1
|
D'Addario C, Di Bartolomeo M. Epigenetic Control in Schizophrenia. Subcell Biochem 2025; 108:191-215. [PMID: 39820863 DOI: 10.1007/978-3-031-75980-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Schizophrenia is a severe and complex psychiatric condition ranking among the top 15 leading causes of disability worldwide. Despite the well-established heritability component, a complex interplay between genetic and environmental risk factors plays a key role in the development of schizophrenia and psychotic disorders in general. This chapter covers all the clinical evidence showing how the analysis of the epigenetic modulation in schizophrenia might be relevant to understand the pathogenesis of schizophrenia as well as potentially useful to develop new pharmacotherapies.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
2
|
Mohazzab-Hosseinian S, Garcia E, Wiemels J, Marconett C, Corona K, Howe CG, Foley H, Farzan SF, Bastain TM, Breton CV. Effect of parental adverse childhood experiences on intergenerational DNA methylation signatures from peripheral blood mononuclear cells and buccal mucosa. Transl Psychiatry 2024; 14:89. [PMID: 38342906 PMCID: PMC10859367 DOI: 10.1038/s41398-024-02747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024] Open
Abstract
In this study, the effect of cumulative ACEs experienced on human maternal DNA methylation (DNAm) was estimated while accounting for interaction with domains of ACEs in prenatal peripheral blood mononuclear cell samples from the Maternal and Developmental Risks from Environmental Stressors (MADRES) pregnancy cohort. The intergenerational transmission of ACE-associated DNAm was also explored used paired maternal (N = 120) and neonatal cord blood (N = 69) samples. Replication in buccal samples was explored in the Children's Health Study (CHS) among adult parental (N = 31) and pediatric (N = 114) samples. We used a four-level categorical indicator variable for ACEs exposure: none (0 ACEs), low (1-3 ACEs), moderate (4-6 ACEs), and high (>6 ACEs). Effects of ACEs on maternal DNAm (N = 240) were estimated using linear models. To evaluate evidence for intergenerational transmission, mediation analysis (N = 60 mother-child pairs) was used. Analysis of maternal samples displayed some shared but mostly distinct effects of ACEs on DNAm across low, moderate, and high ACEs categories. CLCN7 and PTPRN2 was associated with maternal DNAm in the low ACE group and this association replicated in the CHS. CLCN7 was also nominally significant in the gene expression correlation analysis among maternal profiles (N = 35), along with 11 other genes. ACE-associated methylation was observed in maternal and neonatal profiles in the COMT promoter region, with some evidence of mediation by maternal COMT methylation. Specific genomic loci exhibited mutually exclusive maternal ACE effects on DNAm in either maternal or neonatal population. There is some evidence for an intergenerational effect of ACEs, supported by shared DNAm signatures in the COMT gene across maternal-neonatal paired samples.
Collapse
Affiliation(s)
- Sahra Mohazzab-Hosseinian
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Joseph Wiemels
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Crystal Marconett
- Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Karina Corona
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Caitlin G Howe
- Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, 03756, USA
| | - Helen Foley
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Carrie V Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
3
|
Mallick R, Duttaroy AK. Epigenetic modification impacting brain functions: Effects of physical activity, micronutrients, caffeine, toxins, and addictive substances. Neurochem Int 2023; 171:105627. [PMID: 37827244 DOI: 10.1016/j.neuint.2023.105627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Changes in gene expression are involved in many brain functions. Epigenetic processes modulate gene expression by histone modification and DNA methylation or RNA-mediated processes, which is important for brain function. Consequently, epigenetic changes are also a part of brain diseases such as mental illness and addiction. Understanding the role of different factors on the brain epigenome may help us understand the function of the brain. This review discussed the effects of caffeine, lipids, addictive substances, physical activity, and pollutants on the epigenetic changes in the brain and their modulatory effects on brain function.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046 Blindern, Oslo, Norway.
| |
Collapse
|
4
|
Flynn LT, Gao WJ. DNA methylation and the opposing NMDAR dysfunction in schizophrenia and major depression disorders: a converging model for the therapeutic effects of psychedelic compounds in the treatment of psychiatric illness. Mol Psychiatry 2023; 28:4553-4567. [PMID: 37679470 PMCID: PMC11034997 DOI: 10.1038/s41380-023-02235-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Psychedelic compounds are being increasingly explored as a potential therapeutic option for treating several psychiatric conditions, despite relatively little being known about their mechanism of action. One such possible mechanism, DNA methylation, is a process of epigenetic regulation that changes gene expression via chemical modification of nitrogenous bases. DNA methylation has been implicated in the pathophysiology of several psychiatric conditions, including schizophrenia (SZ) and major depressive disorder (MDD). In this review, we propose alterations to DNA methylation as a converging model for the therapeutic effects of psychedelic compounds, highlighting the N-methyl D-aspartate receptor (NMDAR), a crucial mediator of synaptic plasticity with known dysfunction in both diseases, as an example and anchoring point. We review the established evidence relating aberrant DNA methylation to NMDAR dysfunction in SZ and MDD and provide a model asserting that psychedelic substances may act through an epigenetic mechanism to provide therapeutic effects in the context of these disorders.
Collapse
Affiliation(s)
- L Taylor Flynn
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
- MD/PhD program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Wen-Jun Gao
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Vidovič E, Pelikan S, Atanasova M, Kouter K, Pileckyte I, Oblak A, Novak Šarotar B, Videtič Paska A, Bon J. DNA Methylation Patterns in Relation to Acute Severity and Duration of Anxiety and Depression. Curr Issues Mol Biol 2023; 45:7286-7303. [PMID: 37754245 PMCID: PMC10527760 DOI: 10.3390/cimb45090461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Depression and anxiety are common mental disorders that often occur together. Stress is an important risk factor for both disorders, affecting pathophysiological processes through epigenetic changes that mediate gene-environment interactions. In this study, we explored two proposed models about the dynamic nature of DNA methylation in anxiety and depression: a stable change, in which DNA methylation accumulates over time as a function of the duration of clinical symptoms of anxiety and depression, or a flexible change, in which DNA methylation correlates with the acute severity of clinical symptoms. Symptom severity was assessed using clinical questionnaires for anxiety and depression (BDI-II, IDS-C, and HAM-A), and the current episode and the total lifetime symptom duration was obtained from patients' medical records. Peripheral blood DNA methylation levels were determined for the BDNF, COMT, and SLC6A4 genes. We found a significant negative correlation between COMT_1 amplicon methylation and acute symptom scores, with BDI-II (R(22) = 0.190, p = 0.033), IDS-C (R(22) = 0.199, p = 0.029), and HAM-A (R(22) = 0.231, p = 0.018) all showing a similar degree of correlation. Our results suggest that DNA methylation follows flexible dynamics, with methylation levels closely associated with acute clinical presentation rather than with the duration of anxiety and depression. These results provide important insights into the dynamic nature of DNA methylation in anxiety and affective disorders and contribute to our understanding of the complex interplay between stress, epigenetics, and individual phenotype.
Collapse
Affiliation(s)
- Eva Vidovič
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
| | - Sebastian Pelikan
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
| | - Marija Atanasova
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Kouter
- Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Indre Pileckyte
- Center for Brain and Cognition, Pompeu Fabra University, 08018 Barcelona, Spain
| | - Aleš Oblak
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
| | - Brigita Novak Šarotar
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Alja Videtič Paska
- Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jurij Bon
- University Psychiatric Clinic Ljubljana, 1260 Ljubljana, Slovenia (J.B.)
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Mohazzab-Hosseinian S, Garcia E, Wiemels J, Marconett C, Corona K, Howe C, Foley H, Lerner D, Lurvey N, Farzan S, Bastain T, Breton C. Effect of Parental Adverse Childhood Experiences on Intergenerational DNA Methylation Signatures. RESEARCH SQUARE 2023:rs.3.rs-2977515. [PMID: 37461498 PMCID: PMC10350189 DOI: 10.21203/rs.3.rs-2977515/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Adverse Childhood Experiences (ACEs) are events that occur before a child turns 18 years old that may cause trauma. In this study, the effect of cumulative ACEs experienced on human maternal DNA methylation (DNAm) was estimated while accounting for interaction with domains of ACEs in prenatal peripheral blood mononuclear cell samples from the Maternal and Developmental Risks from Environmental Stressors (MADRES) pregnancy cohort. The intergenerational transmission of ACE-associated DNAm was also explored used paired maternal and neonatal cord blood samples. Replication in buccal samples was explored in the Children's Health Study (CHS). We used a four-level categorical indicator variable for ACEs exposure: none (0 ACEs), low (1-3 ACEs), moderate (4-6 ACEs), and high (> 6 ACEs). Effects of ACEs on maternal DNAm (N = 240) were estimated using linear models. To evaluate evidence for intergenerational transmission, mediation analysis was used. Analysis of maternal samples displayed some shared but mostly distinct effects of ACEs on DNAm across low, moderate, and high ACEs categories. CLCN7 and PTPRN2 was associated with maternal DNAm in the low ACE group and this association replicated in the CHS. ACE-associated methylation was observed in maternal and neonatal profiles in the COMT promoter region, with some evidence of mediation by maternal COMT methylation. Specific genomic loci exhibited mutually exclusive maternal ACE effects on DNAm in either maternal or neonatal population. There is some evidence for an intergenerational effect of ACEs, supported by shared DNAm signatures in the COMT gene across maternal-neonatal paired samples.
