic efficacy. The area above the blood glucose decline curve with time (AAC) of nebulized DNVs was 2.32 times higher than that of the insulin solution, demonstrating the feasibility and advantages of DNVs in the pulmonary delivery of biomacromolecule drugs. This study provides insights into the construction and formulation optimization of pulmonary delivery carriers.
Collapse
Affiliation(s)
- Jinghan Yu
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Yingying Meng
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Zhiyang Wen
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Yu Jiang
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Yiyue Guo
- Beijing Wehand-Bio Pharmaceutical Co., Ltd., Beijing 102600, China;
| | - Simeng Du
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Yuling Liu
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Xuejun Xia
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| |
Collapse
|
8
|
Bender L, Preis E, Engelhardt KH, Amin MU, Ayoub AM, Librizzi D, Roschenko V, Schulze J, Yousefi BH, Schaefer J, Bakowsky U. In vitro and in ovo photodynamic efficacy of nebulized curcumin-loaded tetraether lipid liposomes prepared by DC as stable drug delivery system. Eur J Pharm Sci 2024; 196:106748. [PMID: 38471594 DOI: 10.1016/j.ejps.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Lung cancer is one of the most common causes of high mortality worldwide. Current treatment strategies, e.g., surgery, radiotherapy, chemotherapy, and immunotherapy, insufficiently affect the overall outcome. In this study, we used curcumin as a natural photosensitizer in photodynamic therapy and encapsulated it in liposomes consisting of stabilizing tetraether lipids aiming for a pulmonary drug delivery system against lung cancer. The liposomes with either hydrolyzed glycerol-dialkyl-glycerol tetraether (hGDGT) in different ratios or hydrolyzed glycerol-dialkyl-nonitol tetraether (hGDNT) were prepared by dual centrifugation (DC), an innovative method for liposome preparation. The liposomes' physicochemical characteristics before and after nebulization and other nebulization characteristics confirmed their suitability. Morphological characterization using atomic force and transmission electron microscopy showed proper vesicular structures indicative of liposomes. Qualitative and quantitative uptake of the curcumin-loaded liposomes in lung adenocarcinoma (A549) cells was visualized and proven. Phototoxic effects of the liposomes were detected on A549 cells, showing decreased cell viability. The generation of reactive oxygen species required for PDT and disruption of mitochondrial membrane potential were confirmed. Moreover, the chorioallantoic membrane (CAM) model was used to further evaluate biocompatibility and photodynamic efficacy in a 3D cell culture context. Photodynamic efficacy was assessed by PET/CT after nebulization of the liposomes onto the xenografted tumors on the CAM with subsequent irradiation. The physicochemical properties and the efficacy of tetraether lipid liposomes encapsulating curcumin, especially liposomes containing hGDNT, in 2D and 3D cell cultures seem promising for future PDT usage against lung cancer.
Collapse
Affiliation(s)
- Lena Bender
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Konrad H Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Abdallah M Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Damiano Librizzi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Hans-Meerwein-Str. 3, Marburg 35043, Germany
| | - Valeri Roschenko
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Behrooz H Yousefi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Hans-Meerwein-Str. 3, Marburg 35043, Germany
| | - Jens Schaefer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany.
| |
Collapse
|
9
|
Bender L, Ayoub AM, Schulze J, Amin MU, Librizzi D, Engelhardt KH, Roschenko V, Yousefi BH, Schäfer J, Preis E, Bakowsky U. Evaluating the photodynamic efficacy of nebulized curcumin-loaded liposomes prepared by thin-film hydration and dual centrifugation: In vitro and in ovo studies. BIOMATERIALS ADVANCES 2024; 159:213823. [PMID: 38460353 DOI: 10.1016/j.bioadv.2024.213823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Lung cancer, one of the most common causes of high mortality worldwide, still lacks appropriate and convenient treatment options. Photodynamic therapy (PDT) has shown promising results against cancer, especially in recent years. However, pulmonary drug delivery of the predominantly hydrophobic photosensitizers still represents a significant obstacle. Nebulizing DPPC/Cholesterol liposomes loaded with the photosensitizer curcumin via a vibrating mesh nebulizer might overcome current restrictions. In this study, the liposomes were prepared by conventional thin-film hydration and two other methods based on dual centrifugation. The liposomes' physicochemical properties were determined before and after nebulization, showing that liposomes do not undergo any changes. However, morphological characterization of the differently prepared liposomes revealed structural differences between the methods in terms of lamellarity. Internalization of curcumin in lung adenocarcinoma (A549) cells was visualized and quantified. The generation of reactive oxygen species because of the photoreaction was also proven. The photodynamic efficacy of the liposomal formulations was tested against A549 cells. They revealed different phototoxic responses at different radiant exposures. Furthermore, the photodynamic efficacy was investigated after nebulizing curcumin-loaded liposomes onto xenografted tumors on the CAM, followed by irradiation, and evaluated using positron emission tomography/computed tomography and histological analysis. A decrease in tumor metabolism could be observed. Based on the efficacy of curcumin-loaded liposomes in 2D and 3D models, liposomes, especially with prior film formation, can be considered a promising approach for PDT against lung cancer.
Collapse
Affiliation(s)
- Lena Bender
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Abdallah M Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Damiano Librizzi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| | - Konrad H Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Valeri Roschenko
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Behrooz H Yousefi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| | - Jens Schäfer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
10
|
Mišík O, Kejíková J, Cejpek O, Malý M, Jugl A, Bělka M, Mravec F, Lízal F. Nebulization and In Vitro Upper Airway Deposition of Liposomal Carrier Systems. Mol Pharm 2024; 21:1848-1860. [PMID: 38466817 PMCID: PMC10988550 DOI: 10.1021/acs.molpharmaceut.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Liposomal carrier systems have emerged as a promising technology for pulmonary drug delivery. This study focuses on two selected liposomal systems, namely, dipalmitoylphosphatidylcholine stabilized by phosphatidic acid and cholesterol (DPPC-PA-Chol) and dipalmitoylphosphatidylcholine stabilized by polyethylene glycol and cholesterol (DPPC-PEG-Chol). First, the research investigates the stability of these liposomal systems during the atomization process using different kinds of nebulizers (air-jet, vibrating mesh, and ultrasonic). The study further explores the aerodynamic particle size distribution of the aerosol generated by the nebulizers. The nebulizer that demonstrated optimal stability and particle size was selected for more detailed investigation, including Andersen cascade impactor measurements, an assessment of the influence of flow rate and breathing profiles on aerosol particle size, and an in vitro deposition study on a realistic replica of the upper airways. The most suitable combination of a nebulizer and liposomal system was DPPC-PA-Chol nebulized by a Pari LC Sprint Star in terms of stability and particle size. The influence of the inspiration flow rate on the particle size was not very strong but was not negligible either (decrease of Dv50 by 1.34 μm with the flow rate increase from 8 to 60 L/min). A similar effect was observed for realistic transient inhalation. According to the in vitro deposition measurement, approximately 90% and 70% of the aerosol penetrated downstream of the trachea using the stationary flow rate and the realistic breathing profile, respectively. These data provide an image of the potential applicability of liposomal carrier systems for nebulizer therapy. Regional lung drug deposition is patient-specific; therefore, deposition results might vary for different airway geometries. However, deposition measurement with realistic boundary conditions (airway geometry, breathing profile) brings a more realistic image of the drug delivery by the selected technology. Our results show how much data from cascade impactor testing or estimates from the fine fraction concept differ from those of a more realistic case.
Collapse
Affiliation(s)
- Ondrej Mišík
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Jana Kejíková
- Institute
of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - Ondřej Cejpek
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Milan Malý
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Adam Jugl
- Institute
of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - Miloslav Bělka
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Filip Mravec
- Institute
of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - František Lízal
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| |
Collapse
|
11
|
Le NHA, Brenker J, Shenoda A, Sheikh Z, Gum J, Ong HX, Traini D, Alan T. Oscillating high aspect ratio micro-channels can effectively atomize liquids into uniform aerosol droplets and dial their size on-demand. LAB ON A CHIP 2024; 24:1676-1684. [PMID: 38305095 DOI: 10.1039/d3lc00816a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ultrasonic atomization of liquids into micrometer-diameter droplets is crucial across multiple fields, ranging from drug delivery, to spectrometry and printing. Controlling the size and uniformity of the generated droplets on-demand is crucial in all these applications. However, existing systems lack the required precision to tune the droplet properties, and the underlying droplet formation mechanism under high-frequency ultrasonic actuation remains poorly understood due to experimental constraints. Here, we present an atomization platform, which overcomes these current limitations. Our device utilizes oscillating high aspect ratio micro-channels to extract liquids from various inlets (ranging from sessile droplets to large beakers), bound them in a precisely defined narrow region, and, controllably atomize them on-demand. The droplet size can be precisely dialled from 3.6 μm to 6.8 μm by simply tuning the actuation parameters. Since the approach does not need nozzles, meshes or impacting jets, stresses exerted on the liquid samples are reduced, hence it is gentler on delicate samples. The precision offered by the technique allows us for the first time to experimentally visualise the oscillating fluid interface at the onset of atomization at MHz frequencies, and demonstrate its applications for targeted respiratory drug delivery.
Collapse
Affiliation(s)
- Nguyen Hoai An Le
- Dynamic Micro Devices Laboratory, Mechanical and Aerospace Engineering, Monash University, Melbourne, 3800, VIC, Australia.
| | - Jason Brenker
- Dynamic Micro Devices Laboratory, Mechanical and Aerospace Engineering, Monash University, Melbourne, 3800, VIC, Australia.
| | - Abanoub Shenoda
- Dynamic Micro Devices Laboratory, Mechanical and Aerospace Engineering, Monash University, Melbourne, 3800, VIC, Australia.
| | - Zara Sheikh
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
| | - Jackson Gum
- Dynamic Micro Devices Laboratory, Mechanical and Aerospace Engineering, Monash University, Melbourne, 3800, VIC, Australia.
