1
|
Reinehr S, Rahim Pamuk M, Fuchshofer R, Burkhard Dick H, Joachim SC. Increased inflammation in older high-pressure glaucoma mice. Neurobiol Aging 2024; 145:55-64. [PMID: 39481321 DOI: 10.1016/j.neurobiolaging.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
Besides an elevated intraocular pressure (IOP), advanced age is one of the most crucial risk factors for developing glaucoma. βB1-Connective Tissue Growth Factor (βB1-CTGF) high-pressure glaucoma mice were used in this study to assess whether glaucoma mice display more inflammatory and aging processes than age-matched controls. Therefore, 20-month-old βB1-CTGF and corresponding wildtype (WT) controls were examined. After IOP measurements, retinas were processed for (immuno-)histological and quantitative real-time PCR analyses. A significantly higher IOP and diminished retinal ganglion cell numbers were noted in βB1-CTGF mice compared to WT. An enhanced macrogliosis as well as an increased number of microglia/macrophages and microglia was detected in retinas of old glaucoma mice. Interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and transforming growth factor-β2 were upregulated, suggesting an ongoing inflammation. Moreover, βB1-CTGF retinas displayed an increased senescence-associated β-galactosidase staining accompanied by a downregulation of Lmnb1 (laminin-B1) mRNA levels. Our results provide a deeper insight into the association between inflammation and high-pressure glaucoma and thus might help to develop new therapy strategies.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany.
| | - M Rahim Pamuk
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| |
Collapse
|
2
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
3
|
Silva AO, Bitencourt TC, Vargas JE, Fraga LR, Filippi-Chiela E. Modulation of tumor plasticity by senescent cells: Deciphering basic mechanisms and survival pathways to unravel therapeutic options. Genet Mol Biol 2024; 47Suppl 1:e20230311. [PMID: 38805699 PMCID: PMC11132560 DOI: 10.1590/1678-4685-gmb-2023-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/21/2024] [Indexed: 05/30/2024] Open
Abstract
Senescence is a cellular state in which the cell loses its proliferative capacity, often irreversibly. Physiologically, it occurs due to a limited capacity of cell division associated with telomere shortening, the so-called replicative senescence. It can also be induced early due to DNA damage, oncogenic activation, oxidative stress, or damage to other cellular components (collectively named induced senescence). Tumor cells acquire the ability to bypass replicative senescence, thus ensuring the replicative immortality, a hallmark of cancer. Many anti-cancer therapies, however, can lead tumor cells to induced senescence. Initially, this response leads to a slowdown in tumor growth. However, the longstanding accumulation of senescent cells (SnCs) in tumors can promote neoplastic progression due to the enrichment of numerous molecules and extracellular vesicles that constitutes the senescence-associated secretory phenotype (SASP). Among other effects, SASP can potentiate or unlock the tumor plasticity and phenotypic transitions, another hallmark of cancer. This review discusses how SnCs can fuel mechanisms that underlie cancer plasticity, like cell differentiation, stemness, reprogramming, and epithelial-mesenchymal transition. We also discuss the main molecular mechanisms that make SnCs resistant to cell death, and potential strategies to target SnCs. At the end, we raise open questions and clinically relevant perspectives in the field.
Collapse
Affiliation(s)
- Andrew Oliveira Silva
- Faculdade Estácio, Porto Alegre, RS, Brazil
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
| | - Thais Cardoso Bitencourt
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Jose Eduardo Vargas
- Universidade Federal do Paraná, Departamento de Biologia Celular,
Curitiba, PR, Brazil
| | - Lucas Rosa Fraga
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Ciências
Morfológicas, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Medicina: Ciências Médicas, Porto Alegre, RS, Brazil
| | - Eduardo Filippi-Chiela
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Ciências
Morfológicas, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Sun R, Feng J, Wang J. Underlying Mechanisms and Treatment of Cellular Senescence-Induced Biological Barrier Interruption and Related Diseases. Aging Dis 2024; 15:612-639. [PMID: 37450933 PMCID: PMC10917536 DOI: 10.14336/ad.2023.0621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Given its increasing prevalence, aging is of great concern to researchers worldwide. Cellular senescence is a physiological or pathological cellular state caused by aging and a prominent risk factor for the interruption of the integrity and functionality of human biological barriers. Health barriers play an important role in maintaining microenvironmental homeostasis within the body. The senescence of barrier cells leads to barrier dysfunction and age-related diseases. Cellular senescence has been reported to be a key target for the prevention of age-related barrier diseases, including Alzheimer's disease, Parkinson's disease, age-related macular degeneration, diabetic retinopathy, and preeclampsia. Drugs such as metformin, dasatinib, quercetin, BCL-2 inhibitors, and rapamycin have been shown to intervene in cellular senescence and age-related diseases. In this review, we conclude that cellular senescence is involved in age-related biological barrier impairment. We further outline the cellular pathways and mechanisms underlying barrier impairment caused by cellular senescence and describe age-related barrier diseases associated with senescent cells. Finally, we summarize the currently used anti-senescence pharmacological interventions and discuss their therapeutic potential for preventing age-related barrier diseases.
Collapse
Affiliation(s)
- Ruize Sun
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Razzaq A, Disoma C, Zhou Y, Tao S, Chen Z, Liu S, Zheng R, Zhang Y, Liao Y, Chen X, Liu S, Dong Z, Xu L, Deng X, Li S, Xia Z. Targeting epidermal growth factor receptor signalling pathway: A promising therapeutic option for COVID-19. Rev Med Virol 2024; 34:e2500. [PMID: 38126937 DOI: 10.1002/rmv.2500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/20/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously producing new variants, necessitating effective therapeutics. Patients are not only confronted by the immediate symptoms of infection but also by the long-term health issues linked to long COVID-19. Activation of epidermal growth factor receptor (EGFR) signalling during SARS-CoV-2 infection promotes virus propagation, mucus hyperproduction, and pulmonary fibrosis, and suppresses the host's antiviral response. Over the long term, EGFR activation in COVID-19, particularly in COVID-19-induced pulmonary fibrosis, may be linked to the development of lung cancer. In this review, we have summarised the significance of EGFR signalling in the context of SARS-CoV-2 infection. We also discussed the targeting of EGFR signalling as a promising strategy for COVID-19 treatment and highlighted erlotinib as a superior option among EGFR inhibitors. Erlotinib effectively blocks EGFR and AAK1, thereby preventing SARS-CoV-2 replication, reducing mucus hyperproduction, TNF-α expression, and enhancing the host's antiviral response. Nevertheless, to evaluate the antiviral efficacy of erlotinib, relevant clinical trials involving an appropriate patient population should be designed.
Collapse
Affiliation(s)
- Aroona Razzaq
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Cyrollah Disoma
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Department of Biology, College of Natural Sciences and Mathematics, Mindanao State University, Marawi City, Philippines
| | - Yuzheng Zhou
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Siyi Tao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Zongpeng Chen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Sixu Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Rong Zheng
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yongxing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yujie Liao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Xuan Chen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Sijie Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Zijun Dong
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Liangtao Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Xu Deng
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, China
| | - Shanni Li
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Centre for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Schumacher N, Thomsen I, Brundert F, Hejret V, Düsterhöft S, Tichý B, Schmidt-Arras D, Voss M, Rose-John S. EGFR stimulation enables IL-6 trans-signalling via iRhom2-dependent ADAM17 activation in mammary epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119489. [PMID: 37271223 DOI: 10.1016/j.bbamcr.2023.119489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
The cytokine interleukin-6 (IL-6) has considerable pro-inflammatory properties and is a driver of many physiological and pathophysiological processes. Cellular responses to IL-6 are mediated by membrane-bound or soluble forms of the IL-6 receptor (IL-6R) complexed with the signal-transducing subunit gp130. While expression of the membrane-bound IL-6R is restricted to selected cell types, soluble IL-6R (sIL-6R) enables gp130 engagement on all cells, a process termed IL-6 trans-signalling and considered to be pro-inflammatory. sIL-6R is predominantly generated through proteolytic processing by the metalloproteinase ADAM17. ADAM17 also liberates ligands of the epidermal growth factor receptor (EGFR), which is a prerequisite for EGFR activation and results in stimulation of proliferative signals. Hyperactivation of EGFR mostly due to activating mutations drives cancer development. Here, we reveal an important link between overshooting EGFR signalling and the IL-6 trans-signalling pathway. In epithelial cells, EGFR activity induces not only IL-6 expression but also the proteolytic release of sIL-6R from the cell membrane by increasing ADAM17 surface activity. We find that this derives from the transcriptional upregulation of iRhom2, a crucial regulator of ADAM17 trafficking and activation, upon EGFR engagement, which results in increased surface localization of ADAM17. Also, phosphorylation of the EGFR-downstream mediator ERK mediates ADAM17 activity via interaction with iRhom2. In sum, our study reveals an unforeseen interplay between EGFR activation and IL-6 trans-signalling, which has been shown to be fundamental in inflammation and cancer.
Collapse
Affiliation(s)
- Neele Schumacher
- Institute of Biochemistry, Medical Faculty, Kiel University, Germany.
| | - Ilka Thomsen
- Institute of Biochemistry, Medical Faculty, Kiel University, Germany
| | - Florian Brundert
- Institute of Biochemistry, Medical Faculty, Kiel University, Germany
| | - Vaclav Hejret
- CEITEC-Central European Institute of Technology, Masaryk University, Czech Republic
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, University Hospital Aachen/RWTH, Aachen, Germany
| | - Boris Tichý
- CEITEC-Central European Institute of Technology, Masaryk University, Czech Republic
| | | | - Matthias Voss
- Institute of Biochemistry, Medical Faculty, Kiel University, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Medical Faculty, Kiel University, Germany
| |
Collapse
|
7
|
Choi EL, Taheri N, Chandra A, Hayashi Y. Cellular Senescence, Inflammation, and Cancer in the Gastrointestinal Tract. Int J Mol Sci 2023; 24:9810. [PMID: 37372958 PMCID: PMC10298598 DOI: 10.3390/ijms24129810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Due to modern medical advancements, greater proportions of the population will continue to age with longer life spans. Increased life span, however, does not always correlate with improved health span, and may result in an increase in aging-related diseases and disorders. These diseases are often attributed to cellular senescence, in which cells become disengaged from the cell cycle and inert to cell death. These cells are characterized by a proinflammatory secretome. The proinflammatory senescence-associated secretory phenotype, although part of a natural function intended to prevent further DNA damage, creates a microenvironment suited to tumor progression. This microenvironment is most evident in the gastrointestinal tract (GI), where a combination of bacterial infections, senescent cells, and inflammatory proteins can lead to oncogenesis. Thus, it is important to find potential senescence biomarkers as targets of novel therapies for GI diseases and disorders including cancers. However, finding therapeutic targets in the GI microenvironment to reduce the risk of GI tumor onset may also be of value. This review summarizes the effects of cellular senescence on GI aging, inflammation, and cancers, and aims to improve our understanding of these processes with a goal of enhancing future therapy.
