1
|
Tiwari G, Patil A, Sethi P, Agrawal A, Ansari VA, Posa MK, Aher VD. Design, optimization, and evaluation of methotrexate loaded and albumin coated polymeric nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2068-2089. [PMID: 38888441 DOI: 10.1080/09205063.2024.2366619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Methotrexate is a potent anticancer drug whose strong efflux is facilitated by the brain's efflux transporter. As an efflux transporter blocker, albumin increased the drug's concentration in the brain. Methotrexate-loaded nanoparticles were produced by evaporating the emulsification fluid. Improvements and analyses were made to the following aspects of the generated nanoparticles: size, polydispersity, zeta potential, entrapment efficiency, percentage yield, scanning electron microscopy, in vitro drug release studies, and sterilization. The particle size was determined to be in the nano range, and homogeneity of particle size was suggested by a low polydispersity index result. Particle diameters of 168 nm were observed in the F5 preparation, and zeta potential values of -1.5 mV suggested that the preparation produced adequate repulsive interactions between the nanoparticles. Albumin and dopamine HCl were employed to coat the methotrexate-loaded nanoparticles to guarantee that the brain received an adequate amount of them. The homogeneity of albumin coated nanoparticles was demonstrated by the low% PDI values of 0.129 and 0.122 for albumin coated nanoparticles (MNPs-Alb) and polymerized dopamine HCl and albumin coated nanoparticles (MNPs-PMD-Alb), respectively. After 48 h of incubation, the cell viability measured at the same drug concentration (5 mg) decreased for the F5, albumin coated nanoparticles, polymerized dopamine HCl coated nanoparticles, and polymerized dopamine HCl and albumin coated nanoparticles, respectively. Our primary findings demonstrate that the albumin nanoparticles containing methotrexate are designed to deliver the drug gradually. With minimal cytotoxicity, the intended preparation might give the brain an appropriate dosage of methotrexate.
Collapse
Affiliation(s)
- Gaurav Tiwari
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, U.P, India
| | - Anasuya Patil
- Department of Pharmaceutics, KLE College of Pharmacy, II Block Rajajinagar, Bengaluru, Karnataka, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University affiliation, Gajraula, India
| | - Ankur Agrawal
- Department of Pharmacy, Jai Institute of Pharmaceutical Sciences and Research, Gwalior, M.P, India
| | - Vaseem A Ansari
- Department of Pharmacy, Faculty of Pharmacy, Integral University Lucknow, India
| | - Mahesh Kumar Posa
- Department of Pharmacology, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Vaibhav Dagaji Aher
- Department of Pharmaceutical Medicine, Maharashtra University of Health Sciences, Nashik, Maharashtra, India
| |
Collapse
|
2
|
Han J, Wang Y, Wei P, Lu D, Shan Y. Unveiling the hidden connection: the blood-brain barrier's role in epilepsy. Front Neurol 2024; 15:1413023. [PMID: 39206290 PMCID: PMC11349696 DOI: 10.3389/fneur.2024.1413023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Epilepsy is characterized by abnormal synchronous electrical activity of neurons in the brain. The blood-brain barrier, which is mainly composed of endothelial cells, pericytes, astrocytes and other cell types and is formed by connections between a variety of cells, is the key physiological structure connecting the blood and brain tissue and is critical for maintaining the microenvironment in the brain. Physiologically, the blood-brain barrier controls the microenvironment in the brain mainly by regulating the passage of various substances. Disruption of the blood-brain barrier and increased leakage of specific substances, which ultimately leading to weakened cell junctions and abnormal regulation of ion concentrations, have been observed during the development and progression of epilepsy in both clinical studies and animal models. In addition, disruption of the blood-brain barrier increases drug resistance through interference with drug trafficking mechanisms. The changes in the blood-brain barrier in epilepsy mainly affect molecular pathways associated with angiogenesis, inflammation, and oxidative stress. Further research on biomarkers is a promising direction for the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Wakid M, Almeida D, Aouabed Z, Rahimian R, Davoli MA, Yerko V, Leonova-Erko E, Richard V, Zahedi R, Borchers C, Turecki G, Mechawar N. Universal method for the isolation of microvessels from frozen brain tissue: A proof-of-concept multiomic investigation of the neurovasculature. Brain Behav Immun Health 2023; 34:100684. [PMID: 37822873 PMCID: PMC10562768 DOI: 10.1016/j.bbih.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
The neurovascular unit, comprised of vascular cell types that collectively regulate cerebral blood flow to meet the needs of coupled neurons, is paramount for the proper function of the central nervous system. The neurovascular unit gatekeeps blood-brain barrier properties, which experiences impairment in several central nervous system diseases associated with neuroinflammation and contributes to pathogenesis. To better understand function and dysfunction at the neurovascular unit and how it may confer inflammatory processes within the brain, isolation and characterization of the neurovascular unit is needed. Here, we describe a singular, standardized protocol to enrich and isolate microvessels from archived snap-frozen human and frozen mouse cerebral cortex using mechanical homogenization and centrifugation-separation that preserves the structural integrity and multicellular composition of microvessel fragments. For the first time, microvessels are isolated from postmortem ventromedial prefrontal cortex tissue and are comprehensively investigated as a structural unit using both RNA sequencing and Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Both the transcriptome and proteome are obtained and compared, demonstrating that the isolated brain microvessel is a robust model for the NVU and can be used to generate highly informative datasets in both physiological and disease contexts.