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Department of Biological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Department of Biological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Tuncay Alan
- Dynamic Micro Devices Laboratory, Mechanical and Aerospace Engineering, Monash University, Melbourne, 3800, VIC, Australia.
| |
Collapse
|
12
|
Arnott A, Watson M, Sim M. Nebuliser therapy in critical care: The past, present and future. J Intensive Care Soc 2024; 25:78-88. [PMID: 39323591 PMCID: PMC11421288 DOI: 10.1177/17511437231199899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Nebulisers are devices that reduce a body of liquid into a fine aerosol suitable for inhalation. Utilising the efficiency of pulmonary drug absorption, they offer a safe and powerful modality for local and systemic drug delivery in the treatment of critical illness. In comparison to conventional jet (JN) and ultrasonic nebulisers (USN), the advent of vibrating mesh nebulisers (VMN) has significantly improved the therapeutic potential of modern devices. This review article aims to summarise the history and evolution of nebulisers from first inception through to the modern vibrating mesh technology. It provides an overview on the basic science of nebulisation and pulmonary drug delivery, and the current use of nebulised therapies in critical care.
Collapse
Affiliation(s)
| | | | - Malcolm Sim
- Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
13
|
Li X, Su Z, Wang C, Wu W, Zhang Y, Wang C. Mapping the evolution of inhaled drug delivery research: Trends, collaborations, and emerging frontiers. Drug Discov Today 2024; 29:103864. [PMID: 38141779 DOI: 10.1016/j.drudis.2023.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Inhaled drug delivery is a unique administration route known for its ability to directly target pulmonary or brain regions, facilitating rapid onset and circumventing the hepatic first-pass effect. To characterize current global trends and provide a visual overview of the latest trends in inhaled drug delivery research, bibliometric analysis of data acquired from the Web of Science Core Collection database was performed via VOSviewer and CiteSpace. Inhaled drug delivery can not only be utilized in respiratory diseases but also has potential in other types of diseases for both fundamental and clinical applications. Overall, we provide an overview of present trends, collaborations, and newly discovered frontiers of inhaled drug delivery.
Collapse
Affiliation(s)
- Xinyuan Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, PR China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 404120, PR China
| | - Zhengxing Su
- Sichuan Kelun Pharmaceutical Research Institute Co. Ltd, Chengdu 611138, Sichuan, PR China
| | - Chunyou Wang
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, PR China
| | - Wen Wu
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 404120, PR China.
| | - Yan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, PR China.
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, PR China.
| |
Collapse
|
14
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
15
|
Rox K, Medina E. Aerosolized delivery of ESKAPE pathogens for murine pneumonia models. Sci Rep 2024; 14:2558. [PMID: 38297183 PMCID: PMC10830452 DOI: 10.1038/s41598-024-52958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Murine pneumonia models for ESKAPE pathogens serve to evaluate novel antibacterials or to investigate immunological responses. The majority of published models uses intranasal or to a limited extent the intratracheal instillation to challenge animals. In this study, we propose the aerosol delivery of pathogens using a nebulizer. Aerosol delivery typically results in homogeneous distribution of the inoculum in the lungs because of lower particle size. This is of particular importance when compounds are assessed for their pharmacokinetic and pharmacodynamic (PK/PD) relationships as it allows to conduct several analysis with the same sample material. Moreover, aerosol delivery has the advantage that it mimics the 'natural route' of respiratory infection. In this short and concise study, we show that aerosol delivery of pathogens resulted in a sustained bacterial burden in the neutropenic lung infection model for five pathogens tested, whereas it gave a similar result in immunocompetent mice for three out of five pathogens. Moreover, a substantial bacterial burden in the lungs was already achieved 2 h post inhalation. Hence, this study constitutes a viable alternative for intranasal administration and a refinement of murine pneumonia models for PK/PD assessments of novel antibacterial compounds allowing to study multiple readouts with the same sample material.
Collapse
Affiliation(s)
- Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany.
| | - Eva Medina
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
- Infection Immunology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany
| |
Collapse
|
16
|
Reynard O, Montharu J, Iampietro M, Gonzalez C, Le Guellec S, Horvat B, Vecellio L. Setup of Aerosol Delivery System to Prevent Measles Virus Infection in Nonhuman Primate Model. Methods Mol Biol 2024; 2808:167-175. [PMID: 38743370 DOI: 10.1007/978-1-0716-3870-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Measles virus is one of the most contagious airborne human viruses which keeps causing outbreaks in numerous countries over the world despite the existence of an efficient vaccine. Fusion inhibitory lipopeptides were shown to inhibit viral entry into target cells, and their adequate administration into the respiratory tract may provide a novel preventive approach against airborne infections. Aerosol delivery presents the best administration route to deliver such preventive compounds to the upper and lower respiratory tract. This approach offers a conceptually new strategy to protect the population at risk against infection by respiratory viruses, including measles. It is a noninvasive needle-free approach, which may be used when antiviral protection is required, without any medical assistance. In this chapter, we describe the nebulization approach of lipopeptide compounds in nonhuman primates and the subsequent measles virus challenge.
Collapse
Affiliation(s)
- Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France.
| | | | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Claudia Gonzalez
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Sandrine Le Guellec
- Faculté de médecine, DTF-Aerodrug, R&D Aerosoltherapy Department of DTF medical (Saint Etienne, France), Université de Tours, Tours, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | | |
Collapse
|
17
|
Aubriot AS, Maerckx G, Leal T, Gohy S, Reychler G. Comparison of amikacin lung delivery between AKITA® and eFlow rapid® nebulizers in healthy controls and patients with CF: A randomized cross-over trial. Respir Med Res 2023; 84:101038. [PMID: 37734235 DOI: 10.1016/j.resmer.2023.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/10/2023] [Accepted: 06/25/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Nebulization plays a key role in the treatment of cystic fibrosis. The Favorite function couple to jet nebulizers (AKITA®) emerged recently. The aim of this study was to assess the efficiency of the lung delivery by the AKITA® by comparing the urinary concentration of amikacin after nebulization with the AKITA® and the eFlow rapid®, in healthy subjects and patients with CF (PwCF). METHOD The two samples (healthy subjects and PwCF) were randomized (cross-over 1:1) for two nebulizations (500 mg of amikacin diluted in 4 mL of normal saline solution), with the AKITA® and with the eFlow rapid®. The primary endpoint was the amount of urinary excretion of amikacin over 24 h. The constant of elimination (Ke) was calculated based on the maximal cumulative urinary amikacin excretion plotted over time. RESULTS The total amount of urinary amikacin excretion was greater when AKITA® was used in PwCF (11.7 mg (8.2-14.1) vs 6.1 mg (3.7-13.3); p = 0.02) but not different in healthy subjects (14.5 mg (11.7-18.5) vs 12.4 mg (8.0-17.1); p = 0.12). The duration of the nebulization was always shorter with eFlow rapid® than with AKITA® (PwCF: 6.5 ± 0.6 min vs 9.2 ± 1.8 min; p = 0.001 - Healthy: 4.7 ± 1.3 min vs 9.7 ± 1.6 min; p = 0.03). The constant of elimination was similar between the two modalities in CF subjects (0.153 (0.071-0.205) vs 0.149 (0.041-0.182); p = 0.26) and in healthy subjects (0.166 (0.130-0.218) vs 0.167 (0.119-0.210), p = 0.25). CONCLUSION the Favorite inhalation is better to deliver a specific amount of drug than a mesh nebulizer (eFlow rapid®) in PwCF but not in healthy subjects.
Collapse
Affiliation(s)
- Anne-Sophie Aubriot
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium; Cliniques universitaires Saint-Luc, Cystic Fibrosis reference centre, Université catholique de Louvain, Avenue Hippocrate 10, B-1200 Brussels, Belgium; Secteur de kinésithérapie et ergothérapie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Guillaume Maerckx
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium; Secteur de kinésithérapie et ergothérapie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Teresinha Leal
- IREC, Louvain centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Avenue Hippocrate 10, B-1200 Brussels, Belgium
| | - Sophie Gohy
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium; Cliniques universitaires Saint-Luc, Cystic Fibrosis reference centre, Université catholique de Louvain, Avenue Hippocrate 10, B-1200 Brussels, Belgium; Service de Pneumologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Gregory Reychler
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium; Secteur de kinésithérapie et ergothérapie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Service de Pneumologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium.
| |
Collapse
|
18
|
Arnott A, Hart R, McQueen S, Watson M, Sim M. Prospective randomised unblinded comparison of sputum viscosity for three methods of saline nebulisation in mechanically ventilated patients: A pilot study protocol. PLoS One 2023; 18:e0290033. [PMID: 37590203 PMCID: PMC10434882 DOI: 10.1371/journal.pone.0290033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
INTRODUCTION Heat and moisture exchanger (HME) filters are commonly used as passive circuit humidifiers during mechanical ventilation, however, are only ~80% efficient. As a result, patients that undergo mechanical ventilation in critical care with HME filter circuits will be exposed to partial airway humidification. This is associated with detrimental effects including increased secretion load which has been shown to be an independent predictor of failed extubation. Nebulised normal saline is commonly utilised to supplement circuit humidification in ventilated patients with high secretion loads, although there are no randomised control trials evaluating its use. Novel vibrating mesh nebulisers generate a fine aerosol resulting in deeper lung penetration, potentially offering a more effective means of nebulisation in comparison to jet nebulisers. The primary aim of this study is to compare the viscosity of respiratory secretions after treatment with nebulised normal saline administered via vibrating mesh nebuliser or jet nebuliser. METHODS AND ANALYSIS This randomised controlled trial is enrolling 60 mechanically ventilated adult critical care patients breathing on HME filter circuits with high secretion loads. Recruited patients will be randomised to receive nebulised saline via 3 modalities: 1) Continuous vibrating mesh nebuliser; 2) Intermittent vibrating mesh nebuliser or 3) Intermittent jet nebuliser. Over the 72-hr study period, the patients' sputum viscosity (measured using a validated qualitative sputum assessment tool) and physiological parameters will be recorded by an unblinded assessor. A median reduction in secretion viscosity of ≥0.5 on the qualitative sputum assessment score will be deemed as a clinically significant improvement between treatment groups at analysis. DISCUSSION At the conclusion of this trial, we will provisionally determine if nebulised normal saline administered via vibrating mesh nebulisation is superior to traditional jet nebulisation in terms of reduced respiratory secretion viscosity in intubated patients. Results from this pilot study will provide information to power a definitive clinical study. TRIAL REGISTRATION ClinicalTrails.Gov Registry (NCT05635903).