Collapse
|
7
|
Merrill SM, Gladish N, Fu MP, Moore SR, Konwar C, Giesbrecht GF, MacIssac JL, Kobor MS, Letourneau NL. Associations of peripheral blood DNA methylation and estimated monocyte proportion differences during infancy with toddler attachment style. Attach Hum Dev 2023; 25:132-161. [PMID: 34196256 DOI: 10.1080/14616734.2021.1938872] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Attachment is a motivational system promoting felt security to a caregiver resulting in a persistent internal working model of interpersonal behavior. Attachment styles are developed in early social environments and predict future health and development outcomes with potential biological signatures, such as epigenetic modifications like DNA methylation (DNAm). Thus, we hypothesized infant DNAm would associate with toddler attachment styles. An epigenome-wide association study (EWAS) of blood DNAm from 3-month-old infants was regressed onto children's attachment style from the Strange Situation Procedure at 22-months at multiple DNAm Cytosine-phosphate-Guanine (CpG) sites. The 26 identified CpGs associated with proinflammatory immune phenotypes and cognitive development. In post-hoc analyses, only maternal cognitive-growth fostering, encouraging intellectual exploration, contributed. For disorganized children, DNAm-derived cell-type proportions estimated higher monocytes -cells in immune responses hypothesized to increase with early adversity. Collectively, these findings suggested the potential biological embedding of both adverse and advantageous social environments as early as 3-months-old.
Collapse
Affiliation(s)
- Sarah M Merrill
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Nicole Gladish
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Maggie P Fu
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Sarah R Moore
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Chaini Konwar
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, Canada.,Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Julia L MacIssac
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, Canada.,Program in Child and Brain Development, CIFAR, Toronto, Canada
| | - Nicole L Letourneau
- Department of Pediatrics, University of Calgary, Calgary, Canada.,Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Psychiatry, University of Calgary, Calgary, Canada.,Faculty of Nursing, University of Calgary, Calgary, Canada
| |
Collapse
|
8
|
Smederevac S, Delgado-Cruzata L, Mitrović D, Dinić BM, Bravo TAT, Delgado M, Bugarski Ignjatović V, Sadiković S, Milovanović I, Vučinić N, Branovački B, Prinz M, Budimlija Z, Kušić‐Tišma J, Nikolašević Ž. Differences in MB-COMT DNA methylation in monozygotic twins on phenotypic indicators of impulsivity. Front Genet 2023; 13:1067276. [PMID: 36685886 PMCID: PMC9852709 DOI: 10.3389/fgene.2022.1067276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 01/09/2023] Open
Abstract
Epigenetic modifications of the membrane bound catechol-O-methyltransferase (MB-COMT) gene may affect the enzymatic degradation of dopamine, and consequently, human behavior. This study investigated the association between membrane bound catechol-O-methyltransferase DNA methylation (DNAm) differences in 92 monozygotic (MZ) twins with phenotypic manifestations of cognitive, behavioral, and personality indicators associated with reward-related behaviors and lack of control. We used pyrosequencing to determine DNAm of the regulatory region of membrane bound catechol-O-methyltransferase in saliva DNA. Results of intrapair differences in the percentage of membrane bound catechol-O-methyltransferase DNAm at each of five CpG sites show that there are associations between phenotypic indicators of lack of control and membrane bound catechol-O-methyltransferase DNAm differences on CpG1, CpG2 and CpG4, suggesting the common epigenetic patterns for personality traits, cognitive functions, and risk behaviors.
Collapse
Affiliation(s)
- Snežana Smederevac
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia,*Correspondence: Selka Sadiković, ; Snežana Smederevac,
| | | | - Dušanka Mitrović
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia
| | - Bojana M. Dinić
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia
| | | | - Maria Delgado
- Mount Holyoke College, South Hadley, MA, United States
| | | | - Selka Sadiković
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia,*Correspondence: Selka Sadiković, ; Snežana Smederevac,
| | - Ilija Milovanović
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Vučinić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Branovački
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia
| | - Mechthild Prinz
- John Jay College of Criminal Justice, New York, NY, United States
| | - Zoran Budimlija
- Department of Neurology, School of Medicine, New York University, New York City, NY, United States
| | - Jelena Kušić‐Tišma
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
9
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Aytac HM, Oyaci Y, Pehlivan M, Pehlivan S. DNA Methylation Pattern of Gene Promoters of MB-COMT, DRD2, and NR3C1 in Turkish Patients Diagnosed with Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:685-693. [PMID: 36263643 PMCID: PMC9606422 DOI: 10.9758/cpn.2022.20.4.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE We aim to evaluate the methylation status of membrane-bound catechol-O-methyltransferase (MB-COMT) promotor, dopamine receptor D2 (DRD2), and nuclear receptor subfamily 3 group C member 1 (NR3C1) gene in pa- tients with SCZ by comparing healthy controls. METHODS A sample of 110 patients with SCZ and 100 age- and sex-matched healthy volunteers was included in the study. The interview was started by filling out data forms that included sociodemographic and clinical information. The Structured Clinical Interview for DSM-IV Axis I Disorders was used to confirming the diagnosis according to DSM-IV-TR criteria. Then the patients were evaluated with the Positive and Negative Symptoms Scale in terms of symp- tom severity. Methylation-specific polymerase chain reaction was used to determine the methylation status of MB-COMT promotor, DRD2 , and NR3C1 gene from DNA material. RESULTS When we compared the percentages of MB-COMT promotor, DRD2, and NR3C1 gene methylation status in SCZ patients with the healthy control group, the percentages of MB-COMT promotor (OR: 0.466; 95% CI: 0.268- 0.809; p = 0.006), DRD2 (OR: 0.439; 95% CI: 0.375-0.514; p < 0.001), and NR3C1 (OR: 0.003; 95% CI: 0.001- 0.011; p < 0.001) gene methylation status of SCZ was found to be significantly different from the control group. Whereas unmethylation of MB-COMT promotor and NR3C1 genes were associated with SCZ, the partial methylation of the DRD2 gene was related to the SCZ. CONCLUSION The MB-COMT promotor, DRD2, and NR3C1 gene methylation status may be associated with the SCZ in the Turkish population.
Collapse
Affiliation(s)
- Hasan Mervan Aytac
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey,Address for correspondence: Hasan Mervan Aytac Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, G-434 Street, No: 2L, Basaksehir, Istanbul 34944, Turkey, E-mail: , ORCID: https://orcid.org/0000-0002-1053-6808
| | - Yasemin Oyaci
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Pehlivan
- Department of Hematology, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
11
|
Alameda L, Trotta G, Quigley H, Rodriguez V, Gadelrab R, Dwir D, Dempster E, Wong CCY, Forti MD. Can epigenetics shine a light on the biological pathways underlying major mental disorders? Psychol Med 2022; 52:1645-1665. [PMID: 35193719 PMCID: PMC9280283 DOI: 10.1017/s0033291721005559] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
A significant proportion of the global burden of disease can be attributed to mental illness. Despite important advances in identifying risk factors for mental health conditions, the biological processing underlying causal pathways to disease onset remain poorly understood. This represents a limitation to implement effective prevention and the development of novel pharmacological treatments. Epigenetic mechanisms have emerged as mediators of environmental and genetic risk factors which might play a role in disease onset, including childhood adversity (CA) and cannabis use (CU). Particularly, human research exploring DNA methylation has provided new and promising insights into the role of biological pathways implicated in the aetio-pathogenesis of psychiatric conditions, including: monoaminergic (Serotonin and Dopamine), GABAergic, glutamatergic, neurogenesis, inflammatory and immune response and oxidative stress. While these epigenetic changes have been often studied as disease-specific, similarly to the investigation of environmental risk factors, they are often transdiagnostic. Therefore, we aim to review the existing literature on DNA methylation from human studies of psychiatric diseases (i) to identify epigenetic modifications mapping onto biological pathways either transdiagnostically or specifically related to psychiatric diseases such as Eating Disorders, Post-traumatic Stress Disorder, Bipolar and Psychotic Disorder, Depression, Autism Spectrum Disorder and Anxiety Disorder, and (ii) to investigate a convergence between some of these epigenetic modifications and the exposure to known risk factors for psychiatric disorders such as CA and CU, as well as to other epigenetic confounders in psychiatry research.
Collapse
Affiliation(s)
- Luis Alameda
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Departamento de Psiquiatría, Centro Investigación Biomedica en Red de Salud Mental (CIBERSAM), Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Giulia Trotta
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - Harriet Quigley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Victoria Rodriguez
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Romayne Gadelrab
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Emma Dempster
- University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Chloe C. Y. Wong
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - Marta Di Forti
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Zong X, Zhang Q, He C, Huang X, Zhang J, Wang G, Lv L, Sang D, Zou X, Chen H, Zheng J, Hu M. DNA Methylation Basis in the Effect of White Matter Integrity Deficits on Cognitive Impairments and Psychopathological Symptoms in Drug-Naive First-Episode Schizophrenia. Front Psychiatry 2021; 12:777407. [PMID: 34966308 PMCID: PMC8710603 DOI: 10.3389/fpsyt.2021.777407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mounting evidence from diffusion tensor imaging (DTI) and epigenetic studies, respectively, confirmed the abnormal alterations of brain white matter integrity and DNA methylation (DNAm) in schizophrenia. However, few studies have been carried out in the same sample to simultaneously explore the WM pathology relating to clinical behaviors, as well as the DNA methylation basis underlying the WM deficits. Methods: We performed DTI scans in 42 treatment-naïve first-episode schizophrenia patients and 38 healthy controls. Voxel-based method of fractional anisotropy (FA) derived from DTI was used to assess WM integrity. Participants' peripheral blood genomic DNAm status, quantified by using Infinium® Human Methylation 450K BeadChip, was examined in parallel with DTI scanning. Participants completed Digit Span test and Trail Making test, as well as Positive and Negative Syndrome Scale measurement. We acquired genes that are differentially expressed in the brain regions with abnormal FA values according to the Allen anatomically comprehensive atlas, obtained DNAm levels of the corresponding genes, and then performed Z-test to compare the differential epigenetic-imaging associations (DEIAs) between the two groups. Results: Significant decreases of FA values in the patient group were in the right middle temporal lobe WM, right cuneus WM, right anterior cingulate WM, and right inferior parietal lobe WM, while the significant increases were in the bilateral middle cingulate WM (Ps < 0.01, GRF correction). Abnormal FA values were correlated with patients' clinical symptoms and cognitive impairments. In the DEIAs, patients showed abnormal couple patterns between altered FA and DNAm components, for which the enriched biological processes and pathways could be largely grouped into three biological procedures: the neurocognition, immune, and nervous system. Conclusion: Schizophrenia may not cause widespread neuropathological changes, but subtle alterations affecting local cingulum WM, which may play a critical role in positive symptoms and cognitive impairments. This imaging-epigenetics study revealed for the first time that DNAm of genes enriched in neuronal, immunologic, and cognitive processes may serve as the basis in the effect of WM deficits on clinical behaviors in schizophrenia.
