1
|
Bellomo C, Furone F, Rotondo R, Ciscognetti I, Carpinelli M, Nicoletti M, D'Aniello G, Sepe L, Barone MV, Nanayakkara M. Role of Protein Tyrosine Phosphatases in Inflammatory Bowel Disease, Celiac Disease and Diabetes: Focus on the Intestinal Mucosa. Cells 2024; 13:1981. [PMID: 39682729 DOI: 10.3390/cells13231981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) are a family of enzymes essential for numerous cellular processes, such as cell growth, inflammation, differentiation, immune-mediated responses and oncogenic transformation. The aim of this review is to review the literature concerning the role of several PTPs-PTPN22, PTPN2, PTPN6, PTPN11, PTPσ, DUSP2, DUSP6 and PTPRK-at the level of the intestinal mucosa in inflammatory bowel disease (IBD), celiac disease (CeD) and type 1 diabetes (T1D) in both in vitro and in vivo models. The results revealed shared features, at the level of the intestinal mucosa, between these diseases characterized by alterations of different biological processes, such as proliferation, autoimmunity, cell death, autophagy and inflammation. PTPs are now actively studied to develop new drugs. Also considering the availability of organoids as models to test new drugs in personalized ways, it is very likely that soon these proteins will be the targets of useful drugs.
Collapse
Affiliation(s)
- Claudia Bellomo
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Francesca Furone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Roberta Rotondo
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Ilaria Ciscognetti
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Carpinelli
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Nicoletti
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Genoveffa D'Aniello
- ELFID (European Laboratory for the Investigation of Food-Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
- ELFID (European Laboratory for the Investigation of Food-Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | |
Collapse
|
2
|
Patil RS, Kovacs-Kasa A, Gorshkov BA, Fulton DJR, Su Y, Batori RK, Verin AD. Serine/Threonine Protein Phosphatases 1 and 2A in Lung Endothelial Barrier Regulation. Biomedicines 2023; 11:1638. [PMID: 37371733 PMCID: PMC10296329 DOI: 10.3390/biomedicines11061638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular barrier dysfunction is characterized by increased permeability and inflammation of endothelial cells (ECs), which are prominent features of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis, and a major complication of the SARS-CoV-2 infection and COVID-19. Functional impairment of the EC barrier and accompanying inflammation arises due to microbial toxins and from white blood cells of the lung as part of a defensive action against pathogens, ischemia-reperfusion or blood product transfusions, and aspiration syndromes-based injury. A loss of barrier function results in the excessive movement of fluid and macromolecules from the vasculature into the interstitium and alveolae resulting in pulmonary edema and collapse of the architecture and function of the lungs, and eventually culminates in respiratory failure. Therefore, EC barrier integrity, which is heavily dependent on cytoskeletal elements (mainly actin filaments, microtubules (MTs), cell-matrix focal adhesions, and intercellular junctions) to maintain cellular contacts, is a critical requirement for the preservation of lung function. EC cytoskeletal remodeling is regulated, at least in part, by Ser/Thr phosphorylation/dephosphorylation of key cytoskeletal proteins. While a large body of literature describes the role of phosphorylation of cytoskeletal proteins on Ser/Thr residues in the context of EC barrier regulation, the role of Ser/Thr dephosphorylation catalyzed by Ser/Thr protein phosphatases (PPases) in EC barrier regulation is less documented. Ser/Thr PPases have been proposed to act as a counter-regulatory mechanism that preserves the EC barrier and opposes EC contraction. Despite the importance of PPases, our knowledge of the catalytic and regulatory subunits involved, as well as their cellular targets, is limited and under-appreciated. Therefore, the goal of this review is to discuss the role of Ser/Thr PPases in the regulation of lung EC cytoskeleton and permeability with special emphasis on the role of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) as major mammalian Ser/Thr PPases. Importantly, we integrate the role of PPases with the structural dynamics of the cytoskeleton and signaling cascades that regulate endothelial cell permeability and inflammation.