Collapse
Affiliation(s)
- Andrew Arnott
- Critical Care Department, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Robert Hart
- Critical Care Department, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Scott McQueen
- Critical Care Department, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Malcolm Watson
- Critical Care Department, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Malcolm Sim
- Critical Care Department, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| |
Collapse
|
19
|
Gracioso Martins AM, Snider DB, Popowski KD, Schuchard KG, Tenorio M, Akunuri S, Wee J, Peters KJ, Jansson A, Shirwaiker R, Cheng K, Freytes DO, Cruse GP. Low-dose intrapulmonary drug delivery device for studies on next-generation therapeutics in mice. J Control Release 2023; 359:287-301. [PMID: 37301267 PMCID: PMC10527740 DOI: 10.1016/j.jconrel.2023.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Although nebulizers have been developed for delivery of small molecules in human patients, no tunable device has been purpose-built for targeted delivery of modern large molecule and temperature-sensitive therapeutics to mice. Mice are used most of all species in biomedical research and have the highest number of induced models for human-relevant diseases and transgene models. Regulatory approval of large molecule therapeutics, including antibody therapies and modified RNA highlight the need for quantifiable dose delivery in mice to model human delivery, proof-of-concept studies, efficacy, and dose-response. To this end, we developed and characterized a tunable nebulization system composed of an ultrasonic transducer equipped with a mesh nebulizer fitted with a silicone restrictor plate modification to control the nebulization rate. We have identified the elements of design that influence the most critical factors to targeted delivery to the deep lungs of BALB/c mice. By comparing an in silico model of the mouse lung with experimental data, we were able to optimize and confirm the targeted delivery of over 99% of the initial volume to the deep portions of the mouse lung. The resulting nebulizer system provides targeted lung delivery efficiency far exceeding conventional nebulizers preventing waste of expensive biologics and large molecules during proof-of-concept and pre-clinical experiments involving mice. (Word Count =207).
Collapse
Affiliation(s)
- Ana Maria Gracioso Martins
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Douglas B Snider
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine and Translational Research Training Program, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Kristen D Popowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Karl G Schuchard
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA
| | - Matias Tenorio
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Sandip Akunuri
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Junghyun Wee
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Kara J Peters
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Anton Jansson
- Analytical Instrumentation Facility, Monteith Research Center, North Carolina State University, Raleigh, NC, USA
| | - Rohan Shirwaiker
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA; Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA; Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Donald O Freytes
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, NC, USA
| | - Glenn P Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
20
|
Matera MG, Calzetta L, Rinaldi B, Cazzola M, Rogliani P. Strategies for overcoming the biological barriers associated with the administration of inhaled monoclonal antibodies for lung diseases. Expert Opin Drug Deliv 2023; 20:1085-1095. [PMID: 37715502 DOI: 10.1080/17425247.2023.2260310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) should be administered by inhalation rather than parenterally to improve their efficiency in lung diseases. However, the pulmonary administration of mAbs in terms of aerosol technology and the formulation for inhalation is difficult. AREAS COVERED The feasible or suitable strategies for overcoming the barriers associated with administering mAbs are described. EXPERT OPINION Providing mAbs via inhalation to individuals with lung disorders is still difficult. However, inhalation is a desirable method for mAb delivery. Inhaled mAb production needs to be well thought out. The illness, the patient group(s), the therapeutic molecule selected, its interaction with the biological barriers in the lungs, the formulation, excipients, and administration systems must all be thoroughly investigated. Therefore, to create inhaled mAbs that are stable and efficacious, it will be essential to thoroughly examine the problems linked to instability and protein aggregation. More excipients will also need to be manufactured, expanding the range of formulation design choices. Another crucial requirement is for novel carriers for topical delivery to the lungs since carriers might significantly enhance proteins' stability and pharmacokinetic profile.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Diseases and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
21
|
Julia Altube M, Perez N, Lilia Romero E, José Morilla M, Higa L, Paula Perez A. Inhaled lipid nanocarriers for pulmonary delivery of glucocorticoids: previous strategies, recent advances and key factors description. Int J Pharm 2023:123146. [PMID: 37330156 DOI: 10.1016/j.ijpharm.2023.123146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
In view of the strong anti-inflammatory activity of glucocorticoids (GC) they are used in the treatment of almost all inflammatory lung diseases. In particular, inhaled GC (IGC) allow high drug concentrations to be deposited in the lung and may reduce the incidence of adverse effects associated with systemic administration. However, rapid absorption through the highly absorbent surface of the lung epithelium may limit the success of localized therapy. Therefore, inhalation of GC incorporated into nanocarriers is a possible approach to overcome this drawback. In particular, lipid nanocarriers, which showed high pulmonary biocompatibility and are well known in the pharmaceutical industry, have the best prospects for pulmonary delivery of GC by inhalation. This review provides an overview of the pre-clinical applications of inhaled GC-lipid nanocarriers based on several key factors that will determine the efficiency of local pulmonary GC delivery: 1) stability to nebulization, 2) deposition profile in the lungs, 3) mucociliary clearance, 4) selective accumulation in target cells, 5) residence time in the lung and systemic absorption and 6) biocompatibility. Finally, novel preclinical pulmonary models for inflammatory lung diseases are also discussed.
Collapse
Affiliation(s)
- María Julia Altube
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Noelia Perez
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - María José Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Leticia Higa
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Ana Paula Perez
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Chang KH, Park BJ, Nam KC. Aerosolization Performance of Immunoglobulin G by Jet and Mesh Nebulizers. AAPS PharmSciTech 2023; 24:125. [PMID: 37225929 DOI: 10.1208/s12249-023-02579-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
Recently, many preclinical and clinical studies have been conducted on the delivery of therapeutic antibodies to the lungs using nebulizers, but standard treatment guidelines have not yet been established. Our objective was to compare nebulization performance according to the low temperature and concentration of immunoglobulin G (IgG) solutions in different types of nebulizers, and to evaluate the stability of IgG aerosols and the amount delivered to the lungs. The output rate of the mesh nebulizers decreased according to the low temperature and high concentration of IgG solution, whereas the jet nebulizer was unaffected by the temperature and concentration of IgG. An impedance change of the piezoelectric vibrating element in the mesh nebulizers was observed because of the lower temperature and higher viscosity of IgG solution. This affected the resonance frequency of the piezoelectric element and lowered the output rate of the mesh nebulizers. Aggregation assays using a fluorescent probe revealed aggregates in IgG aerosols from all nebulizers. The delivered dose of IgG to the lungs in mice was highest at 95 ng/mL in the jet nebulizer with the smallest droplet size. Evaluation of the performance of IgG solution delivered to the lungs by three types of nebulizers could provide valuable parameter information for determination on dose of therapeutic antibody by nebulizers.
Collapse
Affiliation(s)
- Kyung Hwa Chang
- Department of Medical Engineering, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, South Korea
| | - Bong Joo Park
- Department of Electrical & Biological Physics and Institute of Biomaterials, Kwangwoon University, Seoul, 01897, South Korea
| | - Ki Chang Nam
- Department of Medical Engineering, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, South Korea.
| |
Collapse
|
23
|
Szabová J, Mišík O, Fučík J, Mrázová K, Mravcová L, Elcner J, Lízal F, Krzyžánek V, Mravec F. Liposomal form of erlotinib for local inhalation administration and efficiency of its transport to the lungs. Int J Pharm 2023; 634:122695. [PMID: 36758881 DOI: 10.1016/j.ijpharm.2023.122695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
This contribution is focused on the preparation of a liposomal drug delivery system of erlotinib resisting the nebulization process that could be used for local treatment of non-small-cell lung cancer. Liposomes with different compositions were formulated to reveal their influence on the encapsulation efficiency of erlotinib. An encapsulation efficiency higher than 98 % was achieved for all vesicles containing phosphatidic acid (d ≈ 100 nm, ζ = - 43 mV) even in the presence of polyethylene glycol (d ≈ 150 nm, ζ = - 17 mV) which decreased this value in all other formulas. The three most promising formulations were nebulized by two air-jet and two vibrating mesh nebulizers, and the aerosol deposition in lungs was calculated by tools of computational fluid and particle mechanics. According to the numerical simulations and measurements of liposomal stability, air-jet nebulizers generated larger portion of the aerosol able to penetrate deeper into the lungs, but the delivery is likely to be more efficient when the formulation is administered by Aerogen Solo vibrating mesh nebulizer because of a higher portion of intact vesicles after the nebulization. The leakage of encapsulated drug from liposomes nebulized by this nebulizer was lower than 2 % for all chosen vesicles.
