1
|
Yang F, Zhang X, Xie Y, Yuan J, Gao J, Chen H, Li X. The pathogenesis of food allergy and protection offered by dietary compounds from the perspective of epigenetics. J Nutr Biochem 2024; 128:109593. [PMID: 38336123 DOI: 10.1016/j.jnutbio.2024.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Food allergy is a global food safety concern, with an increasing prevalence in recent decades. However, the immunological and cellular mechanisms involved in allergic reactions remain incompletely understood, which impedes the development of effective prevention and treatment strategies. Current evidence supports those epigenetic modifications regulate the activation of immune cells, and their dysregulation can contribute to the development of food allergies. Patients with food allergy show epigenetic alterations that lead to the onset, duration and recovery of allergic disease. Moreover, many preclinical studies have shown that certain dietary components exert nutriepigenetic effects in changing the course of food allergies. In this review, we provide an up-to-date overview of DNA methylation, noncoding RNA and histone modification, with a focus on their connections to food allergies. Following this, we discuss the epigenetic mechanisms that regulate the activation and differentiation of innate and adapted immune cell in the context of food allergies. Subsequently, this study specifically focuses on the multidimensional epigenetic effects of dietary components in modulating the immune response, which holds promise for preventing food allergies in the future.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yanhai Xie
- Sino-German Joint Research Institute, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- Sino-German Joint Research Institute, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
3
|
Yang K, Chen C, Yan Q, Shen X, Jiang L, Ma R, Lu L, Zhu J, Tian Y, Cai W, D'Alton ME, Zhang J, Kahe K. Combined association of early exposure to long-chain n-3 polyunsaturated fatty acids, mercury and selenium with cognitive performance in 1-year-old infants. ENVIRONMENTAL RESEARCH 2022; 207:112186. [PMID: 34627802 DOI: 10.1016/j.envres.2021.112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Previous studies on long-chain n-3 polyunsaturated fatty acids (LCn3PUFAs) and infant neurodevelopment did not consider effect modifications of mercury (Hg) and selenium (Se). OBJECTIVES To examine the joint association of prenatal LCn3PUFAs, Hg and Se with infant cognitive performance, and to explore whether DNA methylation may explain this potential association. METHODS A total of 484 newborns were enrolled from the Shanghai Birth Cohort with available data on cord blood LCn3PUFA, nail Hg and Se during 2015-2016. Cord blood LCn3PUFA concentrations were assessed by gas chromatography, and nail Hg and Se concentrations were measured using clippings collected within 6 months of birth by inductively coupled plasma mass spectrometry. Five aspects of infant neurodevelopment (communication, gross motor, fine motor, problem-solving, and personal-social skills) were assessed using the Age and Stage Questionnaire (ASQ) at ages 6 and 12 months. Multivariable-adjusted generalized estimating equations models were performed to examine the associations between cord blood LCn3PUFA concentrations and ASQ test scores, and these associations were stratified by nail Hg and Se levels. Epigenome-wide DNA methylation in cord blood was compared in a random subgroup consisting of 19 infants from the highest and 21 from the lowest decile of LCn3PUFA concentrations. RESULTS LCn3PUFAs were not significantly associated with any ASQ test scores. However, in the subgroup with lower Hg (<median 0.13 ppm) and higher Se (≥median 0.87 ppm) levels, infants with higher LCn3PUFA concentrations had higher ASQ scores indicating better performance in gross motor skills [quartile 4 vs. 1: mean difference = 7.78; 95% confidence interval=(3.47, 12.09); Ptrend<0.01; Pinteraction = 0.03]. Additionally, twenty CpG sites were differentially methylated when comparing high to low LCn3PUFA groups. CONCLUSION The association of prenatal LCn3PUFA concentrations with infant neurodevelopment, particularly gross motor skills, may be observed among infants with high Se and low Hg levels.
Collapse
Affiliation(s)
- Kefeng Yang
- Department of Nutrition, Xin Hua Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Cheng Chen
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Qi Yan
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA
| | - Xiuhua Shen
- Department of Nutrition, Xin Hua Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Linlei Jiang
- Instrumental Analysis Platform, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Ma
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Lu
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Jie Zhu
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, USA
| | - Ying Tian
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Department of Nutrition, Xin Hua Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Mary E D'Alton
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA.
| |
Collapse
|
4
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Maternal DHA Supplementation during Pregnancy and Lactation in the Rat Protects the Offspring against High-Calorie Diet-Induced Hepatic Steatosis. Nutrients 2021; 13:nu13093075. [PMID: 34578953 PMCID: PMC8468499 DOI: 10.3390/nu13093075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Maternal supplementation during pregnancy with docosahexaenoic acid (DHA) is internationally recommended to avoid postpartum maternal depression in the mother and improve cognitive and neurological outcomes in the offspring. This study was aimed at determining whether this nutritional intervention, in the rat, protects the offspring against the development of obesity and its associated metabolic disorders. Pregnant Wistar rats received an extract of fish oil enriched in DHA or saline (SAL) as placebo by mouth from the beginning of gestation to the end of lactation. At weaning, pups were fed standard chow or a free-choice, high-fat, high-sugar (fc-HFHS) diet. Compared to animals fed standard chow, rats exposed to the fc-HFHS diet exhibited increased body weight, liver weight, body fat and leptin in serum independently of saline or DHA maternal supplementation. Nevertheless, maternal DHA supplementation prevented both the glucose intolerance and the rise in serum insulin resulting from consumption of the fc-HFHS diet. In addition, animals from the DHA-fc-HFHS diet group showed decreased hepatic triglyceride accumulation compared to SAL-fc-HFHS rats. The beneficial effects on glucose homeostasis declined with age in male rats. Yet, the preventive action against hepatic steatosis was still present in 6-month-old animals of both sexes and was associated with decreased hepatic expression of lipogenic genes. The results of the present work show that maternal DHA supplementation during pregnancy programs a healthy phenotype into the offspring that was protective against the deleterious effects of an obesogenic diet.
Collapse
|
6
|
Combined prenatal Lactobacillus reuteri and ω-3 supplementation synergistically modulates DNA methylation in neonatal T helper cells. Clin Epigenetics 2021; 13:135. [PMID: 34193262 PMCID: PMC8247185 DOI: 10.1186/s13148-021-01115-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Background Environmental exposures may alter DNA methylation patterns of T helper cells. As T helper cells are instrumental for allergy development, changes in methylation patterns may constitute a mechanism of action for allergy preventive interventions. While epigenetic effects of separate perinatal probiotic or ω-3 fatty acid supplementation have been studied previously, the combined treatment has not been assessed. We aimed to investigate epigenome-wide DNA methylation patterns from a sub-group of children in an on-going randomised double-blind placebo-controlled allergy prevention trial using pre- and postnatal combined Lactobacillus reuteri and ω-3 fatty acid treatment. To this end, > 866000 CpG sites (MethylationEPIC 850K array) in cord blood CD4+ T cells were examined in samples from all four study arms (double-treatment: n = 18, single treatments: probiotics n = 16, ω-3 n = 15, and double placebo: n = 14). Statistical and bioinformatic analyses identified treatment-associated differentially methylated CpGs and genes, which were used to identify putatively treatment-induced network modules. Pathway analyses inferred biological relevance, and comparisons were made to an independent allergy data set. Results Comparing the active treatments to the double placebo group, most differentially methylated CpGs and genes were hypermethylated, possibly suggesting induction of transcriptional inhibition. The double-treated group showed the largest number of differentially methylated CpGs, of which many were unique, suggesting synergy between interventions. Clusters within the double-treated network module consisted of immune-related pathways, including T cell receptor signalling, and antigen processing and presentation, with similar pathways revealed for the single-treatment modules. CpGs derived from differential methylation and network module analyses were enriched in an independent allergy data set, particularly in the double-treatment group, proposing treatment-induced DNA methylation changes as relevant for allergy development. Conclusion Prenatal L. reuteri and/or ω-3 fatty acid treatment results in hypermethylation and affects immune- and allergy-related pathways in neonatal T helper cells, with potentially synergistic effects between the interventions and relevance for allergic disease. Further studies need to address these findings on a transcriptional level, and whether the results associate to allergy development in the children. Understanding the role of DNA methylation in regulating effects of perinatal probiotic and ω-3 interventions may provide essential knowledge in the development of efficacious allergy preventive strategies. Trial registration ClinicalTrials.gov, ClinicalTrials.gov-ID: NCT01542970. Registered 27th of February 2012—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT01542970. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01115-4.