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Boris A. Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Souza JB, Tsantarlis K, Tonelli RR. Oxygen-dependent regulation of permeability in low resistance intestinal epithelial cells infected with Giardia lamblia. Exp Parasitol 2022; 240:108329. [PMID: 35868574 DOI: 10.1016/j.exppara.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Intestinal epithelial cells (IECs) reside in a highly anaerobic environment that is subject to daily fluctuations in partial oxygen pressure (pO2), depending on intestinal tissue perfusion. This condition, known as physiological hypoxia, has a major impact on the maintenance of gut homeostasis, such as effects on the integrity and function of the intestinal epithelial barrier. Giardia lamblia is a microaerophilic protozoan parasite that infects and colonizes the small intestine of its host, causing watery diarrhea. The disease, known as giardiasis, is associated with enhanced intestinal permeability and disruption or reorganization of tight junction (TJ) proteins between IECs. Given the central role of oxygen in gut homeostasis, in this study, we aimed to evaluate whether pO2 affects intestinal permeability (flux of ions and macromolecules) and TJ protein expression in human IECs during G. lamblia infection. Using human cell lines HuTu-80 and Caco-2 as models of "loose" (low resistance) and "tight" (high resistance) intestines, respectively, we elucidated that low pO2 drives intestinal barrier dysfunction in IECs infected with trophozoites through dephosphorylation of protein kinase C (PKC α/β II). Additionally, we demonstrated that IECs infected with trophozoites in the presence of a pharmacological PKC activator (phorbol 12-myristate 13-acetate) partially restored the barrier function, which was correlated with increased protein expression levels of zonula occludens (ZO)-2 and occludin. Collectively, these results support the emerging theory that molecular oxygen impacts gut homeostasis during Giardia infection via direct host signaling pathways. These findings further our knowledge regarding Giardia-host interactions and the pathophysiological mechanisms of human giardiasis.
Collapse
Affiliation(s)
- Juliana Bizarri Souza
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, 04023-062, São Paulo, SP, Brazil
| | - Katherine Tsantarlis
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, 04023-062, São Paulo, SP, Brazil
| | - Renata Rosito Tonelli
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, 04023-062, São Paulo, SP, Brazil; Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, 09913-030, Diadema, SP, Brazil.
| |
Collapse
|
4
|
Martinez C, Maschio DA, de Fontes CC, Vanzela EC, Benfato ID, Gazarini ML, Carneiro EM, de Oliveira CA, Collares-Buzato CB, de F. Carvalho CP. EARLY DECREASE IN CX36 IS ASSOCIATED WITH INCREASED CELL ADHESION MOLECULES (CAMs) JUNCTIONAL CONTENT IN MOUSE PANCREATIC ISLETS AFTER SHORT-TERM HIGH-FAT DIET FEEDING. Ann Anat 2022; 241:151891. [DOI: 10.1016/j.aanat.2022.151891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
|
5
|
Chang CS, Liao YC, Huang CT, Lin CM, Cheung CHY, Ruan JW, Yu WH, Tsai YT, Lin IJ, Huang CH, Liou JS, Chou YH, Chien HJ, Chuang HL, Juan HF, Huang HC, Chan HL, Liao YC, Tang SC, Su YW, Tan TH, Bäumler AJ, Kao CY. Identification of a gut microbiota member that ameliorates DSS-induced colitis in intestinal barrier enhanced Dusp6-deficient mice. Cell Rep 2021; 37:110016. [PMID: 34818535 DOI: 10.1016/j.celrep.2021.110016] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Strengthening the gut epithelial barrier is a potential strategy for management of gut microbiota-associated illnesses. Here, we demonstrate that dual-specificity phosphatase 6 (Dusp6) knockout enhances baseline colon barrier integrity and ameliorates dextran sulfate sodium (DSS)-induced colonic injury. DUSP6 mutation in Caco-2 cells enhances the epithelial feature and increases mitochondrial oxygen consumption, accompanied by altered glucose metabolism and decreased glycolysis. We find that Dusp6-knockout mice are more resistant to DSS-induced dysbiosis, and the cohousing and fecal microbiota transplantation experiments show that the gut/fecal microbiota derived from Dusp6-knockout mice also confers protection against colitis. Further culturomics and mono-colonialization experiments show that one gut microbiota member in the genus Duncaniella confers host protection from DSS-induced injury. We identify Dusp6 deficiency as beneficial for shaping the gut microbiota eubiosis necessary to protect against gut barrier-related diseases.