Collapse
Affiliation(s)
- Jana Szabová
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic.
| | - Ondrej Mišík
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Jan Fučík
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Kateřina Mrázová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i, Brno, Czech Republic
| | - Ludmila Mravcová
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Jakub Elcner
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - František Lízal
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i, Brno, Czech Republic
| | - Filip Mravec
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
24
|
Mitchell JP, Carter I, Christopher JD, Copley M, Doub WH, Goodey A, Gruenloh CJ, Larson BB, Lyapustina S, Patel RB, Stein SW, Suman JD. Good Practices for the Laboratory Performance Testing of Aqueous Oral Inhaled Products (OIPs): an Assessment from the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS). AAPS PharmSciTech 2023; 24:73. [PMID: 36869256 DOI: 10.1208/s12249-023-02528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
Multiple sources must be consulted to determine the most appropriate procedures for the laboratory-based performance evaluation of aqueous oral inhaled products (OIPs) for the primary measures, dose uniformity/delivery, and aerodynamic particle (droplet) size distribution (APSD). These sources have been developed at different times, mainly in Europe and North America, during the past 25 years by diverse organizations, including pharmacopeial chapter/monograph development committees, regulatory agencies, and national and international standards bodies. As a result, there is a lack of consistency across all the recommendations, with the potential to cause confusion to those developing performance test methods. We have reviewed key methodological aspects of source guidance documents identified by a survey of the pertinent literature and evaluated the underlying evidence supporting their recommendations for the evaluation of these performance measures. We have also subsequently developed a consistent series of solutions to guide those faced with the various associated challenges when developing OIP performance testing methods for oral aqueous inhaled products.
Collapse
Affiliation(s)
- Jolyon P Mitchell
- Jolyon Mitchell Inhaler Consulting Services Inc., 1154 St. Anthony Road, London, Ontario, N6H2R1, Canada.
| | - I Carter
- PPD Inc., Part of Thermo Fisher Scientific, Athlone, Ireland
| | | | - M Copley
- Copley Scientific Ltd., Nottingham, UK
| | - W H Doub
- OINDP In Vitro Analysis, Kirkwood, Missouri, 63122, USA
| | - A Goodey
- Merck & Co. Inc., Kenilworth, New Jersey, 07033, USA
| | - C J Gruenloh
- PPD Inc., Part of Thermo Fisher Scientific, Middleton, Wisconsin, 53562-466, USA
| | - B B Larson
- PPD Inc., Part of Thermo Fisher Scientific, Middleton, Wisconsin, 53562-466, USA
| | - S Lyapustina
- Faegre Drinker Biddle & Reath LLP, Washington, District of Columbia, 20005, USA
| | - R B Patel
- Intellectual Designs LLC, Brookfield, Connecticut, 06804, USA
| | - S W Stein
- Kindeva Drug Delivery, Woodbury, Minnesota, 55129, USA
| | - J D Suman
- Next Breath LLC, a Division of Aptar Group, Halethorpe, Maryland, 21227, USA
| |
Collapse
|
25
|
Brun EHC, Hong ZY, Hsu YM, Wang CT, Chung DJ, Ng SK, Lee YH, Wei TT. Stability and Activity of Interferon Beta to Treat Idiopathic Pulmonary Fibrosis with Different Nebulizer Technologies. J Aerosol Med Pulm Drug Deliv 2023; 36:55-64. [PMID: 36827329 DOI: 10.1089/jamp.2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a serious lung disease characterized by lung scarring, which results in breathing difficulty. Currently, patients with IPF exhibit a poor survival rate and have access to very limited therapeutic options. Interferon beta (IFN-β) has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of relapsing forms of multiple sclerosis, and it has also been shown to exhibit therapeutic potential in IPF. However, clinical use of IFN-β did not lead to improved overall survival in IPF patients in existing studies. One possibility is the limited efficiency of IFN-β delivery through intravenous or subcutaneous injection. Materials and Methods: The aerosol particle size distribution was determined with a laser diffraction particle size analyzer to characterize the droplet size and fine particle fraction generated by three types of nebulizers: jet, ultrasonic, and mesh. A breathing simulator was used to assess the delivery efficiency of IFN-β, and the temperature in the medication reservoirs was monitored with a thermocouple during nebulization. To further evaluate the antifibrotic activity of IFN-β pre- and postnebulization, bleomycin (BLM)- or transforming growth factor-beta (TGF-β)-treated human lung fibroblast (HLF) cells were used. Cell viability was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Transwell migration assay and Q-PCR analysis were used to evaluate cell migration and the myofibroblast differentiation ability, respectively. IFN-β protein samples were prepared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample loading buffer, and the expression of IFN-β was assessed by western blotting. Results: Among the current drug delivery systems, aerosolized medication has shown increased efficacy of drug delivery for treating respiratory diseases when compared with parenteral drugs. It was found that neither the structural integrity nor the biological function of nebulized IFN-β was compromised by the nebulization process of the mesh nebulizer. In addition, in BLM dose-response or TGF-β-induced lung fibroblast proliferation assays, these effects could be reversed by both parenteral and inhaled IFN-β nebulized with the mesh nebulizer. Nebulized IFN-β with the mesh nebulizer also significantly inhibited the migration and myofibroblast differentiation ability of TGF-β-treated HLF cells. Conclusions: The investigations revealed the potential efficacy of IFN-β in the treatment of IPF with the mesh nebulizer, demonstrating the higher efficiency of IFN-β delivered through the mesh nebulizer.
Collapse
Affiliation(s)
| | - Zuo-Yi Hong
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | - Dai-Jung Chung
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shang-Kok Ng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yau-Hsuan Lee
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, Taiwan
| |
Collapse
|
26
|
Kole E, Jadhav K, Sirsath N, Dudhe P, Verma RK, Chatterjee A, Naik J. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
27
|
Sudduth ER, Kolewe EL, Graf J, Yu Y, Somma J, Fromen CA. Nebulization of Model Hydrogel Nanoparticles to Macrophages at the Air-Liquid Interface. FRONTIERS IN CHEMICAL ENGINEERING 2023; 4:1086031. [PMID: 37859802 PMCID: PMC10586456 DOI: 10.3389/fceng.2022.1086031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Nanoparticle evaluation within the pulmonary airspace has increasingly important implications for human health, with growing interest from drug delivery, environmental, and toxicology fields. While there have been widespread investigations of nanoparticle physiochemical properties following many routes of administration, nanoparticle behavior at the air-liquid interface (ALI) is less well-characterized. In this work, we fabricate two formulations of poly(ethylene)-glycol diacrylate (PEGDA)-based model nanoparticles to establish an in vitro workflow allowing evaluation of nanoparticle charge effects at the ALI. Both cationic and anionic PEGDA formulations were synthesized with similar hydrodynamic diameters around ~225 nm and low polydispersity, with expected surface charges corresponding with the respective functional co-monomer. We find that both formulations are readily nebulized from an aqueous suspension in a commercial Aeroneb® Lab Nebulizer, but the aqueous delivery solution served to slightly increase the overall hydrodynamic and geometric size of the cationic particle formulation. However, nanoparticle loading at 50 μg/ml of either formulation did not influence the resultant aerosol diameter from the nebulizer. To assess aerosol delivery in vitro, we designed a 3D printed adapter capable of ensuring aerosol delivery to transwell 24-well culture plates. Nanoparticle uptake by macrophages was compared between traditional cell culture techniques and that of ALI-cultured macrophages following aerosol delivery. Cell viability was unaffected by nanoparticle delivery using either method. However, only traditional cell culture methods demonstrated significant uptake that was dependent on the nanoparticle surface charge. Concurrently, ALI culture resulted in lower metabolic activity of macrophages than those in traditional cell culture, leading to lower overall nanoparticle uptake at ALI. Overall, this work demonstrates that base-material similarities between both particle formulations provide an expected consistency in aerosol delivery regardless of the nanoparticle surface charge and provides an important workflow that enables a holistic evaluation of aerosolizable nanoparticles.
Collapse
Affiliation(s)
- Emma R. Sudduth
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Emily L. Kolewe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Jodi Graf
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Yinkui Yu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Joaquina Somma
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
28
|
Chow MY, Pan HW, Lam JK. Delivery technology of inhaled therapy for asthma and COPD. ADVANCES IN PHARMACOLOGY 2023. [PMID: 37524490 DOI: 10.1016/bs.apha.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Inhaled therapy is the cornerstone of the management of asthma and chronic obstructive pulmonary disease (COPD). Drugs such as bronchodilators and corticosteroids are administered directly to the airways for local effect and rapid onset of action while systemic exposure and side effects are minimized. There are four major types of inhaler devices used clinically to generate aerosols for inhalation, namely, pressurized metered-dose inhalers (pMDIs), nebulizers, Soft Mist™ inhalers (SMIs) and dry powder inhalers (DPIs). Each of them has its own unique characteristics that can target different patient groups. For instance, patients' inhaler technique is critical for pMDIs and SMIs to achieve proper drug deposition in the lung, which could be challenging for some patients. Nebulizers are designed to deliver aerosols to patients during tidal breathing, but they require electricity to operate and are less portable than other devices. DPIs are the only device that delivers aerosols in dry powder form with better stability, but they rely on patients' inspiration effort for powder dispersion, rendering them unsuitable for patients with compromised lung function. Choosing a device that can cater for the need of individual patient is paramount for effective inhaled therapy. This chapter provides an overview of inhaled therapy for the management of asthma and COPD. The operation principles, merits and limitations of different delivery technologies are examined. Looking ahead, the challenges of delivering novel therapeutics such as biologics through the pulmonary route are also discussed.
Collapse
|
29
|
Budh HP, Nimbalkar S. Surfactant Replacement Therapy: What’s the New Future? JOURNAL OF NEONATOLOGY 2022; 36:331-347. [DOI: 10.1177/09732179221136963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Surfactant replacement therapy (SRT) can be lifesaving for preterm babies with respiratory distress because of surfactant deficiency. Attempts have been made over the last two decades to make surfactant administration as smooth and as nontraumatic as possible. Lesser invasive techniques, such as less invasive surfactant administration, minimally invasive surfactant therapy, intrapartum pharyngeal surfactant therapy, and the laryngeal mask airway, are preferred over invasive techniques like intubate surfactant extubation to reduce trauma and peridosing adverse effects. However, at present, aerosolized surfactant (AS) via nebulization remains the only truly noninvasive method of SRT. Many animal and human studies have shown promising results with the use of AS with similar clinical effects to an instilled surfactant with greater safety potential. But still AS has not been adapted to routine neonatal care. There is still scope for studies to further strengthen the role of AS. Also, SRT is a constantly changing field with new innovations revolutionizing and replacing old techniques.