Collapse
Affiliation(s)
- Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinran Zhang
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, China
| | - Changchun He
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyue Huang
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangbo Zhang
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Deen Sang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, China
| | - Huafu Chen
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute, Nanjing Medical University, Nanjing, China
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Magwai T, Shangase KB, Oginga FO, Chiliza B, Mpofana T, Xulu KR. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021; 10:2890. [PMID: 34831111 PMCID: PMC8616184 DOI: 10.3390/cells10112890] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.
Collapse
Affiliation(s)
- Thabo Magwai
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
- National Health Laboratory Service, Department of Chemical Pathology, University of Kwa-Zulu Natal, Durban 4085, South Africa
| | - Khanyiso Bright Shangase
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwa-Zulu Natal, Durban 4001, South Africa;
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Khethelo Richman Xulu
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| |
Collapse
|
14
|
Abdolmaleky HM, Zhou JR, Thiagalingam S. Cataloging recent advances in epigenetic alterations in major mental disorders and autism. Epigenomics 2021; 13:1231-1245. [PMID: 34318684 PMCID: PMC8738978 DOI: 10.2217/epi-2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
During the last two decades, diverse epigenetic modifications including DNA methylation, histone modifications, RNA editing and miRNA dysregulation have been associated with psychiatric disorders. A few years ago, in a review we outlined the most common epigenetic alterations in major psychiatric disorders (e.g., aberrant DNA methylation of DTNBP1, HTR2A, RELN, MB-COMT and PPP3CC, and increased expression of miR-34a and miR-181b). Recent follow-up studies have uncovered other DNA methylation aberrations affecting several genes in mental disorders, in addition to dysregulation of many miRNAs. Here, we provide an update on new epigenetic findings and highlight potential origin of the diversity and inconsistencies, focusing on drug effects, tissue/cell specificity of epigenetic landscape and discuss shortcomings of the current diagnostic criteria in mental disorders.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, 02118 MA, USA
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, 02118 MA, USA
- Genetics & Genomics Graduate Program, Boston University School of Medicine, Boston, 02118 MA, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, 02218 MA, USA
| |
Collapse
|
15
|
Fageera W, Chaumette B, Fortier MÈ, Grizenko N, Labbe A, Sengupta SM, Joober R. Association between COMT methylation and response to treatment in children with ADHD. J Psychiatr Res 2021; 135:86-93. [PMID: 33453563 DOI: 10.1016/j.jpsychires.2021.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND COMT had been considered a promising candidate gene in pharmacogenetic studies in ADHD; yet the findings from these studies have been inconsistent. Part of these inconsistencies could be related to epigenetic mechanisms (including DNA methylation). Here we investigated the role of genetic variants of the COMT gene on the methylation levels of CpG sites in the same gene and explored the effect of methylation on methylphenidate (MPH) and placebo (PBO) response in children with ADHD. METHODS Two hundred and thirty children with ADHD (6-12 years) participated in a randomized, double-blind, placebo-controlled crossover trial with MPH. Univariate analysis was performed to examine the associations between genotypes in the COMT gene and DNA methylation in the same genetic loci. Association between the DNA methylation of 11 CpG sites and PBO/MPH responses were then assessed using spearman's correlation analysis in 212 children. Multiple linear regression analyses were performed to test the interaction between these factors while accounting for sex. RESULTS Associations were observed between specific genetic variants and methylation level of cg20709110. Homozygous genotypes of GG (rs6269), CC (rs4633), GG (rs4818), Val/Val (rs4680) and the haplotype (ACCVal/GCGVal) were significantly associated with higher level of methylation. This CpG showed a significant correlation with placebo response (r = -0.15, P = 0.045) according to the teachers' evaluation, and a close-to significance correlation with response to MPH according to parents' evaluation (r = -0.134, p = 0.051). Regression analysis showed that in the model including rs4818, sex and DNA methylation of cg20709110 contributed significantly to treatment response. CONCLUSIONS These preliminary results could provide evidence for the effect of genetic variations on methylation level and the involvement of the epigenetic variation of COMT loci in modulating the response to treatment in ADHD. TRIAL REGISTRATION clinicaltrials.gov, number NCT00483106.
Collapse
Affiliation(s)
- Weam Fageera
- Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Boris Chaumette
- Institute of Psychiatry and Neurosciences of Paris, Paris, France; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Marie-Ève Fortier
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Natalie Grizenko
- Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Aurelie Labbe
- Department of Decision Sciences, HEC Montreal, Montreal, Quebec, Canada
| | - Sarojini M Sengupta
- Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Ridha Joober
- Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Smigielski L, Jagannath V, Rössler W, Walitza S, Grünblatt E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry 2020; 25:1718-1748. [PMID: 31907379 DOI: 10.1038/s41380-019-0601-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022]
Abstract
Schizophrenia and other psychotic disorders are highly debilitating psychiatric conditions that lack a clear etiology and exhibit polygenic inheritance underlain by pleiotropic genes. The prevailing explanation points to the interplay between predisposing genes and environmental exposure. Accumulated evidence suggests that epigenetic regulation of the genome may mediate dynamic gene-environment interactions at the molecular level by modulating the expression of psychiatric phenotypes through transcription factors. This systematic review summarizes the current knowledge linking schizophrenia and other psychotic disorders to epigenetics, based on PubMed and Web of Science database searches conducted according to the PRISMA guidelines. Three groups of mechanisms in case-control studies of human tissue (i.e., postmortem brain and bio-fluids) were considered: DNA methylation, histone modifications, and non-coding miRNAs. From the initial pool of 3,204 records, 152 studies met our inclusion criteria (11,815/11,528, 233/219, and 2,091/1,827 cases/controls for each group, respectively). Many of the findings revealed associations with epigenetic modulations of genes regulating neurotransmission, neurodevelopment, and immune function, as well as differential miRNA expression (e.g., upregulated miR-34a, miR-7, and miR-181b). Overall, actual evidence moderately supports an association between epigenetics and schizophrenia and other psychotic disorders. However, heterogeneous results and cross-tissue extrapolations call for future work. Integrating epigenetics into systems biology may critically enhance research on psychosis and thus our understanding of the disorder. This may have implications for psychiatry in risk stratification, early recognition, diagnostics, precision medicine, and other interventional approaches targeting epigenetic fingerprints.
Collapse
Affiliation(s)
- Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland. .,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.
| | - Vinita Jagannath
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Merck Sharp & Dohme (MSD) R&D Innovation Centre, London, UK
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany.,Laboratory of Neuroscience, Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Yang H, Li J, Ji A, Hu L, Zhang X, Liu L, Qing L, Yan M, Nie S. Methylation of the MAOA promoter is associated with schizophrenia. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:864. [PMID: 32793708 DOI: 10.21037/atm-20-4481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Earlier studies have shown that patients with schizophrenia have abnormalities in DNA methylation. Monoamine oxidase A (MAOA) has been extensively studied due to its biological role in neurological function. However, the relationship between the DNA methylation of the MAOA gene and schizophrenia is unclear. This study aims to elucidate the relationship between the methylation of the MAOA gene promoter and schizophrenia. Methods There were 151 individuals with schizophrenia (104 males and 47 females), which were diagnosed according to DSM-V, the DNA of peripheral blood of all samples was extracted and chemically modified with bisulfite. The promoter region of MAOA gene was sequenced by Methylation Target Technical Method (MethylTargetTM), and 247 controls (204 males and 43 females) included in the study. MAOA gene promoter methylation was compared between the case and control groups. Meanwhile, we measured DNA methylation in two regions of MAOA (MAOA-2 and MAOA-3). Results In the male schizophrenia group (BM) and the male control group (DM), MAOA-2 and MAOA-3 methylation were positively associated with schizophrenia. In the female schizophrenia group (BF) and the female control group (DF), MAOA-2 methylation was associated with schizophrenia. Conclusions Although the role of gene methylation in the development of schizophrenia is still unclear, our findings suggest that DNA methylation of MAOA may contribute to the onset of schizophrenia.