Collapse
|
7
|
Acevedo N, Alashkar Alhamwe B, Caraballo L, Ding M, Ferrante A, Garn H, Garssen J, Hii CS, Irvine J, Llinás-Caballero K, López JF, Miethe S, Perveen K, Pogge von Strandmann E, Sokolowska M, Potaczek DP, van Esch BCAM. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021; 13:724. [PMID: 33668787 PMCID: PMC7996340 DOI: 10.3390/nu13030724] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Epidemiological studies have shown a dramatic increase in the incidence and the prevalence of allergic diseases over the last several decades. Environmental triggers including risk factors (e.g., pollution), the loss of rural living conditions (e.g., farming conditions), and nutritional status (e.g., maternal, breastfeeding) are considered major contributors to this increase. The influences of these environmental factors are thought to be mediated by epigenetic mechanisms which are heritable, reversible, and biologically relevant biochemical modifications of the chromatin carrying the genetic information without changing the nucleotide sequence of the genome. An important feature characterizing epigenetically-mediated processes is the existence of a time frame where the induced effects are the strongest and therefore most crucial. This period between conception, pregnancy, and the first years of life (e.g., first 1000 days) is considered the optimal time for environmental factors, such as nutrition, to exert their beneficial epigenetic effects. In the current review, we discussed the impact of the exposure to bacteria, viruses, parasites, fungal components, microbiome metabolites, and specific nutritional components (e.g., polyunsaturated fatty acids (PUFA), vitamins, plant- and animal-derived microRNAs, breast milk) on the epigenetic patterns related to allergic manifestations. We gave insight into the epigenetic signature of bioactive milk components and the effects of specific nutrition on neonatal T cell development. Several lines of evidence suggest that atypical metabolic reprogramming induced by extrinsic factors such as allergens, viruses, pollutants, diet, or microbiome might drive cellular metabolic dysfunctions and defective immune responses in allergic disease. Therefore, we described the current knowledge on the relationship between immunometabolism and allergy mediated by epigenetic mechanisms. The knowledge as presented will give insight into epigenetic changes and the potential of maternal and post-natal nutrition on the development of allergic disease.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Bilal Alashkar Alhamwe
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
- College of Pharmacy, International University for Science and Technology (IUST), Daraa 15, Syria
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Charles S. Hii
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - James Irvine
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kevin Llinás-Caballero
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Juan Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Khalida Perveen
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
| | - Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Betty C. A. M. van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
8
|
Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) and the Developing Immune System: A Narrative Review. Nutrients 2021; 13:nu13010247. [PMID: 33467123 PMCID: PMC7830895 DOI: 10.3390/nu13010247] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system is complex: it involves many cell types and numerous chemical mediators. An immature immune response increases susceptibility to infection, whilst imbalances amongst immune components leading to loss of tolerance can result in immune-mediated diseases including food allergies. Babies are born with an immature immune response. The immune system develops in early life and breast feeding promotes immune maturation and protects against infections and may protect against allergies. The long-chain polyunsaturated fatty acids (LCPUFAs) arachidonic acid (AA) and docosahexaenoic acid (DHA) are considered to be important components of breast milk. AA, eicosapentaenoic acid (EPA) and DHA are also present in the membranes of cells of the immune system and act through multiple interacting mechanisms to influence immune function. The effects of AA and of mediators derived from AA are often different from the effects of the n-3 LCPUFAs (i.e., EPA and DHA) and of mediators derived from them. Studies of supplemental n-3 LCPUFAs in pregnant women show some effects on cord blood immune cells and their responses. These studies also demonstrate reduced sensitisation of infants to egg, reduced risk and severity of atopic dermatitis in the first year of life, and reduced persistent wheeze and asthma at ages 3 to 5 years, especially in children of mothers with low habitual intake of n-3 LCPUFAs. Immune markers in preterm and term infants fed formula with AA and DHA were similar to those in infants fed human milk, whereas those in infants fed formula without LCPUFAs were not. Infants who received formula plus LCPUFAs (both AA and DHA) showed a reduced risk of allergic disease and respiratory illness than infants who received standard formula. Studies in which infants received n-3 LCPUFAs report immune differences from controls that suggest better immune maturation and they show lower risk of allergic disease and respiratory illness over the first years of life. Taken together, these findings suggest that LCPUFAs play a role in immune development that is of clinical significance, particularly with regard to allergic sensitisation and allergic manifestations including wheeze and asthma.
Collapse
|
9
|
Robinson SL, Mumford SL, Guan W, Zeng X, Kim K, Radoc JG, Trinh MH, Flannagan K, Schisterman EF, Yeung E. Maternal fatty acid concentrations and newborn DNA methylation. Am J Clin Nutr 2020; 111:613-621. [PMID: 31858113 PMCID: PMC7049533 DOI: 10.1093/ajcn/nqz311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Preconception nutrition sets the stage for a healthy pregnancy. Maternal fatty acids (FAs) are related to beneficial neonatal outcomes with DNA methylation proposed as a mechanism; however, few studies have investigated this association and none with preconception FAs. OBJECTIVES We examined the relations of maternal plasma FA concentrations at preconception (n = 346) and 8 weeks of gestation (n = 374) with newborn DNA methylation. METHODS The Effects of Aspirin in Gestation and Reproduction Trial (2006-2012) randomly assigned women with previous pregnancy loss to low dose aspirin or placebo prior to conception. We measured maternal plasma phospholipid FA concentration at preconception (on average 4 mo before pregnancy) and 8 weeks of gestation. Cord blood DNA from singletons was measured using the MethylationEPIC BeadChip. We used robust linear regression to test the associations of FA concentration with methylation β-values of each CpG site, adjusting for estimated cell count using a cord blood reference, sample plate, maternal sociodemographic characteristics, cholesterol, infant sex, and epigenetic-derived ancestry. False discovery rate correction was used for multiple testing. RESULTS Mean ± SD concentrations of preconception marine (20:5n-3+22:6n-3+22:5n-3) and ω-6 PUFAs, SFAs, MUFAs, and trans FAs were 4.7 ± 1.2, 38.0 ± 2.0, 39.4 ± 1.8, 11.6 ± 1.1, and 1.0 ± 0.4 % of total FA, respectively; concentrations at 8 weeks of gestation were similar. Preconception marine PUFA concentration was associated with higher methylation at GRAMD2 (P = 1.1 × 10-8), LOXL1 (P = 5.5 × 10-8), SIK3 (P = 1.6 × 10-7), HTR1B (P = 1.9 × 10-7), and MCC (P = 2.1 × 10-7) genes. Preconception SFA concentration was associated with higher methylation at KIF25-AS1 and lower methylation at SLC39A14; other associations exhibited sensitivity to outliers. The trans FA concentration was related to lower methylation at 3 sites and higher methylation at 1 site. FAs at 8 weeks of gestation were largely unrelated to DNA methylation. CONCLUSIONS Maternal preconception FAs are related to newborn DNA methylation of specific CpG sites, highlighting the importance of examining nutritional exposures preconceptionally. This trial was registered at clinicaltrials.gov as NCT00467363.
