1
|
Shahbaz E, Ali M, Shafiq M, Atiq M, Hussain M, Balal RM, Sarkhosh A, Alferez F, Sadiq S, Shahid MA. Citrus Canker Pathogen, Its Mechanism of Infection, Eradication, and Impacts. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010123. [PMID: 36616252 PMCID: PMC9824702 DOI: 10.3390/plants12010123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 05/16/2023]
Abstract
Citrus canker is a ravaging bacterial disease threatening citrus crops. Its major types are Asiatic Canker, Cancrosis B, and Cancrosis C, caused by Xanthomonas citri pv. citri (Xcc), Xanthomonas citri pv. aurantifolii pathotype-B (XauB), and pathotype-C (XauC), respectively. The bacterium enters its host through stomata and wounds, from which it invades the intercellular spaces in the apoplast. It produces erumpent corky necrotic lesions often surrounded by a chlorotic halo on the leaves, young stems, and fruits, which causes dark spots, defoliation, reduced photosynthetic rate, rupture of leaf epidermis, dieback, and premature fruit drop in severe cases. Its main pathogenicity determinant gene is pthA, whose variants are present in all citrus canker-causing pathogens. Countries where citrus canker is not endemic adopt different methods to prevent the introduction of the pathogen into the region, eradicate the pathogen, and minimize its dissemination, whereas endemic regions require an integrated management program to control the disease. The main aim of the present manuscript is to shed light on the pathogen profile, its mechanism of infection, and fruitful strategies for disease management. Although an adequate method to completely eradicate citrus canker has not been introduced so far, many new methods are under research to abate the disease.
Collapse
Affiliation(s)
- Esha Shahbaz
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Mobeen Ali
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mujahid Hussain
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
| | - Rashad Mukhtar Balal
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Fernando Alferez
- Horticultural Science Department, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142, USA
| | - Saleha Sadiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
- Correspondence:
| |
Collapse
|
2
|
Yang H, Zhao Y, Chen N, Liu Y, Yang S, Du H, Wang W, Wu J, Tai F, Chen F, Hu X. A new adenylyl cyclase, putative disease-resistance RPP13-like protein 3, participates in abscisic acid-mediated resistance to heat stress in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:283-301. [PMID: 32936902 DOI: 10.1093/jxb/eraa431] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/13/2020] [Indexed: 05/24/2023]
Abstract
In plants, 3´,5´-cyclic adenosine monophosphate (cAMP) is an important second messenger with varied functions; however, only a few adenylyl cyclases (ACs) that synthesize cAMP have been identified. Moreover, the biological roles of ACs/cAMP in response to stress remain largely unclear. In this study, we used quantitative proteomics techniques to identify a maize heat-induced putative disease-resistance RPP13-like protein 3 (ZmRPP13-LK3), which has three conserved catalytic AC centres. The AC activity of ZmRPP13-LK3 was confirmed by in vitro enzyme activity analysis, in vivo RNAi experiments, and functional complementation in the E. coli cyaA mutant. ZmRPP13-LK3 is located in the mitochondria. The results of in vitro and in vivo experiments indicated that ZmRPP13-LK3 interacts with ZmABC2, a possible cAMP exporter. Under heat stress, the concentrations of ZmRPP13-LK3 and cAMP in the ABA-deficient mutant vp5 were significantly less than those in the wild-type, and treatment with ABA and an ABA inhibitor affected ZmRPP13-LK3 expression in the wild-type. Application of 8-Br-cAMP, a cAMP analogue, increased heat-induced expression of heat-shock proteins in wild-type plants and alleviated heat-activated oxidative stress. Taken together, our results indicate that ZmRPP13-LK3, a new AC, can catalyse ATP for the production of cAMP and may be involved in ABA-regulated heat resistance.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yulong Zhao
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Ning Chen
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanpei Liu
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Shaoyu Yang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Hanwei Du
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Jianyu Wu
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Fuju Tai
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Feng Chen
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiuli Hu