Collapse
Affiliation(s)
- Egan L. Choi
- Graduate Research Education Program (Choi), Mayo Clinic, Rochester, MN 55905, USA;
| | - Negar Taheri
- Department of Physiology and Biomedical Engineering (Taheri, Chandra and Hayashi), Mayo Clinic, Rochester, MN 55905, USA; (N.T.); (A.C.)
- Division of Gastroenterology and Hepatology (Taheri and Hayashi), Mayo Clinic, Rochester, MN 55905, USA
| | - Abhishek Chandra
- Department of Physiology and Biomedical Engineering (Taheri, Chandra and Hayashi), Mayo Clinic, Rochester, MN 55905, USA; (N.T.); (A.C.)
- Robert and Arlene Kogod Center on Aging (Chandra), Mayo Clinic, Rochester, MN 55905, USA
| | - Yujiro Hayashi
- Department of Physiology and Biomedical Engineering (Taheri, Chandra and Hayashi), Mayo Clinic, Rochester, MN 55905, USA; (N.T.); (A.C.)
- Division of Gastroenterology and Hepatology (Taheri and Hayashi), Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Liu J, Zheng R, Zhang Y, Jia S, He Y, Liu J. The Cross Talk between Cellular Senescence and Melanoma: From Molecular Pathogenesis to Target Therapies. Cancers (Basel) 2023; 15:cancers15092640. [PMID: 37174106 PMCID: PMC10177054 DOI: 10.3390/cancers15092640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is a malignant skin tumor that originates from melanocytes. The pathogenesis of melanoma involves a complex interaction that occurs between environmental factors, ultraviolet (UV)-light damage, and genetic alterations. UV light is the primary driver of the skin aging process and development of melanoma, which can induce reactive oxygen species (ROS) production and the presence of DNA damage in the cells, and results in cell senescence. As cellular senescence plays an important role in the relationship that exists between the skin aging process and the development of melanoma, the present study provides insight into the literature concerning the topic at present and discusses the relationship between skin aging and melanoma, including the mechanisms of cellular senescence that drive melanoma progression, the microenvironment in relation to skin aging and melanoma factors, and the therapeutics concerning melanoma. This review focuses on defining the role of cellular senescence in the process of melanoma carcinogenesis and discusses the targeting of senescent cells through therapeutic approaches, highlighting the areas that require more extensive research in the field.
Collapse
Affiliation(s)
- Jiahua Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanghuan Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
9
|
Yoo A, Lee S. Neuronal growth regulator 1 may modulate interleukin-6 signaling in adipocytes. Front Mol Biosci 2023; 10:1148521. [PMID: 37187893 PMCID: PMC10175572 DOI: 10.3389/fmolb.2023.1148521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that plays both anti- and pro-inflammatory roles. Due to the restricted expression of membrane IL-6 receptor (IL-6R), most pro-inflammatory functions of IL-6 are attributed to its association with soluble IL-6R (sIL-6R). Neuronal growth regulator 1 (NEGR1) is a brain-enriched membrane protein that has recently been recognized as a risk factor for many human diseases including obesity, depression, and autism. In the present study, we report that the expression levels of IL-6 and IL-6R, as well as the phosphorylation of signal transducer and activator of transcription (STAT) 3, were significantly elevated in white adipose tissues of Negr1 knockout mice. Elevated levels of circulating IL-6 and sIL-6R have also been observed in Negr1 -/- mice. Furthermore, NEGR1 interacted with IL-6R, which was supported by subcellular fractionation and an in situ proximity ligation assay. Importantly, NEGR1 expression attenuated the phosphorylation of STAT3 by sIL-6R, suggesting that NEGR1 negatively regulates IL-6 trans-signaling. Taken together, we propose that NEGR1 may play a regulatory role in IL-6 signaling by interacting with IL-6R, which may contribute to a molecular link underlying obesity, inflammation, and the depression cycle.
Collapse
|
10
|
Luo Y, Liu H, Fu H, Ding GS, Teng F. A cellular senescence-related classifier based on a tumorigenesis- and immune infiltration-guided strategy can predict prognosis, immunotherapy response, and candidate drugs in hepatocellular carcinoma. Front Immunol 2022; 13:974377. [PMID: 36458010 PMCID: PMC9705748 DOI: 10.3389/fimmu.2022.974377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/25/2022] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Cellular senescence plays an irreplaceable role in tumorigenesis, progression, and tumor microenvironment (TME) remodeling. However, to date, there is limited research delineating the landscape of cellular senescence in hepatocellular carcinoma (HCC), and an improved understanding on the interaction of tumor-associated cellular senescence with HCC prognosis, TME, and response to immunotherapy is warrant. METHODS Tumorigenic and immune infiltration-associated senescence genes were determined by weighted gene co-expression network analysis (WGCNA) and the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm, and subsequently, a prognostic scoring model (named TIS) was constructed using multiple survival analysis algorithms to classify the senescence-related subtypes of HCC. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were conducted to identify the distinct hallmark pathways between high- and low-risk subtypes. Additionally, we carried out correlation analyses for TIS and clinical traits, senescence-associated secretory phenotype (SASP), immune infiltration and evasion, immune checkpoint factors, drug response, and immunotherapeutic efficacy. External experimental validation was conducted to delineate the association of CPEP3 (a TIS gene) with HCC phenotypes through assays of proliferation, colony formation, and invasion. RESULTS A five-gene TIS, composed of NET1, ATP6V0B, MMP1, GTDC1, and CPEB3, was constructed and validated using TCGA and ICGC datasets, respectively, and showed a highly robust and plausible signature for overall survival (OS) prediction of HCC in both training and validation cohorts. Patients in the TIS-high group were accompanied by worse OS, activation of carcinogenetic pathways, infiltration of immunosuppressive cells, exclusion of effector killing cells, overexpression of immunomodulatory genes and SASP, and unsatisfied response to immunotherapy. In response to anticancer drugs, patients in the TIS-high group exhibited enhanced susceptibility to several conventional chemotherapeutic agents (5-fluorouracil, docetaxel, doxorubicin, gemcitabine, and etoposide), as well as several inhibitors of pathways involved in cellular senescence (cell-cycle inhibitors, bromodomain and extraterminal domain family (BET) inhibitors, PI3K-AKT pathway inhibitors, and multikinase inhibitors). Additionally, four putative drugs (palbociclib, JAK3 inhibitor VI, floxuridine, and lestaurtinib) were identified as potential compounds for patients in the TIS-high group. Notably, in vitro functional validation showed that CPEB3 knockdown boosted the phenotypes of proliferation, clonogenicity, and invasion in HCC cells, whereas CPEB3 overexpression attenuated these phenotypes. CONCLUSIONS Our study provides comprehensive clues demonstrating the role of novel TIS in predicting HCC prognosis, immunotherapeutic response, and candidate drugs. This work highlights the significance of tumorigenesis- and immune infiltration-related cellular senescence in cancer therapy.
Collapse
Affiliation(s)
- Yi Luo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hong Fu
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Guo-Shan Ding
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fei Teng
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
11
|
Zheng ZY, Chu MY, Lin W, Zheng YQ, Xu XE, Chen Y, Liao LD, Wu ZY, Wang SH, Li EM, Xu LY. Blocking STAT3 signaling augments MEK/ERK inhibitor efficacy in esophageal squamous cell carcinoma. Cell Death Dis 2022; 13:496. [PMID: 35614034 PMCID: PMC9132929 DOI: 10.1038/s41419-022-04941-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the world's leading causes of death, and its primary clinical therapy relies on surgical resection, chemotherapy, radiotherapy, and chemoradiotherapy. Although the genomic features and clinical significance of ESCC have been identified, the outcomes of targeted therapies are still unsatisfactory. Here, we demonstrate that mitogen-activated protein kinase (MAPK) signaling is highly activated and associated with poor prognosis in patients with ESCC. Mitogen-activated protein kinase kinase (MEK) inhibitors efficiently blocked the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in ESCC, while signal transducer and activator of transcription 3 (STAT3) signaling was rapidly activated. Combined STAT3 inhibition prevented the emergence of resistance and enhanced MEK inhibitor-induced cell cycle arrest and senescence in vitro and in vivo. Mechanistic studies revealed that the suppressor of cytokine signaling 3 (SOCS3) was downregulated, resulting in an increase in STAT3 phosphorylation in MEK-inhibited cells. Furthermore, chromatin immunoprecipitation showed that ELK1, which was activated by MEK/ERK signaling, induced SOCS3 transcription. These data suggest that the development of combined MEK and STAT3 inhibition could be a useful strategy in ESCC targeted therapy.