Collapse
Affiliation(s)
- Hao Yang
- Kunming Medical University, Kunming, China.,Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jiajue Li
- Kunming Medical University, Kunming, China.,Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Aicen Ji
- Kunming Medical University, Kunming, China.,Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Liping Hu
- Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xiufeng Zhang
- Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Linlin Liu
- Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lili Qing
- Kunming Medical University, Kunming, China.,Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Ming Yan
- Kunming Medical University, Kunming, China.,Department of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shengjie Nie
- Department of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
18
|
The clues in solving the mystery of major psychosis: The epigenetic basis of schizophrenia and bipolar disorder. Neurosci Biobehav Rev 2020; 113:51-61. [DOI: 10.1016/j.neubiorev.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
|
19
|
Chen J, Zang Z, Braun U, Schwarz K, Harneit A, Kremer T, Ma R, Schweiger J, Moessnang C, Geiger L, Cao H, Degenhardt F, Nöthen MM, Tost H, Meyer-Lindenberg A, Schwarz E. Association of a Reproducible Epigenetic Risk Profile for Schizophrenia With Brain Methylation and Function. JAMA Psychiatry 2020; 77:628-636. [PMID: 32049268 PMCID: PMC7042900 DOI: 10.1001/jamapsychiatry.2019.4792] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
IMPORTANCE Schizophrenia is a severe mental disorder in which epigenetic mechanisms may contribute to illness risk. Epigenetic profiles can be derived from blood cells, but to our knowledge, it is unknown whether these predict established brain alterations associated with schizophrenia. OBJECTIVE To identify an epigenetic signature (quantified as polymethylation score [PMS]) of schizophrenia using machine learning applied to genome-wide blood DNA-methylation data; evaluate whether differences in blood-derived PMS are mirrored in data from postmortem brain samples; test whether the PMS is associated with alterations of dorsolateral prefrontal cortex hippocampal (DLPFC-HC) connectivity during working memory in healthy controls (HC); explore the association between interactions between polygenic and epigenetic risk with DLPFC-HC connectivity; and test the specificity of the signature compared with other serious psychiatric disorders. DESIGN, SETTING, AND PARTICIPANTS In this case-control study conducted from 2008 to 2018 in sites in Germany, the United Kingdom, the United States, and Australia, blood DNA-methylation data from 2230 whole-blood samples from 6 independent cohorts comprising HC (1238 [55.5%]) and participants with schizophrenia (803 [36.0%]), bipolar disorder (39 [1.7%]), major depressive disorder 35 [1.6%]), and autism (27 [1.2%]), and first-degree relatives of all patient groups (88 [3.9%]) were analyzed. DNA-methylation data were further explored from 244 postmortem DLPFC samples from 136 HC and 108 patients with schizophrenia. Neuroimaging and genome-wide association data were available for 393 HC. The latter data was used to calculate a polygenic risk score (PRS) for schizophrenia. The data were analyzed in 2019. MAIN OUTCOMES AND MEASURES The accuracy of schizophrenia control classification based on machine learning using epigenetic data; association of schizophrenia PMS scores with DLPFC-HC connectivity; and association of the interaction between PRS and PMS with DLPFC-HC connectivity. RESULTS This study included 7488 participants (4395 men [58.7%]), of whom 3158 (2230 men [70.6%]) received a diagnosis of schizophrenia. The PMS signature was associated with schizophrenia across 3 independent data sets (area under the curve [AUC] from 0.69 to 0.78; P value from 0.049 to 1.24 × 10-7) and data from postmortem DLPFC samples (AUC = 0.63; P = 1.42 × 10-4), but not with major depressive disorder (AUC = 0.51; P = .16), autism (AUC = 0.53; P = .66), or bipolar disorder (AUC = 0.58; P = .21). Pathways contributing most to the classification included synaptic processes. Healthy controls with schizophrenia-like PMS showed significantly altered DLPFC-HC connectivity (validation methylation/magnetic resonance imaging, t < -3.81; P for familywise error, <.04; validation magnetic resonance imaging, t < -3.54; P for familywise error, <.02), mirroring the lack of functional decoupling in schizophrenia. There was no significant association of the interaction between PMS and PRS with DLPFC-HC connectivity (P > .19). CONCLUSIONS AND RELEVANCE We identified a reproducible blood DNA-methylation signature specific for schizophrenia that was correlated with altered functional DLPFC-HC coupling during working memory and mapped to methylation differences found in DLPFC postmortem samples. This indicates a possible epigenetic contribution to a schizophrenia intermediate phenotype and suggests that PMS could be of interest to be studied in the context of multimodal biomarkers for disease stratification and treatment personalization.
Collapse
Affiliation(s)
- Junfang Chen
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhenxiang Zang
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Urs Braun
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kristina Schwarz
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anais Harneit
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Kremer
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ren Ma
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Janina Schweiger
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Moessnang
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Geiger
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Han Cao
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Franziska Degenhardt
- School of Medicine & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Markus M. Nöthen
- School of Medicine & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany,Life & Brain Center, Department of Genomics, University of Bonn, Bonn, Germany
| | - Heike Tost
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Emanuel Schwarz
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
20
|
Wheater ENW, Stoye DQ, Cox SR, Wardlaw JM, Drake AJ, Bastin ME, Boardman JP. DNA methylation and brain structure and function across the life course: A systematic review. Neurosci Biobehav Rev 2020; 113:133-156. [PMID: 32151655 PMCID: PMC7237884 DOI: 10.1016/j.neubiorev.2020.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
MRI has enhanced our capacity to understand variations in brain structure and function conferred by the genome. We identified 60 studies that report associations between DNA methylation (DNAm) and human brain structure/function. Forty-three studies measured candidate loci DNAm; seventeen measured epigenome-wide DNAm. MRI features included region-of-interest and whole-brain structural, diffusion and functional imaging features. The studies report DNAm-MRI associations for: neurodevelopment and neurodevelopmental disorders; major depression and suicidality; alcohol use disorder; schizophrenia and psychosis; ageing, stroke, ataxia and neurodegeneration; post-traumatic stress disorder; and socio-emotional processing. Consistency between MRI features and differential DNAm is modest. Sources of bias: variable inclusion of comparator groups; different surrogate tissues used; variation in DNAm measurement methods; lack of control for genotype and cell-type composition; and variations in image processing. Knowledge of MRI features associated with differential DNAm may improve understanding of the role of DNAm in brain health and disease, but caution is required because conventions for linking DNAm and MRI data are not established, and clinical and methodological heterogeneity in existing literature is substantial.
Collapse
Affiliation(s)
- Emily N W Wheater
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - David Q Stoye
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - Simon R Cox
- Department of Psychology, University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - James P Boardman
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
21
|
Catechol-O-methyltransferase gene promoter methylation as a peripheral biomarker in male schizophrenia. Eur Psychiatry 2020; 44:39-46. [DOI: 10.1016/j.eurpsy.2017.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 02/03/2023] Open
Abstract
AbstractAs an epigenetic modification, DNA methylation may reflect the interaction between genetic and environmental factors in the development of schizophrenia (SCZ). Catechol-O-methyltransferase (COMT) gene is a promising candidate gene of SCZ. In the present study, we investigate the association of COMT methylation with the risk of SCZ using bisulfite pyrosequencing technology. Significant association between DNA methylation of COMT and the risk of SCZ is identified (P = 1.618e−007). A breakdown analysis by gender shows that the significance is driven by males (P = 3.310e−009), but not by females. DNA methylation of COMT is not significantly associated with SCZ clinical phenotypes, including p300 and cysteine level. No interaction is found between COMT genotypes and the percent methylation of this gene. Receiver operating characteristic (ROC) curve shows that DNA methylation of COMT is able to predict the SCZ risk in males (area under curve [AUC] = 0.802, P = 1.91e−007). The current study indicates the clinical value of COMT methylation as a potential male-specific biomarker in SCZ diagnosis.
Collapse
|
22
|
Thomas M, Banet N, Wallisch A, Glowacz K, Becker-Sadzio J, Gundel F, Nieratschker V. Differential COMT DNA methylation in patients with Borderline Personality Disorder: Genotype matters. Eur Neuropsychopharmacol 2019; 29:1295-1300. [PMID: 31587837 DOI: 10.1016/j.euroneuro.2019.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/23/2019] [Accepted: 09/20/2019] [Indexed: 01/14/2023]
Abstract
Differential DNA methylation in peripheral tissues has been associated with Borderline Personality Disorder (BPD). Alterations have been found in several genes, among them the Catechol-O-methyltransferase (COMT) gene. COMT is a known neuropsychiatric candidate gene, which contains a genotype variant (Val108/158Met) that affects protein function and has been found associated with several psychiatric disorders. In addition, this variant also affects COMT DNA methylation. However, in previous epigenetic studies, the DNA methylation results have not always been controlled for genotype, even though overrepresentation of the Met allele has been frequently reported in cohorts of BPD patients. Therefore, in the present study, we investigated whether alteration of COMT DNA methylation in BPD patients is indeed associated with mental health status or merely influenced by a differential distribution of the COMT genotype between BPD patients and healthy control individuals. We found significant group differences, as well as a strong effect of genotype on COMT DNA methylation. While the direction of effect was different compared to a previous study, our study supports the finding of altered COMT DNA methylation in patients with BPD and reinforces the need to include genotype information in future DNA methylation studies of COMT.
Collapse
Affiliation(s)
- Mara Thomas
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Nora Banet
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Tuebingen, Germany
| | - Annalena Wallisch
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Tuebingen, Germany
| | - Katarzyna Glowacz
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Tuebingen, Germany
| | - Julia Becker-Sadzio
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Tuebingen, Germany
| | - Friederike Gundel
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Tuebingen, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
23
|
A Meta-analysis of the Association Between SLC6A3 Gene Polymorphisms and Schizophrenia. J Mol Neurosci 2019; 70:155-166. [PMID: 31440993 DOI: 10.1007/s12031-019-01399-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
The dopamine transporter is coded by the SLC6A3 gene and plays an important role in regulation of the neurotransmitter dopamine. To detect the association between the SLC6A3 gene and the risk of schizophrenia, 31 case-control articles were included in this meta-analysis. There were 23 studies with 40 bp VNTR (3246 cases and 3639 controls), 4 studies with rs40184 (2020 cases and 1674 controls), rs6347 (1317 cases and 1917 controls), rs403636 (2045 cases and 1704 controls), and rs2975226 (849 cases and 904 controls); and 3 studies with rs12516948 (1920 cases and 1569 controls), rs27072 (984 cases and 1015 controls), rs6869645 (1142 cases and 1082 controls), rs37022 (1168 cases and 1091 controls), rs464049 (1169cases and 1096 controls), rs2652511 (707 cases and 714 controls), and rs3756450 (1176 cases and 1096 controls). Pooled, subgroup, and sensitivity analyses were performed, and the results were visualized by forest and funnel plots. In the dominant genetic model, the genotype AA+AT of rs2975226 in the Indian population (Pz = 0, odds ratio [OR] = 3.245, 95% confidence interval [CI] = 1.806-5.831), TT of rs464049 (Pz = 0.002, OR = 1.389, 95% CI = 1.129-1.708), and TT of rs3756450 (Pz = 0.014, OR = 1.251, 95% CI = 1.047-1.495) might be risk factors for schizophrenia. Additionally, no other single nucleotide polymorphisms were observed. These results indicate that more functional studies are warranted.