Collapse
Affiliation(s)
- Sonia L Robinson
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Sunni L Mumford
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Keewan Kim
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Jeannie G Radoc
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Mai-Han Trinh
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Kerry Flannagan
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Enrique F Schisterman
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Edwina Yeung
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA,Address correspondence to EY (e-mail: )
| |
Collapse
|
10
|
Radzikowska U, Rinaldi AO, Çelebi Sözener Z, Karaguzel D, Wojcik M, Cypryk K, Akdis M, Akdis CA, Sokolowska M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019; 11:E2990. [PMID: 31817726 PMCID: PMC6950146 DOI: 10.3390/nu11122990] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Diet-derived fatty acids (FAs) are essential sources of energy and fundamental structural components of cells. They also play important roles in the modulation of immune responses in health and disease. Saturated and unsaturated FAs influence the effector and regulatory functions of innate and adaptive immune cells by changing membrane composition and fluidity and by acting through specific receptors. Impaired balance of saturated/unsaturated FAs, as well as n-6/n-3 polyunsaturated FAs has significant consequences on immune system homeostasis, contributing to the development of many allergic, autoimmune, and metabolic diseases. In this paper, we discuss up-to-date knowledge and the clinical relevance of the influence of dietary FAs on the biology, homeostasis, and functions of epithelial cells, macrophages, dendritic cells, neutrophils, innate lymphoid cells, T cells and B cells. Additionally, we review the effects of dietary FAs on the pathogenesis of many diseases, including asthma, allergic rhinitis, food allergy, atopic dermatitis, rheumatoid arthritis, multiple sclerosis as well as type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Zeynep Çelebi Sözener
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Department of Chest Disease, Division of Allergy and Clinical Immunology, Ankara University School of Medicine, 06100 Ankara, Turkey
| | - Dilara Karaguzel
- Department of Biology, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Marzena Wojcik
- Department of Structural Biology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Medicine and Diabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| |
Collapse
|
11
|
Bianchi M, Alisi A, Fabrizi M, Vallone C, Ravà L, Giannico R, Vernocchi P, Signore F, Manco M. Maternal Intake of n-3 Polyunsaturated Fatty Acids During Pregnancy Is Associated With Differential Methylation Profiles in Cord Blood White Cells. Front Genet 2019; 10:1050. [PMID: 31708974 PMCID: PMC6824245 DOI: 10.3389/fgene.2019.01050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
A healthy diet during pregnancy is pivotal for the offspring health at birth and later in life. N-3 polyunsaturated fatty acids (n-3 PUFAs) are not endogenously produced in humans and are exclusively derived from the diet. They are pivotal for the fetus growth and neuronal development and seem beneficial in reducing the risk of cardiometabolic diseases and preventing later allergic disorders in the offspring by modulating the inflammatory immune response. In the present study, we investigated the association between maternal intakes of n-3PUFAs, profiled on maternal erythrocyte membranes at pregnancy term, and offspring DNA methylation on cord blood mononuclear cells in a sample of 118 mother–newborn pairs randomly drawn from the “Feeding fetus’ low-grade inflammation and insulin-resistance” study cohort. N-3 PUFA content on erythrocyte membranes is a validated biomarker to measure objectively medium term intake of n-3 PUFAs. Based on distribution of n-3 PUFA in the whole cohort of mothers, we identified mothers with low (n-3 PUFA concentration <25th percentile), medium (n-3 PUFAs between 25th and 75th percentiles), and high n-3 PUFA content (>75th percentile). The HumanMethylation450 BeadChip (Illumina) was used for the epigenome-wide association study using the Infinium Methylation Assay. The overall DNA methylation level was not different between the three groups while there was significant difference in methylation levels at certain sites. Indeed, 8,503 sites had significantly different methylations between low and high n-3 PUFA groups, 12,716 between low and medium n-3 PUFA groups, and 18,148 between high and medium n-3 PUFA groups. We found differentially methylated genes that belong prevalently to pathways of signal transduction, metabolism, downstream signaling of G protein-coupled receptors, and gene expression. Within these pathways, we identified four differentially methylated genes, namely, MSTN, IFNA13, ATP8B3, and GABBR2, that are involved in the onset of insulin resistance and adiposity, innate immune response, phospholipid translocation across cell membranes, and mechanisms of addiction to high fat diet, alcohol, and sweet taste. In conclusion, findings of this preliminary investigation suggest that maternal intake of n-3 PUFAs during pregnancy has potential to influence the offspring DNA methylation. Validation of results in a larger cohort and investigation of biological significance and impact on the phenotype are warranted.
Collapse
Affiliation(s)
- Marzia Bianchi
- Research Unit for Multifactorial Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Fabrizi
- Research Unit for Multifactorial Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristina Vallone
- Department of Obstetrics and Gynecology, Misericordia Hospital, Grosseto, Italy
| | - Lucilla Ravà
- Clinical Epidemiology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Riccardo Giannico
- Research Unit for Multifactorial Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fabrizio Signore
- Department of Obstetrics and Gynecology, Misericordia Hospital, Grosseto, Italy
| | - Melania Manco
- Research Unit for Multifactorial Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
12
|
Tost J. A translational perspective on epigenetics in allergic diseases. J Allergy Clin Immunol 2019; 142:715-726. [PMID: 30195377 DOI: 10.1016/j.jaci.2018.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/19/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
The analysis of epigenetic modifications in allergic diseases has recently attracted substantial interest because epigenetic modifications can mediate the effects of the environment on the development of or protection from allergic diseases. Furthermore, recent research has provided evidence for an altered epigenomic landscape in disease-relevant cell populations. Although still in the early phase, epigenetic modifications, particularly DNA methylation and microRNAs, might have potential for assisting in the stratification of patients for treatment and complement or replace in the future biochemical or clinical tests. The first epigenetic biomarkers correlating with the successful outcome of immunotherapy have been reported, and with personalized treatment options being rolled out, epigenetic modifications might well play a role in monitoring or even predicting the response to tailored therapy. However, further studies in larger cohorts with well-defined phenotypes in specific cell populations need to be performed before their implementation. Furthermore, the epigenome provides an interesting target for therapeutic intervention, with microRNA mimics, inhibitors, and antisense oligonucleotides being evaluated in clinical trials in patients with other diseases. Selection or engineering of populations of extracellular vesicles and epigenetic editing represent novel tools for modulation of the cellular phenotype and responses, although further technological improvements are required. Moreover, interactions between the host epigenome and the microbiome are increasingly recognized, and interventions of the microbiome could contribute to modulation of the epigenome with a potential effect on the overall goal of prevention of allergic diseases.