Collapse
Affiliation(s)
- Zhen-Yuan Zheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Man-Yu Chu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wan Lin
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ya-Qi Zheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yang Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhi-Yong Wu
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, China
| | - Shao-Hong Wang
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| |
Collapse
|
12
|
Dietrichs D, Grimm D, Sahana J, Melnik D, Corydon TJ, Wehland M, Krüger M, Vermeesen R, Baselet B, Baatout S, Hybel TE, Kahlert S, Schulz H, Infanger M, Kopp S. Three-Dimensional Growth of Prostate Cancer Cells Exposed to Simulated Microgravity. Front Cell Dev Biol 2022; 10:841017. [PMID: 35252204 PMCID: PMC8893349 DOI: 10.3389/fcell.2022.841017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer metastasis has an enormous impact on the mortality of cancer patients. Factors involved in cancer progression and metastasis are known to be key players in microgravity (µg)-driven three-dimensional (3D) cancer spheroid formation. We investigated PC-3 prostate cancer cells for 30 min, 2, 4 and 24 h on the random positioning machine (RPM), a device simulating µg on Earth. After a 24 h RPM-exposure, the cells could be divided into two groups: one grew as 3D multicellular spheroids (MCS), the other one as adherent monolayer (AD). No signs of apoptosis were visible. Among others, we focused on cytokines involved in the events of metastasis and MCS formation. After 24 h of exposure, in the MCS group we measured an increase in ACTB, MSN, COL1A1, LAMA3, FN1, TIMP1, FLT1, EGFR1, IL1A, IL6, CXCL8, and HIF1A mRNA expression, and in the AD group an elevation of LAMA3, COL1A1, FN1, MMP9, VEGFA, IL6, and CXCL8 mRNAs compared to samples subjected to 1 g conditions. Significant downregulations in AD cells were detected in the mRNA levels of TUBB, KRT8, IL1B, IL7, PIK3CB, AKT1 and MTOR after 24 h. The release of collagen-1α1 and fibronectin protein in the supernatant was decreased, whereas the secretion of IL-6 was elevated in 24 h RPM samples. The secretion of IL-1α, IL-1β, IL-7, IL-2, IL-8, IL-17, TNF-α, laminin, MMP-2, TIMP-1, osteopontin and EGF was not significantly altered after 24 h compared to 1 g conditions. The release of soluble factors was significantly reduced after 2 h (IL-1α, IL-2, IL-7, IL-8, IL-17, TNF-α, collagen-1α1, MMP-2, osteopontin) and elevated after 4 h (IL-1β, IL-2, IL-6, IL-7, IL-8, TNF-α, laminin) in RPM samples. Taken together, simulated µg induced 3D growth of PC-3 cancer cells combined with a differential expression of the cytokines IL-1α, IL-1β, IL-6 and IL-8, supporting their involvement in growth and progression of prostate cancer cells.
Collapse
Affiliation(s)
- Dorothea Dietrichs
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- *Correspondence: Daniela Grimm,
| | | | - Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Randy Vermeesen
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, Mol, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | | | - Stefan Kahlert
- Institute of Anatomy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kopp
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
13
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
14
|
Hu MC, Moe OW. Phosphate and Cellular Senescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:55-72. [PMID: 35288873 PMCID: PMC10513121 DOI: 10.1007/978-3-030-91623-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cellular senescence is one type of permeant arrest of cell growth and one of increasingly recognized contributor to aging and age-associated disease. High phosphate and low Klotho individually and synergistically lead to age-related degeneration in multiple organs. Substantial evidence supports the causality of high phosphate in cellular senescence, and potential contribution to human aging, cancer, cardiovascular, kidney, neurodegenerative, and musculoskeletal diseases. Phosphate can induce cellular senescence both by direct phosphotoxicity, and indirectly through downregulation of Klotho and upregulation of plasminogen activator inhibitor-1. Restriction of dietary phosphate intake and blockage of intestinal absorption of phosphate help suppress cellular senescence. Supplementation of Klotho protein, cellular senescence inhibitor, and removal of senescent cells with senolytic agents are potential novel strategies to attenuate phosphate-induced cellular senescence, retard aging, and ameliorate age-associated, and phosphate-induced disorders.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Abdo Cuza AA, Ávila JP, Martínez RM, González JJ, Aspuro GP, Gutiérrez Martínez JA, Suzarte MR, Hernández DS, Añé-Kouri AL, Ramos TC. Nimotuzumab for COVID-19: case series. Immunotherapy 2021; 14:10.2217/imt-2021-0269. [PMID: 34806405 PMCID: PMC8628863 DOI: 10.2217/imt-2021-0269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background: In COVID-19, EGFR production is upregulated in the alveolar epithelial cells. EGFR overexpression further activates STAT-3 and increases lung pathology. The EGFR pathway is also one of the major nodes in pulmonary fibrosis. Methods: Nimotuzumab, a humanized anti-EGFR antibody, was used to treat three patients with severe or moderate COVID-19. The antibody was administered in combination with other drugs included in the national COVID-19 protocol. Results: Nimotuzumab was well tolerated. IL-6 decreased from the first antibody infusion. Clinical symptoms significantly improved after nimotuzumab administration, and the CT scans at discharge showed major resolution of the lung lesions and no signs of fibrosis. Conclusion: Safe anti-EGFR antibodies like nimotuzumab may modulate COVID-19-associated hyperinflammation and prevent fibrosis. Clinical Trial Registration: RPCEC00000369 (RPCEC rpcec.sld.cu).
Collapse
Affiliation(s)
- Anselmo A Abdo Cuza
- Intensive Care Unit. Medical & Surgical Research Center (CIMEQ), Havana, Cuba
| | - Jonathan Pi Ávila
- Intensive Care Unit. Medical & Surgical Research Center (CIMEQ), Havana, Cuba
| | | | | | | | | | - Mayra Ramos Suzarte
- Clinical Research Direction. Center of Molecular Immunology (CIM), Havana, Cuba
| | | | - Ana L Añé-Kouri
- Clinical Research Direction. Center of Molecular Immunology (CIM), Havana, Cuba
| | - Tania Crombet Ramos
- Clinical Research Direction. Center of Molecular Immunology (CIM), Havana, Cuba
| |
Collapse
|
16
|
Ou H, Hoffmann R, González‐López C, Doherty GJ, Korkola JE, Muñoz‐Espín D. Cellular senescence in cancer: from mechanisms to detection. Mol Oncol 2021; 15:2634-2671. [PMID: 32981205 PMCID: PMC8486596 DOI: 10.1002/1878-0261.12807] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Senescence refers to a cellular state featuring a stable cell-cycle arrest triggered in response to stress. This response also involves other distinct morphological and intracellular changes including alterations in gene expression and epigenetic modifications, elevated macromolecular damage, metabolism deregulation and a complex pro-inflammatory secretory phenotype. The initial demonstration of oncogene-induced senescence in vitro established senescence as an important tumour-suppressive mechanism, in addition to apoptosis. Senescence not only halts the proliferation of premalignant cells but also facilitates the clearance of affected cells through immunosurveillance. Failure to clear senescent cells owing to deficient immunosurveillance may, however, lead to a state of chronic inflammation that nurtures a pro-tumorigenic microenvironment favouring cancer initiation, migration and metastasis. In addition, senescence is a response to post-therapy genotoxic stress. Therefore, tracking the emergence of senescent cells becomes pivotal to detect potential pro-tumorigenic events. Current protocols for the in vivo detection of senescence require the analysis of fixed or deep-frozen tissues, despite a significant clinical need for real-time bioimaging methods. Accuracy and efficiency of senescence detection are further hampered by a lack of universal and more specific senescence biomarkers. Recently, in an attempt to overcome these hurdles, an assortment of detection tools has been developed. These strategies all have significant potential for clinical utilisation and include flow cytometry combined with histo- or cytochemical approaches, nanoparticle-based targeted delivery of imaging contrast agents, OFF-ON fluorescent senoprobes, positron emission tomography senoprobes and analysis of circulating SASP factors, extracellular vesicles and cell-free nucleic acids isolated from plasma. Here, we highlight the occurrence of senescence in neoplasia and advanced tumours, assess the impact of senescence on tumorigenesis and discuss how the ongoing development of senescence detection tools might improve early detection of multiple cancers and response to therapy in the near future.
Collapse
Affiliation(s)
- Hui‐Ling Ou
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Reuben Hoffmann
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Cristina González‐López
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Gary J. Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusUK
| | - James E. Korkola
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Daniel Muñoz‐Espín
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| |
Collapse
|
17
|
The CellBox-2 Mission to the International Space Station: Thyroid Cancer Cells in Space. Int J Mol Sci 2021; 22:ijms22168777. [PMID: 34445479 PMCID: PMC8395939 DOI: 10.3390/ijms22168777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
A spaceflight to the International Space Station (ISS) is a dream of many researchers. We had the chance to investigate the effect of real microgravity (CellBox-2 Space mission) on the transcriptome and proteome of FTC-133 human follicular thyroid cancer cells (TCC). The cells had been sent to the ISS by a Falcon 9 rocket of SpaceX CRS-13 from Cape Canaveral (United States) and cultured in six automated hardware units on the ISS before they were fixed and returned to Earth. Multicellular spheroids (MCS) were detectable in all spaceflight hardware units. The VCL, PXN, ITGB1, RELA, ERK1 and ERK2 mRNA levels were significantly downregulated after 5 days in space in adherently growing cells (AD) and MCS compared with ground controls (1g), whereas the MIK67 and SRC mRNA levels were both suppressed in MCS. By contrast, the ICAM1, COL1A1 and IL6 mRNA levels were significantly upregulated in AD cells compared with 1g and MCS. The protein secretion measured by multianalyte profiling technology and enzyme-linked immunosorbent assay (AngiogenesisMAP®, extracellular matrix proteins) was not significantly altered, with the exception of elevated angiopoietin 2. TCC in space formed MCS, and the response to microgravity was mainly anti-proliferative. We identified ERK/RELA as a major microgravity regulatory pathway.
Collapse
|
18
|
Zheng X, Wang J, Bi F, Li Y, Xiao J, Chai Z, Li Y, Miao Z, Wang Y. Protective effects of Lycium barbarum polysaccharide on ovariectomy‑induced cognition reduction in aging mice. Int J Mol Med 2021; 48:121. [PMID: 33955518 PMCID: PMC8121556 DOI: 10.3892/ijmm.2021.4954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Women experience cognitive decline as they age due to the decrease in estrogen levels following menopause. Currently, effective pharmaceutical treatments for age‑related cognitive decline are lacking; however, several Traditional Chinese medicines have shown promising effects. Lycium barbarum polysaccharides (LBPs) were found to exert a wide variety of biological activities, including anti‑inflammatory, antioxidant and anti‑aging effects. However, to the best of our knowledge, the neuroprotective actions of LBP on cognitive impairment induced by decreased levels of estrogen have not yet been determined. To evaluate the effects of LBP on learning and memory impairment in an animal model of menopause, 45 female ICR mice were randomly divided into the following three groups: i) Sham; ii) ovariectomy (OVX); and iii) OVX + LBP treatment. The results of open‑field and novel object recognition tests revealed that mice in the OVX group had learning and memory impairments, and lacked the ability to recognize and remember new objects. Notably, these deficits were attenuated following LBP treatment. Immunohistochemical staining confirmed the protective effects of LBP on hippocampal neurons following OVX. To further investigate the underlying mechanism of OVX in mice, mRNA sequencing of the hippocampal tissue was performed, which revealed that the Toll‑like receptor 4 (TLR4) inflammatory signaling pathway was significantly upregulated in the OVX group. Moreover, reverse transcription‑quantitative PCR and immunohistochemical staining demonstrated that OVX induced hippocampal injury, upregulated the expression levels of TLR4, myeloid differentiation factor 88 and NF‑κB, and increased the expression of TNF‑α, IL‑6 and IL‑1β inflammatory factors. Conversely, LBP treatment downregulated the expression levels of mRNAs and proteins associated with the TLR4/NF‑κB signaling pathway, decreased the inflammatory response and reduced neuronal injury in mice that underwent OVX. In conclusion, the findings of the present study indicated that oral LBP treatment may alleviate OVX‑induced cognitive impairments by downregulating the expression levels of mRNAs and proteins associated with the TLR4/NF‑κB signaling pathway, thereby reducing neuroinflammation and damage to the hippocampal neurons. Thus, LBP may represent a potential agent for the prevention of learning and memory impairments in patients with accelerated aging caused by estrogen deficiency.