Collapse
|
24
|
Xu FL, Wang BJ, Yao J. Association between the SLC6A4 gene and schizophrenia: an updated meta-analysis. Neuropsychiatr Dis Treat 2019; 15:143-155. [PMID: 30643413 PMCID: PMC6314053 DOI: 10.2147/ndt.s190563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In order to explore the association between the SLC6A4 gene and the risk of schizophrenia, an updated meta-analysis was conducted using a total of 46 scientific articles. METHODS Through a literature search, papers studied included 35 articles on serotonin-transporter-linked polymorphic region (5-HTTLPR) with 8,752 cases and 10,610 controls, 17 articles on second intron variable number of tandem repeats with 7,284 cases and 8,544 controls, four studies on rs1042173 with 1,351 cases and 2,101 controls, and four studies on rs140700 with 1,770 cases and 2,386 controls. Pooled, subgroup, and sensitivity analyses were performed, and the results were visualized by forest and funnel plots. RESULTS An association between 5-HTTLPR and the risk of schizophrenia was not found, except for an Indian subgroup analysis (Pz =0.014, OR =1.749, 95% CI =1.120-2.731). A 10 repeats/12 repeats (10R/12R) genotype was a protective factor against schizophrenia (Pz =0.020, OR =0.789, 95% CI =0.646-0.963), but a 12R/12R genotype was a risk factor for schizophrenia (Pz =0.004, OR =1.936, 95% CI =1.238-3.029) in the pooled analyses. In Caucasians, a GG genotype of rs1042173 may be a risk factor for schizophrenia (Pz =0.006, OR =1.299, 95% CI =1.079-1.565). No association was found between rs140700 and the risk for schizophrenia. CONCLUSION Through meta-analysis, we were able to gain insight into previously reported associations between SLC6A4 polymorphism and schizophrenia.
Collapse
Affiliation(s)
- Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China, ;
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China, ;
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China, ;
| |
Collapse
|
25
|
Klaus K, Pennington K. Dopamine and Working Memory: Genetic Variation, Stress and Implications for Mental Health. Curr Top Behav Neurosci 2019; 41:369-391. [PMID: 31502081 DOI: 10.1007/7854_2019_113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
At the molecular level, the neurotransmitter dopamine (DA) is a key regulatory component of executive function in the prefrontal cortex (PFC) and dysfunction in dopaminergic (DAergic) circuitry has been shown to result in impaired working memory (WM). Research has identified multiple common genetic variants suggested to impact on the DA system functionally and also behaviourally to alter WM task performance. In addition, environmental stressors impact on DAergic tone, and this may be one mechanism by which stressors confer vulnerability to the development of neuropsychiatric conditions. This chapter aims to evaluate the impact of key DAergic gene variants suggested to impact on both synaptic DA levels (COMT, DAT1, DBH, MAOA) and DA receptor function (ANKK1, DRD2, DRD4) in terms of their influence on visuospatial WM. The role of stressors and interaction with the genetic background is discussed in addition to discussion around some of the implications for precision psychiatry. This and future work in this area aim to disentangle the neural mechanisms underlying susceptibility to stress and their impact and relationship with cognitive processes known to influence mental health vulnerability.
Collapse
Affiliation(s)
- Kristel Klaus
- MRC Brain and Cognition Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
26
|
Liu J, Chen J, Perrone-Bizzozero N, Calhoun VD. A Perspective of the Cross-Tissue Interplay of Genetics, Epigenetics, and Transcriptomics, and Their Relation to Brain Based Phenotypes in Schizophrenia. Front Genet 2018; 9:343. [PMID: 30190726 PMCID: PMC6115489 DOI: 10.3389/fgene.2018.00343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Genetic association studies of psychiatric disorders have provided unprecedented insight into disease risk profiles with high confidence. Yet, the next research challenge is how to translate this rich information into mechanisms of disease, and further help interventions and treatments. Given other comprehensive reviews elsewhere, here we want to discuss the research approaches that integrate information across various tissue types. Taking schizophrenia as an example, the tissues, cells, or organisms being investigated include postmortem brain tissues or neurons, peripheral blood and saliva, in vivo brain imaging, and in vitro cell lines, particularly human induced pluripotent stem cells (iPSC) and iPSC derived neurons. There is a wealth of information on the molecular signatures including genetics, epigenetics, and transcriptomics of various tissues, along with neuronal phenotypic measurements including neuronal morphometry and function, together with brain imaging and other techniques that provide data from various spatial temporal points of disease development. Through consistent or complementary processes across tissues, such as cross-tissue methylation quantitative trait loci (QTL) and expression QTL effects, systemic integration of such information holds the promise to put the pieces of puzzle together for a more complete view of schizophrenia disease pathogenesis.
Collapse
Affiliation(s)
- Jingyu Liu
- Mind Research Network, Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Jiayu Chen
- Mind Research Network, Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| | - Nora Perrone-Bizzozero
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States
| | - Vince D. Calhoun
- Mind Research Network, Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
27
|
Holz NE, Zohsel K, Laucht M, Banaschewski T, Hohmann S, Brandeis D. Gene x environment interactions in conduct disorder: Implications for future treatments. Neurosci Biobehav Rev 2018; 91:239-258. [DOI: 10.1016/j.neubiorev.2016.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/27/2016] [Accepted: 08/15/2016] [Indexed: 01/30/2023]
|
28
|
Mir R, Bhat M, Javid J, Jha C, Saxena A, Banu S. Potential Impact of COMT-rs4680 G > A Gene Polymorphism in Coronary Artery Disease. J Cardiovasc Dev Dis 2018; 5:jcdd5030038. [PMID: 30011860 PMCID: PMC6162781 DOI: 10.3390/jcdd5030038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
Purpose: Catechol-O-methyltransferase (COMT) plays a central role in DNA repair and estrogen-induced carcinogenesis. The nonsynonymous single nucleotide polymorphism (SNP) in exon 4 G > A or Val108 > 158Met or rs4680 G > A influences COMT enzyme activity. The three phenotypes of the COMT enzyme activities include COMT A/A with low enzyme activity, COMT A/G with medium enzyme activity and COMT G/G with high enzyme activity. The Met allele is associated with low enzymatic activity resulting in higher levels of prefrontal dopamine. Conversely, the Val allele is associated with high enzymatic activity and lower levels of prefrontal dopamine. The Met allele has been associated with several psychiatric disorders such as panic disorder. Many recent epidemiologic studies have investigated the association between the COMT Val158Met polymorphism and coronary artery diseases risk, but the results are inconclusive. Therefore our study was aimed to explore the association between COMT Val158Met polymorphism and the risk of coronary artery disease in India. Methology: This study was conducted on 100 clinically confirmed cases of coronary artery diseases and 100 healthy controls. COMT Val158Met genotyping was performed by allele-specific polymerase chain reaction (AS-PCR). Results: A significant correlation was observed in the COMT Val158Met genotype distribution between the coronary artery disease cases and healthy controls (p = 0.008). The frequencies of all three genotypes, GG, GA, AA, reported in the CAD patients were 10%, 70%, and 20%, and 30%, 60%, and 10% in the healthy controls respectively. An increased risk of coronary artery disease was observed in the codominant inheritance model for COMT-GA vs. GG genotype with an OR of 3.5, 95% CI (1.58–7.74) p = 0.002) and COMT-AA vs. GG genotype with an OR of 6.0 95% CI (2.11–17.3) p = 0.003). The higher risk of coronary artery disease was observed in the dominant inheritance model for COMT (GA + AA) vs. GG genotype (OR 3.85, 95% CI 1.76–8.4, p < 0.007), whereas a non-significant association was found in recessive model for COMT (GG + GA vs. AA) (OR = 2.01, 95% CI (0.86–4.7) p = 0.72). The results indicated that A allele significantly increased the risk of coronary artery disease compared to the G allele (OR = 1.8, 95% CI (1.20–2.67) p = 0.004). COMT Val158Met polymorphism leads to a 6.0, 3.5 and 1.8-fold increased risk of developing coronary artery disease in the Indian population and providing novel insights into the genetic etiology and underlying biology of coronary artery disease. Conclusions: It is concluded that COMT-AA genotype and A allele are significantly associated with an increased susceptibility to coronary artery disease in Indian population. A larger sample size can be the key to progress in establishing the genetic co-relationship of COMT polymorphism and cardiovascular disease.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Musadiq Bhat
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi 110002, India.
| | - Jamsheed Javid
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Chandan Jha
- Department of Human Genetics, Punjabi University, Patiala 147002, India.
| | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi 110002, India.
| | - Shaheen Banu
- Department of Biochemistry, Sri Jayadeva Institute of Cardio-vascular Science & Research & Karnataka Institute of Diabetology, Bangalore 560069, India.
| |
Collapse
|
29
|
Nielsen DA, Spellicy CJ, Harding MJ, Graham DP. Apolipoprotein E DNA methylation and posttraumatic stress disorder are associated with plasma ApoE level: A preliminary study. Behav Brain Res 2018; 356:415-422. [PMID: 29807071 DOI: 10.1016/j.bbr.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Mild traumatic brain injury (mTBI) occurred in 15-30% of Veterans returning from Iraq and Afghanistan. We examined whether DNA methylation of the apolipoprotein E (APOE) gene promoter region or plasma ApoE protein levels are altered in mTBI. APOE promoter region DNA methylation, APOE genotype, and plasma ApoE concentration were determined in 87 Veterans with or without mTBI who were recruited from 2010-2014. Plasma ApoE concentration was found to be associated with Posttraumatic Stress Disorder (PTSD) symptom severity ratings by hierarchical linear regression (p = .013) and ANCOVA (p = .007). Hierarchical linear regression revealed that plasma ApoE concentration was associated with APOE-ε4 genotype status (p=.022). Higher ApoE plasma levels were found in ε3/ε3 Veterans than in APOE-ε4 carriers (p = .031). Furthermore, plasma ApoE concentration was associated experiment-wise with DNA methylation at CpG sites -877 (p = .021), and -775 (p = .014). The interaction between APOE-ε4 genotype and having a PTSD diagnosis was associated with DNA methylation at CpG site -675 (p = .009).