Collapse
Affiliation(s)
- Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France.
| |
Collapse
|
13
|
Losol P, Rezwan FI, Patil VK, Venter C, Ewart S, Zhang H, Arshad SH, Karmaus W, Holloway JW. Effect of gestational oily fish intake on the risk of allergy in children may be influenced by FADS1/2, ELOVL5 expression and DNA methylation. GENES & NUTRITION 2019; 14:20. [PMID: 31244960 PMCID: PMC6582528 DOI: 10.1186/s12263-019-0644-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Evidence suggests that prenatal exposure to n-3 long-chain polyunsaturated fatty acids (LCPUFA) reduces the incidence of allergic disease in children. LCPUFAs are produced from dietary precursors catalyzed by desaturases and elongases encoded by the FADS1/2 and ELOVL5 genes. DNA methylation regulates gene activity and fatty acid supplementation could alter DNA methylation (DNA-M) at these genes. We investigated whether DNA-M and expression of the FADS1/2 and ELOVL5 genes were associated with allergy in children and gestational fish intake. We studied 170 participants from the Isle of Wight 3rd Generation Cohort, UK. Phenotype data and exposure was assessed by questionnaires. Genome-wide DNA-M in cord blood samples was quantified using the Illumina Infinium HumanMethylation450 and EPIC Beadchips. Five SNPs (single-nucleotide polymorphisms) in the FADS gene cluster and one SNP in ELOVL5 were genotyped in offspring. FADS gene expression in offspring cord blood was determined. RESULTS Gestational fish intake was significantly associated with increased methylation of cg12517394 (P = 0.049), which positively correlated with FADS1 mRNA levels (P = 0.021). ELOVL5 rs2397142 was significantly associated with eczema (P = 0.011) and methylation at cg11748354 and cg24524396 (P < 0.001 and P = 0.036, respectively). Gestational fish intake was strongly associated with elevated DNA-M at cg11748354 and cg24524396 (P = 0.029 and P = 0.002, respectively) and reduced ELOVL5 mRNA expression (P = 0.028). CONCLUSION The association between induced FADS1/2 and ELOVL5 DNA-M and reduced gene expression due to gestational fish intake provide a mechanistic explanation of the previously observed association between maternal LCPUFA intake and allergy development in early childhood.
Collapse
Affiliation(s)
- Purevsuren Losol
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Faisal I. Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Veeresh K. Patil
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Carina Venter
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN USA
| | - S. Hasan Arshad
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN USA
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
14
|
James P, Sajjadi S, Tomar AS, Saffari A, Fall CHD, Prentice AM, Shrestha S, Issarapu P, Yadav DK, Kaur L, Lillycrop K, Silver M, Chandak GR. Candidate genes linking maternal nutrient exposure to offspring health via DNA methylation: a review of existing evidence in humans with specific focus on one-carbon metabolism. Int J Epidemiol 2018; 47:1910-1937. [PMID: 30137462 PMCID: PMC6280938 DOI: 10.1093/ije/dyy153] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Background Mounting evidence suggests that nutritional exposures during pregnancy influence the fetal epigenome, and that these epigenetic changes can persist postnatally, with implications for disease risk across the life course. Methods We review human intergenerational studies using a three-part search strategy. Search 1 investigates associations between preconceptional or pregnancy nutritional exposures, focusing on one-carbon metabolism, and offspring DNA methylation. Search 2 considers associations between offspring DNA methylation at genes found in the first search and growth-related, cardiometabolic and cognitive outcomes. Search 3 isolates those studies explicitly linking maternal nutritional exposure to offspring phenotype via DNA methylation. Finally, we compile all candidate genes and regions of interest identified in the searches and describe their genomic locations, annotations and coverage on the Illumina Infinium Methylation beadchip arrays. Results We summarize findings from the 34 studies found in the first search, the 31 studies found in the second search and the eight studies found in the third search. We provide details of all regions of interest within 45 genes captured by this review. Conclusions Many studies have investigated imprinted genes as priority loci, but with the adoption of microarray-based platforms other candidate genes and gene classes are now emerging. Despite a wealth of information, the current literature is characterized by heterogeneous exposures and outcomes, and mostly comprise observational associations that are frequently underpowered. The synthesis of current knowledge provided by this review identifies research needs on the pathway to developing possible early life interventions to optimize lifelong health.
Collapse
Affiliation(s)
- Philip James
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Sara Sajjadi
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ashutosh Singh Tomar
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ayden Saffari
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Caroline H D Fall
- MRC Life course Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Smeeta Shrestha
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Prachand Issarapu
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Dilip Kumar Yadav
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Lovejeet Kaur
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Karen Lillycrop
- Research Centre for Biological Sciences, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Matt Silver
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
15
|
Middleton P, Gomersall JC, Gould JF, Shepherd E, Olsen SF, Makrides M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev 2018; 11:CD003402. [PMID: 30480773 PMCID: PMC6516961 DOI: 10.1002/14651858.cd003402.pub3] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Higher intakes of foods containing omega-3 long-chain polyunsaturated fatty acids (LCPUFA), such as fish, during pregnancy have been associated with longer gestations and improved perinatal outcomes. This is an update of a review that was first published in 2006. OBJECTIVES To assess the effects of omega-3 LCPUFA, as supplements or as dietary additions, during pregnancy on maternal, perinatal, and neonatal outcomes and longer-term outcomes for mother and child. SEARCH METHODS For this update, we searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (16 August 2018), and reference lists of retrieved studies. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing omega-3 fatty acids (as supplements or as foods, stand-alone interventions, or with a co-intervention) during pregnancy with placebo or no omega-3, and studies or study arms directly comparing omega-3 LCPUFA doses or types. Trials published in abstract form were eligible for inclusion. DATA COLLECTION AND ANALYSIS Two review authors independently assessed study eligibility, extracted data, assessed risk of bias in trials and assessed quality of evidence for prespecified birth/infant, maternal, child/adult and health service outcomes using the GRADE approach. MAIN RESULTS In this update, we included 70 RCTs (involving 19,927 women at low, mixed or high risk of poor pregnancy outcomes) which compared omega-3 LCPUFA interventions (supplements and food) compared with placebo or no omega-3. Overall study-level risk of bias was mixed, with selection and performance bias mostly at low risk, but there was high risk of attrition bias in some trials. Most trials were conducted in upper-middle or high-income countries; and nearly half the trials included women at increased/high risk for factors which might increase the risk of adverse maternal and birth outcomes.Preterm birth < 37 weeks (13.4% versus 11.9%; risk ratio (RR) 0.89, 95% confidence interval (CI) 0.81 to 0.97; 26 RCTs, 10,304 participants; high-quality evidence) and early preterm birth < 34 weeks (4.6% versus 2.7%; RR 0.58, 95% CI 0.44 to 0.77; 9 RCTs, 5204 participants; high-quality evidence) were both lower in women who received omega-3 LCPUFA compared with no omega-3. Prolonged gestation > 42 weeks was probably increased from 1.6% to 2.6% in women who received omega-3 LCPUFA compared with no omega-3 (RR 1.61 95% CI 1.11 to 2.33; 5141 participants; 6 RCTs; moderate-quality evidence).For infants, there was a possibly reduced risk of perinatal death (RR 0.75, 95% CI 0.54 to 1.03; 10 RCTs, 7416 participants; moderate-quality evidence: 62/3715 versus 83/3701 infants) and possibly fewer neonatal care admissions (RR 0.92, 95% CI 0.83 to 1.03; 9 RCTs, 6920 participants; moderate-quality evidence - 483/3475 infants versus 519/3445 infants). There was a reduced risk of low birthweight (LBW) babies (15.6% versus 14%; RR 0.90, 95% CI 0.82 to 0.99; 15 trials, 8449 participants; high-quality evidence); but a possible small increase in large-for-gestational age (LGA) babies (RR 1.15, 95% CI 0.97 to 1.36; 6 RCTs, 3722 participants; moderate-quality evidence, for omega-3 LCPUFA compared with no omega-3. Little or no difference in small-for-gestational age or intrauterine