Collapse
Affiliation(s)
- Xiaomin Zheng
- Department of Pediatrics, General Hospital of Ningxia Medical University, 750004, P.R. China
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Junyan Wang
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Fengchen Bi
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yilu Li
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jingjing Xiao
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zhi Chai
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yunhong Li
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zhenhua Miao
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yin Wang
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
19
|
Midha A, Pan H, Abarca C, Andle J, Carapeto P, Bonner-Weir S, Aguayo-Mazzucato C. Unique Human and Mouse β-Cell Senescence-Associated Secretory Phenotype (SASP) Reveal Conserved Signaling Pathways and Heterogeneous Factors. Diabetes 2021; 70:1098-1116. [PMID: 33674410 PMCID: PMC8173799 DOI: 10.2337/db20-0553] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
The aging of pancreatic β-cells may undermine their ability to compensate for insulin resistance, leading to the development of type 2 diabetes (T2D). Aging β-cells acquire markers of cellular senescence and develop a senescence-associated secretory phenotype (SASP) that can lead to senescence and dysfunction of neighboring cells through paracrine actions, contributing to β-cell failure. In this study, we defined the β-cell SASP signature based on unbiased proteomic analysis of conditioned media of cells obtained from mouse and human senescent β-cells and a chemically induced mouse model of DNA damage capable of inducing SASP. These experiments revealed that the β-cell SASP is enriched for factors associated with inflammation, cellular stress response, and extracellular matrix remodeling across species. Multiple SASP factors were transcriptionally upregulated in models of β-cell senescence, aging, insulin resistance, and T2D. Single-cell transcriptomic analysis of islets from an in vivo mouse model of reversible insulin resistance indicated unique and partly reversible changes in β-cell subpopulations associated with senescence. Collectively, these results demonstrate the unique secretory profile of senescent β-cells and its potential implication in health and disease.
Collapse
Affiliation(s)
- Ayush Midha
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Boston, MA
| | - Cristian Abarca
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | - Joshua Andle
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | - Priscila Carapeto
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | - Susan Bonner-Weir
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, MA
| | | |
Collapse
|
20
|
Fitsiou E, Soto-Gamez A, Demaria M. Biological functions of therapy-induced senescence in cancer. Semin Cancer Biol 2021; 81:5-13. [PMID: 33775830 DOI: 10.1016/j.semcancer.2021.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023]
Abstract
Therapy-induced cellular senescence is a state of stable growth arrest induced by common cancer treatments such as chemotherapy and radiation. In an oncogenic context, therapy-induced senescence can have different consequences. By blocking cellular proliferation and by facilitating immune cell infiltration, it functions as tumor suppressive mechanism. By fueling the proliferation of bystander cells and facilitating metastasis, it acts as a tumor promoting factor. This dual role is mainly attributed to the differential expression and secretion of a set of pro-inflammatory cytokines and tissue remodeling factors, collectively known as the Senescence-Associated Secretory Phenotype (SASP). Here, we describe cell-autonomous and non-cell-autonomous mechanisms that senescent cells activate in response to chemotherapy and radiation leading to tumor suppression and tumor promotion. We present the current state of knowledge on the stimuli that affect the activation of these opposing mechanisms and the effect of senescent cells on their micro-environment eg. by regulating the functions of immune cells in tumor clearance as well as strategies to eliminate senescent tumor cells before exerting their deleterious side-effects.
Collapse
Affiliation(s)
- Eleni Fitsiou
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands
| | - Abel Soto-Gamez
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands; University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands.
| |
Collapse
|
21
|
Clinical and genomic characteristics of metabolic syndrome in colorectal cancer. Aging (Albany NY) 2021; 13:5442-5460. [PMID: 33582655 PMCID: PMC7950286 DOI: 10.18632/aging.202474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022]
Abstract
Metabolic syndrome (MetS) is characterized by a group of metabolic disturbances which leads to the enhanced risk of cancer development. Elucidating the mechanisms between these two pathologies is essential to identify the potential therapeutic molecular targets for colorectal cancer (CRC). 716 colorectal patients from the First and Second Affiliated Hospital of Wenzhou Medical University were involved in our study and metabolic disorders were proven to increase the risk of CRC. The prognostic value of the MetS factors was analyzed using the Cox regression model and a clinical MetS-based nomogram was established. Then by using multi-omics techniques, the distinct molecular mechanism of MetS genes in CRC was firstly systematically characterized. Strikingly, MetS genes were found to be highly correlated with the effectiveness of targeted chemotherapy administration, especially for mTOR and VEGFR pathways. Our results further demonstrated that overexpression of MetS core gene IL6 would promote the malignancy of CRC, which was highly dependent on mTOR-S6K signaling. In conclusion, we comprehensively explored the clinical value and molecular mechanism of MetS in the progression of CRC, which may serve as a candidate option for cancer management and therapy in the future.
Collapse
|
22
|
Abstract
Cellular senescence is a feature of most somatic cells. It is characterized by an irreversible cell cycle arrest and by the ability to secrete a plethora of mediators of inflammation and growth factors, which can alter the senescent cell's microenvironment. Senescent cells accumulate in tissues over time and contribute to both aging and the development of age-associated diseases. Senescent cells have antagonistic pleiotropic roles in cancer. Given the inability of senescent cells to proliferate, cellular senescence is a powerful tumor suppressor mechanism in young individuals. However, accumulation of senescent stromal cells during aging can fuel cancer cell growth in virtue of their capacity to release factors that stimulate cell proliferation. Caveolin-1 is a structural protein component of caveolae, invaginations of the plasma membrane involved in a variety of cellular processes, including signal transduction. Mounting evidence over the last 10-15 years has demonstrated a central role of caveolin-1 in the development of a senescent phenotype and the regulation of both the anti-tumorigenic and pro-tumorigenic properties of cellular senescence. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of cellular senescence and their relevance to the biology of cancer.
Collapse
|
23
|
Molecular Mechanisms to Target Cellular Senescence in Hepatocellular Carcinoma. Cells 2020; 9:cells9122540. [PMID: 33255630 PMCID: PMC7761055 DOI: 10.3390/cells9122540] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer-related death and is the most common type of liver cancer. Due to the current paucity of drugs for HCC therapy there is a pressing need to develop new therapeutic concepts. In recent years, the role of Serum Response Factor (SRF) and its coactivators, Myocardin-Related Transcription Factors A and B (MRTF-A and -B), in HCC formation and progression has received considerable attention. Targeting MRTFs results in HCC growth arrest provoked by oncogene-induced senescence. The induction of senescence acts as a tumor-suppressive mechanism and therefore gains consideration for pharmacological interventions in cancer therapy. In this article, we describe the key features and the functional role of senescence in light of the development of novel drug targets for HCC therapy with a focus on MRTFs.
Collapse
|
24
|
Nehme J, Borghesan M, Mackedenski S, Bird TG, Demaria M. Cellular senescence as a potential mediator of COVID-19 severity in the elderly. Aging Cell 2020; 19:e13237. [PMID: 32955770 PMCID: PMC7576296 DOI: 10.1111/acel.13237] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 01/10/2023] Open
Abstract
SARS-CoV-2 is a novel betacoronavirus which infects the lower respiratory tract and can cause coronavirus disease 2019 (COVID-19), a complex respiratory distress syndrome. Epidemiological data show that COVID-19 has a rising mortality particularly in individuals with advanced age. Identifying a functional association between SARS-CoV-2 infection and the process of biological aging may provide a tractable avenue for therapy to prevent acute and long-term disease. Here, we discuss how cellular senescence-a state of stable growth arrest characterized by pro-inflammatory and pro-disease functions-can hypothetically be a contributor to COVID-19 pathogenesis, and a potential pharmaceutical target to alleviate disease severity. First, we define why older COVID-19 patients are more likely to accumulate high levels of cellular senescence. Second, we describe how senescent cells can contribute to an uncontrolled SARS-CoV-2-mediated cytokine storm and an excessive inflammatory reaction during the early phase of the disease. Third, we discuss the various mechanisms by which senescent cells promote tissue damage leading to lung failure and multi-tissue dysfunctions. Fourth, we argue that a high senescence burst might negatively impact on vaccine efficacy. Measuring the burst of cellular senescence could hypothetically serve as a predictor of COVID-19 severity, and targeting senescence-associated mechanisms prior and after SARS-CoV-2 infection might have the potential to limit a number of severe damages and to improve the efficacy of vaccinations.
Collapse
Affiliation(s)
- Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
- Doctoral School of Science and TechnologyLebanese UniversityBeirutLebanon
| | - Michela Borghesan
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
| | - Sebastian Mackedenski
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
| | - Thomas G. Bird
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
- MRC Centre for Inflammation ResearchThe Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)University of Groningen (RUGGroningen NLThe Netherlands
| |
Collapse
|
25
|
Dobler C, Jost T, Hecht M, Fietkau R, Distel L. Senescence Induction by Combined Ionizing Radiation and DNA Damage Response Inhibitors in Head and Neck Squamous Cell Carcinoma Cells. Cells 2020; 9:cells9092012. [PMID: 32883016 PMCID: PMC7563880 DOI: 10.3390/cells9092012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022] Open
Abstract
DNA damage response inhibitors (DDRi) may selectively enhance the inactivation of tumor cells in combination with ionizing radiation (IR). The induction of senescence may be the key mechanism of tumor cell inactivation in this combinatorial treatment. In the current study the effect of combined IR with DDRi on the induction of senescence was studied in head and neck squamous cell carcinoma (HNSCC) cells with different human papilloma virus (HPV) status. The integrity of homologous recombination (HR) was assessed in two HPV positive, two HPV negative HNSCC, and two healthy fibroblast cell cultures. Cells were treated with the DDRi CC-115 (DNA-dependent protein kinase, DNA-pK; dual mammalian target of rapamycin, mTor), VE-822 (ATR; ataxia telangiectasia and Rad3-related kinase), and AZD0156 (ATM; ataxia telangiectasia mutated kinase) combined with IR. Effects on senescence, apoptosis, necrosis, and cell cycle were analyzed by flow cytometry. The fibroblast cell lines generally tolerated IR or combined treatment better than the tumor cell lines. The ATM and ATR inhibitors were effectively inducing senescence when combined with IR. The DNA-PK inhibitor was not an important inductor of senescence. HPV status and HR activity had a limited influence on the efficacy of DDRi. Induction of senescence and necrosis varied individually among the cell lines due to molecular heterogeneity and the involvement of DNA damage response pathways in senescence induction.