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Turek I, Gehring C, Irving H. Arabidopsis Plant Natriuretic Peptide Is a Novel Interactor of Rubisco Activase. Life (Basel) 2020; 11:life11010021. [PMID: 33396438 PMCID: PMC7823470 DOI: 10.3390/life11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Plant natriuretic peptides (PNPs) are a group of systemically acting peptidic hormones affecting solute and solvent homeostasis and responses to biotrophic pathogens. Although an increasing body of evidence suggests PNPs modulate plant responses to biotic and abiotic stress, which could lead to their potential biotechnological application by conferring increased stress tolerance to plants, the exact mode of PNPs action is still elusive. In order to gain insight into PNP-dependent signalling, we set out to identify interactors of PNP present in the model plant Arabidopsis thaliana, termed AtPNP-A. Here, we report identification of rubisco activase (RCA), a central regulator of photosynthesis converting Rubisco catalytic sites from a closed to an open conformation, as an interactor of AtPNP-A through affinity isolation followed by mass spectrometric identification. Surface plasmon resonance (SPR) analyses reveals that the full-length recombinant AtPNP-A and the biologically active fragment of AtPNP-A bind specifically to RCA, whereas a biologically inactive scrambled peptide fails to bind. These results are considered in the light of known functions of PNPs, PNP-like proteins, and RCA in biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Ilona Turek
- Biomolecular Laboratory, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3552, Australia
| | - Chris Gehring
- Biomolecular Laboratory, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06121 Perugia, Italy
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3552, Australia
| |
Collapse
|
4
|
Li H, Ranhotra HS, Mani S, Dvořák Z, Sokol H, Müller R. Human microbial metabolite mimicry as a strategy to expand the chemical space of potential drugs. Drug Discov Today 2020; 25:1575-1579. [PMID: 32562605 PMCID: PMC7572573 DOI: 10.1016/j.drudis.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
The concept of small-molecule mimicry even of weak microbial metabolites present in rodents and humans, as a means to expand drug repertoires, is new. Hitherto, there are few proof-of-concept papers demonstrating utility of this concept. More recently, papers demonstrating mimicry of intestinal microbial metabolites could expand the drug repertoire for diseases such as inflammatory bowel disease (IBD). We opine that, as more functional metabolite-receptor pairings are discovered, small-molecule metabolite mimicry could be a significant effort in drug discovery.
Collapse
Affiliation(s)
- Hao Li
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Harmit S Ranhotra
- St Edmund's College, Shillong, Old Jowai Road, Shillong, Meghalaya 793003, India
| | - Sridhar Mani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Palacký University, Olomouc 78371, Czech Republic.
| | - Harry Sokol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, F-75012 Paris, France; INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, 78352, France; Paris Centre for Microbiome Medicine FHU, Paris, France.
| | - Rolf Müller
- Helmholtz Center for Infection Research, GmbH Inhoffenstrasse, 738124 Braunschweig, Germany; Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)University campus E8, 166123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.
| |
Collapse
|
5
|
Bianchet C, Wong A, Quaglia M, Alqurashi M, Gehring C, Ntoukakis V, Pasqualini S. An Arabidopsis thaliana leucine-rich repeat protein harbors an adenylyl cyclase catalytic center and affects responses to pathogens. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:12-22. [PMID: 30530199 DOI: 10.1016/j.jplph.2018.10.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 05/21/2023]
Abstract
Adenylyl cyclases (ACs) catalyze the formation of the second messenger cAMP from ATP. Here we report the characterization of an Arabidopsis thaliana leucine-rich repeat (LRR) protein (At3g14460; AtLRRAC1) as an adenylyl cyclase. Using an AC-specific search motif supported by computational assessments of protein models we identify an AC catalytic center within the N-terminus and demonstrate that AtLRRAC1 can generate cAMP in vitro. Knock-out mutants of AtLRRAC1 have compromised immune responses to the biotrophic fungus Golovinomyces orontii and the hemibiotrophic bacteria Pseudomonas syringae, but not against the necrotrophic fungus Botrytis cinerea. These findings are consistent with a role of cAMP-dependent pathways in the defense against biotrophic and hemibiotrophic plant pathogens.