Collapse
Affiliation(s)
- David A Nielsen
- Neurorehabilitation: Neurons to Networks Traumatic Brain Injury Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States.
| | - Catherine J Spellicy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Mark J Harding
- Neurorehabilitation: Neurons to Networks Traumatic Brain Injury Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - David P Graham
- Neurorehabilitation: Neurons to Networks Traumatic Brain Injury Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States; Houston VA Health Services Research and Development Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States
| |
Collapse
|
30
|
Liu C, Jiao C, Wang K, Yuan N. DNA Methylation and Psychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:175-232. [PMID: 29933950 DOI: 10.1016/bs.pmbts.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA methylation has been an important area of research in the study of molecular mechanism to psychiatric disorders. Recent evidence has suggested that abnormalities in global methylation, methylation of genes, and pathways could play a role in the etiology of many forms of mental illness. In this article, we review the mechanisms of DNA methylation, including the genetic and environmental factors affecting methylation changes. We report and discuss major findings regarding DNA methylation in psychiatric patients, both within the context of global methylation studies and gene-specific methylation studies. Finally, we discuss issues surrounding data quality improvement, the limitations of current methylation analysis methods, and the possibility of using DNA methylation-based treatment for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Chunyu Liu
- University of Illinois, Chicago, IL, United States; School of Life Science, Central South University, Changsha, China.
| | - Chuan Jiao
- School of Life Science, Central South University, Changsha, China
| | - Kangli Wang
- School of Life Science, Central South University, Changsha, China
| | - Ning Yuan
- Hunan Brain Hospital, Changsha, China
| |
Collapse
|
31
|
Farah R, Haraty H, Salame Z, Fares Y, Ojcius DM, Said Sadier N. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed J 2018; 41:63-87. [PMID: 29866603 PMCID: PMC6138769 DOI: 10.1016/j.bj.2018.03.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/13/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
Current research efforts on neurological diseases are focused on identifying novel disease biomarkers to aid in diagnosis, provide accurate prognostic information and monitor disease progression. With advances in detection and quantification methods in genomics, proteomics and metabolomics, saliva has emerged as a good source of samples for detection of disease biomarkers. Obtaining a sample of saliva offers multiple advantages over the currently tested biological fluids as it is a non-invasive, painless and simple procedure that does not require expert training or harbour undesirable side effects for the patients. Here, we review the existing literature on salivary biomarkers and examine their validity in diagnosing and monitoring neurodegenerative and neuropsychiatric disorders such as autism and Alzheimer's, Parkinson's and Huntington's disease. Based on the available research, amyloid beta peptide, tau protein, lactoferrin, alpha-synuclein, DJ-1 protein, chromogranin A, huntingtin protein, DNA methylation disruptions, and micro-RNA profiles provide display a reliable degree of consistency and validity as disease biomarkers.
Collapse
Affiliation(s)
- Raymond Farah
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Haraty
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Ziad Salame
- Research Department, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA.
| | - Najwane Said Sadier
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
32
|
Nour El Huda AR, Norsidah KZ, Nabil Fikri MR, Hanisah MN, Kartini A, Norlelawati AT. DNA methylation of membrane-bound catechol-O-methyltransferase in Malaysian schizophrenia patients. Psychiatry Clin Neurosci 2018; 72:266-279. [PMID: 29160620 DOI: 10.1111/pcn.12622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/02/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
AIM This study examined catechol-O-methyltransferase (COMT) DNA methylation in the peripheral blood of schizophrenia patients and also in healthy controls to investigate its potential use as a peripheral biomarker of schizophrenia and its relations with the clinical variables of schizophrenia patients. METHODS We examined the DNA methylation levels of COMT using genomic DNA from the peripheral blood of schizophrenia patients (n = 138) and healthy control participants (n = 132); all were Malaysian Malays. The extracted DNA was bisulfite converted, and the percentage methylation ratio value was calculated based on the results following a MethyLight protocol analysis. RESULTS The percentage methylation ratio of COMT was lower in schizophrenia than it was in the healthy controls (P < 0.001) and was different between the body mass index (P = 0.003) and antipsychotic (P = 0.004) groups. The COMT DNA methylation rate was lower in patients receiving atypical antipsychotics (P = 0.004) and risperidone (P = 0.049) as compared to typical antipsychotics. The Excitement and Depressed subdomains of the Positive and Negative Syndrome Scale were inversely related (P < 0.001) and therefore predictors (Excitement: b = -11.396, t = -4.760, P < 0.001; Depressed: b = -7.789, t = -3.487, P = 0.001) of COMT DNA methylation. CONCLUSION Our results suggested that the methylation level was affected by the severity of the clinical symptoms of schizophrenia and might also be influenced by pharmacological treatment. The epigenetic alteration of COMT in the peripheral blood could be a potential peripheral biomarker of schizophrenia.
Collapse
Affiliation(s)
- Abd Rahim Nour El Huda
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
| | - Ku Zaifah Norsidah
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
| | - Mohd Rahim Nabil Fikri
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
| | - Mohd Noor Hanisah
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
| | - Abdullah Kartini
- Department of Psychiatry, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
| | - A Talib Norlelawati
- Department of Pathology and Laboratory Medicine, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
| |
Collapse
|
33
|
Lin D, Chen J, Perrone-Bizzozero N, Bustillo JR, Du Y, Calhoun VD, Liu J. Characterization of cross-tissue genetic-epigenetic effects and their patterns in schizophrenia. Genome Med 2018; 10:13. [PMID: 29482655 PMCID: PMC5828480 DOI: 10.1186/s13073-018-0519-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/09/2018] [Indexed: 01/14/2023] Open
Abstract
Background One of the major challenges in current psychiatric epigenetic studies is the tissue specificity of epigenetic changes since access to brain samples is limited. Peripheral tissues have been studied as surrogates but the knowledge of cross-tissue genetic-epigenetic characteristics remains largely unknown. In this work, we conducted a comprehensive investigation of genetic influence on DNA methylation across brain and peripheral tissues with the aim to characterize cross-tissue genetic-epigenetic effects and their roles in the pathophysiology of psychiatric disorders. Methods Genome-wide methylation quantitative trait loci (meQTLs) from brain prefrontal cortex, whole blood, and saliva were identified separately and compared. Focusing on cis-acting effects, we tested the enrichment of cross-tissue meQTLs among cross-tissue expression QTLs and genetic risk loci of various diseases, including major psychiatric disorders. CpGs targeted by cross-tissue meQTLs were also tested for genomic distribution and functional enrichment as well as their contribution to methylation correlation across tissues. Finally, a consensus co-methylation network analysis on the cross-tissue meQTL targeted CpGs was performed on data of the three tissues collected from schizophrenia patients and controls. Results We found a significant overlap of cis meQTLs (45–73 %) and targeted CpG sites (31–68 %) among tissues. The majority of cross-tissue meQTLs showed consistent signs of cis-acting effects across tissues. They were significantly enriched in genetic risk loci of various diseases, especially schizophrenia, and also enriched in cross-tissue expression QTLs. Compared to CpG sites not targeted by any meQTLs, cross-tissue targeted CpGs were more distributed in CpG island shores and enhancer regions, and more likely had strong correlation with methylation levels across tissues. The targeted CpGs were also annotated to genes enriched in multiple psychiatric disorders and neurodevelopment-related pathways. Finally, we identified one co-methylation network shared between brain and blood showing significant schizophrenia association (p = 5.5 × 10−6). Conclusions Our results demonstrate prevalent cross-tissue meQTL effects and their contribution to the correlation of CpG methylation across tissues, while at the same time a large portion of meQTLs show tissue-specific characteristics, especially in brain. Significant enrichment of cross-tissue meQTLs in expression QTLs and genetic risk loci of schizophrenia suggests the potential of these cross-tissue meQTLs for studying the genetic effect on schizophrenia. The study provides compelling motivation for a well-designed experiment to further validate the use of surrogate tissues in the study of psychiatric disorders. Electronic supplementary material The online version of this article (10.1186/s13073-018-0519-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongdong Lin
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA
| | - Jiayu Chen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Psychiatry, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Juan R Bustillo
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Psychiatry, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yuhui Du
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA
| | - Vince D Calhoun
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA.,Department of Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jingyu Liu
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87106, USA. .,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
34
|
Kondratiev NV, Alfimova MV, Golimbet VE. [A search of target regions for association studies between DNA methylation and cognitive impairment in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:72-75. [PMID: 28884721 DOI: 10.17116/jnevro20171178172-75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM To develop a strategy for the search for candidate genes and targets for epigenetic studies of cognitive impairments in patients with schizophrenia. MATERIAL AND METHODS A search for literature on epigenetics of schizophrenia and cognitive functions was performed. Single nucleotide polymorphisms (SNPs) that can create or abolish a site for DNA methylation or transcription factor sites were determined using a custom script. RESULTS AND CONCLUSION Eight candidate genes, including BDNF, COMT, RELN, SNRPN, PSMA4, FAM63B, IL-1RAP, MAD1L1, as well as 750 targets in CpG islands in the linkage regions identified in GWAS of schizophrenia and 406 targets in SNV located within transcription factor binding sites were selected.