Collapse
Affiliation(s)
- Marina Wakid
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | | | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Elena Leonova-Erko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Vincent Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - René Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Christoph Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
4
|
Stamp MEM, Halwes M, Nisbet D, Collins DJ. Breaking barriers: exploring mechanisms behind opening the blood-brain barrier. Fluids Barriers CNS 2023; 20:87. [PMID: 38017530 PMCID: PMC10683235 DOI: 10.1186/s12987-023-00489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
The blood-brain barrier (BBB) is a selectively permeable membrane that separates the bloodstream from the brain. While useful for protecting neural tissue from harmful substances, brain-related diseases are difficult to treat due to this barrier, as it also limits the efficacy of drug delivery. To address this, promising new approaches for enhancing drug delivery are based on disrupting the BBB using physical means, including optical/photothermal therapy, electrical stimulation, and acoustic/mechanical stimulation. These physical mechanisms can temporarily and locally open the BBB, allowing drugs and other substances to enter. Focused ultrasound is particularly promising, with the ability to focus energies to targeted, deep-brain regions. In this review, we examine recent advances in physical approaches for temporary BBB disruption, describing their underlying mechanisms as well as evaluating the utility of these physical approaches with regard to their potential risks and limitations. While these methods have demonstrated efficacy in disrupting the BBB, their safety, comparative efficacy, and practicality for clinical use remain an ongoing topic of research.
Collapse
Affiliation(s)
- Melanie E M Stamp
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
| | - Michael Halwes
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - David Nisbet
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Tincu (Iurciuc) CE, Andrițoiu CV, Popa M, Ochiuz L. Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel) 2023; 15:3969. [PMID: 37836018 PMCID: PMC10575401 DOI: 10.3390/polym15193969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most prevalent primary malignant tumor affecting the brain and central nervous system. Recent research indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the main obstacle in treating GBM is transporting drugs through the blood-brain barrier (BBB). Albumin is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery systems is determined by their ability to improve tumor targeting and accumulation. In this review, we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well as the structure and some essential functions of the BBB, to transport drugs through this barrier. We will also mention some aspects related to the blood-tumor brain barrier (BTBB) that lead to poor treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer, especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper have improved properties and can overcome the BBB to target brain tumors.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania;
- Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
6
|
Rudge JD. The Lipid Invasion Model: Growing Evidence for This New Explanation of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221175. [PMID: 37302030 PMCID: PMC10357195 DOI: 10.3233/jad-221175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Lipid Invasion Model (LIM) is a new hypothesis for Alzheimer's disease (AD) which argues that AD is a result of external lipid invasion to the brain, following damage to the blood-brain barrier (BBB). The LIM provides a comprehensive explanation of the observed neuropathologies associated with the disease, including the lipid irregularities first described by Alois Alzheimer himself, and accounts for the wide range of risk factors now identified with AD, all of which are also associated with damage to the BBB. This article summarizes the main arguments of the LIM, and new evidence and arguments in support of it. The LIM incorporates and extends the amyloid hypothesis, the current main explanation of the disease, but argues that the greatest cause of late-onset AD is not amyloid-β (Aβ) but bad cholesterol and free fatty acids, let into the brain by a damaged BBB. It suggests that the focus on Aβ is the reason why we have made so little progress in treating the disease in the last 30 years. As well as offering new perspectives for further research into the diagnosis, prevention, and treatment of AD, based on protecting and repairing the BBB, the LIM provides potential new insights into other neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis/motor neuron disease.
Collapse
|
7
|
Hintelmann K, Petersen C, Borgmann K. Radiotherapeutic Strategies to Overcome Resistance of Breast Cancer Brain Metastases by Considering Immunogenic Aspects of Cancer Stem Cells. Cancers (Basel) 2022; 15:211. [PMID: 36612206 PMCID: PMC9818478 DOI: 10.3390/cancers15010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most diagnosed cancer in women, and symptomatic brain metastases (BCBMs) occur in 15-20% of metastatic breast cancer cases. Despite technological advances in radiation therapy (RT), the prognosis of patients is limited. This has been attributed to radioresistant breast cancer stem cells (BCSCs), among other factors. The aim of this review article is to summarize the evidence of cancer-stem-cell-mediated radioresistance in brain metastases of breast cancer from radiobiologic and radiation oncologic perspectives to allow for the better interpretability of preclinical and clinical evidence and to facilitate its translation into new therapeutic strategies. To this end, the etiology of brain metastasis in breast cancer, its radiotherapeutic treatment options, resistance mechanisms in BCSCs, and effects of molecularly targeted therapies in combination with radiotherapy involving immune checkpoint inhibitors are described and classified. This is considered in the context of the central nervous system (CNS) as a particular metastatic niche involving the blood-brain barrier and the CNS immune system. The compilation of this existing knowledge serves to identify possible synergistic effects between systemic molecularly targeted therapies and ionizing radiation (IR) by considering both BCSCs' relevant resistance mechanisms and effects on normal tissue of the CNS.
Collapse
Affiliation(s)
- Katharina Hintelmann
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
8
|
Aragón-González A, Shaw PJ, Ferraiuolo L. Blood-Brain Barrier Disruption and Its Involvement in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms232315271. [PMID: 36499600 PMCID: PMC9737531 DOI: 10.3390/ijms232315271] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) is a highly specialized and dynamic compartment which regulates the uptake of molecules and solutes from the blood. The relevance of the maintenance of a healthy BBB underpinning disease prevention as well as the main pathomechanisms affecting BBB function will be detailed in this review. Barrier disruption is a common aspect in both neurodegenerative diseases, such as amyotrophic lateral sclerosis, and neurodevelopmental diseases, including autism spectrum disorders. Throughout this review, conditions altering the BBB during the earliest and latest stages of life will be discussed, revealing common factors involved. Due to the barrier's role in protecting the brain from exogenous components and xenobiotics, drug delivery across the BBB is challenging. Potential therapies based on the BBB properties as molecular Trojan horses, among others, will be reviewed, as well as innovative treatments such as stem cell therapies. Additionally, due to the microbiome influence on the normal function of the brain, microflora modulation strategies will be discussed. Finally, future research directions are highlighted to address the current gaps in the literature, emphasizing the idea that common therapies for both neurodevelopmental and neurodegenerative pathologies exist.