growth restriction (RR 1.01, 95% CI 0.90 to 1.13; 8 RCTs, 6907 participants; moderate-quality evidence) was seen.For the maternal outcomes, there is insufficient evidence to determine the effects of omega-3 on induction post-term (average RR 0.82, 95% CI 0.22 to 2.98; 3 trials, 2900 participants; low-quality evidence), maternal serious adverse events (RR 1.04, 95% CI 0.40 to 2.72; 2 trials, 2690 participants; low-quality evidence), maternal admission to intensive care (RR 0.56, 95% CI 0.12 to 2.63; 2 trials, 2458 participants; low-quality evidence), or postnatal depression (average RR 0.99, 95% CI 0.56 to 1.77; 2 trials, 2431 participants; low-quality evidence). Mean gestational length was greater in women who received omega-3 LCPUFA (mean difference (MD) 1.67 days, 95% CI 0.95 to 2.39; 41 trials, 12,517 participants; moderate-quality evidence), and pre-eclampsia may possibly be reduced with omega-3 LCPUFA (RR 0.84, 95% CI 0.69 to 1.01; 20 trials, 8306 participants; low-quality evidence).For the child/adult outcomes, very few differences between antenatal omega-3 LCPUFA supplementation and no omega-3 were observed in cognition, IQ, vision, other neurodevelopment and growth outcomes, language and behaviour (mostly low-quality to very low-quality evidence). The effect of omega-3 LCPUFA on body mass index at 19 years (MD 0, 95% CI -0.83 to 0.83; 1 trial, 243 participants; very low-quality evidence) was uncertain. No data were reported for development of diabetes in the children of study participants. AUTHORS' CONCLUSIONS In the overall analysis, preterm birth < 37 weeks and early preterm birth < 34 weeks were reduced in women receiving omega-3 LCPUFA compared with no omega-3. There was a possibly reduced risk of perinatal death and of neonatal care admission, a reduced risk of LBW babies; and possibly a small increased risk of LGA babies with omega-3 LCPUFA.For our GRADE quality assessments, we assessed most of the important perinatal outcomes as high-quality (e.g. preterm birth) or moderate-quality evidence (e.g. perinatal death). For the other outcome domains (maternal, child/adult and health service outcomes) GRADE ratings ranged from moderate to very low, with over half rated as low. Reasons for downgrading across the domain were mostly due to design limitations and imprecision.Omega-3 LCPUFA supplementation during pregnancy is an effective strategy for reducing the incidence of preterm birth, although it probably increases the incidence of post-term pregnancies. More studies comparing omega-3 LCPUFA and placebo (to establish causality in relation to preterm birth) are not needed at this stage. A further 23 ongoing trials are still to report on over 5000 women, so no more RCTs are needed that compare omega-3 LCPUFA against placebo or no intervention. However, further follow-up of completed trials is needed to assess longer-term outcomes for mother and child, to improve understanding of metabolic, growth and neurodevelopment pathways in particular, and to establish if, and how, outcomes vary by different types of omega-3 LCPUFA, timing and doses; or by characteristics of women.
Collapse
Affiliation(s)
- Philippa Middleton
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | - Judith C Gomersall
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
| | - Jacqueline F Gould
- The University of AdelaideSchool of PsychologyNorth Terrace, AdelaideAdelaideSouth AustraliaAustralia5001
| | - Emily Shepherd
- The University of AdelaideARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and GynaecologyAdelaideSouth AustraliaAustralia5006
| | - Sjurdur F Olsen
- Statens Serum InstitutCentre for Fetal Programming, Department of EpidemiologyCopenhagenDenmark
| | - Maria Makrides
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research InstituteWomen's and Children's Hospital72 King William RoadAdelaideSouth AustraliaAustralia5006
- The University of AdelaideSchool of Paediatrics and Reproductive HealthAdelaideAustraliaAustralia
- Women's and Children's Health Research InstituteNorth AdelaideAustralia
| | | |
Collapse
|
16
|
Andraos S, de Seymour JV, O'Sullivan JM, Kussmann M. The Impact of Nutritional Interventions in Pregnant Women on DNA Methylation Patterns of the Offspring: A Systematic Review. Mol Nutr Food Res 2018; 62:e1800034. [PMID: 30035846 DOI: 10.1002/mnfr.201800034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/12/2018] [Indexed: 12/14/2022]
Abstract
Epidemiological studies have consistently demonstrated that environmental exposures in early life are associated with later-life health status and disease susceptibility. Epigenetic modifications, such as DNA methylation, have been suggested as potential mechanisms linking the intrauterine environment with offspring health status. The present systematic review compiles peer-reviewed randomized controlled trials assessing the impact of maternal nutritional interventions on DNA methylation patterns of the offspring. The results of the included trials are consistent with micronutrient supplementation not significantly affecting offspring tissue DNA methylation patterns, yet subgrouping by sex, BMI, and smoking status increased the significance of nutritional supplementation on DNA methylation. Maternal BMI and smoking status as well as offspring sex were factors influencing offspring DNA methylation responsiveness to nutritional interventions during pregnancy. Future research should aim at assessing the impact of nutritional interventions on DNA methylation patterns of neonates comparing single versus multi-micronutrient supplementation, within populations having high versus low baseline nutritional statuses.
Collapse
Affiliation(s)
- Stephanie Andraos
- The Liggins Institute, Faculty of Medical and Health Sciences, The University of Auckland, 1023, Auckland, New Zealand
| | - Jamie Violet de Seymour
- The Liggins Institute, Faculty of Medical and Health Sciences, The University of Auckland, 1023, Auckland, New Zealand
| | - Justin Martin O'Sullivan
- The Liggins Institute, Faculty of Medical and Health Sciences, The University of Auckland, 1023, Auckland, New Zealand
| | - Martin Kussmann
- The Liggins Institute, Faculty of Medical and Health Sciences, The University of Auckland, 1023, Auckland, New Zealand.,New Zealand National Science Challenge, High-Value Nutrition, The University of Auckland, 1023, Auckland, New Zealand
| |
Collapse
|
17
|
Rahbar E, Waits CMK, Kirby EH, Miller LR, Ainsworth HC, Cui T, Sergeant S, Howard TD, Langefeld CD, Chilton FH. Allele-specific methylation in the FADS genomic region in DNA from human saliva, CD4+ cells, and total leukocytes. Clin Epigenetics 2018; 10:46. [PMID: 29636834 PMCID: PMC5889567 DOI: 10.1186/s13148-018-0480-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background Genetic variants within the fatty acid desaturase (FADS) gene cluster (human Chr11) are important regulators of long-chain (LC) polyunsaturated fatty acid (PUFA) biosynthesis in the liver and consequently have been associated with circulating LC-PUFA levels. More recently, epigenetic modifications such as DNA methylation, particularly within the FADS cluster, have been shown to affect LC-PUFA levels. Our lab previously demonstrated strong associations of allele-specific methylation (ASM) between a single nucleotide polymorphism (SNP) rs174537 and CpG sites across the FADS region in human liver tissues. Given that epigenetic signatures are tissue-specific, we aimed to evaluate the methylation status and ASM associations between rs174537 and DNA methylation obtained from human saliva, CD4+ cells and total leukocytes derived from whole blood. The goals were to (1) determine if DNA methylation from these peripheral samples would display similar ASM trends as previously observed in human liver tissues and (2) evaluate the associations between DNA methylation and circulating LC-PUFAs. Results DNA methylation at six CpG sites spanning FADS1 and FADS2 promoter regions and a putative FADS enhancer region were determined in two Caucasian cohorts of healthy volunteers: leukocytes in cohort 1 (n = 89, median age = 43, 35% male) and saliva and CD4+ cells in cohort 2 (n = 32, median age = 41, 41% male). Significant ASM between rs174537 and DNA methylation at three CpG sites located in the FADS2 promoter region (i.e., chr11:61594865, chr11:61594876, chr11:61594907) and one CpG site in the putative enhancer region (chr11:61587979) were observed with leukocytes. In CD4+ cells, significant ASM was observed at CpG sites chr11:61594876 and chr11:61584894. Genotype at rs174537 was significantly associated with DNA methylation from leukocytes. Similar trends were observed with CD4+ cells, but not with saliva. DNA methylation from leukocytes and CD4+ cells also significantly correlated with circulating omega-6 LC-PUFAs. Conclusions We observed significant ASM between rs174537 and DNA methylation at key regulatory regions in the FADS region from leukocyte and CD4+ cells. DNA methylation from leukocytes also correlated with circulating omega-6 LC-PUFAs. These results support the use of peripheral whole blood samples, with leukocytes showing the most promise for future nutrigenomic studies evaluating epigenetic modifications affecting LC-PUFA biosynthesis in humans.