Collapse
Affiliation(s)
- Cherng-Shyang Chang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yi-Chu Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chih-Ting Huang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chiao-Mei Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | | | - Jhen-Wei Ruan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wen-Hsuan Yu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ting Tsai
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - I-Jung Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 30062, Taiwan
| | - Jong-Shian Liou
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 30062, Taiwan
| | - Ya-Hsien Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 11571, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan; Center for Computational and Systems Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology and Department of Medical Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Shiue-Cheng Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Cheng-Yuan Kao
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan; Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
6
|
Marchelletta RR, Krishnan M, Spalinger MR, Placone TW, Alvarez R, Sayoc-Becerra A, Canale V, Shawki A, Park YS, Bernts LH, Myers S, Tremblay ML, Barrett KE, Krystofiak E, Kachar B, McGovern DP, Weber CR, Hanson EM, Eckmann L, McCole DF. T cell protein tyrosine phosphatase protects intestinal barrier function by restricting epithelial tight junction remodeling. J Clin Invest 2021; 131:138230. [PMID: 34623320 DOI: 10.1172/jci138230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies revealed that loss-of-function mutations in protein tyrosine phosphatase non-receptor type 2 (PTPN2) increase the risk of developing chronic immune diseases, such as inflammatory bowel disease (IBD) and celiac disease. These conditions are associated with increased intestinal permeability as an early etiological event. The aim of this study was to examine the consequences of deficient activity of the PTPN2 gene product, T cell protein tyrosine phosphatase (TCPTP), on intestinal barrier function and tight junction organization in vivo and in vitro. Here, we demonstrate that TCPTP protected against intestinal barrier dysfunction induced by the inflammatory cytokine IFN-γ by 2 mechanisms: it maintained localization of zonula occludens 1 and occludin at apical tight junctions and restricted both expression and insertion of the cation pore-forming transmembrane protein, claudin-2, at tight junctions through upregulation of the inhibitory cysteine protease, matriptase. We also confirmed that the loss-of-function PTPN2 rs1893217 SNP was associated with increased intestinal claudin-2 expression in patients with IBD. Moreover, elevated claudin-2 levels and paracellular electrolyte flux in TCPTP-deficient intestinal epithelial cells were normalized by recombinant matriptase. Our findings uncover distinct and critical roles for epithelial TCPTP in preserving intestinal barrier integrity, thereby proposing a mechanism by which PTPN2 mutations contribute to IBD.
Collapse
Affiliation(s)
- Ronald R Marchelletta
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Moorthy Krishnan
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Marianne R Spalinger
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Taylaur W Placone
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Rocio Alvarez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Vinicius Canale
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Ali Shawki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Young Su Park
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lucas Hp Bernts
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Stephen Myers
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Michel L Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Kim E Barrett
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Evan Krystofiak
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Bechara Kachar
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Dermot Pb McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Elaine M Hanson
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lars Eckmann
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
7
|
Király N, Csortos C, Boratkó A. Ser69 phosphorylation of TIMAP affects endothelial cell migration. Exp Lung Res 2021; 47:334-343. [PMID: 34343028 DOI: 10.1080/01902148.2021.1960651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE/AIM TIMAP (TGF-β-inhibited membrane-associated protein) is a regulatory subunit of protein phosphatase 1 (PP1). The N-terminal region contains a binding motif for the catalytic subunit of PP1 (PP1c) and a nuclear localization signal (NLS). Phosphorylation of TIMAP on Ser331, Ser333 and Ser337 side chains was shown to regulate the activity of the TIMAP-PP1c complex. Several studies, however, reported an additional side chain of TIMAP. Ser69 is located near to the PP1c binding motif and NLS, therefore, we hypothesized that the phosphorylation of this side chain perhaps may regulate the interaction between TIMAP and PP1c, or may affect the nuclear transport of TIMAP. Materials and Methods: To study the significance of Ser69 phosphorylation, GST-tagged or c-myc-tagged wild type, phosphomimic S69D and phosphonull S69A recombinant TIMAP proteins were expressed in bacteria or endothelial cells, respectively. Protein-protein interactions of the wild type or mutant forms of TIMAP were studied by pull-down and Western blot. Localization of TIMAP S69 mutants in pulmonary artery endothelial cells was detected by immunofluorescent staining and expression and localization of the recombinants were investigated by subcellular fractionation and Western blot. Results: Modifications of Ser69 of TIMAP had no effect on binding of PP1c, ERM or RACK1. However, S69D TIMAP showed enhanced membrane localization and an increased number of membrane protrusions were observed in the cells overexpressing this phosphomimic mutant. Furthermore, significantly faster wound healing and migration rate of the S69D mutant overexpressing cells were detected by endothelial barrier resistance measurements (ECIS). Specific interaction was shown between TIMAP and polo-like kinase 4 (PLK4), a potential kinase to phosphorylate Ser69. Conclusions: Altogether, our results indicate that Ser69 phosphorylation by PLK4 may evoke an enrichment of TIMAP in the plasma membrane region and may play an important role in endothelial cell migration without affecting the PP1c binding ability of TIMAP.
