1
|
Lü S, Yu X, Wu X, Hu Q, Zhu X, Wu M, Hu Q, Zhao S, Hu J, Wu J, Zhang S. The microRNA399d-PHOSPHATE2 module alters rice sensitivity to rice ragged stunt virus by manipulating phosphate uptake. PLANT PHYSIOLOGY 2024; 197:kiae517. [PMID: 39331521 DOI: 10.1093/plphys/kiae517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
Rice (Oryza sativa L.) production frequently faces threats from biotic and abiotic stressors, with rice ragged stunt virus (RRSV) as a substantial biotic factor. The relationship between inorganic phosphorus content and susceptibility to RRSV is crucial yet poorly understood. This study investigates how phosphorus metabolism influences rice resistance to RRSV, focusing on genetic manipulations that modulate this relationship. The RRSV infection increased phosphate (Pi) content in the aerial parts of rice plants by enhancing Pi uptake and transport. Furthermore, the upregulation of microRNA399d (miR399d) and the suppression of its target gene OsPHOSPHATE2 (OsPHO2) enhanced Pi accumulation, increasing rice susceptibility to RRSV infection. Additionally, elevated Pi levels, which are associated with altered reactive oxygen species (ROS) dynamics, reduced ROS activity and potentially dampened the plant's innate immune response to viral infection. The miR399d-PHOSPHATE2 module was identified as pivotal in mediating phosphate uptake and influencing susceptibility to RRSV through modulations in the phosphorus and ROS pathways. This study shed light on the regulatory mechanisms of phosphorus nutrition in rice, revealing a critical interaction between phosphorus metabolism, ROS dynamics, and viral defense. The findings suggest potential strategies for manipulating Pi levels to enhance plant resistance against viruses, opening avenues for agricultural improvements and disease management in rice.
Collapse
Affiliation(s)
- Shaoyuan Lü
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiyuan Yu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqing Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiong Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao Zhu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ming Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qun Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shanshan Zhao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuai Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
2
|
Sałamaszyńska-Guz A, Murawska M, Bącal P, Ostrowska A, Kwiecień E, Stefańska I, Douthwaite S. Increased Motility in Campylobacter jejuni and Changes in Its Virulence, Fitness, and Morphology Following Protein Expression on Ribosomes with Altered RsmA Methylation. Int J Mol Sci 2024; 25:9797. [PMID: 39337285 PMCID: PMC11431728 DOI: 10.3390/ijms25189797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Infection with Campylobacter jejuni is the major cause of human gastroenteritis in the United States and Europe, leading to debilitating autoimmune sequelae in many cases. While considerable progress has been made in detailing the infectious cycle of C. jejuni, a full understanding of the molecular mechanisms responsible for virulence remains to be elucidated. Here, we apply a novel approach by modulating protein expression on the pathogen's ribosomes by inactivating a highly conserved rRNA methyltransferase. Loss of the RsmA methyltransferase results in a more motile strain with greater adhesive and cell-invasive properties. These phenotypical effects correlate with enhanced expression of specific proteins related to flagellar formation and function, together with enzymes involved in cell wall/membrane and amino acid synthesis. Despite the enhancement of certain virulent traits, the null strain grows poorly on minimal media and is rapidly out-competed by the wild-type strain. Complementation with an active copy of the rsmA gene rescues most of the traits changed in the mutant. However, the complemented strain overexpresses rsmA and displays new flaws, including loss of the spiral cell shape, which is distinctive for C. jejuni. Proteins linked with altered virulence and morphology are identified here by mass spectrometry proteomic analyses of the strains.