Collapse
Affiliation(s)
- Ana Aragón-González
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, SITraN, 385a Glossop Road, Sheffield S10 2HQ, UK
- Correspondence: ; Tel.: +44-(0)114-222-2257; Fax: +44-(0)114-222-2290
| |
Collapse
|
9
|
Saavedra J, Nascimento M, Liz MA, Cardoso I. Key brain cell interactions and contributions to the pathogenesis of Alzheimer's disease. Front Cell Dev Biol 2022; 10:1036123. [PMID: 36523504 PMCID: PMC9745159 DOI: 10.3389/fcell.2022.1036123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 06/22/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide, with the two major hallmarks being the deposition of extracellular β-amyloid (Aβ) plaques and of intracellular neurofibrillary tangles (NFTs). Additionally, early pathological events such as cerebrovascular alterations, a compromised blood-brain barrier (BBB) integrity, neuroinflammation and synaptic dysfunction, culminate in neuron loss and cognitive deficits. AD symptoms reflect a loss of neuronal circuit integrity in the brain; however, neurons do not operate in isolation. An exclusively neurocentric approach is insufficient to understand this disease, and the contribution of other brain cells including astrocytes, microglia, and vascular cells must be integrated in the context. The delicate balance of interactions between these cells, required for healthy brain function, is disrupted during disease. To design successful therapies, it is critical to understand the complex brain cellular connections in AD and the temporal sequence of their disturbance. In this review, we discuss the interactions between different brain cells, from physiological conditions to their pathological reactions in AD, and how this basic knowledge can be crucial for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Joana Saavedra
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Márcia A. Liz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Isabel Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Längrich T, Bork K, Horstkorte R, Weber V, Hofmann B, Fuszard M, Olzscha H. Disturbance of Key Cellular Subproteomes upon Propofol Treatment Is Associated with Increased Permeability of the Blood-Brain Barrier. Proteomes 2022; 10:proteomes10030028. [PMID: 35997440 PMCID: PMC9397097 DOI: 10.3390/proteomes10030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Propofol is a short-acting anesthetic, which is often used for induction and maintenance of general anesthesia, sedation for mechanically ventilated adults and procedural sedation. Several side effects of propofol are known and a substantial number of patients suffer from post-operative delirium after propofol application. In this study, we analyzed the effect of propofol on the function and protein expression profile on a proteome-wide scale. Methods: We cultured human brain microvascular endothelial cells in absence and presence of propofol and analyzed the permeability of the blood-brain barrier (BBB) by fluorescein passage and protein abundance on a proteome-wide scale by mass spectrometry. Results: Propofol interfered with the function of the blood-brain barrier. This was not due to decreased adhesion of propofol-treated human brain microvascular endothelial cells. The proteomic analysis revealed that some key pathways in these cells were disturbed, such as oxygen metabolism, DNA damage recognition and response to stress. Conclusions: Propofol has strong effects on protein expression which could explain several side effects of propofol.
Collapse
Affiliation(s)
- Timo Längrich
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany
| | - Kaya Bork
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany
| | - Veronika Weber
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany
| | - Britt Hofmann
- Klinik und Poliklinik für Herzchirurgie, Universitätsklinikum Halle (Saale), Ernst-Grube-Str. 20, 06120 Halle (Saale), Germany
| | - Matt Fuszard
- Core Facility—Proteomic Mass Spectrometry, Proteinzentrum Charles Tanford, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Heidi Olzscha
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany
- Medical School Hamburg MSH, University of Applied Sciences and Medical University, Institute of Molecular Medicine, Am Sandtorkai 76, 20457 Hamburg, Germany
- Correspondence:
| |
Collapse
|
11
|
Alajangi HK, Kaur M, Sharma A, Rana S, Thakur S, Chatterjee M, Singla N, Jaiswal PK, Singh G, Barnwal RP. Blood-brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol Brain 2022; 15:49. [PMID: 35650613 PMCID: PMC9158215 DOI: 10.1186/s13041-022-00937-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
The integrity of the blood–brain barrier (BBB) is essential for normal central nervous system (CNS) functioning. Considering the significance of BBB in maintaining homeostasis and the neural environment, we aim to provide an overview of significant aspects of BBB. Worldwide, the treatment of neurological diseases caused by BBB disruption has been a major challenge. BBB also restricts entry of neuro-therapeutic drugs and hinders treatment modalities. Hence, currently nanotechnology-based approaches are being explored on large scale as alternatives to conventional methodologies. It is necessary to investigate the in-depth characteristic features of BBB to facilitate the discovery of novel drugs that can successfully cross the barrier and target the disease effectively. It is imperative to discover novel strategies to treat life-threatening CNS diseases in humans. Therefore, insights regarding building blocks of BBB, activation of immune response on breach of this barrier, and various autoimmune neurological disorders caused due to BBB dysfunction are discussed. Further, special emphasis is given on delineating BBB disruption leading to CNS disorders. Moreover, various mechanisms of transport pathways across BBB, several novel strategies, and alternative routes by which drugs can be properly delivered into CNS are also discussed.
Collapse
Affiliation(s)
- Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Mandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sumedh Rana
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Shipali Thakur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Mary Chatterjee
- Department of Biotechnology, UIET, Panjab University, Chandigarh, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
12
|
Yang R, Chen M, Zheng J, Li X, Zhang X. The Role of Heparin and Glycocalyx in Blood-Brain Barrier Dysfunction. Front Immunol 2022; 12:754141. [PMID: 34992593 PMCID: PMC8724024 DOI: 10.3389/fimmu.2021.754141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The blood-brain barrier (BBB) functions as a dynamic boundary that protects the central nervous system from blood and plays an important role in maintaining the homeostasis of the brain. Dysfunction of the BBB is a pathophysiological characteristic of multiple neurologic diseases. Glycocalyx covers the luminal side of vascular endothelial cells(ECs). Damage of glycocalyx leads to disruption of the BBB, while inhibiting glycocalyx degradation maintains BBB integrity. Heparin has been recognized as an anticoagulant and it protects endothelial glycocalyx from destruction. In this review, we summarize the role of glycocalyx in BBB formation and the therapeutic potency of heparin to provide a theoretical basis for the treatment of neurological diseases related to BBB breakdown.