Collapse
Affiliation(s)
- Chantal Bianchet
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy
| | - Aloysius Wong
- College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| | - Mara Quaglia
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy
| | - May Alqurashi
- Biological and Environmental Sciences and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy; Biological and Environmental Sciences and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, CV4 7AL, Coventry, UK; Warwick Integrative Synthetic Biology Centre, The University of Warwick, Coventry, CV4 7AL, UK
| | - Stefania Pasqualini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy.
| |
Collapse
|
6
|
Al-Younis I, Wong A, Lemtiri-Chlieh F, Schmöckel S, Tester M, Gehring C, Donaldson L. The Arabidopsis thaliana K +-Uptake Permease 5 (AtKUP5) Contains a Functional Cytosolic Adenylate Cyclase Essential for K + Transport. FRONTIERS IN PLANT SCIENCE 2018; 9:1645. [PMID: 30483296 PMCID: PMC6243130 DOI: 10.3389/fpls.2018.01645] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/23/2018] [Indexed: 05/24/2023]
Abstract
Potassium (K+) is the most abundant cation in plants, and its uptake and transport are key to growth, development and responses to the environment. Here, we report that Arabidopsis thaliana K+ uptake permease 5 (AtKUP5) contains an adenylate cyclase (AC) catalytic center embedded in its N-terminal cytosolic domain. The purified recombinant AC domain generates cAMP in vitro; and when expressed in Escherichia coli, increases cAMP levels in vivo. Both the AC domain and full length AtKUP5 rescue an AC-deficient E. coli mutant, cyaA, and together these data provide evidence that AtKUP5 functions as an AC. Furthermore, full length AtKUP5 complements the Saccharomyces cerevisiae K+ transport impaired mutant, trk1 trk2, demonstrating its function as a K+ transporter. Surprisingly, a point mutation in the AC center that impairs AC activity, also abolishes complementation of trk1 trk2, suggesting that a functional catalytic AC domain is essential for K+ uptake. AtKUP5-mediated K+ uptake is not affected by cAMP, the catalytic product of the AC, but, interestingly, causes cytosolic cAMP accumulation. These findings are consistent with a role for AtKUP5 as K+ flux sensor, where the flux-dependent cAMP increases modulate downstream components essential for K+ homeostasis, such as cyclic nucleotide gated channels.
Collapse
Affiliation(s)
- Inas Al-Younis
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Aloysius Wong
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Fouad Lemtiri-Chlieh
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Sandra Schmöckel
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mark Tester
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Chris Gehring
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lara Donaldson
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Wong A, Tian X, Gehring C, Marondedze C. Discovery of Novel Functional Centers With Rationally Designed Amino Acid Motifs. Comput Struct Biotechnol J 2018; 16:70-76. [PMID: 29977479 PMCID: PMC6026216 DOI: 10.1016/j.csbj.2018.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/23/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Plants are constantly exposed to environmental stresses and in part due to their sessile nature, they have evolved signal perception and adaptive strategies that are distinct from those of other eukaryotes. This is reflected at the cellular level where receptors and signalling molecules cannot be identified using standard homology-based searches querying with proteins from prokaryotes and other eukaryotes. One of the reasons for this is the complex domain architecture of receptor molecules. In order to discover hidden plant signalling molecules, we have developed a motif-based approach designed specifically for the identification of functional centers in plant molecules. This has made possible the discovery of novel components involved in signalling and stimulus-response pathways; the molecules include cyclic nucleotide cyclases, a nitric oxide sensor and a novel target for the hormone abscisic acid. Here, we describe the major steps of the method and illustrate it with recent and experimentally confirmed molecules as examples. We foresee that carefully curated search motifs supported by structural and bioinformatic assessments will uncover many more structural and functional aspects, particularly of signalling molecules.