Collapse
Affiliation(s)
| | | | | | | | - Luitpold Distel
- Correspondence: ; Tel.: +49-9131-853-2312; Fax: +49-9131-853-9335
| |
Collapse
|
26
|
Chen Y, Xu Z, Liang R, Wang J, Xu A, Na N, Li B, Wang R, Joseph M, Olsen N, Hsueh W, Zheng SG. CD4 +CD126 low/- Foxp3 + Cell Population Represents a Superior Subset of Regulatory T Cells in Treating Autoimmune Diseases. Mol Ther 2020; 28:2406-2416. [PMID: 32738192 DOI: 10.1016/j.ymthe.2020.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/11/2020] [Accepted: 07/10/2020] [Indexed: 01/17/2023] Open
Abstract
CD4+Foxp3+ regulatory T (Treg) cells are crucial for maintaining homeostasis and preventing autoimmune diseases. Nonetheless, we and others have previously reported that natural Treg cells are unstable and dysfunctional in the inflamed environment with a high-salt diet, limiting the Treg function in disease control. In this study, we made an innovative observation showing a high degree of heterogeneity within the Treg pool. We identified that CD126, interleukin (IL)-6 receptor alpha chain, contributed to Treg cell instability. Using a series of in vitro and in vivo experimental approaches, we demonstrated that CD126Lo/- Treg cells presented greater function and were more stable than CD126Hi nTreg cells, even in the presence of IL-6 and inflammation. Blockade of programmed death-1 (PD-1) interrupted CD126Lo/- nTreg cell stability. Additionally, CD126Lo/- Treg cells can treat colitis and established collagen-induced arthritis, while the CD126Hi cell population failed to do this. Moreover, we noted that CD126 expression of Treg cells had a positive correlation to rheumatoid arthritis (RA) severity and the stability of Treg cells. Our results strongly suggest that the manipulation of CD126Lo/- nTreg cells could be a novel strategy for the treatment of autoimmune diseases and for other conditions associated with a deficit of Treg cells.
Collapse
Affiliation(s)
- Ye Chen
- Department of Clinical Immunology, Third Hospital at Sun Yat-sen University, 510630 Guangzhou, China; Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH 43201, USA; Division of Rheumatology, Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Zhenjian Xu
- Division of Rheumatology, Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Rongzhen Liang
- Department of Clinical Immunology, Third Hospital at Sun Yat-sen University, 510630 Guangzhou, China
| | - Julie Wang
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH 43201, USA
| | - Anping Xu
- Department of Nephrology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Ning Na
- Department of Clinical Immunology, Third Hospital at Sun Yat-sen University, 510630 Guangzhou, China
| | - Bin Li
- Department of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200021, China
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH 43205, USA
| | - Miller Joseph
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH 43201, USA
| | - Nancy Olsen
- Division of Rheumatology, Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Willa Hsueh
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH 43201, USA
| | - Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH 43201, USA.
| |
Collapse
|
27
|
Kaur A, Macip S, Stover CM. An Appraisal on the Value of Using Nutraceutical Based Senolytics and Senostatics in Aging. Front Cell Dev Biol 2020; 8:218. [PMID: 32309282 PMCID: PMC7145958 DOI: 10.3389/fcell.2020.00218] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
The average human life expectancy has increased globally, and continues to rise, owing to the substantive progress made in healthcare, medicine, sanitation, housing and education. This ultimately enriches society with a greater proportion of elderly people. Sustaining a healthy aged population is key to diminish the societal and economic impact of age-related infirmities. This is especially challenging because tissue function, and thus wellbeing, naturally progressively decline as humans age. With age increasing the risk of developing diseases, one of the therapeutic options is to interfere with the molecular and cellular pathways involved in age-related tissue dysfunction, which is in part caused by the accumulation of senescent cells. One strategy to prevent this could be using drugs that selectively kill these cells (senolytics). In parallel, some compounds have been identified that prevent or slow down the progression of senescence or some of its features (senostatics). Senolytic and senostatic therapies have been shown to be efficient in vivo, but they also have unwanted dose-dependent side effects, including toxicity. Important advances might be made using bioactive compounds from plants and foods (nutraceuticals) if, as is proposed, they offer similar effectiveness with fewer side effects. The focus of this review is on the use of nutraceuticals in interfering with cellular senescence.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Cordula M Stover
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
28
|
Zingoni A, Vulpis E, Loconte L, Santoni A. NKG2D Ligand Shedding in Response to Stress: Role of ADAM10. Front Immunol 2020; 11:447. [PMID: 32269567 PMCID: PMC7109295 DOI: 10.3389/fimmu.2020.00447] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
NKG2D is an activating receptor expressed by NK cells and some subsets of T cells and represents a major recognition receptor for detection and elimination of cancer cells. The ligands of NKG2D are stress-induced self-proteins that can be secreted as soluble molecules by protease-mediated cleavage. The release of NKG2D ligands in the extracellular milieu is considered a mode of finely controlling their surface expression levels and represents a relevant immune evasion mechanism employed by cancer cells to elude NKG2D-mediated immune surveillance. A disintegrin and metalloproteinase 10 (ADAM10), a catalytically active member of the ADAM family of proteases, is involved in the cleavage of some NKG2D ligands in various types of cancer cells either in steady state conditions and in response to an ample variety of stress stimuli. Appealing immunotherapeutic strategies devoted to promoting NK cell-mediated recognition and elimination of cancer cells are based on the upregulation of NK cell activating ligands. In particular, activation of DNA damage response (DDR) and the induction of cellular senescence by chemotherapeutic agents are associated with increased expression of NKG2D ligands on cancer cell surface. Herein, we will review advances on the protease-mediated cleavage of NKG2D ligands in response to chemotherapy-induced stress focusing on: (i) the role played by ADAM10 in this process and (ii) the implications of NKG2D ligand shedding in the course of cancer therapy and in senescent cells.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Vulpis
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luisa Loconte
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
29
|
Campbell RA, Cody MJ, Manne BK, Zimmerman GA, Yost CC. Interleukin 6 receptor alpha expression in PMNs isolated from prematurely born neonates: decreased expression is associated with differential mTOR signaling. Pediatr Res 2019; 86:55-62. [PMID: 30965356 PMCID: PMC6594868 DOI: 10.1038/s41390-019-0388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Dysregulated inflammation leads to morbidity and mortality in neonates. Neutrophil-mediated inflammation can cause inflammatory tissue damage. The mammalian target of rapamycin (mTOR) pathway governs IL-6Rα protein expression in human neutrophils. Shed IL-6Rα then participates in trans-signaling of IL-6/IL-6Rα to cells not otherwise sensitive to IL-6. Signaling to endothelial cells triggers efferocytosis where macrophages limit persistent inflammation by phagocytizing neutrophils. We hypothesized that preterm neonatal PMNs fail to synthesize IL-6Rα due to alterations in mTOR signaling. METHODS We studied IL-6Rα expression, PAF receptor expression, and mTOR signaling in plasma and PAF-stimulated PMNs isolated from newborn infants and healthy adults using ELISA, real-time RT-PCR, western blotting, flow cytometry, and immunocytochemistry with phospho-specific antibodies. RESULTS Compared to healthy adults, plasma from neonates contains significantly less soluble IL-6Rα. IL-6Rα mRNA expression in PAF-stimulated PMNs does not differ between neonates and adults, but IL-6Rα protein expression is decreased in preterm neonatal PMNs. Rapamycin, an mTOR inhibitor, blocks IL-6Rα protein expression. mTOR signaling following PAF stimulation is decreased in preterm neonatal PMNs. CONCLUSIONS Preterm neonatal PMNs exhibit decreased mTOR pathway signaling leading to decreased IL-6Rα synthesis. Decreased synthesis of IL-6Rα by neonatal PMNs may result in decreased IL-6/IL-6Rα trans-signaling with prolonged inflammatory response and increased morbidity.
Collapse
Affiliation(s)
- Robert A. Campbell
- Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Mark J. Cody
- Department of Pediatrics/Neonatology, University of Utah, Salt Lake City, Utah, USA
| | - Bhanu K. Manne
- Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Guy A. Zimmerman
- Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Christian C. Yost
- Department of Pediatrics/Neonatology, University of Utah, Salt Lake City, Utah, USA,Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, USA,Corresponding Author: Christian Con Yost, MD, Department of Pediatrics/Neonatology, University of Utah School of Medicine, Williams Building, 295 Chipeta Way, Salt Lake City, UT 84108, Phone: 801-581-7052; Fax: 801-585-7395,
| |
Collapse
|
30
|
Metformin inhibits IL-6 signaling by decreasing IL-6R expression on multiple myeloma cells. Leukemia 2019; 33:2695-2709. [PMID: 30988378 DOI: 10.1038/s41375-019-0470-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/06/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022]
Abstract
IL-6 signaling plays a crucial role in the pathogenesis of a number of diseases, including multiple myeloma, primary amyloidosis, cytokine release syndrome and other inflammatory conditions. It is central for the growth and survival of malignant plasma cells. IL-6R and IL-6ST receptors transduce IL-6 signaling. Molecular mechanisms regulating expression of IL-6R are not well understood and current therapies are based on monoclonal antibody to target IL-6 signaling. Small molecule inhibitors targeting IL-6 signaling are highly desirable. Metformin specifically decreased IL-6R expression which is mediated via AMPK, mTOR, and miR34a. This is a novel finding and adds to existing therapies targeting IL-6 signaling.
Collapse
|
31
|
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 2019; 99:1047-1078. [PMID: 30648461 DOI: 10.1152/physrev.00020.2018] [Citation(s) in RCA: 669] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Jaskaren Kohli
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Demaria
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
32
|
Abstract
Rapamycin inhibits cell proliferation, yet preserves (re)-proliferative potential (RPP). RPP is a potential of quiescent cells that is lost in senescent cells. mTOR drives conversion from quiescence to senescence (geroconversion). By suppressing geroconversion, rapamycin preserves RPP. Geroconversion is characterized by proliferation-like levels of phospho-S6K/S6/4E-BP1 in nonproliferating cells arrested by p16 and/or p21. mTOR-driven geroconversion is associated with cellular hyperfunction, which in turn leads to organismal aging manifested by age-related diseases.