Collapse
Affiliation(s)
- Rui Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingming Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiayin Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Li
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaojuan Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
14
|
João KG, Videira RA, Paiva-Martins F, Valentão P, Pereira DM, Andrade PB. Homarine Alkyl Ester Derivatives as Promising Acetylcholinesterase Inhibitors. ChemMedChem 2021; 16:3315-3325. [PMID: 34342141 DOI: 10.1002/cmdc.202100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/13/2021] [Indexed: 11/08/2022]
Abstract
Reversible acetylcholinesterase (AChE) inhibitors are key therapeutic tools to modulate the cholinergic connectivity compromised in several degenerative pathologies. In this work, four alkyl esters of homarine were synthesized and screened by using Electrophorus electricus AChE and rat brain AChE-rich fraction. Results showed that all homarine alkyl esters are able to inhibit AChE by a competitive inhibition mode. The effectiveness of AChE inhibition increases with the alkyl side chain length of the homarine esters, being HO-C16 (IC50 =7.57±3.32 μM and Ki =18.96±2.28 μM) the most potent inhibitor. The fluorescence quenching studies confirmed that HO-C16 is the compound with higher selectivity and affinity for the tryptophan residues in the catalytic active site of AChE. Preliminary cell viability studies showed that homarine esters display no toxicity for human neuronal SH-SY5Y cells. Thus, the long-chain homarine esters emerge as new anti-cholinesterase agents, with potential to be considered for therapeutic applications development.
Collapse
Affiliation(s)
- Karen G João
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313, Porto, Portugal
| |
Collapse
|
15
|
Han L, Jiang C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B 2021; 11:2306-2325. [PMID: 34522589 PMCID: PMC8424230 DOI: 10.1016/j.apsb.2020.11.023] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Blood–brain barrier (BBB) strictly controls matter exchange between blood and brain, and severely limits brain penetration of systemically administered drugs, resulting in ineffective drug therapy of brain diseases. However, during the onset and progression of brain diseases, BBB alterations evolve inevitably. In this review, we focus on nanoscale brain-targeting drug delivery strategies designed based on BBB evolutions and related applications in various brain diseases including Alzheimer's disease, Parkinson's disease, epilepsy, stroke, traumatic brain injury and brain tumor. The advances on optimization of small molecules for BBB crossing and non-systemic administration routes (e.g., intranasal treatment) for BBB bypassing are not included in this review.
Collapse
Key Words
- AD, Alzheimer's disease
- AMT, alpha-methyl-l-tryptophan
- Aβ, amyloid beta
- BACE1, β-secretase 1
- BBB, blood–brain barrier
- BDNF, brain derived neurotrophic factor
- BTB, blood–brain tumor barrier
- Blood–brain barrier
- Brain diseases
- Brain-targeting
- CMT, carrier-mediated transportation
- DTPA-Gd, Gd-diethyltriaminepentaacetic acid
- Drug delivery systems
- EPR, enhanced permeability and retention
- GLUT1, glucose transporter-1
- Gd, gadolinium
- ICAM-1, intercellular adhesion molecule-1
- KATP, ATP-sensitive potassium channels
- KCa, calcium-dependent potassium channels
- LAT1, L-type amino acid transporter 1
- LDL, low density lipoprotein
- LDLR, LDL receptor
- LFA-1, lymphocyte function associated antigen-1
- LRP1, LDLR-related protein 1
- MFSD2A, major facilitator superfamily domain-containing protein 2a
- MMP9, metalloproteinase-9
- MRI, magnetic resonance imaging
- NPs, nanoparticles
- Nanoparticles
- P-gp, P-glycoprotein
- PD, Parkinson's disease
- PEG, polyethyleneglycol
- PEG-PLGA, polyethyleneglycol-poly(lactic-co-glycolic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PSMA, prostate-specific membrane antigen
- RAGE, receptor for advanced glycosylation end products
- RBC, red blood cell
- RMT, receptor-mediated transcytosis
- ROS, reactive oxygen species
- TBI, traumatic brain injury
- TJ, tight junction
- TfR, transferrin receptor
- VEGF, vascular endothelial growth factor
- ZO1, zona occludens 1
- siRNA, short interfering RNA
- tPA, tissue plasminogen activator
Collapse
Affiliation(s)
- Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Corresponding author. Tel./fax: +86 512 65882089.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Marcucci F, Corti A, Ferreri AJM. Breaching the Blood-Brain Tumor Barrier for Tumor Therapy. Cancers (Basel) 2021; 13:cancers13102391. [PMID: 34063335 PMCID: PMC8156088 DOI: 10.3390/cancers13102391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Tumors affecting the central nervous system (CNS), either primary or secondary, are highly prevalent and represent an unmet medical need. Prognosis of these tumors remains poor, mostly due to the low intrinsic chemo/radio-sensitivity of tumor cells, a meagerly known role of the microenvironment and the poor CNS bioavailability of most used anti-cancer agents. The BBTB is the main obstacle for anticancer drugs to achieve therapeutic concentrations in the tumor tissues. During the last decades, many efforts have been devoted to the identification of modalities allowing to increase drug delivery into brain tumors. Until recently, success has been modest, as few of these approaches reached clinical testing and even less gained regulatory approval. In recent years, the scenario has changed, as various conjugates and drug delivery technologies have advanced into clinical testing, with encouraging results and without being burdened by a heavy adverse event profile. In this article, we review the different approaches aimed at increasing drug delivery to brain tumors, with particular attention to new, promising approaches that increase the permeability of the BBTB or exploit physiological transport mechanisms.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20132 Milan, Italy
- Correspondence: (F.M.); (A.C.)
| | - Angelo Corti
- Division of Experimental Oncology, Tumor Biology and Vascular Targeting Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Correspondence: (F.M.); (A.C.)
| | - Andrés J. M. Ferreri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| |
Collapse
|
17
|
Aryal R, Patabendige A. Blood-brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes? Open Biol 2021; 11:200396. [PMID: 33878948 PMCID: PMC8059575 DOI: 10.1098/rsob.200396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Atrial fibrillation (AF) has become one of the most significant health problems worldwide, warranting urgent answers to currently pending questions on the effects of AF on brain function. Recent evidence has emerged to show an association between AF and an increased risk of developing dementia and worsening of stroke outcomes. A healthy brain is protected by the blood–brain barrier (BBB), which is formed by the endothelial cells that line cerebral capillaries. These endothelial cells are continuously exposed to shear stress (the frictional force generated by blood flow), which affects endothelial cell structure and function. Flow disturbances as experienced during AF can disrupt the BBB and leave the brain vulnerable to damage. Investigating the plausible mechanisms in detail, linking AF to cerebrovascular damage is difficult in humans, leading to paucity of available clinical data. Here, we discuss the available evidence for BBB disruption during AF due to altered cerebral blood flow, and how this may contribute to an increased risk of dementia and worsening of stroke outcomes.