Collapse
Affiliation(s)
- Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, 575 N. Patterson Ave. Suite 120, Winston-Salem, NC 27101 USA
- Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA USA
| | - Charlotte Mae K. Waits
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, 575 N. Patterson Ave. Suite 120, Winston-Salem, NC 27101 USA
- Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA USA
| | - Edward H. Kirby
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Virginia-Tech Wake Forest School of Biomedical Engineering and Sciences, 575 N. Patterson Ave. Suite 120, Winston-Salem, NC 27101 USA
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 310, Winston-Salem, NC 27101 USA
| | - Leslie R. Miller
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 310, Winston-Salem, NC 27101 USA
| | - Hannah C. Ainsworth
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd/525 Vine Street, Winston-Salem, NC 27157-1063 USA
| | - Tao Cui
- Department of Urology, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - Timothy D. Howard
- Department of Biochemistry, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157 USA
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd/525 Vine Street, Winston-Salem, NC 27157-1063 USA
| | - Floyd H. Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, 575 N. Patterson Ave. Suite 310, Winston-Salem, NC 27101 USA
| |
Collapse
|
18
|
Geraghty AA, Sexton-Oates A, O’Brien EC, Alberdi G, Fransquet P, Saffery R, McAuliffe FM. A Low Glycaemic Index Diet in Pregnancy Induces DNA Methylation Variation in Blood of Newborns: Results from the ROLO Randomised Controlled Trial. Nutrients 2018; 10:nu10040455. [PMID: 29642382 PMCID: PMC5946240 DOI: 10.3390/nu10040455] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 11/30/2022] Open
Abstract
The epigenetic profile of the developing fetus is sensitive to environmental influence. Maternal diet has been shown to influence DNA methylation patterns in offspring, but research in humans is limited. We investigated the impact of a low glycaemic index dietary intervention during pregnancy on offspring DNA methylation patterns using a genome-wide methylation approach. Sixty neonates were selected from the ROLO (Randomised cOntrol trial of LOw glycaemic index diet to prevent macrosomia) study: 30 neonates from the low glycaemic index intervention arm and 30 from the control, whose mothers received no specific dietary advice. DNA methylation was investigated in 771,484 CpG sites in free DNA from cord blood serum. Principal component analysis and linear regression were carried out comparing the intervention and control groups. Gene clustering and pathway analysis were also explored. Widespread variation was identified in the newborns exposed to the dietary intervention, accounting for 11% of the total level of DNA methylation variation within the dataset. No association was found with maternal early-pregnancy body mass index (BMI), infant sex, or birthweight. Pathway analysis identified common influences of the intervention on gene clusters plausibly linked to pathways targeted by the intervention, including cardiac and immune functioning. Analysis in 60 additional samples from the ROLO study failed to replicate the original findings. Using a modest-sized discovery sample, we identified preliminary evidence of differential methylation in progeny of mothers exposed to a dietary intervention during pregnancy.
Collapse
Affiliation(s)
- Aisling A. Geraghty
- UCD Perinatal Research Centre, Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland; (A.A.G.); (E.C.O.); (G.A.)
| | - Alexandra Sexton-Oates
- Cancer and Disease Epigenetics, Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia; (A.S.-O.); (P.F.); (R.S.)
| | - Eileen C. O’Brien
- UCD Perinatal Research Centre, Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland; (A.A.G.); (E.C.O.); (G.A.)
| | - Goiuri Alberdi
- UCD Perinatal Research Centre, Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland; (A.A.G.); (E.C.O.); (G.A.)
| | - Peter Fransquet
- Cancer and Disease Epigenetics, Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia; (A.S.-O.); (P.F.); (R.S.)
| | - Richard Saffery
- Cancer and Disease Epigenetics, Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia; (A.S.-O.); (P.F.); (R.S.)
- Department of Paediatrics, University of Melbourne, Victoria 3010, Australia
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland; (A.A.G.); (E.C.O.); (G.A.)
- Correspondence: ; Tel.: +353-1-63732
| |
Collapse
|
19
|
The impact of polyunsaturated fatty acids on DNA methylation and expression of DNMTs in human colorectal cancer cells. Biomed Pharmacother 2018; 101:94-99. [PMID: 29477476 DOI: 10.1016/j.biopha.2018.02.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests a role of polyunsaturated fatty acids (PUFA) in the prevention of various types of malignancy, including colorectal cancer (CRC). No published studies have yet examined the direct effect of PUFA treatment on DNA methylation in CRC cells. In this study, 5 human CRC cells were treated with 100 μM DHA, EPA, and LA for 6 days and changes in their global- and gene-specific DNA methylation status as well as expression of DNA methyl transferases (DNMT) were investigated. Cell-type specific differences in DNA methylation and expression of DNMTs were observed in PUFA-treated cells. DHA and EPA treatment induced global hypermethylation in HT29/219 and HCT116 cells, but reduced methylation in Caco2 cells (p < 0.05). Among 10 tumor related genes tested in 5 CRC cell lines, DHA and EPA induced promoter demethylation of Cox2 in HT29/219, p14 and PPARγ in HCT116, and ECAD in SW742 cells. Cell-type specific differences in expression of DNMT1, DNMT3a, and 3b genes were also observed between PUFA-treated and control cells (p < 0.05). Overall, treatment of PUFAs coordinately induced the expression of DNMTs in HT29/219, but suppressed in other 4 cell lines investigated in this study.
Collapse
|
20
|
Karimi M, Vedin I, Freund Levi Y, Basun H, Faxén Irving G, Eriksdotter M, Wahlund LO, Schultzberg M, Hjorth E, Cederholm T, Palmblad J. DHA-rich n-3 fatty acid supplementation decreases DNA methylation in blood leukocytes: the OmegAD study. Am J Clin Nutr 2017; 106:1157-1165. [PMID: 28855224 DOI: 10.3945/ajcn.117.155648] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/04/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Dietary fish oils, rich in long-chain n-3 (ω-3) fatty acids (FAs) [e.g., docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3)], modulate inflammatory reactions through various mechanisms, including gene expression, which is measured as messenger RNA concentration. However, the effects of long-term treatment of humans with DHA and EPA on various epigenetic factors-such as DNA methylation, which controls messenger RNA generation-are poorly described.Objective: We wanted to determine the effects of 6 mo of dietary supplementation with an n-3 FA preparation rich in DHA on global DNA methylation of peripheral blood leukocytes (PBLs) and the relation to plasma EPA and DHA concentrations in Alzheimer disease (AD) patients.Design: In the present study, DNA methylation in four 5'-cytosine-phosphate-guanine-3' (CpG) sites of long interspersed nuclear element-1 repetitive sequences was assessed in a group of 63 patients (30 given the n-3 FA preparation and 33 given placebo) as an estimation of the global DNA methylation in blood cells. Patients originated from the randomized, double-blind, placebo-controlled OmegAD study, in which 174 AD patients received either 1.7 g DHA and 0.6 g EPA (the n-3 FA group) or placebo daily for 6 mo.Results: At 6 mo, the n-3 FA group displayed marked increases in DHA and EPA plasma concentrations (2.6- and 3.5-fold), as well as decreased methylation in 2 out of 4 CpG sites (P < 0.05 for all), respectively. This hypomethylation in CpG2 and CpG4 sites showed a reverse correlation to changes in plasma EPA concentration (r = -0.25, P = 0.045; and r = -0.26, P = 0.041, respectively), but not to changes in plasma DHA concentration, and were not related to apolipoprotein E-4 allele frequency.Conclusion: Supplementation with n-3 FA for 6 mo was associated with global DNA hypomethylation in PBLs. Our data may be of importance in measuring various effects of marine oils, including gene expression, in patients with AD and in other patients taking n-3 FA supplements. This trial was registered at clinicaltrials.gov as NCT00211159.