Collapse
Affiliation(s)
- Hetal Pramod Budh
- Department of Neonatology, Pramukhswami Medical College, Bhaikaka University, Karamsad, Gujarat, India
| | - Somashekhar Nimbalkar
- Department of Neonatology, Pramukhswami Medical College, Bhaikaka University, Karamsad, Gujarat, India
| |
Collapse
|
30
|
Han Y, Zhu Y, Youngblood HA, Almuntashiri S, Jones TW, Wang X, Liu Y, Somanath PR, Zhang D. Nebulization of extracellular vesicles: A promising small RNA delivery approach for lung diseases. J Control Release 2022; 352:556-569. [PMID: 36341934 DOI: 10.1016/j.jconrel.2022.10.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Small extracellular vesicles (sEVs) are a group of cell-secreted nanovesicles with a diameter up to 200 nm. A growing number of studies have indicated that sEVs can reflect the pathogenesis of human diseases and mediate intercellular communications. Recently, sEV research has drastically increased due to their drug delivery property. However, a comprehensive method of delivering exogenous small RNAs-loaded sEVs through nebulization has not been reported. The methodology is complicated by uncertainty regarding the integrity of sEVs after nebulization, the delivery efficiency of aerosolized sEVs, their deposition in the lungs/cells, etc. This study demonstrates that sEVs can be delivered to murine lungs through a vibrating mesh nebulizer (VMN). In vivo sEV tracking indicated that inhaled sEVs were distributed exclusively in the lung and localized primarily in lung macrophages and airway epithelial cells. Additionally, sEVs loaded with small RNAs were successfully delivered into the lungs. The administration of siMyd88-loaded sEVs through inhalation reduced lipopolysaccharide (LPS)-induced lung injury in mice, supporting an application of this nebulization methodology to deliver functional small RNAs. Collectively, our study proposes a novel method of sEVs-mediated small RNA delivery into the murine lung through nebulization and presents a potential sEV-based therapeutic strategy for human lung diseases.
Collapse
Affiliation(s)
- Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Hannah A Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Timothy W Jones
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
31
|
Nasrullah A, Virk S, Shah A, Jacobs M, Hamza A, Sheikh AB, Javed A, Butt MA, Sangli S. Acute Respiratory Distress Syndrome and the Use of Inhaled Pulmonary Vasodilators in the COVID-19 Era: A Narrative Review. Life (Basel) 2022; 12:1766. [PMID: 36362921 PMCID: PMC9695622 DOI: 10.3390/life12111766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 09/03/2023] Open
Abstract
The Coronavirus disease (COVID-19) pandemic of 2019 has resulted in significant morbidity and mortality, especially from severe acute respiratory distress syndrome (ARDS). As of September 2022, more than 6.5 million patients have died globally, and up to 5% required intensive care unit treatment. COVID-19-associated ARDS (CARDS) differs from the typical ARDS due to distinct pathology involving the pulmonary vasculature endothelium, resulting in diffuse thrombi in the pulmonary circulation and impaired gas exchange. The National Institute of Health and the Society of Critical Care Medicine recommend lung-protective ventilation, prone ventilation, and neuromuscular blockade as needed. Further, a trial of pulmonary vasodilators is suggested for those who develop refractory hypoxemia. A review of the prior literature on inhaled pulmonary vasodilators in ARDS suggests only a transient improvement in oxygenation, with no mortality benefit. This narrative review aims to highlight the fundamental principles in ARDS management, delineate the fundamental differences between CARDS and ARDS, and describe the comprehensive use of inhaled pulmonary vasodilators. In addition, with the differing pathophysiology of CARDS from the typical ARDS, we sought to evaluate the current evidence regarding the use of inhaled pulmonary vasodilators in CARDS.
Collapse
Affiliation(s)
- Adeel Nasrullah
- Division of Pulmonology and Critical Care, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Shiza Virk
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Aaisha Shah
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Max Jacobs
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Amina Hamza
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Abu Baker Sheikh
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87106, USA
| | - Anam Javed
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Muhammad Ali Butt
- Department of Internal Medicine, Allegheny Health Network, Pittsburgh, PA 15512, USA
| | - Swathi Sangli
- Division of Pulmonology and Critical Care, Allegheny Health Network, Pittsburgh, PA 15212, USA
| |
Collapse
|
32
|
Alkaline tea tree oil nanoemulsion nebulizers for the treatment of pneumonia induced by drug-resistant Acinetobacter baumannii. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M. Monoclonal antibody therapies against SARS-CoV-2. THE LANCET. INFECTIOUS DISEASES 2022; 22:e311-e326. [PMID: 35803289 PMCID: PMC9255948 DOI: 10.1016/s1473-3099(22)00311-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the spike protein of SARS-CoV-2 have been widely used in the ongoing COVID-19 pandemic. In this paper, we review the properties of mAbs and their effect as therapeutics in the pandemic, including structural classification, outcomes in clinical trials that led to the authorisation of mAbs, and baseline and treatment-emergent immune escape. We show how the omicron (B.1.1.529) variant of concern has reset treatment strategies so far, discuss future developments that could lead to improved outcomes, and report the intrinsic limitations of using mAbs as therapeutic agents.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Scott McConnell
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Emiliano Cappello
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Valdiserra
- Unit of Adverse Drug Reactions Monitoring, Pisa University Hospital, Pisa, Italy; Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Tuccori
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
34
|
Reynard O, Gonzalez C, Dumont C, Iampietro M, Ferren M, Le Guellec S, Laurie L, Mathieu C, Carpentier G, Roseau G, Bovier FT, Zhu Y, Le Pennec D, Montharu J, Addetia A, Greninger AL, Alabi CA, Brisebard E, Moscona A, Vecellio L, Porotto M, Horvat B. Nebulized fusion inhibitory peptide protects cynomolgus macaques from measles virus infection. Nat Commun 2022; 13:6439. [PMID: 36307480 PMCID: PMC9616412 DOI: 10.1038/s41467-022-33832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitor, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, blocks respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We use a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptide to the respiratory tract and demonstrate the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevents MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional means to fight against respiratory infection in non-vaccinated people, that can be readily translated to human trials. It presents a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure.
Collapse
Affiliation(s)
- Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Claudia Gonzalez
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Marion Ferren
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Sandrine Le Guellec
- DTF-Aerodrug, R&D aerosolltherapy department of DTF medical (Saint Etienne, France), Faculté de médecine, Université de Tours, 37032, Tours, France
| | - Lajoie Laurie
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAe), UMR1282, Infectiologie et santé publique (ISP), Tours, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | | | | | - Francesca T Bovier
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yun Zhu
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Laboratory of Infection and Virology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Deborah Le Pennec
- INSERM, Research Center for Respiratory Diseases, CEPR U1100, Université de Tours, 37032, Tours, France
| | | | - Amin Addetia
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Anne Moscona
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | | | - Matteo Porotto
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Studies of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
35
|
McSweeney MD, Stewart I, Richardson Z, Kang H, Park Y, Kim C, Tiruthani K, Wolf W, Schaefer A, Kumar P, Aurora H, Hutchins J, Cho JM, Hickey AJ, Lee SY, Lai SK. Stable nebulization and muco-trapping properties of regdanvimab/IN-006 support its development as a potent, dose-saving inhaled therapy for COVID-19. Bioeng Transl Med 2022; 8:e10391. [PMID: 36248234 PMCID: PMC9537933 DOI: 10.1002/btm2.10391] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 01/21/2023] Open
Abstract
The respiratory tract represents the key target for antiviral delivery in early interventions to prevent severe COVID-19. While neutralizing monoclonal antibodies (mAb) possess considerable efficacy, their current reliance on parenteral dosing necessitates very large doses and places a substantial burden on the healthcare system. In contrast, direct inhaled delivery of mAb therapeutics offers the convenience of self-dosing at home, as well as much more efficient mAb delivery to the respiratory tract. Here, building on our previous discovery of Fc-mucin interactions crosslinking viruses to mucins, we showed that regdanvimab, a potent neutralizing mAb already approved for COVID-19 in several countries, can effectively trap SARS-CoV-2 virus-like particles in fresh human airway mucus. IN-006, a reformulation of regdanvimab, was stably nebulized across a wide range of concentrations, with no loss of activity and no formation of aggregates. Finally, nebulized delivery of IN-006 resulted in 100-fold greater mAb levels in the lungs of rats compared to serum, in marked contrast to intravenously dosed mAbs. These results not only support our current efforts to evaluate the safety and efficacy of IN-006 in clinical trials, but more broadly substantiate nebulized delivery of human antiviral mAbs as a new paradigm in treating SARS-CoV-2 and other respiratory pathologies.