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy
| | - Claudius Marondedze
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/DRF/BIG, INRA UMR1417, CNRS UMR5168, 38054 Grenoble Cedex 9, France
| |
Collapse
|
8
|
The Arabidopsis thaliana K(+)-uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre. FEBS Lett 2015; 589:3848-52. [PMID: 26638082 DOI: 10.1016/j.febslet.2015.11.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 01/21/2023]
Abstract
Adenylate cyclases (ACs) catalyse the formation of the second messenger cyclic adenosine 3',5'-monophosphate (cAMP) from adenosine 5'-triphosphate (ATP). Although cAMP is increasingly recognised as an important signalling molecule in higher plants, ACs have remained somewhat elusive. Here we used a search motif derived from experimentally tested guanylyl cyclases (GCs), substituted the residues essential for substrate specificity and identified the Arabidopsis thaliana K(+)-uptake permease 7 (AtKUP7) as one of several candidate ACs. Firstly, we show that a recombinant N-terminal, cytosolic domain of AtKUP7(1-100) is able to complement the AC-deficient mutant cyaA in Escherichia coli and thus restoring the fermentation of lactose, and secondly, we demonstrate with both enzyme immunoassays and mass spectrometry that a recombinant AtKUP7(1-100) generates cAMP in vitro.
Collapse
|
9
|
Unraveling plant responses to bacterial pathogens through proteomics. J Biomed Biotechnol 2011; 2011:354801. [PMID: 22131803 PMCID: PMC3216475 DOI: 10.1155/2011/354801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/24/2011] [Accepted: 09/02/2011] [Indexed: 12/15/2022] Open
Abstract
Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens.
Collapse
|
10
|
Garavaglia BS, Thomas L, Gottig N, Zimaro T, Garofalo CG, Gehring C, Ottado J. Shedding light on the role of photosynthesis in pathogen colonization and host defense. Commun Integr Biol 2011; 3:382-4. [PMID: 20798833 DOI: 10.4161/cib.3.4.12029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 11/19/2022] Open
Abstract
The role of photosynthesis in plant defense is a fundamental question awaiting further molecular and physiological elucidation. To this end we investigated host responses to infection with the bacterial pathogen Xanthomonas axonopodis pv. citri, the pathogen responsible for citrus canker. This pathogen encodes a plant-like natriuretic peptide (XacPNP) that is expressed specifically during the infection process and prevents deterioration of the physiological condition of the infected tissue. Proteomic assays of citrus leaves infected with a XacPNP deletion mutant (DeltaXacPNP) resulted in a major reduction in photosynthetic proteins such as Rubisco, Rubisco activase and ATP synthase as a compared with infection with wild type bacteria. In contrast, infiltration of citrus leaves with recombinant XacPNP caused an increase in these host proteins and a concomitant increase in photosynthetic efficiency as measured by chlorophyll fluorescence assays. Reversion of the reduction in photosynthetic efficiency in citrus leaves infected with DeltaXacPNP was achieved by the application of XacPNP or Citrus sinensis PNP lending support to a case of molecular mimicry. Finally, given that DeltaXacPNP infection is less successful than infection with the wild type, it appears that reducing photosynthesis is an effective plant defense mechanism against biotrophic pathogens.