Collapse
|
33
|
Saleh T, Tyutynuk-Massey L, Cudjoe EK, Idowu MO, Landry JW, Gewirtz DA. Non-Cell Autonomous Effects of the Senescence-Associated Secretory Phenotype in Cancer Therapy. Front Oncol 2018; 8:164. [PMID: 29868482 PMCID: PMC5968105 DOI: 10.3389/fonc.2018.00164] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
In addition to promoting various forms of cell death, most conventional anti-tumor therapies also promote senescence. There is now extensive evidence that therapy-induced senescence (TIS) might be transient, raising the concern that TIS could represent an undesirable outcome of therapy by providing a mechanism for tumor dormancy and eventual disease recurrence. The senescence-associated secretory phenotype (SASP) is a hallmark of TIS and may contribute to aberrant effects of cancer therapy. Here, we propose that the SASP may also serve as a major driver of escape from senescence and the re-emergence of proliferating tumor cells, wherein factors secreted from the senescent cells contribute to the restoration of tumor growth in a non-cell autonomous fashion. Accordingly, anti-SASP therapies might serve to mitigate the deleterious outcomes of TIS. In addition to providing an overview of the putative actions of the SASP, we discuss recent efforts to identify and eliminate senescent tumor cells.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Liliya Tyutynuk-Massey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Emmanuel K Cudjoe
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael O Idowu
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | - Joseph W Landry
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
34
|
Ko JH, Yoon SO, Lee HJ, Oh JY. Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy- and p62-dependent manners. Oncotarget 2018; 8:40817-40831. [PMID: 28489580 PMCID: PMC5522223 DOI: 10.18632/oncotarget.17256] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
Excessive and prolonged activation of macrophages underlies many inflammatory and autoimmune diseases. To regulate activation and maintain homeostasis, macrophages have multiple intrinsic mechanisms, one of which is modulation through autophagy. Here we demonstrate that autophagy induction by rapamycin suppressed the production of IL-1β and IL-18 in lipopolysaccharide- and adenosine triphosphate-activated macrophages at the post-transcriptional level by eliminating mitochondrial ROS (mtROS) and pro-IL1β in a p62/SQSTM1-dependent manner. In addition, rapamycin activated Nrf2 through up-regulation of p62/SQSTM1, which further contributed to the reduction of mtROS. Reduced IL-1β subsequently diminished the activation of p38 MAPK-NFκB pathways, leading to transcriptional down-regulation of IL-6, IL-8, MCP-1, and IκBα in rapamycin-treated macrophages. Therefore, our results suggest that rapamycin negatively regulates macrophage activation by restricting a feedback loop of NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy- and p62/SQSTM1-dependent manners.
Collapse
Affiliation(s)
- Jung Hwa Ko
- Department of Ophthalmology, Seoul National University Hospital, 03080, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 03080, Seoul, Korea
| | - Sun-Ok Yoon
- R and D Laboratory, Eutilex Co., Ltd, 08594, Seoul, Korea
| | - Hyun Ju Lee
- Department of Ophthalmology, Seoul National University Hospital, 03080, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 03080, Seoul, Korea
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University Hospital, 03080, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 03080, Seoul, Korea
| |
Collapse
|
35
|
Grenzi PC, Campos ÉF, Tedesco-Silva H, Felipe CR, Soares MF, Medina-Pestana J, Hansen HP, Gerbase-DeLima M. Influence of immunosuppressive drugs on the CD30 molecule in kidney transplanted patients. Hum Immunol 2018; 79:550-557. [PMID: 29656112 DOI: 10.1016/j.humimm.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Soluble CD30 (sCD30) is a suggested marker for kidney transplantation outcomes. We investigated whether sCD30 serum levels are influenced by immunosuppression and whether they correlate with findings in protocol biopsies and with CD30 gene expression in peripheral blood mononuclear cells (PBMC). METHODS We studied 118 kidney transplant recipients that initially received tacrolimus (TAC) and, at month-3, were converted or not to sirolimus (SRL). RESULTS sCD30 serum levels gradually declined after transplantation, being the decline more pronounced in the SRL group. CD30 gene expression in PBMC was higher in the SRL group than in the TAC group. Patients with IF/TA ≥ I in the month-24 protocol biopsy had higher sCD30 levels than patients without IF/TA, in the SRL group (P = .03) and in the TAC group (P = .07). CD30+ cells were observed in three out of 10 biopsies with inflammatory infiltrate from the SRL group. In mixed lymphocyte cultures, SRL and TAC diminished the number of CD30+ T cells and the sCD30 levels in the supernatant, but the effect of SRL was stronger. CONCLUSIONS Overall, sCD30 levels are lower in SRL-treated patients, but the association between increased sCD30 levels and IF/TA at month-24 post-transplantation is stronger in SRL than in TAC-treated patients.
Collapse
Affiliation(s)
- Patricia Cristina Grenzi
- Instituto de Imunogenética - AFIP, Rua Loefgreen 1235, 04040-031 São Paulo, SP, Brazil; Universidade Federal de São Paulo, Rua Sena Madureira 1500, 04021-001 São Paulo, SP, Brazil; University Clinic Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| | | | - Hélio Tedesco-Silva
- Universidade Federal de São Paulo, Rua Sena Madureira 1500, 04021-001 São Paulo, SP, Brazil; Hospital do Rim, Rua Borges Lagoa 960, 04038-002 São Paulo, SP, Brazil
| | - Claudia Rosso Felipe
- Universidade Federal de São Paulo, Rua Sena Madureira 1500, 04021-001 São Paulo, SP, Brazil; Hospital do Rim, Rua Borges Lagoa 960, 04038-002 São Paulo, SP, Brazil
| | - Maria Fernanda Soares
- Universidade Federal do Paraná, Rua XV de Novembro 1299, 80060-000 Curitiba, PR, Brazil
| | - José Medina-Pestana
- Universidade Federal de São Paulo, Rua Sena Madureira 1500, 04021-001 São Paulo, SP, Brazil; Hospital do Rim, Rua Borges Lagoa 960, 04038-002 São Paulo, SP, Brazil
| | | | - Maria Gerbase-DeLima
- Instituto de Imunogenética - AFIP, Rua Loefgreen 1235, 04040-031 São Paulo, SP, Brazil; Universidade Federal de São Paulo, Rua Sena Madureira 1500, 04021-001 São Paulo, SP, Brazil
| |
Collapse
|
36
|
Lokau J, Agthe M, Flynn CM, Garbers C. Proteolytic control of Interleukin-11 and Interleukin-6 biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Ruwanpura SM, McLeod L, Dousha LF, Seow HJ, Alhayyani S, Tate MD, Deswaerte V, Brooks GD, Bozinovski S, MacDonald M, Garbers C, King PT, Bardin PG, Vlahos R, Rose-John S, Anderson GP, Jenkins BJ. Therapeutic Targeting of the IL-6 Trans-Signaling/Mechanistic Target of Rapamycin Complex 1 Axis in Pulmonary Emphysema. Am J Respir Crit Care Med 2017; 194:1494-1505. [PMID: 27373892 DOI: 10.1164/rccm.201512-2368oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The potent immunomodulatory cytokine IL-6 is consistently up-regulated in human lungs with emphysema and in mouse emphysema models; however, the mechanisms by which IL-6 promotes emphysema remain obscure. IL-6 signals using two distinct modes: classical signaling via its membrane-bound IL-6 receptor (IL-6R), and trans-signaling via a naturally occurring soluble IL-6R. OBJECTIVES To identify whether IL-6 trans-signaling and/or classical signaling contribute to the pathogenesis of emphysema. METHODS We used the gp130F/F genetic mouse model for spontaneous emphysema and cigarette smoke-induced emphysema models. Emphysema in mice was quantified by various methods including in vivo lung function and stereology, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to assess alveolar cell apoptosis. In mouse and human lung tissues, the expression level and location of IL-6 signaling-related genes and proteins were measured, and the levels of IL-6 and related proteins in sera from emphysematous mice and patients were also assessed. MEASUREMENTS AND MAIN RESULTS Lung tissues from patients with emphysema, and from spontaneous and cigarette smoke-induced emphysema mouse models, were characterized by excessive production of soluble IL-6R. Genetic blockade of IL-6 trans-signaling in emphysema mouse models and therapy with the IL-6 trans-signaling antagonist sgp130Fc ameliorated emphysema by suppressing augmented alveolar type II cell apoptosis. Furthermore, IL-6 trans-signaling-driven emphysematous changes in the lung correlated with mechanistic target of rapamycin complex 1 hyperactivation, and treatment of emphysema mouse models with the mechanistic target of rapamycin complex 1 inhibitor rapamycin attenuated emphysematous changes. CONCLUSIONS Collectively, our data reveal that specific targeting of IL-6 trans-signaling may represent a novel treatment strategy for emphysema.
Collapse
Affiliation(s)
- Saleela M Ruwanpura
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Louise McLeod
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Lovisa F Dousha
- 3 Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Huei J Seow
- 3 Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Sultan Alhayyani
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Michelle D Tate
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Virginie Deswaerte
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Gavin D Brooks
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Steven Bozinovski
- 3 Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia.,4 School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Martin MacDonald
- 5 Monash Lung and Sleep, Monash Medical Centre, Victoria, Australia; and
| | - Christoph Garbers
- 6 Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Paul T King
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,5 Monash Lung and Sleep, Monash Medical Centre, Victoria, Australia; and
| | - Philip G Bardin
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,5 Monash Lung and Sleep, Monash Medical Centre, Victoria, Australia; and
| | - Ross Vlahos
- 3 Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia.,4 School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Stefan Rose-John
- 6 Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Gary P Anderson
- 3 Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendan J Jenkins
- 1 Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,2 Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
38
|
Yang X, Liu S, Huang C, Wang H, Luo Y, Xu W, Huang K. Ochratoxin A induced premature senescence in human renal proximal tubular cells. Toxicology 2017; 382:75-83. [PMID: 28286205 DOI: 10.1016/j.tox.2017.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
Ochratoxin A (OTA) has many nephrotoxic effects and is a promising compound for the study of nephrotoxicity. Human renal proximal tubular cells (HKC) are an important model for the study of renal reabsorption, renal physiology and pathology. Since the induction of OTA in renal senescence is largely unknown, whether OTA can induce renal senescence, especially at a sublethal dose, and the mechanism of OTA toxicity remain unclear. In our study, a sublethal dose of OTA led to an enhanced senescent phenotype, β-galactosidase staining and senescence associated secretory phenotype (SASP). Cell cycle arrest and cell shape alternations also confirmed senescence. In addition, telomere analysis by RT-qPCR allowed us to classify OTA-induced senescence as a premature senescence. Western blot assays showed that the p53-p21 and the p16-pRB pathways and the ezrin-associated cell spreading changes were activated during the OTA-induced senescence of HKC. In conclusion, our results demonstrate that OTA promotes the senescence of HKC through the p53-p21 and p16-pRB pathways. The understanding of the mechanisms of OTA-induced senescence is critical in determining the role of OTA in cytotoxicity and its potential carcinogenicity.