Collapse
Affiliation(s)
- Morgan D. McSweeney
- Inhalon Biopharma IncResearch Triangle ParkNorth CarolinaUSA
- Mucommune LLCResearch Triangle ParkNorth CarolinaUSA
| | - Ian Stewart
- RTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Zach Richardson
- Inhalon Biopharma IncResearch Triangle ParkNorth CarolinaUSA
- Mucommune LLCResearch Triangle ParkNorth CarolinaUSA
| | - Hyunah Kang
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | - Yoona Park
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | - Cheolmin Kim
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
| | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
| | - Alison Schaefer
- UNC/NCSU Joint Department of Biomedical EngineeringUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
| | - Priya Kumar
- Department of Anesthesiology, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Harendra Aurora
- Department of Anesthesiology, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Jeff Hutchins
- Inhalon Biopharma IncResearch Triangle ParkNorth CarolinaUSA
| | - Jong Moon Cho
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | | | - Soo Young Lee
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | - Samuel K. Lai
- Inhalon Biopharma IncResearch Triangle ParkNorth CarolinaUSA
- Mucommune LLCResearch Triangle ParkNorth CarolinaUSA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
- UNC/NCSU Joint Department of Biomedical EngineeringUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
- Department of Microbiology and Immunology, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
36
|
Schwarz C, Procaccianti C, Costa L, Brini R, Friend R, Caivano G, Sadafi H, Mussche C, Schwenck N, Hahn M, Murgia X, Bianco F. Differential Performance and Lung Deposition of Levofloxacin with Different Nebulisers Used in Cystic Fibrosis. Int J Mol Sci 2022; 23:ijms23179597. [PMID: 36076992 PMCID: PMC9455972 DOI: 10.3390/ijms23179597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
We compared the performance and levofloxacin (Quinsair) lung deposition of three nebulisers commonly used in CF (I-Neb Advance, eFlow rapid, and LC Plus) with the approved nebuliser Zirela. The delivered dose, delivery rate, and aerosol particle size distribution (APSD) for each device were determined using the methods described in the Pharmacopeia. High-resolution computed tomography scans obtained from seven adult patients with mild CF were used to generate computer-aided, three-dimensional models of their airway tree to assess lung deposition using functional respiratory imaging (FRI). The eFlow rapid and the LC Plus showed poor delivery efficiencies due to their high residual volumes. The I-Neb, which only delivers aerosols during the inspiratory phase, achieved the highest aerosol delivery efficiency. However, the I-Neb showed the largest particle size and lowest delivery rate (2.9 mg/min), which were respectively associated with a high extrathoracic deposition and extremely long nebulisation times (>20 min). Zirela showed the best performance considering delivery efficiency (159.6 mg out of a nominal dose of 240 mg), delivery rate (43.5 mg/min), and lung deposition (20% of the nominal dose), requiring less than 5 min to deliver a full dose of levofloxacin. The present study supports the use of drug-specific nebulisers and discourages the off-label use of general-purpose devices with the present levofloxacin formulation since subtherapeutic lung doses and long nebulisation times may compromise treatment efficacy and adherence.
Collapse
Affiliation(s)
- Carsten Schwarz
- Division Cystic Fibrosis, CF Center Westbrandenburg, Campus Potsdam, Clinic Westbrandenburg, 14467 Potsdam, Germany
| | | | - Laura Costa
- Global Medical Affairs, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Riccardo Brini
- Global Technical Development, Chiesi Ltd., Chippenham SN14 0AB, UK
| | - Richard Friend
- Global Technical Development, Chiesi Ltd., Chippenham SN14 0AB, UK
| | - Grazia Caivano
- Global Technical Development, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | | | | | | | | | | | - Federico Bianco
- Global Medical Affairs, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
- Correspondence:
| |
Collapse
|
37
|
Bahlool AZ, Fattah S, O’Sullivan A, Cavanagh B, MacLoughlin R, Keane J, O’Sullivan MP, Cryan SA. Development of Inhalable ATRA-Loaded PLGA Nanoparticles as Host-Directed Immunotherapy against Tuberculosis. Pharmaceutics 2022; 14:pharmaceutics14081745. [PMID: 36015371 PMCID: PMC9415714 DOI: 10.3390/pharmaceutics14081745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Developing new effective treatment strategies to overcome the rise in multi-drug resistant tuberculosis cases (MDR-TB) represents a global challenge. A host-directed therapy (HDT), acting on the host immune response rather than Mtb directly, could address these resistance issues. We developed an HDT for targeted TB treatment, using All Trans Retinoic Acid (ATRA)-loaded nanoparticles (NPs) that are suitable for nebulization. Efficacy studies conducted on THP-1 differentiated cells infected with the H37Ra avirulent Mycobacterium tuberculosis (Mtb) strain, have shown a dose-dependent reduction in H37Ra growth as determined by the BACT/ALERT® system. Confocal microscopy images showed efficient and extensive cellular delivery of ATRA-PLGA NPs into THP-1-derived macrophages. A commercially available vibrating mesh nebulizer was used to generate nanoparticle-loaded droplets with a mass median aerodynamic diameter of 2.13 μm as measured by cascade impaction, and a volumetric median diameter of 4.09 μm as measured by laser diffraction. In an adult breathing simulation experiment, 65.1% of the ATRA PLGA-NP dose was inhaled. This targeted inhaled HDT could offer a new adjunctive TB treatment option that could enhance current dosage regimens leading to better patient prognosis and a decreasing incidence of MDR-TB.
Collapse
Affiliation(s)
- Ahmad Z. Bahlool
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, D08 9WRT Dublin, Ireland
| | - Sarinj Fattah
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
| | - Andrew O’Sullivan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Dangan, H91 HE94 Galway, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland RCSI, D02 YN77 Dublin, Ireland
| | - Ronan MacLoughlin
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Dangan, H91 HE94 Galway, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, D08 9WRT Dublin, Ireland
| | - Mary P. O’Sullivan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, D08 9WRT Dublin, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, D02 PN40 Dublin, Ireland
- SFI Centre for Research in Medical Devices (CÚRAM), NUIG & RCSI, H91 W2TY Galway, Ireland
- Correspondence:
| |
Collapse
|
38
|
Vanderstocken G, Woolf NL, Trigiante G, Jackson J, McGoldrick R. Harnessing the Potential of Enzymes as Inhaled Therapeutics in Respiratory Tract Diseases: A Review of the Literature. Biomedicines 2022; 10:biomedicines10061440. [PMID: 35740461 PMCID: PMC9220205 DOI: 10.3390/biomedicines10061440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Respiratory tract diseases (RTDs) are a global cause of mortality and affect patient well-being and quality of life. Specifically, there is a high unmet need concerning respiratory tract infections (RTIs) due to limitations of vaccines and increased antibiotic resistance. Enzyme therapeutics, and in particular plant-based enzymes, represent an underutilised resource in drug development warranting further attention. This literature review aims to summarise the current state of enzyme therapeutics in medical applications, with a focus on their potential to improve outcomes in RTDs, including RTIs. We used a narrative review approach, searching PubMed and clinicaltrials.gov with search terms including: enzyme therapeutics, enzyme therapy, inhaled therapeutics, botanical enzyme therapeutics, plant enzymes, and herbal extracts. Here, we discuss the advantages and challenges of enzyme therapeutics in the setting of RTDs and identify and describe several enzyme therapeutics currently used in the respiratory field. In addition, the review includes recent developments concerning enzyme therapies and plant enzymes in (pre-)clinical stages. The global coronavirus disease 2019 (COVID-19) pandemic has sparked development of several promising new enzyme therapeutics for use in the respiratory setting, and therefore, it is timely to provide a summary of recent developments, particularly as these therapeutics may also prove beneficial in other RTDs.
Collapse
Affiliation(s)
| | - Nicholas L. Woolf
- Inspira Pharmaceuticals Limited, 27 Old Gloucester Street, London WC1N 3AX, UK; (N.L.W.); (J.J.)
| | - Giuseppe Trigiante
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK;
| | - Jessica Jackson
- Inspira Pharmaceuticals Limited, 27 Old Gloucester Street, London WC1N 3AX, UK; (N.L.W.); (J.J.)
| | - Rory McGoldrick
- Inspira Pharmaceuticals Limited, 27 Old Gloucester Street, London WC1N 3AX, UK; (N.L.W.); (J.J.)
- Correspondence:
| |
Collapse
|
39
|
Li C, Marton I, Harari D, Shemesh M, Kalchenko V, Pardo M, Schreiber G, Rudich Y. Gelatin Stabilizes Nebulized Proteins in Pulmonary Drug Delivery against COVID-19. ACS Biomater Sci Eng 2022; 8:2553-2563. [PMID: 35608934 PMCID: PMC9159517 DOI: 10.1021/acsbiomaterials.2c00419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Delivering medication to the lungs via nebulization of pharmaceuticals is a noninvasive and efficient therapy route, particularly for respiratory diseases. The recent worldwide severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic urges the development of such therapies as an effective alternative to vaccines. The main difficulties in using inhalation therapy are the development of effective medicine and methods to stabilize the biological molecules and transfer them to the lungs efficiently following nebulization. We have developed a high-affinity angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD-62) that can be used as a medication to inhibit infection with SARS-CoV-2 and its variants. In this study, we established a nebulization protocol for drug delivery by inhalation using two commercial vibrating mesh (VM) nebulizers (Aerogen Solo and PARI eFlow) that generate similar mist size distribution in a size range that allows efficient deposition in the small respiratory airway. In a series of experiments, we show the high activity of RBD-62, interferon-α2 (IFN-α2), and other proteins following nebulization. The addition of gelatin significantly stabilizes the proteins and enhances the fractions of active proteins after nebulization, minimizing the medication dosage. Furthermore, hamster inhalation experiments verified the feasibility of the protocol in pulmonary drug delivery. In short, the gelatin-modified RBD-62 formulation in coordination with VM nebulizer can be used as a therapy to cure SARS-CoV-2.
Collapse
Affiliation(s)
- Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Ira Marton
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Daniel Harari
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Maya Shemesh
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Vyacheslav Kalchenko
- Department
of Veterinary Resources, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Michal Pardo
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Gideon Schreiber
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
40
|
The history, current state and perspectives of aerosol therapy. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:225-243. [PMID: 36651510 DOI: 10.2478/acph-2022-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 01/20/2023]
Abstract
Nebulization is a very effective method of drug administration. This technique has been popular since ancient times when inhalation of plants rich in tropane alkaloids with spasmolytic and analgesic effects was widely used. Undoubtedly, the invention of anasthesia in the 19th century had an influence on the development of this technique. It resulted in the search for devices that facilitated anasthesia such as pulveriser or hydronium. From the second half of the 21st century, when the first DPI and MDI inhalers were launched, the constant development of aerosol therapy has been noticed. This is due to the fact that nebulization, compared with other means of medicinal substance application (such as oral and intravenous routes of administration), is safer and it exhibits a positive dose/efficacy ratio connected to the reduction of the dose. It enables drugs administration through the lung and possesses very fast onset action. Therefore, various drugs prescribed in respiratory diseases (such as corticosteroids, β-agonists, anticholinergics) are present on the market in a form of an aerosol.