Collapse
|
35
|
Hu Y, Li C, Wang Y, Li Q, Liu Y, Liao S, Cao P, Xu H. Analysis of COMT Val158Met polymorphisms and methylation in Chinese male schizophrenia patients with homicidal behavior. Int J Legal Med 2018; 132:1537-1544. [DOI: 10.1007/s00414-018-1773-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
|
36
|
Lin D, Chen J, Ehrlich S, Bustillo JR, Perrone-Bizzozero N, Walton E, Clark VP, Wang YP, Sui J, Du Y, Ho BC, Schulz CS, Calhoun VD, Liu J. Cross-Tissue Exploration of Genetic and Epigenetic Effects on Brain Gray Matter in Schizophrenia. Schizophr Bull 2018; 44:443-452. [PMID: 28521044 PMCID: PMC5814943 DOI: 10.1093/schbul/sbx068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Closely linking genetics and environment factors, epigenetics has been of increasing interest in psychiatric disease studies. In this work, we integrated single nucleotide polymorphisms (SNPs), DNA methylation of blood and saliva, and brain gray matter (GM) measures to explore the role of genetic and epigenetic variation to the brain structure changes in schizophrenia (SZ). By focusing on the reported SZ genetic risk regions, we applied a multi-stage multivariate analysis to a discovery dataset (92 SZ patients and 110 controls, blood) and an independent replication dataset (93 SZ patients and 99 controls, saliva). Two pairs of SNP-methylation components were significantly correlated (r = .48 and .35) in blood DNA, and replicated (r = .46 and .29) in saliva DNA, reflecting cross-tissue SNP cis-effects. In the discovery data, both SNP-related methylation components were also associated with one GM component primarily located in cerebellum, caudate, and thalamus. Additionally, another methylation component in NOSIP gene with significant SZ patient differences (P = .009), was associated with 8 GM components (7 with patient differences) including superior, middle, and inferior frontal gyri, superior, middle, and inferior temporal gyri, cerebellum, insula, cuneus, and lingual gyrus. Of these, 5 methylation-GM associations were replicated (P < .05). In contrast, no pairwise significant associations were observed between SNP and GM components. This study strongly supports that compared to genetic variation, epigenetics show broader and more significant associations with brain structure as well as diagnosis, which can be cross-tissue, and the potential in explaining the mechanism of genetic risks in SZ.
Collapse
Affiliation(s)
- Dongdong Lin
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
| | - Jiayu Chen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Juan R Bustillo
- Department of Neurosciences, University of New Mexico, Albuquerque, NM,Department of Psychiatry, University of New Mexico, Albuquerque, NM
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico, Albuquerque, NM,Department of Psychiatry, University of New Mexico, Albuquerque, NM
| | - Esther Walton
- Department of Psychology, Georgia State University, Atlanta, GA
| | - Vincent P Clark
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM,Department of Psychology, University of New Mexico, Albuquerque, NM
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Jing Sui
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM,Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yuhui Du
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM,School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Beng C Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Charles S Schulz
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Vince D Calhoun
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM,Department of Neurosciences, University of New Mexico, Albuquerque, NM,Department of Electronic and Computer Engineering, University of New Mexico, Albuquerque, NM
| | - Jingyu Liu
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM,Department of Electronic and Computer Engineering, University of New Mexico, Albuquerque, NM,To whom correspondence should be addressed; The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87131; tel: 505-272-5028, fax: 505-272-8002, e-mail:
| |
Collapse
|
37
|
Arslan A. Mapping the Schizophrenia Genes by Neuroimaging: The Opportunities and the Challenges. Int J Mol Sci 2018; 19:ijms19010219. [PMID: 29324666 PMCID: PMC5796168 DOI: 10.3390/ijms19010219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia (SZ) is a heritable brain disease originating from a complex interaction of genetic and environmental factors. The genes underpinning the neurobiology of SZ are largely unknown but recent data suggest strong evidence for genetic variations, such as single nucleotide polymorphisms, making the brain vulnerable to the risk of SZ. Structural and functional brain mapping of these genetic variations are essential for the development of agents and tools for better diagnosis, treatment and prevention of SZ. Addressing this, neuroimaging methods in combination with genetic analysis have been increasingly used for almost 20 years. So-called imaging genetics, the opportunities of this approach along with its limitations for SZ research will be outlined in this invited paper. While the problems such as reproducibility, genetic effect size, specificity and sensitivity exist, opportunities such as multivariate analysis, development of multisite consortia for large-scale data collection, emergence of non-candidate gene (hypothesis-free) approach of neuroimaging genetics are likely to contribute to a rapid progress for gene discovery besides to gene validation studies that are related to SZ.
Collapse
Affiliation(s)
- Ayla Arslan
- Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnica cesta, 15 Ilidza, Sarajevo 71210, Bosnia and Herzegovina.
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul 34662, Turkey.
| |
Collapse
|
38
|
Abstract
Imaging genetics is a research methodology studying the effect of genetic variation on brain structure, function, behavior, and risk for psychopathology. Since the early 2000s, imaging genetics has been increasingly used in the research of schizophrenia (SZ). SZ is a severe mental disorder with no precise knowledge of its underlying neurobiology, however, new genetic and neurobiological data generate a climate for new avenues. The accumulating data of genome wide association studies (GWAS) continuously decode SZ risk genes. Global neuroimaging consortia produce collections of brain phenotypes from tens of thousands of people. In this context, imaging genetics will be strategically important both for the validation and discovery of SZ related findings. Thus, the study of GWAS supported risk variants as candidate genes to validate by neuroimaging is one trend. The study of epigenetic differences in relation to variations of brain phenotypes and the study of large scale multivariate analysis of genome wide and brain wide associations are other trends. While these studies hold a big potential for understanding the neurobiology of SZ, the problem of reproducibility appears as a major challenge, which requires standardizations in study designs and compensations of methodological limitations such as sensitivity and specificity. On the other hand, advancements of neuroimaging, optical and electron microscopy along with the use of genetically encoded fluorescent probes and robust statistical approaches will not only catalyze integrative methodologies but also will help better design the imaging genetics studies. In this invited paper, I will discuss the current perspective of imaging genetics and emerging opportunities of SZ research.
Collapse
Affiliation(s)
- Ayla Arslan
- Faculty of Engineering and Natural Sciences, Department of Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina; Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Uskudar University, Istanbul, Turkey.
| |
Collapse
|
39
|
Ibrahim O, Sutherland HG, Haupt LM, Griffiths LR. An emerging role for epigenetic factors in relation to executive function. Brief Funct Genomics 2017; 17:170-180. [DOI: 10.1093/bfgp/elx032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
40
|
Schizophrenia: A review of potential biomarkers. J Psychiatr Res 2017; 93:37-49. [PMID: 28578207 DOI: 10.1016/j.jpsychires.2017.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Understanding the biological process and progression of schizophrenia is the first step to developing novel approaches and new interventions. Research on new biomarkers is extremely important when the goal is an early diagnosis (prediction) and precise theranostics. The objective of this review is to understand the research on biomarkers and their effects in schizophrenia to synthesize the role of these new advances. METHODS In this review, we search and review publications in databases in accordance with established limits and specific objectives. We look at particular endpoints such as the category of biomarkers, laboratory techniques and the results/conclusions of the selected publications. RESULTS The investigation of biomarkers and their potential as a predictor, diagnosis instrument and therapeutic orientation, requires an appropriate methodological strategy. In this review, we found different laboratory techniques to identify biomarkers and their function in schizophrenia. CONCLUSION The consolidation of this information will provide a large-scale application network of schizophrenia biomarkers.
Collapse
|
41
|
Brooks SJ, Funk SG, Young SY, Schiöth HB. The Role of Working Memory for Cognitive Control in Anorexia Nervosa versus Substance Use Disorder. Front Psychol 2017; 8:1651. [PMID: 29018381 PMCID: PMC5615794 DOI: 10.3389/fpsyg.2017.01651] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/07/2017] [Indexed: 01/20/2023] Open
Abstract
Prefrontal cortex executive functions, such as working memory (WM) interact with limbic processes to foster impulse control. Such an interaction is referred to in a growing body of publications by terms such as cognitive control, cognitive inhibition, affect regulation, self-regulation, top-down control, and cognitive–emotion interaction. The rising trend of research into cognitive control of impulsivity, using various related terms reflects the importance of research into impulse control, as failure to employ cognitions optimally may eventually result in mental disorder. Against this background, we take a novel approach using an impulse control spectrum model – where anorexia nervosa (AN) and substance use disorder (SUD) are at opposite extremes – to examine the role of WM for cognitive control. With this aim, we first summarize WM processes in the healthy brain in order to frame a systematic review of the neuropsychological, neural and genetic findings of AN and SUD. In our systematic review of WM/cognitive control, we found n = 15 studies of AN with a total of n = 582 AN and n = 365 HC participants; and n = 93 studies of SUD with n = 9106 SUD and n = 3028 HC participants. In particular, we consider how WM load/capacity may support the neural process of excessive epistemic foraging (cognitive sampling of the environment to test predictions about the world) in AN that reduces distraction from salient stimuli. We also consider the link between WM and cognitive control in people with SUD who are prone to ‘jumping to conclusions’ and reduced epistemic foraging. Finally, in light of our review, we consider WM training as a novel research tool and an adjunct to enhance treatment that improves cognitive control of impulsivity.
Collapse
Affiliation(s)
- Samantha J Brooks
- Functional Pharmacology, Department of Neuroscience, Uppsala UniversityUppsala, Sweden.,Department of Psychiatry and Mental Health, University of Cape TownCape Town, South Africa
| | - Sabina G Funk
- Department of Psychiatry and Mental Health, University of Cape TownCape Town, South Africa
| | - Susanne Y Young
- Department of Psychiatry, Stellenbosch UniversityBellville, South Africa
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala UniversityUppsala, Sweden
| |
Collapse
|
42
|
Bastos P, Gomes T, Ribeiro L. Catechol-O-Methyltransferase (COMT): An Update on Its Role in Cancer, Neurological and Cardiovascular Diseases. Rev Physiol Biochem Pharmacol 2017; 173:1-39. [DOI: 10.1007/112_2017_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Rethinking the Epigenetic Framework to Unravel the Molecular Pathology of Schizophrenia. Int J Mol Sci 2017; 18:ijms18040790. [PMID: 28387726 PMCID: PMC5412374 DOI: 10.3390/ijms18040790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/23/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022] Open
Abstract
Schizophrenia is a complex mental disorder whose causes are still far from being known. Although researchers have focused on genetic or environmental contributions to the disease, we still lack a scientific framework that joins molecular and clinical findings. Epigenetic can explain how environmental variables may affect gene expression without modifying the DNA sequence. In fact, neuroepigenomics represents an effort to unify the research available on the molecular pathology of mental diseases, which has been carried out through several approaches ranging from interrogating single DNA methylation events and hydroxymethylation patterns, to epigenome-wide association studies, as well as studying post-translational modifications of histones, or nucleosomal positioning. The high dependence on tissues with epigenetic marks compels scientists to refine their sampling procedures, and in this review, we will focus on findings obtained from brain tissue. Despite our efforts, we still need to refine our hypothesis generation process to obtain real knowledge from a neuroepigenomic framework, to avoid the creation of more noise on this innovative point of view; this may help us to definitively unravel the molecular pathology of severe mental illnesses, such as schizophrenia.