Collapse
Affiliation(s)
- Xuan Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Sheng Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chuchu Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haomiao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China.
| |
Collapse
|
39
|
Lang A, Grether-Beck S, Singh M, Kuck F, Jakob S, Kefalas A, Altinoluk-Hambüchen S, Graffmann N, Schneider M, Lindecke A, Brenden H, Felsner I, Ezzahoini H, Marini A, Weinhold S, Vierkötter A, Tigges J, Schmidt S, Stühler K, Köhrer K, Uhrberg M, Haendeler J, Krutmann J, Piekorz RP. MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging (Albany NY) 2017; 8:484-505. [PMID: 26959556 PMCID: PMC4833141 DOI: 10.18632/aging.100905] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mammalian sirtuins are involved in the control of metabolism and life-span regulation. Here, we link the mitochondrial sirtuin SIRT4 with cellular senescence, skin aging, and mitochondrial dysfunction. SIRT4 expression significantly increased in human dermal fibroblasts undergoing replicative or stress-induced senescence triggered by UVB or gamma-irradiation. In-vivo, SIRT4 mRNA levels were upregulated in photoaged vs. non-photoaged human skin. Interestingly, in all models of cellular senescence and in photoaged skin, upregulation of SIRT4 expression was associated with decreased levels of miR-15b. The latter was causally linked to increased SIRT4 expression because miR-15b targets a functional binding site in the SIRT4 gene and transfection of oligonucleotides mimicking miR-15b function prevented SIRT4 upregulation in senescent cells. Importantly, increased SIRT4 negatively impacted on mitochondrial functions and contributed to the development of a senescent phenotype. Accordingly, we observed that inhibition of miR-15b, in a SIRT4-dependent manner, increased generation of mitochondrial reactive oxygen species, decreased mitochondrial membrane potential, and modulated mRNA levels of nuclear encoded mitochondrial genes and components of the senescence-associated secretory phenotype (SASP). Thus, miR-15b is a negative regulator of stress-induced SIRT4 expression thereby counteracting senescence associated mitochondrial dysfunction and regulating the SASP and possibly organ aging, such as photoaging of human skin.
Collapse
Affiliation(s)
- Alexander Lang
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany.,Molecular Proteomics Laboratory, BMFZ, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Susanne Grether-Beck
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Madhurendra Singh
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Fabian Kuck
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Sascha Jakob
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andreas Kefalas
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Simone Altinoluk-Hambüchen
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Nina Graffmann
- Institut für Transplantationsdiagnostik und Zelltherapeutika (ITZ), Düsseldorf, Germany
| | - Maren Schneider
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Antje Lindecke
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Düsseldorf, Germany
| | - Heidi Brenden
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ingo Felsner
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Hakima Ezzahoini
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Alessandra Marini
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Sandra Weinhold
- Institut für Transplantationsdiagnostik und Zelltherapeutika (ITZ), Düsseldorf, Germany
| | - Andrea Vierkötter
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Stephan Schmidt
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Karl Köhrer
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Düsseldorf, Germany
| | - Markus Uhrberg
- Institut für Transplantationsdiagnostik und Zelltherapeutika (ITZ), Düsseldorf, Germany
| | - Judith Haendeler
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Roland P Piekorz
- Institut für Biochemie und Molekularbiologie II, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
40
|
Generation of Soluble Interleukin-11 and Interleukin-6 Receptors: A Crucial Function for Proteases during Inflammation. Mediators Inflamm 2016; 2016:1785021. [PMID: 27493449 PMCID: PMC4963573 DOI: 10.1155/2016/1785021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
The cytokines interleukin-11 (IL-11) and IL-6 are important proteins with well-defined pro- and anti-inflammatory functions. They activate intracellular signaling cascades through a homodimer of the ubiquitously expressed signal-transducing β-receptor glycoprotein 130 (gp130). Specificity is gained through the cell- and tissue-specific expression of the nonsignaling IL-11 and IL-6 α-receptors (IL-11R and IL-6R), which determine the responsiveness of the cell to these two cytokines. IL-6 is a rare example, where its soluble receptor (sIL-6R) has agonistic properties, so that the IL-6/sIL-6R complex is able to activate cells that are usually not responsive to IL-6 alone (trans-signaling). Recent evidence suggests that IL-11 can signal via a similar trans-signaling mechanism. In this review, we highlight similarities and differences in the functions of IL-11 and IL-6. We summarize current knowledge about the generation of the sIL-6R and sIL-11R by different proteases and discuss possible roles during inflammatory processes. Finally, we focus on the selective and/or combined inhibition of IL-6 and IL-11 signaling and how this might translate into the clinics.
Collapse
|
41
|
Gerber PA, Buhren BA, Schrumpf H, Hevezi P, Bölke E, Sohn D, Jänicke RU, Belum VR, Robert C, Lacouture ME, Homey B. Mechanisms of skin aging induced by EGFR inhibitors. Support Care Cancer 2016; 24:4241-8. [PMID: 27165055 DOI: 10.1007/s00520-016-3254-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/26/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND The mechanisms of skin aging have not been completely elucidated. Anecdotal data suggests that EGFR inhibition accelerates aging-like skin changes. OBJECTIVE The objective of the study was to evaluate the clinical characteristics and investigate the cellular and molecular mechanisms underlying skin changes associated with the use of EFGRIs. PATIENTS AND METHODS Patients during prolonged treatment with EGFRIs (>3 months) were analyzed for aging-like skin changes. Baseline EGFR expression was compared in young (<25 years old) vs. old (> 65 years old) skin. In addition, the regulation of extracellular matrix, senescence-associated genes, and cell cycle status was measured in primary human keratinocytes treated with erlotinib in vitro. RESULTS There were progressive signs of skin aging, including xerosis cutis, atrophy, rhytide formation, and/or actinic purpura in 12 patients. Keratinocytes treated with erlotinib in vitro showed a significant down-modulation of hyaluronan synthases (HAS2 and HAS3), whereas senescence-associated genes (p21, p53, IL-6, maspin) were upregulated, along with a G1 cell cycle arrest and stronger SA β-Gal activity. There was significantly decreased baseline expression in EGFR density in aged skin, when compared to young controls. CONCLUSIONS EGFR inhibition results in molecular alterations in keratinocytes that may contribute to the observed skin aging of patients treated with respective targeted agents.
Collapse
Affiliation(s)
- Peter Arne Gerber
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Moorenstrasse 5, D-40225, Duesseldorf, Germany.
| | - Bettina Alexandra Buhren
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Moorenstrasse 5, D-40225, Duesseldorf, Germany
| | - Holger Schrumpf
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Moorenstrasse 5, D-40225, Duesseldorf, Germany
| | - Peter Hevezi
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Moorenstrasse 5, D-40225, Duesseldorf, Germany
| | - Edwin Bölke
- Clinic and Polyclinic, Radiation Therapy and Radiooncology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Radiation Therapy and Radiooncology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Reiner U Jänicke
- Laboratory of Molecular Radiooncology, Radiation Therapy and Radiooncology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Viswanath Reddy Belum
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caroline Robert
- Dermatology Service and Paris-Sud University, Gustave Roussy Cancer Campus, Villejuif-Paris Sud, Paris, France
| | - Mario E Lacouture
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Moorenstrasse 5, D-40225, Duesseldorf, Germany
| |
Collapse
|
42
|
Cleavage Site Localization Differentially Controls Interleukin-6 Receptor Proteolysis by ADAM10 and ADAM17. Sci Rep 2016; 6:25550. [PMID: 27151651 PMCID: PMC4858764 DOI: 10.1038/srep25550] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/19/2016] [Indexed: 12/29/2022] Open
Abstract
Limited proteolysis of the Interleukin-6 Receptor (IL-6R) leads to the release of the IL-6R ectodomain. Binding of the cytokine IL-6 to the soluble IL-6R (sIL-6R) results in an agonistic IL-6/sIL-6R complex, which activates cells via gp130 irrespective of whether the cells express the IL-6R itself. This signaling pathway has been termed trans-signaling and is thought to mainly account for the pro-inflammatory properties of IL-6. A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 are the major proteases that cleave the IL-6R. We have previously shown that deletion of a ten amino acid long stretch within the stalk region including the cleavage site prevents ADAM17-mediated cleavage, whereas the receptor retained its full biological activity. In the present study, we show that deletion of a triple serine (3S) motif (Ser-359 to Ser-361) adjacent to the cleavage site is sufficient to prevent IL-6R cleavage by ADAM17, but not ADAM10. We find that the impaired shedding is caused by the reduced distance between the cleavage site and the plasma membrane. Positioning of the cleavage site in greater distance towards the plasma membrane abrogates ADAM17-mediated shedding and reveals a novel cleavage site of ADAM10. Our findings underline functional differences in IL-6R proteolysis by ADAM10 and ADAM17.
Collapse
|
43
|
Gastrin-Releasing Peptide Receptor Knockdown Induces Senescence in Glioblastoma Cells. Mol Neurobiol 2016; 54:888-894. [PMID: 26780458 DOI: 10.1007/s12035-016-9696-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/05/2016] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor, characterized by excessive cell proliferation, resistance to apoptosis, and invasiveness. Due to resistance to currently available treatment options, the prognosis for patients with GBM is very dismal. The activation of gastrin-releasing peptide receptors (GRPR) stimulates GBM cell proliferation, whereas GRPR antagonists induce antiproliferative effects in in vitro and in vivo experimental models of GBM. However, the role of GRPR in regulating other aspects of GBM cell function related to tumor progression remains poorly understood, and previous studies have not used RNA interference techniques as tools to examine GRPR function in GBM. Here, we found that stable GRPR knockdown by a lentiviral vector using a short hairpin interfering RNA sequence in human A172 GBM cells resulted in increased cell size and altered cell cycle dynamics consistent with cell senescence. These changes were accompanied by increases in the content of p53, p21, and p16, activation of epidermal growth factor receptors (EGFR), and a reduction in p38 content. These results increase our understanding of GRPR regulation of GBM cells and further support that GRPR may be a relevant therapeutic target in GBM.