Collapse
Affiliation(s)
- Agnieszka Sałamaszyńska-Guz
- Division of Microbiology, Department of Pre-Clinical Sciences, Institute of Veterinary Medicine, Warsaw University of Live Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Małgorzata Murawska
- Division of Microbiology, Department of Pre-Clinical Sciences, Institute of Veterinary Medicine, Warsaw University of Live Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Paweł Bącal
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Live Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Ewelina Kwiecień
- Division of Microbiology, Department of Pre-Clinical Sciences, Institute of Veterinary Medicine, Warsaw University of Live Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Ilona Stefańska
- Division of Microbiology, Department of Pre-Clinical Sciences, Institute of Veterinary Medicine, Warsaw University of Live Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
3
|
Acosta-Zaldívar M, Qi W, Mishra A, Roy U, King WR, Li Y, Patton-Vogt J, Anderson MZ, Köhler JR. Candida albicans' inorganic phosphate transport and evolutionary adaptation to phosphate scarcity. PLoS Genet 2024; 20:e1011156. [PMID: 39137212 PMCID: PMC11343460 DOI: 10.1371/journal.pgen.1011156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/23/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Phosphorus is essential in all cells' structural, metabolic and regulatory functions. For fungal cells that import inorganic phosphate (Pi) up a steep concentration gradient, surface Pi transporters are critical capacitators of growth. Fungi must deploy Pi transporters that enable optimal Pi uptake in pH and Pi concentration ranges prevalent in their environments. Single, triple and quadruple mutants were used to characterize the four Pi transporters we identified for the human fungal pathogen Candida albicans, which must adapt to alkaline conditions during invasion of the host bloodstream and deep organs. A high-affinity Pi transporter, Pho84, was most efficient across the widest pH range while another, Pho89, showed high-affinity characteristics only within one pH unit of neutral. Two low-affinity Pi transporters, Pho87 and Fgr2, were active only in acidic conditions. Only Pho84 among the Pi transporters was clearly required in previously identified Pi-related functions including Target of Rapamycin Complex 1 signaling, oxidative stress resistance and hyphal growth. We used in vitro evolution and whole genome sequencing as an unbiased forward genetic approach to probe adaptation to prolonged Pi scarcity of two quadruple mutant lineages lacking all 4 Pi transporters. Lineage-specific genomic changes corresponded to divergent success of the two lineages in fitness recovery during Pi limitation. Initial, large-scale genomic alterations like aneuploidies and loss of heterozygosity eventually resolved, as populations gained small-scale mutations. Severity of some phenotypes linked to Pi starvation, like cell wall stress hypersensitivity, decreased in parallel to evolving populations' fitness recovery in Pi scarcity, while severity of others like membrane stress responses diverged from Pi scarcity fitness. Among preliminary candidate genes for contributors to fitness recovery, those with links to TORC1 were overrepresented. Since Pi homeostasis differs substantially between fungi and humans, adaptive processes to Pi deprivation may harbor small-molecule targets that impact fungal growth, stress resistance and virulence.
Collapse
Affiliation(s)
- Maikel Acosta-Zaldívar
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Abhishek Mishra
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Udita Roy
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - William R. King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Yuping Li
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Matthew Z. Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Julia R. Köhler
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Tao F, Chen F, Liu H, Chen C, Cheng B, Han G. Insight into the composition and differentiation of endophytic microbial communities in kernels via 368 maize transcriptomes. J Adv Res 2024:S2090-1232(24)00208-X. [PMID: 38772425 DOI: 10.1016/j.jare.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/18/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
INTRODUCTION Kernels are important reproductive organs in maize, yet there is a lack of systematic investigation on the differences in the composition of endophytic microorganisms in plants from a population perspective. OBJECTIVES We aimed to elucidate the composition of endophytic microorganisms in developing maize kernels, emphasizing differences among various inbred lines. METHODS The transcriptomic data of 368 maize inbred lines were used to explore the composition and diversity of endophytic microorganisms. RESULTS The findings revealed a higher abundance of fungi than bacteria in developing maize kernels, followed by protozoa, while viruses were less abundant. There were significant differences in the composition and relative abundance of endophytic microorganisms among different maize lines. Diversity analysis revealed overall similarity in the community composition structure between tropical/subtropical (TST) and temperate (NSS) maize germplasm with apparent variations in community richness and abundance. The endophytic microorganisms network in the kernels from TST genotypes exhibited higher connectivity and stability compared to NSS kernels. Bacteria dominated the highly connected species in the networks, and different core species showed microbial phylum specificity. Some low-abundance species acted as core species, contributing to network stability. Beneficial bacteria were predominant in the core species of networks in TST kernels, while pathogenic bacteria were more abundant in the core species of networks in NSS kernels. CONCLUSION Tropical maize germplasm may have advantages in resisting the invasion of pathogenic microorganisms, providing excellent genetic resources for disease-resistant breeding.