Collapse
Affiliation(s)
- Nikolett Király
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csilla Csortos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Owari T, Sasaki T, Fujii K, Fujiwara-Tani R, Kishi S, Mori S, Mori T, Goto K, Kawahara I, Nakai Y, Miyake M, Luo Y, Tanaka N, Kondoh M, Fujimoto K, Kuniyasu H. Role of Nuclear Claudin-4 in Renal Cell Carcinoma. Int J Mol Sci 2020; 21:ijms21218340. [PMID: 33172177 PMCID: PMC7664319 DOI: 10.3390/ijms21218340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
Claudin-4 (CLDN4) is a tight junction protein to maintain the cancer microenvironment. We recently reported the role of the CLDN4 not forming tight junction in the induction of epithelial-mesenchymal transition (EMT). Herein, we investigated the role of CLDN4 in renal cell carcinoma (RCC), focusing on CLDN4. CLDN4 expression in 202 RCCs was examined by immunostaining. CLDN4 phosphorylation and subcellular localization were examined using high metastatic human RCC SN12L1 and low metastatic SN12C cell lines. In 202 RCC cases, the CLDN4 expression decreased in the cell membrane and had no correlation with clinicopathological factors. However, CLDN4 was localized in the nucleus in 5 cases (2%), all of which were pT3. Contrastingly, only 6 of 198 nuclear CLDN4-negative cases were pT3. CLDN4 was found in the nuclear fraction of a highly metastatic human RCC cell line, SN12L1, but not in the low metastatic SN12C cells. In SN12L1 cells, phosphorylation of tyrosine and serine residues was observed in cytoplasmic CLDN4, but not in membranous CLDN4. In contrast, phosphorylation of serine residues was observed in nuclear CLDN4. In SN12L1 cells, CLDN4 tyrosine phosphorylation by EphA2/Ephrin A1 resulted in the release of CLDN4 from tight junction and cytoplasmic translocation. Furthermore, protein kinase C (PKC)-ε phosphorylated the CLDN4 serine residue, resulting in nuclear import. Contrarily, in SN12C cells that showed decreased expression of EphA2/Ephrin A1 and PKCε, the activation of EphA2/EphrinA1 and PKCε induced cytoplasmic and nuclear translocation of CLDN4, respectively. Furthermore, the nuclear translocation of CLDN4 promoted the nuclear translocation of Yes-associated protein (YAP) bound to CLDN4, which induced the EMT phenotype. These findings suggest that the release of CLDN4 by impaired tight junction might be a mechanism underlying the malignant properties of RCC. These findings suggest that the release of CLDN4 by impaired tight junction might be one of the mechanisms of malignant properties of RCC.
Collapse
Affiliation(s)
- Takuya Owari
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
| | - Makito Miyake
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 6-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (Y.N.); (M.M.); (N.T.)
- Correspondence: (K.F.); (H.K.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.O.); (T.S.); (K.F.); (R.F.-T.); (S.K.); (S.M.); (T.M.); (K.G.); (I.K.); (Y.L.)
- Correspondence: (K.F.); (H.K.)