Collapse
|
44
|
Trantham-Davidson H, Centanni SW, Garr SC, New NN, Mulholland PJ, Gass JT, Glover EJ, Floresco SB, Crews FT, Krishnan HR, Pandey SC, Chandler LJ. Binge-Like Alcohol Exposure During Adolescence Disrupts Dopaminergic Neurotransmission in the Adult Prelimbic Cortex. Neuropsychopharmacology 2017; 42:1024-1036. [PMID: 27620551 PMCID: PMC5506791 DOI: 10.1038/npp.2016.190] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/05/2016] [Accepted: 09/07/2016] [Indexed: 11/28/2022]
Abstract
Repeated binge-like exposure to alcohol during adolescence has been reported to perturb prefrontal cortical development, yet the mechanisms underlying these effects are unknown. Here we report that adolescent intermittent ethanol exposure induces cellular and dopaminergic abnormalities in the adult prelimbic cortex (PrL-C). Exposing rats to alcohol during early-mid adolescence (PD28-42) increased the density of long/thin dendritic spines of layer 5 pyramidal neurons in the adult PrL-C. Interestingly, although AIE exposure did not alter the expression of glutamatergic proteins in the adult PrL-C, there was a pronounced reduction in dopamine (DA) D1 receptor modulation of both intrinsic firing and evoked NMDA currents in pyramidal cells, whereas D2 receptor function was unaltered. Recordings from fast-spiking interneurons also revealed that AIE reduced intrinsic excitability, glutamatergic signaling, and D1 receptor modulation of these cells. Analysis of PrL-C tissue of AIE-exposed rats further revealed persistent changes in the expression of DA-related proteins, including reductions in the expression of tyrosine hydroxylase and catechol-O-methyltransferase (COMT). AIE exposure was associated with hypermethylation of the COMT promoter at a conserved CpG site in exon II. Taken together, these findings demonstrate that AIE exposure disrupts DA and GABAergic transmission in the adult medial prefrontal cortex (mPFC). As DA and GABA work in concert to shape and synchronize neuronal ensembles in the PFC, these alterations could contribute to deficits in behavioral control and decision-making in adults who abused alcohol during adolescence.
Collapse
Affiliation(s)
| | - Samuel W Centanni
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - S Corrin Garr
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Natasha N New
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Justin T Gass
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth J Glover
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Stan B Floresco
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Harish R Krishnan
- Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Subhash C Pandey
- Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
45
|
Calhoun VD. Predicting schizophrenia by fusing networks from SNPs, DNA methylation and fMRI data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:1447-1450. [PMID: 28268598 DOI: 10.1109/embc.2016.7590981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In order to comprehensively utilize complementary information from multiple types of data for better disease diagnosis, in this study, we applied a network fusion based approach to integrating three types of data including genetic, epigenetic and neuroimaging data from a study of schizophrenia patients (SCZ). A network is a map of interactions, which contributes to investigating the connectivity of components or links between sub-units. We exploited the potential of using networks as features for discriminating SCZ from healthy controls. We first constructed a single network from each type of data. Then we built four fused networks by the network fusion method: three fused networks for each combination of two types of data and one fused network for all three data types. Based on the local consistency of network, we can predict the group of the unlabeled SCZ subjects. The group prediction method was applied to test the power of network-based features and the performance was evaluated by a 10-fold cross validation. The results show that the prediction accuracy is the highest when applying our prediction method to the fused network derived from three data types among 7 tested networks. As a conclusion, integrative approaches that can comprehensively utilize multiple types of data are more useful for diagnosis and prediction.
Collapse
|
46
|
Alural B, Genc S, Haggarty SJ. Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: Past, present, and future. Prog Neuropsychopharmacol Biol Psychiatry 2017; 73:87-103. [PMID: 27072377 PMCID: PMC5292013 DOI: 10.1016/j.pnpbp.2016.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
Abstract
Neuropsychiatric disorders are common health problems affecting approximately 1% of the population. Twin, adoption, and family studies have displayed a strong genetic component for many of these disorders; however, the underlying pathophysiological mechanisms and neural substrates remain largely unknown. Given the critical need for new diagnostic markers and disease-modifying treatments, expanding the focus of genomic studies of neuropsychiatric disorders to include the role of non-coding RNAs (ncRNAs) is of growing interest. Of known types of ncRNAs, microRNAs (miRNAs) are 20-25-nucleotide, single-stranded, molecules that regulate gene expression through post-transcriptional mechanisms and have the potential to coordinately regulate complex regulatory networks. In this review, we summarize the current knowledge on miRNA alteration/dysregulation in neuropsychiatric disorders, with a special emphasis on schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). With an eye toward the future, we also discuss the diagnostic and prognostic potential of miRNAs for neuropsychiatric disorders in the context of personalized treatments and network medicine.
Collapse
Affiliation(s)
- Begum Alural
- Department of Neuroscience, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Department of Neuroscience, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey
| | - Stephen J Haggarty
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
47
|
Qi XL, Xuan JF, Xing JX, Wang BJ, Yao J. No association between dopamine D3 receptor gene Ser9Gly polymorphism (rs6280) and risk of schizophrenia: an updated meta-analysis. Neuropsychiatr Dis Treat 2017; 13:2855-2865. [PMID: 29200860 PMCID: PMC5703163 DOI: 10.2147/ndt.s152784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Ser9Gly (rs6280) is a functional single-nucleotide polymorphism (SNP) in the dopamine receptor D3 (DRD3) gene that may be associated with schizophrenia. We performed a meta-analysis to determine whether Ser9Gly influences the risk of schizophrenia and examined the relationship between the Ser9Gly SNP and the etiology of schizophrenia. METHODS Case-control studies were retrieved from literature databases in accordance with established inclusion criteria. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association between Ser9Gly and schizophrenia. Subgroup analysis and sensitivity analysis were also performed. RESULTS Seventy-three studies comprising 10,634 patients with schizophrenia (cases) and 11,258 controls were included in this meta-analysis. Summary results indicated no association between Ser9Gly and risk of schizophrenia. In the dominant genetic model, the pooled OR using a random effects model was 0.950 (95% CI, 0.847-1.064; P=0.374). CONCLUSION Results of this meta-analysis suggest that the Ser9Gly SNP is not associated with schizophrenia. These data provide possible avenues for future case-control studies related to schizophrenia.
Collapse
Affiliation(s)
- Xing-Ling Qi
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
48
|
Alfimova MV, Kondratiev NV, Golimbet VE. Results and promises of genetics of cognitive impairment in schizophrenia: epigenetic approaches. Zh Nevrol Psikhiatr Im S S Korsakova 2017. [DOI: 10.17116/jnevro201711721130-135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Howard TD, Hsu FC, Chen H, Quandt SA, Talton JW, Summers P, Arcury TA. Changes in DNA methylation over the growing season differ between North Carolina farmworkers and non-farmworkers. Int Arch Occup Environ Health 2016; 89:1103-10. [PMID: 27349971 DOI: 10.1007/s00420-016-1148-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/20/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE The occupational risk to farmworkers, particularly chronic exposure to pesticides, is an acknowledged environmental and work-related health problem. Epigenetics has recently been shown to contribute to a number of complex diseases and traits, including measures of cognitive function and preclinical neurodegenerative disease. We sought to determine whether changes in DNA methylation existed between farmworker and non-farmworker populations and to identify the genes most likely involved in those changes. METHODS Eighty-three farmworkers and 60 non-farmworkers were selected from PACE4, a community-based, participatory research project comparing occupational exposures between immigrant Latino farmworker and non-farmworker manual workers. Measurements of DNA methylation were performed with the Infinium HumanMethylation450 BeadChip, at the beginning and end of the 2012 growing season. Bonferroni adjustment was used to identify significant findings (p = 1.03 × 10(-7), based on 485,000 tested methylation sites), although less stringent criteria (i.e., p ≤ 1 × 10(-6)) were used to identify sites of interest. Expression quantitative trait locus (eQTL) databases were used to help identify the most likely functional genes for each associated methylation site. RESULTS Methylation at 36 CpG sites, located in or near 72 genes, differed between the two groups (p ≤ 1 × 10(-6)). The difference between the two groups was generally due to an increase in methylation in the farmworkers and a slight decrease in methylation in the non-farmworkers. Enrichment was observed in several biological pathways, including those involved in the immune response, as well as growth hormone signaling, role of BRCA1 in DNA damage response, p70S6K signaling, and PI3K signaling in B lymphocytes. CONCLUSIONS We identified considerable changes in DNA methylation at 36 CpG sites over the growing season that differed between farmworkers and non-farmworkers. Dominant pathways included immune-related (HLA) processes, as well as a number of diverse biological systems. Further studies are necessary to determine which exposures or behaviors are responsible for the observed changes, and whether these changes eventually lead to disease-related phenotypes in this population.
Collapse
Affiliation(s)
- Timothy D Howard
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Haiying Chen
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Sara A Quandt
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Jennifer W Talton
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Phillip Summers
- Department of Family and Community Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Thomas A Arcury
- Department of Family and Community Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| |
Collapse
|
50
|
Sutcliffe G, Harneit A, Tost H, Meyer-Lindenberg A. Neuroimaging Intermediate Phenotypes of Executive Control Dysfunction in Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:218-229. [DOI: 10.1016/j.bpsc.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 01/10/2023]
|