Collapse
|
41
|
Kumar R, Mehta P, Shankar KR, Rajora MAK, Mishra YK, Mostafavi E, Kaushik A. Nanotechnology-Assisted Metered-Dose Inhalers (MDIs) for High-Performance Pulmonary Drug Delivery Applications. Pharm Res 2022; 39:2831-2855. [PMID: 35552983 PMCID: PMC9097569 DOI: 10.1007/s11095-022-03286-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Respiratory disorders pose a major threat to the morbidity and mortality to public health. Here we reviewed the nanotechnology based pulmonary drug delivery using metered dose inhalers. METHODS Major respiratory diseases such as chronic obstructive pulmonary diseases (COPD), asthma, acute lower respiratory tract infections, tuberculosis (TB) and lung cancer. At present, common treatments for respiratory disorders include surgery, radiation, immunotherapy, and chemotherapy or a combination. The major challenge is development of systemic delivery of the chemotherapeutic agents to the respiratory system. Conventional delivery of chemotherapy has various limitation and adverse side effected. Hence, targeted, and systemic delivery need to be developed. Towards this direction nanotechnology, based controlled, targeted, and systemic drug delivery systems are potential candidate to enhance therapeutic efficacy with minimum side effect. Among different route of administration, pulmonary delivery has unique benefits such as circumvents first pass hepatic metabolism and reduces dose and side effects. RESULTS Respiratory disorders pose a major threat to the morbidity and mortality to public health globally. Pulmonary delivery can be achieved through various drug delivery devices such as nebulizers, dry powder inhalers, and metered dose inhalers. Among them, metered dose inhalers are the most interesting and first choice of clinician over others. This review focused on nanotechnology based pulmonary drug delivery using metered dose inhalers. This report focused on delivery of various types of therapeutics using nanocarriers such as polymeric nanoparticles and micelles, dendrimers, lipid nanocarriers such as liposomes, solid lipid nanostructures and nanostructured lipid carriers, and other using metered dose inhalers discussed comprehensively. This report provides insight about the effect of parameters of MDI such as co-solvent, propellants, actuators shape, nozzle diameters, and jet lengths, and respiratory flow rate, and particle size of co-suspension of drug on aerodynamics and lung deposition of formulation. This review also provided the insight about various metered dose inhalers market scenario and digital metered dose inhalers. CONCLUSION This report concluded the clinical potential of metered dose inhalers, summary of current progress and future perspectives towards the smart digital metered dose inhalers development.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| | - Piyush Mehta
- Pharmaceutical Technology Center, Department of Aerosol, Zydus Life Sciences Ltd., Ahmedabad, Gujarat, India
| | | | - Manju A K Rajora
- College of Nursing, All India Institute of Medical Sciences, New Delhi, 100029, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA.
| |
Collapse
|
42
|
Khursheed R, Paudel KR, Gulati M, Vishwas S, Jha NK, Hansbro PM, Oliver BG, Dua K, Singh SK. Expanding the arsenal against pulmonary diseases using surface-functionalized polymeric micelles: breakthroughs and bottlenecks. Nanomedicine (Lond) 2022; 17:881-911. [PMID: 35332783 DOI: 10.2217/nnm-2021-0451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pulmonary diseases such as lung cancer, asthma and tuberculosis have remained one of the common challenges globally. Polymeric micelles (PMs) have emerged as an effective technique for achieving targeted drug delivery for a local as well as a systemic effect. These PMs encapsulate and protect hydrophobic drugs, increase pulmonary targeting, decrease side effects and enhance drug efficacy through the inhalation route. In the current review, emphasis has been placed on the different barriers encountered by the drugs given via the pulmonary route and the mechanism of PMs in achieving drug targeting. The applications of PMs in different pulmonary diseases have also been discussed in detail.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Keshav R Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, 2007, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
43
|
Nickerson C, Hollen DV, Garbin S, Doty K, Jasko J, Cain C. Pilot Study to Investigate the Benefits of the InnoSpire Go Mesh Nebulizer Compared to Jet Nebulizers in the Treatment of Stable COPD. J Aerosol Med Pulm Drug Deliv 2022; 35:186-195. [PMID: 35196114 DOI: 10.1089/jamp.2021.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Nebulizers are widely used for the delivery of aerosols to patients with chronic obstructive pulmonary disease (COPD). The InnoSpire Go mesh nebulizer has been designed to improve upon the ease of use and convenience of existing nebulizers for the treatment of COPD. Methods: This was a pilot, single-center, randomized, open-label crossover study conducted over 2 months to investigate the use of the InnoSpire Go mesh nebulizer compared to the patient's own compressor driven jet nebulizer in ambulatory patients with stable COPD. Patient preference was assessed at the end of the study; quality of life, symptom scores, treatment time, and satisfaction were assessed at multiple points during the study. Results: Data for 17 patients were eligible for analysis, patients had a mean age of 64.6 years, and 64.7% were graded 3 on the modified Medical Research Council dyspnea scale. All patients preferred the InnoSpire Go mesh nebulizer over their own compressor driven jet nebulizer (p < 0.001). Nebulization of study drugs using the InnoSpire Go mesh nebulizer was associated with statistically significant increases in health-related quality of life over baseline (Dyspnea p = 0.003, Emotion p = 0.043, Mastery p = 0.011). A mixed model analysis of Borg dyspnea scores before and after exercise showed significantly (p = 0.043) lower scores for the InnoSpire Go mesh nebulizer compared with the compressor driven nebulizers. Patient satisfaction was statistically significantly higher for each of 10 questions covering ease of use, confidence, burden of use, satisfaction, and how well the device fit into their lifestyle. Treatment time was significantly shorter with the InnoSpire Go mesh nebulizer (p = 0.003). Conclusions: Patients preferred and were more satisfied with the InnoSpire Go mesh nebulizer. Nebulization of study drugs using the InnoSpire Go mesh nebulizer resulted in improved quality of life compared with baseline, and treatments were delivered in a shorter period than the compressor driven jet nebulizers. Clinical Trial Registration number: ClinicalTrials.gov: NCT03933462.
Collapse
Affiliation(s)
- Cheryl Nickerson
- Philips RS North America LLC Formerly Known as Respironics, Inc., a Delaware Limited Liability Company ("Philips"), Pittsburgh, Pennsylvania, USA
| | - Dirk von Hollen
- Philips RS North America LLC Formerly Known as Respironics, Inc., a Delaware Limited Liability Company ("Philips"), Pittsburgh, Pennsylvania, USA
| | - Sara Garbin
- Philips RS North America LLC Formerly Known as Respironics, Inc., a Delaware Limited Liability Company ("Philips"), Pittsburgh, Pennsylvania, USA
| | - Ketah Doty
- Philips RS North America LLC Formerly Known as Respironics, Inc., a Delaware Limited Liability Company ("Philips"), Pittsburgh, Pennsylvania, USA
| | - Jeff Jasko
- Philips RS North America LLC Formerly Known as Respironics, Inc., a Delaware Limited Liability Company ("Philips"), Pittsburgh, Pennsylvania, USA
| | - Chuck Cain
- Philips RS North America LLC Formerly Known as Respironics, Inc., a Delaware Limited Liability Company ("Philips"), Pittsburgh, Pennsylvania, USA
| |
Collapse
|
44
|
Anderson N, Clarke S, von Ungern-Sternberg BS. Aerosolized drug delivery in awake and anesthetized children to treat bronchospasm. Paediatr Anaesth 2022; 32:156-166. [PMID: 34862993 DOI: 10.1111/pan.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
Bronchospasm is a common respiratory adverse event in pediatric anesthesia. First-line treatment commonly includes inhaled salbutamol. This review focuses on the current best practice to deliver aerosolized medications to awake as well as anesthetized pediatric patients and discusses the advantages and disadvantages of various administration techniques. Additionally, we detail the differences between various airway devices used in anesthesia. We highlight the unmet need for innovation of orally inhaled drug products to deliver aerosolized medications during pediatric respiratory critical events such as bronchospasm. It is therefore important that clinicians remain up to date with the best clinical practice for aerosolized drug delivery in order to prevent and efficiently treat pediatric patients experiencing life-threatening respiratory emergencies.
Collapse
Affiliation(s)
- Natalie Anderson
- Perioperative Medicine, Telethon Kids Institute, Nedlands, WA, Australia.,School of Population Health, Curtin University, Bentley, WA, Australia
| | - Sarah Clarke
- Emergency Department, Perth Children's Hospital, Perth, WA, Australia
| | - Britta S von Ungern-Sternberg
- Perioperative Medicine, Telethon Kids Institute, Nedlands, WA, Australia.,Department of Anaesthesia and Pain Management, Perth Children's Hospital, Perth, WA, Australia.,Division of Emergency Medicine, Anaesthesia and Pain Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
45
|
Li H, Song Y, Chen X, Sun H. Nursing Progress of Hypertonic Saline Inhalation in the Treatment of Infantile Bronchitis Based on Image Enhancement. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5092969. [PMID: 35103070 PMCID: PMC8800604 DOI: 10.1155/2022/5092969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The onset of bronchiolitis is closely related to the anatomical characteristics of the bronchi in children of this age. This kind of injury is caused by epithelial necrosis, nasal mucosa, and mucosal edema caused by narrowing and blockage of the trachea. Children with this serious phenomenon will have respiratory and heart failure, which threatens the life of children to a large extent. In this paper, based on image enhancement technology, hypertonic saline aerosol inhalation treatment of pediatric bronchiolitis nursing care, through related cases, the application of image enhancement technology in hypertonic saline aerosol inhalation therapy and pediatric bronchiolitis is analyzed, and the tone mapping function is used. Tone mapping functions, hereditary arithmetics, and slope regimes for experimental field capture and detection were used for the objective of therapeutic approaches for the treatment of pediatric capillary pneumonia by hypertonic inhalation. Experimental results show that imaging technology hypertonic inhalation can control the main symptoms of bronchiolitis in infants and young children. Inhalation of 3% saline can shorten the course of moderately chronic children to half a year and can reduce the length of hospital stay by a quarter of the original requires hospitalization time, and the cure rate of pediatric bronchiolitis is increased to 93.7%.