| |
Collapse
|
9
|
Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019; 9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We now have an increased understanding of the genetics, cell biology, and physiology of electrolyte transport processes in the mammalian intestine, due to the availability of sophisticated methodologies ranging from genome wide association studies to CRISPR-CAS technology, stem cell-derived organoids, 3D microscopy, electron cryomicroscopy, single cell RNA sequencing, transgenic methodologies, and tools to manipulate cellular processes at a molecular level. This knowledge has simultaneously underscored the complexity of biological systems and the interdependence of multiple regulatory systems. In addition to the plethora of mammalian neurohumoral factors and their cross talk, advances in pyrosequencing and metagenomic analyses have highlighted the relevance of the microbiome to intestinal regulation. This article provides an overview of our current understanding of electrolyte transport processes in the small and large intestine, their regulation in health and how dysregulation at multiple levels can result in disease. Intestinal electrolyte transport is a balance of ion secretory and ion absorptive processes, all exquisitely dependent on the basolateral Na+ /K+ ATPase; when this balance goes awry, it can result in diarrhea or in constipation. The key transporters involved in secretion are the apical membrane Cl- channels and the basolateral Na+ -K+ -2Cl- cotransporter, NKCC1 and K+ channels. Absorption chiefly involves apical membrane Na+ /H+ exchangers and Cl- /HCO3 - exchangers in the small intestine and proximal colon and Na+ channels in the distal colon. Key examples of our current understanding of infectious, inflammatory, and genetic diarrheal diseases and of constipation are provided. © 2019 American Physiological Society. Compr Physiol 9:947-1023, 2019.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Cooperative Interactions between Trichomonas vaginalis and Associated Bacteria Enhance Paracellular Permeability of the Cervicovaginal Epithelium by Dysregulating Tight Junctions. Infect Immun 2019; 87:IAI.00141-19. [PMID: 30858343 DOI: 10.1128/iai.00141-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
The human protozoan Trichomonas vaginalis is the causative agent of trichomoniasis, a prevalent sexually transmitted infection, which is accompanied by a species-diversified vaginal microbiota named community state type IV (CST-IV). Coincidently, CST-IV includes species associated with bacterial vaginosis (e.g. Gardnerella vaginalis, Atopobium vaginae, and Prevotella bivia). Both diseases are linked to the transmission of human immunodeficiency virus (HIV) and preterm birth, which complications are likely to result from the disruption of the cervicovaginal epithelial barrier. Here, we show that paracellular permeability of fluorescein isothiocyanate (FITC)-dextran through a monolayer of human ectocervical cells (hECs) is increased as a consequence of the activity of T. vaginalis and the aforementioned species of CST-IV bacteria cooperatively. T. vaginalis enhances paracellular permeability of hECs two times more than the individual bacterial species, by up to ∼10% versus ∼5%, respectively. However, any two or all three bacterial species are capable of synergizing this effect. T. vaginalis and the bacteria together increase the paracellular permeability of hECs by ∼50%, which is 5 to 10 times more than the results seen with the protozoan or bacteria alone. This effect is accompanied by enhancement of phosphatase activity, while phosphatase inhibition results in preservation of the integrity of the ectocervical cell monolayer. In addition, these microorganisms induce changes in the expression of tight junction proteins, particularly occludin, and of proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Together, our findings establish that cooperative interactions between CST-IV bacteria and T. vaginalis enhance the paracellular permeability of the cervicovaginal epithelium by disturbing the integrity of the tight junction complex. Our study results highlight the importance of understanding the contribution of the vaginal microbiota to trichomoniasis.
Collapse
|
11
|
Pan Y, Liu Y, Wang L, Xue F, Hu Y, Hu R, Xu C. MKP-1 attenuates LPS-induced blood-testis barrier dysfunction and inflammatory response through p38 and IκBα pathways. Oncotarget 2018; 7:84907-84923. [PMID: 27783995 PMCID: PMC5356708 DOI: 10.18632/oncotarget.12823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/04/2016] [Indexed: 01/14/2023] Open
Abstract
Sertoli cells create a local tolerogenic microenvironment to maintain testicular immune privilege especially through the formation of a blood-testis barrier (BTB). However, the molecular mechanisms underlying the immune modulation function and BTB dynamics of Sertoli cells remained elusive. MAP phosphatase (MKP)-1 acts as a crucial negative regulator of the inflammatory response. Nevertheless, the role of MKP-1 in regulating Sertoli cells has not been elucidated. In this study, we have for the first time uncovered distinct cellular localization of MKP-1 in the cells at different stages of mouse testis, and the level of MKP-1 expression was significantly up-regulated by LPS-induced acute testis inflammation. In addition, MKP-1 staining was strongly detected in nuclei and peri-nuclear regions of cytoplasm in the Sertoli cells, and it was presented at Sertoli cell tight junctions (TJs) at stages VII-VIII after LPS treatment. Moreover, we demonstrated that MKP-1 was capable of attenuating LPS-induced decrease of occludin by interaction with p38 MAP kinase and IκBα molecules. Taken together, our data highlight that MKP-1 was an important endogenous suppressor of innate immune responses involved in the regulation of BTB barrier dynamic. This study thus might offer novel targets for treating inflammatory diseases in the testis.