Collapse
Affiliation(s)
- Ritambhara Aryal
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia.,Brain and Mental Health Research Programme, Hunter Medical Research Institute, Newcastle, Australia
| | - Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia.,Brain and Mental Health Research Programme, Hunter Medical Research Institute, Newcastle, Australia.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
18
|
Zhang Y, Lv C, Zhao G. Ways to enhance the bioavailability of polyphenols in the brain: A journey through the blood-brain barrier. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1888973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuan Zhang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Kaya M, Ahishali B. Basic physiology of the blood-brain barrier in health and disease: a brief overview. Tissue Barriers 2021; 9:1840913. [PMID: 33190576 PMCID: PMC7849738 DOI: 10.1080/21688370.2020.1840913] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
The blood-brain barrier (BBB), a dynamic interface between blood and brain constituted mainly by endothelial cells of brain microvessels, robustly restricts the entry of potentially harmful blood-sourced substances and cells into the brain, however, many therapeutically active agents concurrently cannot gain access into the brain at effective doses in the presence of an intact barrier. On the other hand, breakdown of BBB integrity may involve in the pathogenesis of various neurodegenerative diseases. Besides, certain diseases/disorders such as Alzheimer's disease, hypertension, and epilepsy are associated with varying degrees of BBB disruption. In this review, we aim to highlight the current knowledge on the cellular and molecular composition of the BBB with special emphasis on the major transport pathways across the barrier type endothelial cells. We further provide a discussion on the innovative brain drug delivery strategies in which the obstacle formed by BBB interferes with effective pharmacological treatment of neurodegenerative diseases/disorders.
Collapse
Affiliation(s)
- Mehmet Kaya
- Koç University School of Medicine Department of Physiology, Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Bulent Ahishali
- Koç University School of Medicine Department of Histology and Embryology, Koç University Research Center for Translational Medicine, Istanbul, Turkey
| |
Collapse
|
20
|
Quelhas P, Baltazar G, Cairrao E. The Neurovascular Unit: Focus on the Regulation of Arterial Smooth Muscle Cells. Curr Neurovasc Res 2020; 16:502-515. [PMID: 31738142 DOI: 10.2174/1567202616666191026122642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/01/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023]
Abstract
The neurovascular unit is a physiological unit present in the brain, which is constituted by elements of the nervous system (neurons and astrocytes) and the vascular system (endothelial and mural cells). This unit is responsible for the homeostasis and regulation of cerebral blood flow. There are two major types of mural cells in the brain, pericytes and smooth muscle cells. At the arterial level, smooth muscle cells are the main components that wrap around the outside of cerebral blood vessels and the major contributors to basal tone maintenance, blood pressure and blood flow distribution. They present several mechanisms by which they regulate both vasodilation and vasoconstriction of cerebral blood vessels and their regulation becomes even more important in situations of injury or pathology. In this review, we discuss the main regulatory mechanisms of brain smooth muscle cells and their contributions to the correct brain homeostasis.
Collapse
Affiliation(s)
- Patrícia Quelhas
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Graça Baltazar
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Elisa Cairrao
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| |
Collapse
|
21
|
Zhang N, Mei K, Guan P, Hu X, Zhao Y. Protein-Based Artificial Nanosystems in Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907256. [PMID: 32378796 DOI: 10.1002/smll.201907256] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 05/21/2023]
Abstract
Proteins, like actors, play different roles in specific applications. In the past decade, significant achievements have been made in protein-engineered biomedicine for cancer therapy. Certain proteins such as human serum albumin, working as carriers for drug/photosensitizer delivery, have entered clinical use due to their long half-life, biocompatibility, biodegradability, and inherent nonimmunogenicity. Proteins with catalytic abilities are promising as adjuvant agents for other therapeutic modalities or as anticancer drugs themselves. These catalytic proteins are usually defined as enzymes with high biological activity and substrate specificity. However, clinical applications of these kinds of proteins remain rare due to protease-induced denaturation and weak cellular permeability. Based on the characteristics of different proteins, tailor-made protein-based nanosystems could make up for their individual deficiencies. Therefore, elaborately designed protein-based nanosystems, where proteins serve as drug carriers, adjuvant agents, or therapeutic drugs to make full use of their intrinsic advantages in cancer therapy, are reviewed. Up-to-date progress on research in the field of protein-based nanomedicine is provided.