Collapse
|
11
|
Guo Y, Figueiredo F, Jones J, Wang N. HrpG and HrpX play global roles in coordinating different virulence traits of Xanthomonas axonopodis pv. citri. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:649-61. [PMID: 21261465 DOI: 10.1094/mpmi-09-10-0209] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Xanthomonas axonopodis pv. citri is the causal agent of citrus canker, which is one of the most serious diseases of citrus. To understand the virulence mechanisms of X. axonopodis pv. citri, we designed and conducted genome-wide microarray analyses to characterize the HrpG and HrpX regulons, which are critical for the pathogenicity of X. axonopodis pv. citri. Our analyses revealed that 232 and 181 genes belonged to the HrpG and HrpX regulons, respectively. In total, 123 genes were overlapped in the two regulons at any of the three selected timepoints representing three growth stages of X. axonopodis pv. citri in XVM2 medium. Our results showed that HrpG and HrpX regulated all 24 type III secretion system genes, 23 type III secretion system effector genes, and 29 type II secretion system substrate genes. Our data revealed that X. axonopodis pv. citri regulates multiple cellular activities responding to the host environment, such as amino acid biosynthesis; oxidative phosphorylation; pentose-phosphate pathway; transport of sugar, iron, and potassium; and phenolic catabolism, through HrpX and HrpG. We found that 124 and 90 unknown genes were controlled by HrpG and HrpX, respectively. Our results suggest that HrpG and HrpX interplay with a global signaling network and co-ordinate the expression of multiple virulence factors for modification and adaption of host environment during X. axonopodis pv. citri infection.
Collapse
Affiliation(s)
- Yinping Guo
- Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL, USA
| | | | | | | |
Collapse
|
12
|
Garavaglia BS, Thomas L, Zimaro T, Gottig N, Daurelio LD, Ndimba B, Orellano EG, Ottado J, Gehring C. A plant natriuretic peptide-like molecule of the pathogen Xanthomonas axonopodis pv. citri causes rapid changes in the proteome of its citrus host. BMC PLANT BIOLOGY 2010; 10:51. [PMID: 20302677 PMCID: PMC2923525 DOI: 10.1186/1471-2229-10-51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 03/21/2010] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. The citrus pathogen Xanthomonas axonopodis pv. citri possesses a PNP-like peptide (XacPNP) uniquely present in this bacteria. Previously we observed that the expression of XacPNP is induced upon infection and that lesions produced in leaves infected with a XacPNP deletion mutant were more necrotic and lead to earlier bacterial cell death, suggesting that the plant-like bacterial PNP enables the plant pathogen to modify host responses in order to create conditions favorable to its own survival. RESULTS Here we measured chlorophyll fluorescence parameters and water potential of citrus leaves infiltrated with recombinant purified XacPNP and demonstrate that the peptide improves the physiological conditions of the tissue. Importantly, the proteomic analysis revealed that these responses are mirrored by rapid changes in the host proteome that include the up-regulation of Rubisco activase, ATP synthase CF1 alpha subunit, maturase K, and alpha- and beta-tubulin. CONCLUSIONS We demonstrate that XacPNP induces changes in host photosynthesis at the level of protein expression and in photosynthetic efficiency in particular. Our findings suggest that the biotrophic pathogen can use the plant-like hormone to modulate the host cellular environment and in particular host metabolism and that such modulations weaken host defence.
Collapse
Affiliation(s)
- Betiana S Garavaglia
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
- Consejo de Investigaciones de la Universidad Nacional de Rosario, Rosario, Argentina
| | - Ludivine Thomas
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Tamara Zimaro
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Natalia Gottig
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Lucas D Daurelio
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Bongani Ndimba
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Elena G Orellano
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Jorgelina Ottado
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Chris Gehring
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- CBRC, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Garavaglia BS, Thomas L, Gottig N, Dunger G, Garofalo CG, Daurelio LD, Ndimba B, Orellano EG, Gehring C, Ottado J. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis. PLoS One 2010; 5:e8950. [PMID: 20126632 PMCID: PMC2812515 DOI: 10.1371/journal.pone.0008950] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/10/2010] [Indexed: 01/02/2023] Open
Abstract
Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.
Collapse
Affiliation(s)
- Betiana S. Garavaglia
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo de Investigaciones, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ludivine Thomas
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Natalia Gottig
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Germán Dunger
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cecilia G. Garofalo
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lucas D. Daurelio
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Bongani Ndimba
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Elena G. Orellano
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Chris Gehring
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- Computational Bioscience Research Centre, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Jorgelina Ottado
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|