Collapse
Affiliation(s)
- Yiqing Pan
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Yue Liu
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Feng Xue
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China.,Laboratory of Dermatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanqin Hu
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Ran Hu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chen Xu
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
12
|
Golovkine G, Reboud E, Huber P. Pseudomonas aeruginosa Takes a Multi-Target Approach to Achieve Junction Breach. Front Cell Infect Microbiol 2018; 7:532. [PMID: 29379773 PMCID: PMC5770805 DOI: 10.3389/fcimb.2017.00532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which uses a number of strategies to cross epithelial and endothelial barriers at cell–cell junctions. In this review, we describe how the coordinated actions of P. aeruginosa's virulence factors trigger various molecular mechanisms to disarm the junctional gate responsible for tissue integrity.
Collapse
Affiliation(s)
- Guillaume Golovkine
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| | - Emeline Reboud
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| | - Philippe Huber
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
13
|
Overexpression of phosphoprotein phosphatase 2A predicts worse prognosis in patients with breast cancer: a 15-year follow-up. Hum Pathol 2017; 66:93-100. [PMID: 28603063 DOI: 10.1016/j.humpath.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022]
Abstract
Breast cancer subtypes can be stratified by IHC expression of estrogen receptor, progesterone receptor, and human epidermal growth factor 2 (HER2). The signaling pathways mediated by these receptors are the dominant drivers of cell proliferation and survival in most human breast cancers. One of the most frequently overactivated pathways in breast cancer is the AKT signaling cascade. Protein phosphatase 2A (PP2A) acts as a switch to turn off signal transduction in the AKT pathway; however, it is frequently inactivated in many cancers by phosphorylation of Tyr-307 to form phosphoprotein phosphatase 2A (p-PP2A). This study aimed to investigate the clinical significance of p-PP2A and phospho-AKT (p-AKT) expression in 672 patients with breast cancer during a 15-year follow-up. The breast tissue microarray was evaluated for p-PP2A and p-AKT expression using IHC staining and scores. Analysis of IHC staining results revealed that p-PP2A expression was positively correlated with HER2, Ki-67, and p-AKT overexpression (P<.001, P=.003, and P=.001, respectively). At the time of diagnosis, breast cancer patients with higher p-PP2A expression had significantly shorter 15-year OS than patients with lower p-PP2A expression did (P=.017). Multivariate Cox regression analysis revealed that high p-PP2A expression was an independent prognostic factor for shorter OS (hazard ratio, 1.741; P=.012). Our data revealed that high p-PP2A expression is positively associated with HER2, Ki-67, and p-AKT expression. High p-PP2A expression correlates with poor clinical outcomes in breast cancer, especially in patients with TNBC.
Collapse
|
14
|
Corti F, Simons M. Modulation of VEGF receptor 2 signaling by protein phosphatases. Pharmacol Res 2017; 115:107-123. [PMID: 27888154 PMCID: PMC5205541 DOI: 10.1016/j.phrs.2016.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
Phosphorylation of serines, threonines, and tyrosines is a central event in signal transduction cascades in eukaryotic cells. The phosphorylation state of any particular protein reflects a balance of activity between kinases and phosphatases. Kinase biology has been exhaustively studied and is reasonably well understood, however, much less is known about phosphatases. A large body of evidence now shows that protein phosphatases do not behave as indiscriminate signal terminators, but can function both as negative or positive regulators of specific signaling pathways. Genetic models have also shown that different protein phosphatases play precise biological roles in health and disease. Finally, genome sequencing has unveiled the existence of many protein phosphatases and associated regulatory subunits comparable in number to kinases. A wide variety of roles for protein phosphatase roles have been recently described in the context of cancer, diabetes, hereditary disorders and other diseases. In particular, there have been several recent advances in our understanding of phosphatases involved in regulation of vascular endothelial growth factor receptor 2 (VEGFR2) signaling. The receptor is the principal signaling molecule mediating a wide spectrum of VEGF signal and, thus, is of paramount significance in a wide variety of diseases ranging from cancer to cardiovascular to ophthalmic. This review focuses on the current knowledge about protein phosphatases' regulation of VEGFR2 signaling and how these enzymes can modulate its biological effects.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Mruk DD, Bonanomi M, Silvestrini B. Lonidamine-ethyl ester-mediated remodelling of the Sertoli cell cytoskeleton induces phosphorylation of plakoglobin and promotes its interaction with α-catenin at the blood–testis barrier. Reprod Fertil Dev 2017; 29:998-1011. [DOI: 10.1071/rd15378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 01/27/2016] [Indexed: 12/22/2022] Open