Collapse
Affiliation(s)
- Haiyan Li
- Sunshine Union Hospital, Shandong Province 261000, China
| | - Yangang Song
- Sunshine Union Hospital, Shandong Province 261000, China
| | - Xue Chen
- Sunshine Union Hospital, Shandong Province 261000, China
| | - Hesheng Sun
- Sunshine Union Hospital, Shandong Province 261000, China
| |
Collapse
|
46
|
Anderson S, Atkins P, Bäckman P, Cipolla D, Clark A, Daviskas E, Disse B, Entcheva-Dimitrov P, Fuller R, Gonda I, Lundbäck H, Olsson B, Weers J. Inhaled Medicines: Past, Present, and Future. Pharmacol Rev 2022; 74:48-118. [PMID: 34987088 DOI: 10.1124/pharmrev.120.000108] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of this review is to summarize essential pharmacological, pharmaceutical, and clinical aspects in the field of orally inhaled therapies that may help scientists seeking to develop new products. After general comments on the rationale for inhaled therapies for respiratory disease, the focus is on products approved approximately over the last half a century. The organization of these sections reflects the key pharmacological categories. Products for asthma and chronic obstructive pulmonary disease include β -2 receptor agonists, muscarinic acetylcholine receptor antagonists, glucocorticosteroids, and cromones as well as their combinations. The antiviral and antibacterial inhaled products to treat respiratory tract infections are then presented. Two "mucoactive" products-dornase α and mannitol, which are both approved for patients with cystic fibrosis-are reviewed. These are followed by sections on inhaled prostacyclins for pulmonary arterial hypertension and the challenging field of aerosol surfactant inhalation delivery, especially for prematurely born infants on ventilation support. The approved products for systemic delivery via the lungs for diseases of the central nervous system and insulin for diabetes are also discussed. New technologies for drug delivery by inhalation are analyzed, with the emphasis on those that would likely yield significant improvements over the technologies in current use or would expand the range of drugs and diseases treatable by this route of administration. SIGNIFICANCE STATEMENT: This review of the key aspects of approved orally inhaled drug products for a variety of respiratory diseases and for systemic administration should be helpful in making judicious decisions about the development of new or improved inhaled drugs. These aspects include the choices of the active ingredients, formulations, delivery systems suitable for the target patient populations, and, to some extent, meaningful safety and efficacy endpoints in clinical trials.
Collapse
Affiliation(s)
- Sandra Anderson
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Paul Atkins
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Per Bäckman
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - David Cipolla
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Andrew Clark
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Evangelia Daviskas
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Bernd Disse
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Plamena Entcheva-Dimitrov
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Rick Fuller
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Igor Gonda
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Hans Lundbäck
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Bo Olsson
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Jeffry Weers
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| |
Collapse
|
47
|
Damiański P, Kardas G, Panek M, Kuna P, Kupczyk M. Improving the risk-to-benefit ratio of inhaled corticosteroids through delivery and dose: current progress and future directions. Expert Opin Drug Saf 2021; 21:499-515. [PMID: 34720035 DOI: 10.1080/14740338.2022.1999926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Inhaled corticosteroids (ICS) are known to increase the risk of systemic and local adverse effects, especially with high doses and long-term use. Hence, considerable resources are invested to improve pharmacokinetic/pharmacodynamic (PK/PD) properties of ICS, effective delivery systems and novel combination therapies to enhance the risk-to-benefit ratio of ICS. AREAS COVERED There is an unmet need for new solutions to achieve optimal clinical outcomes with minimal dose of ICS. This paper gives an overview of novel treatment strategies regarding the safety of ICS therapy on the basis of the three most recent molecules introduced to our everyday clinical practice - ciclesonide, mometasone furoate, and fluticasone furoate. Advances in aerosol devices and new areas of inhalation therapy are also discussed. EXPERT OPINION Current progress in improving the risk-to-benefit ratio of ICS through dose and delivery probably established pathways for further developments. This applies both to the improvement of the PK/PD properties of ICS molecules but also includes technical aspects that lead to simplified applicability of the device with simultaneous optimal drug deposition in the lungs. Indubitably, the future of medicine lies not only in the development of new molecules but also in technology and digital revolution.
Collapse
Affiliation(s)
- Piotr Damiański
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Kardas
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Michał Panek
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Piotr Kuna
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Maciej Kupczyk
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
48
|
Schulze J, Lehmann J, Agel S, Amin MU, Schaefer J, Bakowsky U. In Ovo Testing Method for Inhalants on a Chorio-Allantoic Membrane. ACS APPLIED BIO MATERIALS 2021; 4:7764-7768. [PMID: 35006759 DOI: 10.1021/acsabm.1c01016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solid tumors and metastasis rely on angiogenesis for sufficient supply as they grow, making antiangiogenic treatment a promising option in the combat of cancer. Testing of inhalants on the chorio-allantoic membrane offers a simple but precise method to assess the impact on angiogenesis. The in ovo testing method can be used to directly determine the effect of inhaled formulations solely or in the context of photodynamic therapy. In this study curcumin liposomes served as a model for testing of pulmonary application and revealed an excellent antiangiogenetic effect. This efficacy of a model inhalant illustrates the suitability of the method.
Collapse
Affiliation(s)
- Jan Schulze
- University of Marburg, Department of Pharmaceutics and Biopharmaceutics, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Jennifer Lehmann
- University of Marburg, Department of Pharmaceutics and Biopharmaceutics, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Sabine Agel
- University of Giessen, Biomedical Research Center (BFS), Imaging Unit, Schubertstrasse 81, 35392 Giessen, Germany
| | - Muhammad Umair Amin
- University of Marburg, Department of Pharmaceutics and Biopharmaceutics, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Jens Schaefer
- University of Marburg, Department of Pharmaceutics and Biopharmaceutics, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- University of Marburg, Department of Pharmaceutics and Biopharmaceutics, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| |
Collapse
|
49
|
Abstract
Drug delivery via the pulmonary route is a cornerstone in the pharmaceutical sector as an alternative to oral and parenteral administration. Nebulizer inhalation treatment offers multiple drug administration, easily employed with tidal breathing, suitable for children and elderly, can be adapted for severe patients and visible spray ensures patient satisfaction. This review discusses the operational and mechanical characteristics of nebulizer delivery devices in terms of aerosol production processes, their usage, benefits and drawbacks that are currently shaping the contemporary landscape of inhaled drug delivery. With the advent of particle engineering, novel inhaled nanosystems can be successfully developed to increase lung deposition and decrease pulmonary clearance. The above-mentioned advances might pave the path for treating a life-threatening disorder like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is also discussed in the current state of the art.
Collapse
|
50
|
Tseng HY, Lin HL, Chiang HS. In Vitro Evaluation of Aerosol Delivery by Hand-Held Mesh Nebulizers in an Adult Spontaneous Breathing Lung Model. J Aerosol Med Pulm Drug Deliv 2021; 35:83-90. [PMID: 34647814 DOI: 10.1089/jamp.2021.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: Drug inhalation is common mode of treatment for chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate the efficiency of aerosol devices in a simulated COPD adult lung model using five commercially available hand-held mesh nebulizers. Materials and Methods: Five nebulizers (PARI VELOX®, Omron NE-U22, Aeroneb® Go, APEX PY001, and Pocket Air®) were tested with a unit dose of 5.0 mg/2.5 mL salbutamol. An in vitro lung model (compliance: 0.06 L/cm H2O, resistance: 20 cm H2O/L/sec) was constructed to simulate parameters (tidal volume of 500 mL, respiratory rate of 15 breaths/min, inspiratory time of 1 second) of an adult patient with COPD. A bacterial filter was attached at the bronchi level for drug collection, referring as inhaled mass. After nebulization, the inhaled mass (%), dose remaining on each component (%), particle size characteristics, and nebulizer performances were analyzed. Particle size characteristics were analyzed using an 8-stage Anderson Cascade Impactor. The salbutamol particles deposited were eluted and analyzed using a spectrophotometer at 276 nm. The inhaled mass (%), dose remaining on each component (%), particle size distribution, and nebulizer performance were statistically analyzed using analysis of variance (ANOVA) with Sheffee post hoc tests. Results: Pocket Air and APEX PY001 showed the greatest inhaled mass and the lowest dose in the mouthpiece connection. The largest and smallest mass median aerodynamic diameters were found with Omron NE-U22 and PARI VELOX, respectively. In addition, the output rate and inhaled aerosol rate (IAR) of PARI VELOX were higher than those of other nebulizers. Conclusions: This study showed that the performance of commercially available mesh nebulizers varied. Aerosol particles deposited on different auxiliary equipment directly influenced the output rate and IAR of the mesh nebulizer. Clinical validation of the drug IAR is necessary to avoid overdose and reduce drug wastage.
Collapse
Affiliation(s)
- Hui-Yun Tseng
- Department of Chemistry, and Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Respiratory Therapy, Collage of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Ling Lin
- Department of Respiratory Therapy, Collage of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|