Collapse
Affiliation(s)
- Fang Tao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Feng Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Haida Liu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Beijiu Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Guomin Han
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Conaway A, Todorovic I, Mould DL, Hogan DA. Loss of LasR function leads to decreased repression of Pseudomonas aeruginosa PhoB activity at physiological phosphate concentrations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586856. [PMID: 38585852 PMCID: PMC10996656 DOI: 10.1101/2024.03.27.586856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
While the Pseudomonas aeruginosa LasR transcription factor plays a role in quorum sensing (QS) across phylogenetically-distinct lineages, isolates with loss-of-function mutations in lasR (LasR- strains) are commonly found in diverse settings including infections where they are associated with worse clinical outcomes. In LasR- strains, the transcription factor RhlR, which is controlled by LasR, can be alternately activated in low inorganic phosphate (Pi) concentrations via the two-component system PhoR-PhoB. Here, we demonstrate a new link between LasR and PhoB in which the absence of LasR increases PhoB activity at physiological Pi concentrations and raises the Pi concentration necessary for PhoB inhibition. PhoB activity was also less repressed by Pi in mutants lacking different QS regulators (RhlR and PqsR) and in mutants lacking genes required for the production of QS-regulated phenazines suggesting that decreased phenazine production was one reason for decreased PhoB repression by Pi in LasR- strains. In addition, the CbrA-CbrB two-component system, which is elevated in LasR- strains, was necessary for reduced PhoB repression by Pi and a Δcrc mutant, which lacks the CbrA-CbrB-controlled translational repressor, activated PhoB at higher Pi concentrations than the wild type. The ΔlasR mutant had a PhoB-dependent growth advantage in a medium with no added Pi and increased virulence-determinant gene expression in a medium with physiological Pi, in part through reactivation of QS. This work suggests PhoB activity may contribute to the virulence of LasR- P. aeruginosa and subsequent clinical outcomes.
Collapse
Affiliation(s)
- Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Igor Todorovic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Dallas L. Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| |
Collapse
|
6
|
Acosta-Zaldívar M, Qi W, Mishra A, Roy U, King WR, Patton-Vogt J, Anderson MZ, Köhler JR. Candida albicans' inorganic phosphate transport and evolutionary adaptation to phosphate scarcity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577887. [PMID: 38352318 PMCID: PMC10862840 DOI: 10.1101/2024.01.29.577887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Phosphorus is essential in all cells' structural, metabolic and regulatory functions. For fungal cells that import inorganic phosphate (Pi) up a steep concentration gradient, surface Pi transporters are critical capacitators of growth. Fungi must deploy Pi transporters that enable optimal Pi uptake in pH and Pi concentration ranges prevalent in their environments. Single, triple and quadruple mutants were used to characterize the four Pi transporters we identified for the human fungal pathogen Candida albicans, which must adapt to alkaline conditions during invasion of the host bloodstream and deep organs. A high-affinity Pi transporter, Pho84, was most efficient across the widest pH range while another, Pho89, showed high-affinity characteristics only within one pH unit of neutral. Two low-affinity Pi transporters, Pho87 and Fgr2, were active only in acidic conditions. Only Pho84 among the Pi transporters was clearly required in previously identified Pi-related functions including Target of Rapamycin Complex 1 signaling and hyphal growth. We used in vitro evolution and whole genome sequencing as an unbiased forward genetic approach to probe adaptation to prolonged Pi scarcity of two quadruple mutant lineages lacking all 4 Pi transporters. Lineage-specific genomic changes corresponded to divergent success of the two lineages in fitness recovery during Pi limitation. In this process, initial, large-scale genomic alterations like aneuploidies and loss of heterozygosity were eventually lost as populations presumably gained small-scale mutations. Severity of some phenotypes linked to Pi starvation, like cell wall stress hypersensitivity, decreased in parallel to evolving populations' fitness recovery in Pi scarcity, while that of others like membrane stress responses diverged from these fitness phenotypes. C. albicans therefore has diverse options to reconfigure Pi management during prolonged scarcity. Since Pi homeostasis differs substantially between fungi and humans, adaptive processes to Pi deprivation may harbor small-molecule targets that impact fungal growth and virulence.