Collapse
Affiliation(s)
- Nan Zhang
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Kun Mei
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ping Guan
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaoling Hu
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
22
|
V A, Cutinho LI, Mourya P, Maxwell A, Thomas G, Rajput BS. Approaches for encephalic drug delivery using nanomaterials: The current status. Brain Res Bull 2019; 155:184-190. [PMID: 31790722 DOI: 10.1016/j.brainresbull.2019.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
Abstract
Nanotechnology, the investigation of little structures, ranging from the size of 1 nm-100 nm presents a breakthrough in the field of targeted drug delivery. The microvasculature in the human brain along with the blood brain barrier (BBB) offers high resistance to the entry of therapeutics agents and other substances in to the brain. Nanoparticles have certain advantages as high permeability, reactivity, surface area and quantum properties and it also meets various medical challenges which may include poor bioavailability, difficulty in targeting, organ toxicity etc. The use of nanoparticles in pharmaceuticals has been inspired by various natural nanomaterials found in the body, which includes proteins, lipids etc. A brief explanation of different types of pharmaceutical approaches used in brain drug delivery is discussed here. Nanotechnology is used treatment of many illnesses which also include diseases related to the brain such as gliomas, epilepsy, migraine, cerebrovascular disease, Parkinson's disease etc., Different type of nanoparticles are prepared, such as polymer-based nanoparticles, metallic nanoparticles, carbon-based nanoparticles, lipid-based nanoparticles, ceramic nanoparticles semiconductor nanoparticles and are studied for their usefulness in drug delivery. The primary function of nanoparticles is to deliver drug moiety to the desired targeted site by overcoming permeability issues. The shape, size and surface area nanoparticles help in increasing the bioavailability, drug retention and multiple drug delivery. Mechanisms of nanoparticles crossing BBB can be divided into passive and active transport, are briefly explained.
Collapse
Affiliation(s)
- Anoop V
- NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Paneer, Deralakkatte, Mangalore, Karnataka, 575018, India.
| | - Linda Ilene Cutinho
- NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Paneer, Deralakkatte, Mangalore, Karnataka, 575018, India
| | - Paladugu Mourya
- NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Paneer, Deralakkatte, Mangalore, Karnataka, 575018, India
| | - Amala Maxwell
- NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Paneer, Deralakkatte, Mangalore, Karnataka, 575018, India
| | - Githa Thomas
- NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Paneer, Deralakkatte, Mangalore, Karnataka, 575018, India
| | - Brijesh Singh Rajput
- NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Paneer, Deralakkatte, Mangalore, Karnataka, 575018, India
| |
Collapse
|
23
|
Sharif Y, Jumah F, Coplan L, Krosser A, Sharif K, Tubbs RS. Blood brain barrier: A review of its anatomy and physiology in health and disease. Clin Anat 2018; 31:812-823. [PMID: 29637627 DOI: 10.1002/ca.23083] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is the principal regulator of transport of molecules and cells into and out of the central nervous system (CNS). It comprises endothelial cells, pericytes, immune cells, astrocytes, and basement membrane, collectively known as the neurovascular unit. The development of the barrier involves many complex pathways from all the progenitors of the neurovascular unit, but the timing of its formation is not entirely known. The coordinated activities of all the components of the neurovascular unit and other tissues ensure that materials required for growth and maintenance are allowed into the CNS while extraneous ones are excluded. This review summarizes current knowledge of the anatomy, development, and physiology of the BBB, and alterations that occur in disease conditions. Clin. Anat. 31:812-823, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yousra Sharif
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Fareed Jumah
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Louis Coplan
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Alec Krosser
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kassem Sharif
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
24
|
Jian WX, Zhang Z, Chu SF, Peng Y, Chen NH. Potential roles of brain barrier dysfunctions in the early stage of Alzheimer’s disease. Brain Res Bull 2018; 142:360-367. [DOI: 10.1016/j.brainresbull.2018.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
|
25
|
Zhao P, Wang Y, Wu A, Rao Y, Huang Y. Roles of Albumin-Binding Proteins in Cancer Progression and Biomimetic Targeted Drug Delivery. Chembiochem 2018; 19:1796-1805. [PMID: 29920893 DOI: 10.1002/cbic.201800201] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Nutrient transporters have attracted significant attention for their promising application in biomimetic delivery. Due to the active consumption of nutrients, cancer cells generally overexpress nutrient transporters to meet their increased need for energy and materials. For example, albumin-binding proteins (ABPs) are highly overexpressed in malignant cells, stromal cells, and tumor vessel endothelial cells responsible for albumin uptake. ABP (e.g., SPARC) is a promising target for tumor-specific drug delivery, and albumin has been widely used as a biomimetic delivery carrier. Apart from the transportation function, ABPs are closely associated with neoplasia, invasion, and metastasis. Herein, a summary of the roles of ABP in cancer progression and the application of albumin-based biomimetic tumor-targeted delivery through the ABP pathway is presented.
Collapse
Affiliation(s)
- Pengfei Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, P.R. China.,Zhejiang Academy of Medical Science, 182 Tianmushan Road, Hangzhou, 310013, P.R. China
| | - Yonghui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, P.R. China
| | - Aihua Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, P.R. China
| | - Yuefeng Rao
- The First Affiliated Hospital of the College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
26
|
Venishetty VK, Geldenhuys WJ, Terell-Hall TB, Griffith JIG, Sondag GR, Safadi FF, Lockman PR. Identification of Novel Agents for the Treatment of Brain Metastases of Breast Cancer. Curr Cancer Drug Targets 2018; 17:479-485. [PMID: 27903215 DOI: 10.2174/1568009617666161121123948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/26/2016] [Accepted: 11/04/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Brain cancer from metastasized breast cancer has a high mortality rate in women. The treatment of lesions is hampered in large part by the blood-brain barrier (BBB), which prevents adequate distribution of anti-cancer compounds to brain metastases. METHOD In this study we used a novel screening method to identify candidate molecules that are well-suited to utilizing the BBB choline transporter for distribution into the brain parenchyma. RESULTS From our screen we identified two compounds, Ch-1 and Ch-2 that were able to reduce the brain tumor burden in a murine mouse model of brain metastasis of breast cancer. These compounds also significantly increased the survival of mice by more than 10 days. Mechanistic studies indicated that Ch-1 is able to prevent the activation of the pro-survival mitogen-activated kinases (MAPKs) by osteoactivin (OA; Glycoprotein nonmetastatic melanoma protein B GPNMB). CONCLUSION The results from this study show that nutrient transporter virtual screening is a viable novel alternative to traditional drug screening programs to identify anti-cancer compounds for the treatment of brain cancers.