Collapse
Affiliation(s)
| | - Inger Vedin
- Departments of Medicine and Hematology (HERM) and
| | - Yvonne Freund Levi
- Neurobiology, Care, Sciences and Society, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; and Departments of
| | - Hans Basun
- Public Health and Caring Sciences, Division of Geriatrics, and
| | - Gerd Faxén Irving
- Neurobiology, Care, Sciences and Society, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; and Departments of
| | - Maria Eriksdotter
- Neurobiology, Care, Sciences and Society, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; and Departments of
| | - Lars-Olof Wahlund
- Neurobiology, Care, Sciences and Society, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; and Departments of
| | - Marianne Schultzberg
- Neurobiology, Care, Sciences and Society, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; and Departments of
| | - Erik Hjorth
- Neurobiology, Care, Sciences and Society, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; and Departments of
| | - Tommy Cederholm
- Clinical Nutrition and Metabolism, Uppsala University Hospital, Uppsala, Sweden
| | - Jan Palmblad
- Departments of Medicine and Hematology (HERM) and
| |
Collapse
|
21
|
The role of PKCζ in cord blood T-cell maturation towards Th1 cytokine profile and its epigenetic regulation by fish oil. Biosci Rep 2017; 37:BSR20160485. [PMID: 28159873 PMCID: PMC5482199 DOI: 10.1042/bsr20160485] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/25/2017] [Accepted: 02/03/2017] [Indexed: 01/21/2023] Open
Abstract
While immunodeficiency of immaturity of the neonate has been considered important as the basis for unusual susceptibility to infection, it has also been recognized that the ability to progress from an immature Th2 cytokine predominance to a Th1 profile has relevance in determining whether children will develop allergy, providing an opportunity for epigenetic regulation through environmental pressures. However, this notion remains relatively unexplored. Here, we present evidence that there are two major control points to explain the immunodeficiency in cord blood (CB) T-cells, a deficiency in interleukin (IL)-12 (IL-12) producing and IL-10 overproducing accessory cells, leading to a decreased interferon γ (IFNγ) synthesis and the other, an intrinsic defect in T-cell protein kinase C (PKC) ζ (PKCζ) expression. An important finding was that human CB T-cells rendered deficient in PKCζ, by shRNA knockdown, develop into low tumour necrosis factor α (TNFα) and IFNγ but increased IL-13 producing cells. Interestingly, we found that the increase in PKCζ levels in CB T-cells caused by prenatal supplementation with fish oil correlated with modifications of histone acetylation at the PKCζ gene (PRKCZ) promoter. The data demonstrate that PKCζ expression regulates the maturation of neonatal T-cells into specific functional phenotypes and that environmental influences may work via PKCζ to regulate these phenotypes and disease susceptibility.
Collapse
|
22
|
Potaczek DP, Harb H, Michel S, Alhamwe BA, Renz H, Tost J. Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics 2017; 9:539-571. [PMID: 28322581 DOI: 10.2217/epi-2016-0162] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Allergic diseases are on the rise in the Western world and well-known allergy-protecting and -driving factors such as microbial and dietary exposure, pollution and smoking mediate their influence through alterations of the epigenetic landscape. Here, we review key facts on the involvement of epigenetic modifications in allergic diseases and summarize and critically evaluate the lessons learned from epigenome-wide association studies. We show the potential of epigenetic changes for various clinical applications: as diagnostic tools, to assess tolerance following immunotherapy or possibly predict the success of therapy at an early time point. Furthermore, new technological advances such as epigenome editing and DNAzymes will allow targeted alterations of the epigenome in the future and provide novel therapeutic tools.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL).,John Paul II Hospital, Krakow, Poland
| | - Hani Harb
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL)
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co KG, Planegg, Germany
| | - Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL)
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| |
Collapse
|
23
|
van Dijk SJ, Zhou J, Peters TJ, Buckley M, Sutcliffe B, Oytam Y, Gibson RA, McPhee A, Yelland LN, Makrides M, Molloy PL, Muhlhausler BS. Effect of prenatal DHA supplementation on the infant epigenome: results from a randomized controlled trial. Clin Epigenetics 2016; 8:114. [PMID: 27822319 PMCID: PMC5096291 DOI: 10.1186/s13148-016-0281-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Evidence is accumulating that nutritional exposures in utero can influence health outcomes in later life. Animal studies and human epidemiological studies have implicated epigenetic modifications as playing a key role in this process, but there are limited data from large well-controlled human intervention trials. This study utilized a large double-blind randomized placebo-controlled trial to test whether a defined nutritional exposure in utero, in this case docosahexaenoic acid (DHA), could alter the infant epigenome. Pregnant mothers consumed DHA-rich fish oil (800 mg DHA/day) or placebo supplements from 20 weeks' gestation to delivery. Blood spots were collected from the children at birth (n = 991) and blood leukocytes at 5 years (n = 667). Global DNA methylation was measured in all samples, and Illumina HumanMethylation450K BeadChip arrays were used for genome-wide methylation profiling in a subset of 369 children at birth and 65 children at 5 years. RESULTS There were no differences in global DNA methylation levels between the DHA and control group either at birth or at 5 years, but we identified 21 differentially methylated regions (DMRs) at birth, showing small DNA methylation differences (<5%) between the treatment groups, some of which seemed to persist until 5 years. The number of DMRs at birth was greater in males (127 DMRs) and in females (72 DMRs) separately, indicating a gender-specific effect. CONCLUSION Maternal DHA supplementation during the second half of pregnancy had small effects on DNA methylation of infants. While the potential functional significance of these changes remains to be determined, these findings further support the role of epigenetic modifications in developmental programming in humans and point the way for future studies. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR), ACTRN12605000569606 and ACTRN12611001127998.
Collapse
Affiliation(s)
- Susan J. van Dijk
- CSIRO Health and Biosecurity, PO Box 52, North Ryde, New South Wales 1670 Australia
| | - Jing Zhou
- FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Adelaide, South Australia 5064 Australia
| | | | | | - Brodie Sutcliffe
- CSIRO Health and Biosecurity, PO Box 52, North Ryde, New South Wales 1670 Australia
| | - Yalchin Oytam
- CSIRO Agriculture and Food, North Ryde, New South Wales 2113 Australia
| | - Robert A. Gibson
- FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Adelaide, South Australia 5064 Australia
- Child Nutrition Research Centre, South Australian Health and Medical Research Institute Adelaide, Adelaide, South Australia 5006 Australia
| | - Andrew McPhee
- Department of Neonatal Medicine, Women’s and Children’s Hospital, Adelaide, South Australia 5006 Australia
| | - Lisa N. Yelland
- Child Nutrition Research Centre, South Australian Health and Medical Research Institute Adelaide, Adelaide, South Australia 5006 Australia
- School of Public Health, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Maria Makrides
- Child Nutrition Research Centre, South Australian Health and Medical Research Institute Adelaide, Adelaide, South Australia 5006 Australia
| | - Peter L. Molloy
- CSIRO Health and Biosecurity, PO Box 52, North Ryde, New South Wales 1670 Australia
| | - Beverly S. Muhlhausler
- FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Adelaide, South Australia 5064 Australia
- Child Nutrition Research Centre, South Australian Health and Medical Research Institute Adelaide, Adelaide, South Australia 5006 Australia
| |
Collapse
|
24
|
Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Front Immunol 2016; 7:290. [PMID: 27531998 PMCID: PMC4970383 DOI: 10.3389/fimmu.2016.00290] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD), particularly Crohn’s disease (CD). However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e., pantropic) mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of being elucidated. Progress seems, however, hampered by various difficult-to-study factors interacting at the mucosal level. Here, we highlight some of such factors that merit consideration, namely: (1) the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; (2) the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; (3) the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; (4) the impact of endogenous and exogenous intestinal micronutrients and metabolites; and (5) the need to consider food associated toxins and chemicals, which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins). These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes.