Collapse
Affiliation(s)
- Maikel Acosta-Zaldívar
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
- Current affiliation: Planasa, Valladolid, Spain
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Abhishek Mishra
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
| | - Udita Roy
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - William R. King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Matthew Z. Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| | - Julia R. Köhler
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Ramamoorthy S, Pena M, Ghosh P, Liao YY, Paret M, Jones JB, Potnis N. Transcriptome profiling of type VI secretion system core gene tssM mutant of Xanthomonas perforans highlights regulators controlling diverse functions ranging from virulence to metabolism. Microbiol Spectr 2024; 12:e0285223. [PMID: 38018859 PMCID: PMC10782981 DOI: 10.1128/spectrum.02852-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE T6SS has received attention due to its significance in mediating interorganismal competition through contact-dependent release of effector molecules into prokaryotic and eukaryotic cells. Reverse-genetic studies have indicated the role of T6SS in virulence in a variety of plant pathogenic bacteria, including the one studied here, Xanthomonas. However, it is not clear whether such effect on virulence is merely due to a shift in the microbiome-mediated protection or if T6SS is involved in a complex virulence regulatory network. In this study, we conducted in vitro transcriptome profiling in minimal medium to decipher the signaling pathways regulated by tssM-i3* in X. perforans AL65. We show that TssM-i3* regulates the expression of a suite of genes associated with virulence and metabolism either directly or indirectly by altering the transcription of several regulators. These findings further expand our knowledge on the intricate molecular circuits regulated by T6SS in phytopathogenic bacteria.
Collapse
Affiliation(s)
- Sivakumar Ramamoorthy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Michelle Pena
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Palash Ghosh
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Ying-Yu Liao
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Mathews Paret
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
8
|
Kahramanoğulları O. Chemical Reaction Models in Synthetic Promoter Design in Bacteria. Methods Mol Biol 2024; 2844:3-31. [PMID: 39068329 DOI: 10.1007/978-1-0716-4063-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We discuss the formalism of chemical reaction networks (CRNs) as a computer-aided design interface for using formal methods in engineering living technologies. We set out by reviewing formal methods within a broader view of synthetic biology. Based on published results, we illustrate, step by step, how mathematical and computational techniques on CRNs can be used to study the structural and dynamic properties of the designed systems. As a case study, we use an E. coli two-component system that relays the external inorganic phosphate concentration signal to genetic components. We show how CRN models can scan and explore phenotypic regimes of synthetic promoters with varying detection thresholds, thereby providing a means for fine-tuning the promoter strength to match the specification.