Collapse
Affiliation(s)
- Vinay K Venishetty
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX. United States
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV. United States
| | - Tori B Terell-Hall
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV. United States
| | - Jessica I G Griffith
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV. United States
| | - Gregory R Sondag
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH. United States
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH. United States
| | - Paul R Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV. United States
| |
Collapse
|
27
|
Kou L, Hou Y, Yao Q, Guo W, Wang G, Wang M, Fu Q, He Z, Ganapathy V, Sun J. L-Carnitine-conjugated nanoparticles to promote permeation across blood-brain barrier and to target glioma cells for drug delivery via the novel organic cation/carnitine transporter OCTN2. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1605-1616. [PMID: 28974108 DOI: 10.1080/21691401.2017.1384385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Overcoming blood-brain barrier (BBB) and targeting tumor cells are two key steps for glioma chemotherapy. By taking advantage of the specific expression of Na+-coupled carnitine transporter 2 (OCTN2) on both brain capillary endothelial cells and glioma cells, l-carnitine conjugated poly(lactic-co-glycolic acid) nanoparticles (LC-PLGA NPs) were prepared to enable enhanced BBB permeation and glioma-cell targeting. Conjugation of l-carnitine significantly enhanced the uptake of PLGA nanoparticles in the BBB endothelial cell line hCMEC/D3 and the glioma cell line T98G. The uptake was dependent on Na+ and inhibited by the excessive free l-carnitine, suggesting involvement of OCTN2 in the process. In vivo mouse studies showed that LC-PLGA NPs resulted in high accumulation in the brain as indicated by the biodistribution and imaging assays. Furthermore, compared to Taxol and paclitaxel-loaded unmodified PLGA NPs, the drug-loaded LC-PLGA NPs showed improved anti-glioma efficacy in both 2D-cell and 3D-spheroid models. The PEG spacer length of the ligand attached to the nanoparticles was optimized, and the formulation with PEG1000 (LC-1000-PLGA NPs) showed the maximum targeting efficiency. We conclude that l-carnitine-mediated cellular recognition and internalization via OCTN2 significantly facilitate the transcytosis of nanoparticles across BBB and the uptake of nanoparticles in glioma cells, resulting in improved anti-glioma efficacy.
Collapse
Affiliation(s)
- Longfa Kou
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China.,b Department of Cell Biology and Biochemistry , Texas Tech University Health Sciences Center , Lubbock , TX , USA
| | - Yanxian Hou
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Qing Yao
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Weiling Guo
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Gang Wang
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Menglin Wang
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Qiang Fu
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Zhonggui He
- c Department of Pharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Vadivel Ganapathy
- b Department of Cell Biology and Biochemistry , Texas Tech University Health Sciences Center , Lubbock , TX , USA
| | - Jin Sun
- a Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
28
|
Cui Y, Zhang M, Zeng F, Jin H, Xu Q, Huang Y. Dual-Targeting Magnetic PLGA Nanoparticles for Codelivery of Paclitaxel and Curcumin for Brain Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32159-32169. [PMID: 27808492 DOI: 10.1021/acsami.6b10175] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chemotherapy is one of the most important strategies for glioma treatment. However, the "impermeability" of the blood-brain barrier (BBB) impedes most chemotherapeutics from entering the brain, thereby rendering very few drugs suitable for glioma therapy, letting alone application of a combination of chemotherapeutics. Thereby, there is a pressing need to overcome the obstacles. A dual-targeting strategy was developed by a combination of magnetic guidance and transferrin receptor-binding peptide T7-mediated active targeting delivery. The T7-modified magnetic PLGA nanoparticle (NP) system was prepared with co-encapsulation of the hydrophobic magnetic nanoparticles and a combination of drugs (i.e., paclitaxel and curcumin) based on a "one-pot" process. The combined drugs yielded synergistic effects on inhibition of tumor growth via the mechanisms of apoptosis induction and cell cycle arrest, displaying significantly increased efficacy relative to the single use of each drug. Dual-targeting effects yielded a >10-fold increase in cellular uptake studies and a >5-fold enhancement in brain delivery compared to the nontargeting NPs. For the in vivo studies with an orthotopic glioma model, efficient brain accumulation was observed by using fluorescence imaging, synchrotron radiation X-ray imaging, and MRI. Furthermore, the antiglioma treatment efficacy of the delivery system was evaluated. With application of a magnetic field, this system exhibited enhanced treatment efficiency and reduced adverse effects. All mice bearing orthotopic glioma survived, compared to a 62.5% survival rate for the combination group receiving free drugs. This dual-targeting, co-delivery strategy provides a potential method for improving brain drug delivery and antiglioma treatment efficacy.
Collapse
Affiliation(s)
- Yanna Cui
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences , 320 Yueyang Road, Shanghai 200031, China
| | - Meng Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Feng Zeng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine , 12 Jichang Road, Guangzhou 501405, China
| | - Hongyue Jin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Qin Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine , 12 Jichang Road, Guangzhou 501405, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
29
|
Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, He H, Yang VC, Huang Y. Blood-Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy. ACS NANO 2016; 10:9999-10012. [PMID: 27934069 DOI: 10.1021/acsnano.6b04268] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nutrient transporters have been explored for biomimetic delivery targeting the brain. The albumin-binding proteins (e.g., SPARC and gp60) are overexpressed in many tumors for transport of albumin as an amino acid and an energy source for fast-growing cancer cells. However, their application in brain delivery has rarely been investigated. In this work, SPARC and gp60 overexpression was found on glioma and tumor vessel endothelium; therefore, such pathways were explored for use in brain-targeting biomimetic delivery. We developed a green method for blood-brain barrier (BBB)-penetrating albumin nanoparticle synthesis, with the capacity to coencapsulate different drugs and no need for cross-linkers. The hydrophobic drugs (i.e., paclitaxel and fenretinide) yield synergistic effects to induce albumin self-assembly, forming dual drug-loaded nanoparticles. The albumin nanoparticles can penetrate the BBB and target glioma cells via the mechanisms of SPARC- and gp60-mediated biomimetic transport. Importantly, by modification with the cell-penetrating peptide LMWP, the albumin nanoparticles display enhanced BBB penetration, intratumoral infiltration, and cellular uptake. The LMWP-modified nanoparticles exhibited improved treatment outcomes in both subcutaneous and intracranial glioma models, with reduced toxic side effects. The therapeutic mechanisms were associated with induction of apoptosis, antiangiogenesis, and tumor immune microenvironment regulation. It provides a facile method for dual drug-loaded albumin nanoparticle preparation and a promising avenue for biomimetic delivery targeting the brain tumor based on combination therapy.