Abstract
Several compounds affect male fertility by disrupting the adhesion of germ cells to Sertoli cells, which results in the release of undeveloped germ cells into the seminiferous tubule lumen that are incapable of fertilising the ovum. Indazole carboxylic acids are one class of compounds exhibiting such effects and they have been investigated as non-hormonal contraceptives for potential human use. The aims of this study were to investigate the effects of lonidamine-ethyl ester, an indazole carboxylic acid, on spermatogenesis and cell junctions, in particular, desmosomes. We found two doses of lonidamine-ethyl ester at 50 mg kg–1 to disrupt Sertoli–germ cell adhesion. By light and fluorescent microscopy, pronounced changes were observed in the distribution of actin microfilaments and intermediate filaments, as well as in the localisation of plakoglobin, a protein with structural and signalling roles at the desmosome and adherens junction at the blood–testis barrier. Furthermore, immunoblotting and immunoprecipitation experiments using testis lysates revealed a significant upregulation (P < 0.01) of plakoglobin and Tyr-phosphorylated plakoglobin. Co-immunoprecipitation experiments showed an increase in the interaction between plakoglobin and fyn proto-oncogene, an Src family non-receptor tyrosine kinase, after treatment, as well as an increase in the interaction between plakoglobin and α-catenin. Taken collectively, these data indicate that a disruption of Sertoli cell and spermatocyte–spermatid adhesion in the seminiferous epithelium by lonidamine-ethyl ester results in the phosphorylation of plakoglobin, thereby promoting its interaction with α-catenin at the blood–testis barrier.
Collapse
|
16
|
VSL#3 Probiotic Stimulates T-cell Protein Tyrosine Phosphatase-mediated Recovery of IFN-γ-induced Intestinal Epithelial Barrier Defects. Inflamm Bowel Dis 2016; 22:2811-2823. [PMID: 27824650 PMCID: PMC5779620 DOI: 10.1097/mib.0000000000000954] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND VSL#3 is a probiotic compound that has been used in the treatment of inflammatory bowel disease. T-cell protein tyrosine phosphatase (TCPTP) is the protein product of the inflammatory bowel disease candidate gene, PTPN2, and we have previously shown that it protects epithelial barrier function. The aim of this study was to investigate whether VSL#3 improves intestinal epithelial barrier function against the effects of the inflammatory bowel disease-associated proinflammatory cytokine, interferon-gamma (IFN-γ) through activation of TCPTP. METHODS Polarized monolayers of T84 intestinal epithelial cells were treated with increasing concentrations of VSL#3 to determine effects on TCPTP expression and enzymatic activity. Therapeutic effects of VSL#3 against barrier disruption by IFN-γ were measured by transepithelial electrical resistance and fluorescein isothiocyanate-dextran permeability. A novel TCPTP-deficient HT-29 intestinal epithelial cell line was generated to study the role of TCPTP in mediating the effects of VSL#3. Tight junction protein distribution was assessed with confocal microscopy. RESULTS VSL#3 increased TCPTP protein levels and enzymatic activity, correlating with a VSL#3-induced decrease in IFN-γ signaling. VSL#3 corrected the decrease in transepithelial electrical resistance and the increase in epithelial permeability induced by IFN-γ. Moreover, the restorative effect of VSL#3 against IFN-γ signaling, epithelial permeability defects, altered expression and localization of the tight junction proteins claudin-2, occludin, and zonula occludens-1, were not realized in stable TCPTP/(PTPN2)-deficient HT-29 intestinal epithelial cells. CONCLUSIONS VSL#3 reduces IFN-γ signaling and IFN-γ-induced epithelial barrier defects in a TCPTP-dependent manner. These data point to a key role for TCPTP as a therapeutic target for restoration of barrier function using probiotics.
Collapse
|
17
|
Luissint AC, Parkos CA, Nusrat A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology 2016; 151:616-32. [PMID: 27436072 PMCID: PMC5317033 DOI: 10.1053/j.gastro.2016.07.008] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte-epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation.