Collapse
|
44
|
Zingoni A, Cecere F, Vulpis E, Fionda C, Molfetta R, Soriani A, Petrucci MT, Ricciardi MR, Fuerst D, Amendola MG, Mytilineos J, Cerboni C, Paolini R, Cippitelli M, Santoni A. Genotoxic Stress Induces Senescence-Associated ADAM10-Dependent Release of NKG2D MIC Ligands in Multiple Myeloma Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:736-48. [PMID: 26071561 DOI: 10.4049/jimmunol.1402643] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/06/2015] [Indexed: 01/10/2023]
Abstract
Genotoxic stress can promote antitumor NK cell responses by upregulating the surface expression of activating ligands on cancer cells. Moreover, a number of studies suggested a role for soluble NK group 2D ligands in the impairment of NK cell tumor recognition and killing. We investigated whether genotoxic stress could promote the release of NK group 2D ligands (MHC class I-related chain [MIC]A and MICB), as well as the molecular mechanisms underlying this event in human multiple myeloma (MM) cells. Our results show that genotoxic agents used in the therapy of MM (i.e., doxorubicin and melphalan) selectively affect the shedding of MIC molecules that are sensitive to proteolytic cleavage, whereas the release of the short MICA*008 allele, which is frequent in the white population, is not perturbed. In addition, we found that a disintegrin and metalloproteinase 10 expression is upregulated upon chemotherapeutic treatment both in patient-derived CD138(+)/CD38(+) plasma cells and in several MM cell lines, and we demonstrate a crucial role for this sheddase in the proteolytic cleavage of MIC by means of silencing and pharmacological inhibition. Interestingly, the drug-induced upregulation of a disintegrin and metalloproteinase 10 on MM cells is associated with a senescent phenotype and requires generation of reactive oxygen species. Moreover, the combined use of chemotherapeutic drugs and metalloproteinase inhibitors enhances NK cell-mediated recognition of MM cells, preserving MIC molecules on the cell surface and suggesting that targeting of metalloproteinases in conjunction with chemotherapy could be exploited for NK cell-based immunotherapeutic approaches, thus contributing to avoid the escape of malignant cells from stress-elicited immune responses.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome 00161, Italy;
| | - Francesca Cecere
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome 00161, Italy
| | - Elisabetta Vulpis
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome 00161, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome 00161, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome 00161, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome 00161, Italy
| | - Maria Teresa Petrucci
- Department of Cellular Biotechnology and Hematology, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Maria Rosaria Ricciardi
- Department of Cellular Biotechnology and Hematology, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Daniel Fuerst
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm of the German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, 89081 Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; and
| | | | - Joannis Mytilineos
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm of the German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, 89081 Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany; and
| | - Cristina Cerboni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome 00161, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome 00161, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome 00161, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome 00161, Italy; Institute Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
45
|
Yaswen P, MacKenzie KL, Keith WN, Hentosh P, Rodier F, Zhu J, Firestone GL, Matheu A, Carnero A, Bilsland A, Sundin T, Honoki K, Fujii H, Georgakilas AG, Amedei A, Amin A, Helferich B, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Niccolai E, Aquilano K, Ashraf SS, Nowsheen S, Yang X. Therapeutic targeting of replicative immortality. Semin Cancer Biol 2015; 35 Suppl:S104-S128. [PMID: 25869441 PMCID: PMC4600408 DOI: 10.1016/j.semcancer.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.
Collapse
Affiliation(s)
- Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States.
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia.
| | | | | | | | - Jiyue Zhu
- Washington State University College of Pharmacy, Pullman, WA, United States.
| | | | | | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, HUVR, Consejo Superior de Investigaciones Cientificas, Universdad de Sevilla, Seville, Spain.
| | | | | | | | | | | | | | - Amr Amin
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | | | - Gunjan Guha
- SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust, Guildford, Surrey, United Kingdom
| | | | - Asfar S Azmi
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | | | | | | | | | - S Salman Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
46
|
Cellular senescence: a hitchhiker’s guide. Hum Cell 2015; 28:51-64. [DOI: 10.1007/s13577-015-0110-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/03/2015] [Indexed: 12/21/2022]
|
47
|
Gillespie ZE, MacKay K, Sander M, Trost B, Dawicki W, Wickramarathna A, Gordon J, Eramian M, Kill IR, Bridger JM, Kusalik A, Mitchell JA, Eskiw CH. Rapamycin reduces fibroblast proliferation without causing quiescence and induces STAT5A/B-mediated cytokine production. Nucleus 2015; 6:490-506. [PMID: 26652669 PMCID: PMC4915505 DOI: 10.1080/19491034.2015.1128610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022] Open
Abstract
Rapamycin is a well-known inhibitor of the Target of Rapamycin (TOR) signaling cascade; however, the impact of this drug on global genome function and organization in normal primary cells is poorly understood. To explore this impact, we treated primary human foreskin fibroblasts with rapamycin and observed a decrease in cell proliferation without causing cell death. Upon rapamycin treatment chromosomes 18 and 10 were repositioned to a location similar to that of fibroblasts induced into quiescence by serum reduction. Although similar changes in positioning occurred, comparative transcriptome analyses demonstrated significant divergence in gene expression patterns between rapamycin-treated and quiescence-induced fibroblasts. Rapamycin treatment induced the upregulation of cytokine genes, including those from the Interleukin (IL)-6 signaling network, such as IL-8 and the Leukemia Inhibitory Factor (LIF), while quiescent fibroblasts demonstrated up-regulation of genes involved in the complement and coagulation cascade. In addition, genes significantly up-regulated by rapamycin treatment demonstrated increased promoter occupancy of the transcription factor Signal Transducer and Activator of Transcription 5A/B (STAT5A/B). In summary, we demonstrated that the treatment of fibroblasts with rapamycin decreased proliferation, caused chromosome territory repositioning and induced STAT5A/B-mediated changes in gene expression enriched for cytokines.
Collapse
Affiliation(s)
- Zoe E Gillespie
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| | - Kimberly MacKay
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Michelle Sander
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
| | - Brett Trost
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Wojciech Dawicki
- Department of Medicine; Division of Respirology, Critical Care and Sleep Medicine; Royal University Hospital; Saskatoon, Canada
| | - Aruna Wickramarathna
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
| | - John Gordon
- Department of Medicine; Division of Respirology, Critical Care and Sleep Medicine; Royal University Hospital; Saskatoon, Canada
| | - Mark Eramian
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Ian R Kill
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| | - Joanna M Bridger
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| | - Anthony Kusalik
- Department of Computer Science; University of Saskatchewan; Saskatoon, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology; University of Toronto; Toronto, Canada
- Centre for the Analysis of Genome Evolution and Function; University of Toronto, Toronto, ON, Canada
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences; University of Saskatchewan; Saskatoon, Canada
- Institute of Environment, Health and Societies; Brunel University; London, Uxbridge, United Kingdom
| |
Collapse
|
48
|
Garbers C, Rose-John S. Pharmaceutical Relevant Cytokine Receptors: Lessons from the First Drafts of the Human Proteome. J Proteome Res 2014; 14:1330-2. [DOI: 10.1021/pr500875b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christoph Garbers
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, 24098 Kiel, Germany
| |
Collapse
|
49
|
Effenberger T, Heyde J, Bartsch K, Garbers C, Schulze‐Osthoff K, Chalaris A, Murphy G, Rose‐John S, Rabe B. Senescence‐associated release of transmembrane proteins involves proteolytic processing by ADAM17 and microvesicle shedding. FASEB J 2014; 28:4847-56. [DOI: 10.1096/fj.14-254565] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Timo Effenberger
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| | - Jan Heyde
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| | - Kareen Bartsch
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| | - Christoph Garbers
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| | - Klaus Schulze‐Osthoff
- Interfaculty Institute for BiochemistryEberhard Karls UniversityTübingenGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
- German Cancer Research CenterHeidelbergGermany
| | - Athena Chalaris
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| | - Gillian Murphy
- Department of OncologyCancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Stefan Rose‐John
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| | - Björn Rabe
- Institute of BiochemistryChristian‐Albrechts‐University KielKielGermany
| |
Collapse
|
50
|
Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine 2014; 70:11-20. [PMID: 24986424 DOI: 10.1016/j.cyto.2014.05.024] [Citation(s) in RCA: 400] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/13/2023]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine with well-defined pro- and anti-inflammatory properties. Although only small amounts in the picogram range can be detected in healthy humans, IL-6 expression is highly and transiently up-regulated in nearly all pathophysiological states. IL-6 induces intracellular signaling pathways after binding to its membrane-bound receptor (IL-6R), which is only expressed on hepatocytes and certain subpopulations of leukocytes (classic signaling). Transduction of the signal is mediated by the membrane-bound β-receptor glycoprotein 130 (gp130). In a second pathway, named trans-signaling, IL-6 binds to soluble forms of the IL-6R (sIL-6R), and this agonistic IL-6/sIL-6R complexes can in principle activate all cells due to the uniform expression of gp130. Importantly, several soluble forms of gp130 (sgp130) are found in the human blood, which are considered to be the natural inhibitors of IL-6 trans-signaling. Most pro-inflammatory roles of IL-6 have been attributed to the trans-signaling pathway, whereas anti-inflammatory and regenerative signaling, including the anti-bacterial acute phase response of the liver, is mediated by IL-6 classic signaling. In this simplistic view, only a minority of cell types expresses the IL-6R and is therefore responsive for IL-6 classic signaling, whereas gp130 is ubiquitously expressed throughout the human body. However, several reports point towards a much more complex situation. A plethora of factors, including proteases, cytokines, chemical drugs, and intracellular signaling pathways, are able to modulate the cellular expression of the membrane-bound and soluble forms of IL-6R and gp130. In this review, we summarize current knowledge of regulatory mechanisms that control and regulate the dynamic expression of IL-6 and its two receptors.
Collapse
Affiliation(s)
- Janina Wolf
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany.
| | - Christoph Garbers
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany.
| |
Collapse
|