Collapse
Affiliation(s)
- Abigail Basson
- Digestive Health Research Institute, Case Western Reserve University , Cleveland, OH , USA
| | - Ashley Trotter
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
25
|
Serini S, Ottes Vasconcelos R, Fasano E, Calviello G. Epigenetic regulation of gene expression and M2 macrophage polarization as new potential omega-3 polyunsaturated fatty acid targets in colon inflammation and cancer. Expert Opin Ther Targets 2016; 20:843-58. [PMID: 26781478 DOI: 10.1517/14728222.2016.1139085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION It has become increasingly clear that dietary habits may affect the risk/progression of chronic diseases with a pathogenic inflammatory component, such as colorectal cancer. Considerable attention has been directed toward the ability of nutritional agents to target key molecular pathways involved in these inflammatory-related diseases. AREAS COVERED ω-3 Polyunsaturated fatty acids (PUFA) and their oxidative metabolites have attracted considerable interest as possible anti-inflammatory and anti-cancer agents, especially in areas such as the large bowel, where the influence of orally introduced substances is high and tumors show deranged PUFA patterns. On this basis, we have analyzed pre-clinical findings that have recently revealed new insight into the molecular pathways targeted by ω-3 PUFA. EXPERT OPINION The findings analyzed herein demonstrate that ω-3 PUFA may exert beneficial effects by targeting the epigenetic regulation of gene expression and altering M2 macrophage polarization during the inflammatory response. These mechanisms need to be better explored in the large bowel, and further studies could better clarify their role and the potential of dietary interventions with ω-3 PUFA in the large bowel. The epigenomic mechanism is discussed in view of the potential of ω-3 PUFA to enhance the efficacy of other agents used in the therapy of colorectal cancer.
Collapse
Affiliation(s)
- Simona Serini
- a Institute of General Pathology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Renata Ottes Vasconcelos
- a Institute of General Pathology , Università Cattolica del Sacro Cuore , Rome , Italy.,b Institute of Biological Sciences , Federal University of Rio Grande - FURG , Rio Grande , Brazil
| | - Elena Fasano
- c Department of Internal Medicine, Unit of Medical Oncology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Gabriella Calviello
- a Institute of General Pathology , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
26
|
DNA Methylation Changes in the IGF1R Gene in Birth Weight Discordant Adult Monozygotic Twins. Twin Res Hum Genet 2015; 18:635-46. [DOI: 10.1017/thg.2015.76] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Low birth weight (LBW) can have an impact on health outcomes in later life, especially in relation to pre-disposition to metabolic disease. Several studies suggest that LBW resulting from restricted intrauterine growth leaves a footprint on DNA methylation in utero, and this influence likely persists into adulthood. To investigate this further, we performed epigenome-wide association analyses of blood DNA methylation using Infinium HumanMethylation450 BeadChip profiles in 71 adult monozygotic (MZ) twin pairs who were extremely discordant for birth weight. A signal mapping to the IGF1R gene (cg12562232, p = 2.62 × 10−8), was significantly associated with birth weight discordance at a genome-wide false-discovery rate (FDR) of 0.05. We pursued replication in three additional independent datasets of birth weight discordant MZ pairs and observed the same direction of association, but the results were not significant. However, a meta-analysis across the four independent samples, in total 216 birth-weight discordant MZ twin pairs, showed a significant positive association between birth weight and DNA methylation differences at IGF1R (random-effects meta-analysis p = .04), and the effect was particularly pronounced in older twins (random-effects meta-analysis p = .008, 98 older birth-weight discordant MZ twin pairs). The results suggest that severe intra-uterine growth differences (birth weight discordance >20%) are associated with methylation changes in the IGF1R gene in adulthood, independent of genetic effects.
Collapse
|
27
|
In-utero exposures and the evolving epidemiology of paediatric allergy. Curr Opin Allergy Clin Immunol 2015; 15:402-8. [DOI: 10.1097/aci.0000000000000209] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Endogenous Generation and Signaling Actions of Omega-3 Fatty Acid Electrophilic Derivatives. BIOMED RESEARCH INTERNATIONAL 2015; 2015:501792. [PMID: 26339618 PMCID: PMC4538325 DOI: 10.1155/2015/501792] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/28/2022]
Abstract
Dietary omega-3 polyunsaturated fatty acids (PUFAs) are beneficial for a number of conditions ranging from cardiovascular disease to chronic airways disorders, neurodegeneration, and cancer. Growing evidence has shown that bioactive oxygenated derivatives are responsible for transducing these salutary effects. Electrophilic oxo-derivatives of omega-3 PUFAs represent a class of oxidized derivatives that can be generated via enzymatic and nonenzymatic pathways. Inflammation and oxidative stress favor the formation of these signaling species to promote the resolution of inflammation within a fine autoregulatory loop. Endogenous generation of electrophilic oxo-derivatives of omega-3 PUFAs has been observed in in vitro and ex vivo human models and dietary supplementation of omega-3 PUFAs has been reported to increase their formation. Due to the presence of an α,β-unsaturated ketone moiety, these compounds covalently and reversibly react with nucleophilic residues on target proteins triggering the activation of cytoprotective pathways, including the Nrf2 antioxidant response, the heat shock response, and the peroxisome proliferator activated receptor γ (PPARγ) and suppressing the NF-κB proinflammatory pathway. The endogenous nature of electrophilic oxo-derivatives of omega-3 PUFAs combined with their ability to simultaneously activate multiple cytoprotective pathways has made these compounds attractive for the development of new therapies for the treatment of chronic disorders and acute events characterized by inflammation and oxidative stress.
Collapse
|
29
|
Omega-3 Polyunsaturated Fatty Acids: The Way Forward in Times of Mixed Evidence. BIOMED RESEARCH INTERNATIONAL 2015; 2015:143109. [PMID: 26301240 PMCID: PMC4537707 DOI: 10.1155/2015/143109] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/18/2015] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Almost forty years ago, it was first hypothesized that an increased dietary intake of omega-3 polyunsaturated fatty acids (PUFA) from fish fat could exert protective effects against several pathologies. Decades of intense preclinical investigation have supported this hypothesis in a variety of model systems. Several clinical cardiovascular studies demonstrated the beneficial health effects of omega-3 PUFA, leading medical institutions worldwide to publish recommendations for their increased intake. However, particularly in recent years, contradictory results have been obtained in human studies focusing on cardiovascular disease and the clinical evidence in other diseases, particularly chronic inflammatory and neoplastic diseases, was never established to a degree that led to clear approval of treatment with omega-3 PUFA. Recent data not in line with the previous findings have sparked a debate on the health efficacy of omega-3 PUFA and the usefulness of increasing their intake for the prevention of a number of pathologies. In this review, we aim to examine the controversies on the possible use of these fatty acids as preventive/curative tools against the development of cardiovascular, metabolic, and inflammatory diseases, as well as several kinds of cancer.
Collapse
|