Collapse
Affiliation(s)
- Tingting Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University , Tianjin 300070, China
- Department of Pharmacy, Binzhou Medical University Hospital , 661 Huanghe Road, Binzhou 256603, China
| | - Pengfei Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
- Nanchang University College of Pharmacy , 461 Bayi Road, Nanchang 330006, China
| | - Yifan Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Yisi Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Hongyue Jin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Zhenzhen Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University , Tianjin 300070, China
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University , Tianjin 300070, China
- University of Michigan College of Pharmacy , 428 Church Street, Ann Arbor, Michigan 48108, United States
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
30
|
Abstract
The blood-brain barrier (BBB) is a microvascular unit which selectively regulates the permeability of drugs to the brain. With the rise in CNS drug targets and diseases, there is a need to be able to accurately predict a priori which compounds in a company database should be pursued for favorable properties. In this review, we will explore the different computational tools available today, as well as underpin these to the experimental methods used to determine BBB permeability. These include in vitro models and the in vivo models that yield the dataset we use to generate predictive models. Understanding of how these models were experimentally derived determines our accurate and predicted use for determining a balance between activity and BBB distribution.
Collapse
|
31
|
Abstract
Alzheimer's disease (AD), the most common form of dementia, is now representing one of the largest unmet medical needs. However, no effective treatment is now available to impede the progression of AD or delay its onset. There are two major challenges for the development of effective therapy for AD. First, the exact cause for AD onset is still unknown. Second, brain drug delivery is significantly hindered by the blood-brain barrier (BBB). In this review, we will summarize the pathological understanding about AD and the related treatments, compare BBB and its effect on brain drug delivery under normal and AD conditions and review the nanotherapeutic strategies that have been developed for AD therapy in recent years.
Collapse
|
32
|
Abstract
Blood vessels are critical to deliver oxygen and nutrients to all of the tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier, which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and also protects the neural tissue from toxins and pathogens, and alterations of these barrier properties are an important component of pathology and progression of different neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the endothelial cells (ECs) that form the walls of the blood vessels, and these properties are regulated by interactions with different vascular, immune, and neural cells. Understanding how these different cell populations interact to regulate the barrier properties is essential for understanding how the brain functions during health and disease.
Collapse
Affiliation(s)
- Richard Daneman
- Departments of Neuroscience and Pharmacology, University of California, San Diego, San Diego, California 92093
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| |
Collapse
|
33
|
Transendothelial Transport and Its Role in Therapeutics. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:309404. [PMID: 27355037 PMCID: PMC4897564 DOI: 10.1155/2014/309404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 12/17/2022]
Abstract
Present review paper highlights role of BBB in endothelial transport of various substances into the brain. More specifically, permeability functions of BBB in transendothelial transport of various substances such as metabolic fuels, ethanol, amino acids, proteins, peptides, lipids, vitamins, neurotransmitters, monocarbxylic acids, gases, water, and minerals in the peripheral circulation and into the brain have been widely explained. In addition, roles of various receptors, ATP powered pumps, channels, and transporters in transport of vital molecules in maintenance of homeostasis and normal body functions have been described in detail. Major role of integral membrane proteins, carriers, or transporters in drug transport is highlighted. Both diffusion and carrier mediated transport mechanisms which facilitate molecular trafficking through transcellular route to maintain influx and outflux of important nutrients and metabolic substances are elucidated. Present review paper aims to emphasize role of important transport systems with their recent advancements in CNS protection mainly for providing a rapid clinical aid to patients. This review also suggests requirement of new well-designed therapeutic strategies mainly potential techniques, appropriate drug formulations, and new transport systems for quick, easy, and safe delivery of drugs across blood brain barrier to save the life of tumor and virus infected patients.
Collapse
|
34
|
The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today 2012. [PMID: 23207804 DOI: 10.1016/j.drudis.2012.11.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A recent paper in this journal sought to counter evidence for the role of transport proteins in effecting drug uptake into cells, and questions that transporters can recognize drug molecules in addition to their endogenous substrates. However, there is abundant evidence that both drugs and proteins are highly promiscuous. Most proteins bind to many drugs and most drugs bind to multiple proteins (on average more than six), including transporters (mutations in these can determine resistance); most drugs are known to recognise at least one transporter. In this response, we alert readers to the relevant evidence that exists or is required. This needs to be acquired in cells that contain the relevant proteins, and we highlight an experimental system for simultaneous genome-wide assessment of carrier-mediated uptake in a eukaryotic cell (yeast).
Collapse
|
35
|
Geldenhuys WJ, Allen DD, Bloomquist JR. Novel models for assessing blood–brain barrier drug permeation. Expert Opin Drug Metab Toxicol 2012; 8:647-53. [DOI: 10.1517/17425255.2012.677433] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Abstract
Delivering therapeutic compounds via the lungs presents potential advantages relative to other routes of administration. Depending on the compound and the disease state, these advantages may include: non-invasive medication delivery, ease of administration, higher bioavailability leading to dose sparing and lower systemic toxicity, potentially greater blood–brain barrier penetration and rapid pharmacodynamic effect. The practice of inhaling drugs has been around for centuries, including both medical and recreational usage. It is only more recently that formal clinical development programs have been undertaken specifically to use medication delivery via the lung to achieve systemic blood levels for the treatment of CNS disorders. At present, there are several CNS therapies being developed for pulmonary administration, with some of those programs at or near the marketing authorization stage. While there are still regulatory hurdles before these therapies can be put into practice, the success of these programs thus far demonstrates the scientific viability of inhalation therapies for treating CNS disorders.
Collapse
|