Collapse
Affiliation(s)
- Anny-Claude Luissint
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
18
|
Huang L, Deng M, He Y, Lu S, Ma R, Fang Y. β-asarone and levodopa co-administration increase striatal dopamine level in 6-hydroxydopamine induced rats by modulating P-glycoprotein and tight junction proteins at the blood-brain barrier and promoting levodopa into the brain. Clin Exp Pharmacol Physiol 2016; 43:634-43. [PMID: 26991136 DOI: 10.1111/1440-1681.12570] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Liping Huang
- Hainan Medical University; Haikou China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Minzhen Deng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Yuping He
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Shiyao Lu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Ruanxin Ma
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Yongqi Fang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| |
Collapse
|
19
|
Naydenov NG, Feygin A, Wang D, Kuemmerle JF, Harris G, Conti MA, Adelstein RS, Ivanov AI. Nonmuscle Myosin IIA Regulates Intestinal Epithelial Barrier in vivo and Plays a Protective Role During Experimental Colitis. Sci Rep 2016; 6:24161. [PMID: 27063635 PMCID: PMC4827066 DOI: 10.1038/srep24161] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/21/2016] [Indexed: 02/07/2023] Open
Abstract
The actin cytoskeleton is a critical regulator of intestinal mucosal barrier permeability, and the integrity of epithelial adherens junctions (AJ) and tight junctions (TJ). Non muscle myosin II (NM II) is a key cytoskeletal motor that controls actin filament architecture and dynamics. While NM II has been implicated in the regulation of epithelial junctions in vitro, little is known about its roles in the intestinal mucosa in vivo. In this study, we generated a mouse model with an intestinal epithelial-specific knockout of NM IIA heavy chain (NM IIA cKO) and examined the structure and function of normal gut barrier, and the development of experimental colitis in these animals. Unchallenged NM IIA cKO mice showed increased intestinal permeability and altered expression/localization of several AJ/TJ proteins. They did not develop spontaneous colitis, but demonstrated signs of a low-scale mucosal inflammation manifested by prolapses, lymphoid aggregates, increased cytokine expression, and neutrophil infiltration in the gut. NM IIA cKO animals were characterized by a more severe disruption of the gut barrier and exaggerated mucosal injury during experimentally-induced colitis. Our study provides the first evidence that NM IIA plays important roles in establishing normal intestinal barrier, and protection from mucosal inflammation in vivo.
Collapse
Affiliation(s)
- Nayden G Naydenov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23298
| | - Alex Feygin
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23298
| | - Dongdong Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23298
| | - John F Kuemmerle
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Gianni Harris
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY
| | - Mary Anne Conti
- Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23298.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298.,Virginia Institute of Molecular Medicine, Richmond, VA 23298
| |
Collapse
|
20
|
F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells. Cell Mol Life Sci 2015; 72:3185-3200. [PMID: 25809162 DOI: 10.1007/s00018-015-1890-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/26/2015] [Accepted: 03/19/2015] [Indexed: 01/01/2023]
Abstract
Tight junctions (TJ) and adherens junctions (AJ) are key morphological features of differentiated epithelial cells that regulate the integrity and permeability of tissue barriers. Structure and remodeling of epithelial junctions depends on their association with the underlying actomyosin cytoskeleton. Anillin is a unique scaffolding protein interacting with different cytoskeletal components, including actin filaments and myosin motors. Its role in the regulation of mammalian epithelial junctions remains unexplored. Downregulation of anillin expression in human prostate, colonic, and lung epithelial cells triggered AJ and TJ disassembly without altering the expression of junctional proteins. This junctional disassembly was accompanied by dramatic disorganization of the perijunctional actomyosin belt; while the general architecture of the actin cytoskeleton, and activation status of non-muscle myosin II, remained unchanged. Furthermore, loss of anillin disrupted the adducin-spectrin membrane skeleton at the areas of cell-cell contact, selectively decreased γ-adducin expression, and induced cytoplasmic aggregation of αII-spectrin. Anillin knockdown activated c-Jun N-terminal kinase (JNK), and JNK inhibition restored AJ and TJ integrity and cytoskeletal organization in anillin-depleted cells. These findings suggest a novel role for anillin in regulating intercellular adhesion in model human epithelia by mechanisms involving the suppression of JNK activity and controlling the assembly of the perijunctional cytoskeleton.
Collapse
|
21
|
Ivanov AI. Tissue Barriers: Introducing an exciting new journal. Temperature (Austin) 2014; 1:151-3. [PMID: 27626042 PMCID: PMC5008708 DOI: 10.4161/23328940.2014.978716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022] Open
Abstract
This Editorial is written to introduce Tissue Barriers, a new Taylor & Francis journal, to the readers of Temperature. It describes the role of temperature in the regulation of different tissue barriers under normal and disease conditions. It also highlights the most interesting articles published in the first volume of Tissue Barriers.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Human and Molecular Genetics; Virginia Institute of Molecular Medicine; VCU Massey Cancer Center; Virginia Commonwealth University ; Richmond, VA USA
| |
Collapse
|