Collapse
|
9
|
Sánchez-Jiménez A, Llamas MA, Marcos-Torres FJ. Transcriptional Regulators Controlling Virulence in Pseudomonas aeruginosa. Int J Mol Sci 2023; 24:11895. [PMID: 37569271 PMCID: PMC10418997 DOI: 10.3390/ijms241511895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudomonas aeruginosa is a pathogen capable of colonizing virtually every human tissue. The host colonization competence and versatility of this pathogen are powered by a wide array of virulence factors necessary in different steps of the infection process. This includes factors involved in bacterial motility and attachment, biofilm formation, the production and secretion of extracellular invasive enzymes and exotoxins, the production of toxic secondary metabolites, and the acquisition of iron. Expression of these virulence factors during infection is tightly regulated, which allows their production only when they are needed. This process optimizes host colonization and virulence. In this work, we review the intricate network of transcriptional regulators that control the expression of virulence factors in P. aeruginosa, including one- and two-component systems and σ factors. Because inhibition of virulence holds promise as a target for new antimicrobials, blocking the regulators that trigger the production of virulence determinants in P. aeruginosa is a promising strategy to fight this clinically relevant pathogen.
Collapse
Affiliation(s)
| | - María A. Llamas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Francisco Javier Marcos-Torres
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| |
Collapse
|
10
|
Sattrapai N, Chaiprom U, Lindow SE, Chatnaparat T. A Phosphate Uptake System Is Required for Xanthomonas citri pv. glycines Virulence in Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:261-272. [PMID: 36574016 DOI: 10.1094/mpmi-11-22-0241-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The genes encoding the phosphate uptake system in Xanthomonas citri pv. glycines 12-2 were previously found to be upregulated when in soybean leaves. This study thus explored the role of the phosphate uptake system on its virulence to soybean. While phoB and pstSCAB mutants were greatly impaired in both inciting disease symptoms and growth in soybean, the virulence and growth in soybean of a phoU mutant was not reduced when compared with the wild-type strain. The expression of phoB and pstSCAB was highly induced in phosphate-deficient media. In addition, the expression of phoB, assessed with a fusion to a promoterless ice nucleation reporter gene, was greatly increased in soybean leaves, confirming that the soybean apoplast is a phosphorus-limited habitat for X. citri pv. glycines. Global gene expression profiles of phoB and phoU mutants of X. citri pv. glycines conducted under phosphate-limitation conditions in vitro, using RNA-seq, revealed that PhoB positively regulated genes involved in signal transduction, the xcs cluster type II secretion system, cell motility, and chemotaxis, while negatively regulating cell wall and membrane biogenesis, DNA replication and recombination and repair, and several genes with unknown function. PhoU also positively regulated the same genes involved in cell motility and chemotaxis. The severity of bacterial pustule disease was decreased in soybean plants grown under high phosphate fertilization conditions, demonstrating that high phosphate availability in soybean plants can affect infection by X. citri pv. glycines by modulation of the expression of phosphate uptake systems. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Nutthakan Sattrapai
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University, Bangkok, Thailand
| | - Usawadee Chaiprom
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Tiyakhon Chatnaparat
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University, Bangkok, Thailand
| |
Collapse
|
11
|
Yu Z, Li W, Ge C, Sun X, Wang J, Shen X, Yuan Q. Functional expansion of the natural inorganic phosphorus starvation response system in Escherichia coli. Biotechnol Adv 2023; 66:108154. [PMID: 37062526 DOI: 10.1016/j.biotechadv.2023.108154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
Phosphorus, an indispensable nutrient, plays an essential role in cell composition, metabolism, and signal transduction. When inorganic phosphorus (Pi) is scarce, the Pi starvation response in E. coli is activated to increase phosphorus acquisition and drive the cells into a non-growing state to reduce phosphorus consumption. In the six decades of research history, the initiation, output, and shutdown processes of the Pi starvation response have been extensively studied. Simultaneously, Pi starvation has been used in biosensor development, recombinant protein production, and natural product biosynthesis. In this review, we focus on the output process and the applications of the Pi starvation response that have not been summarized before. Meanwhile, based on the current status of mechanistic studies and applications, we propose practical strategies to develop the natural Pi starvation response into a multifunctional and standardized regulatory system in four aspects, including response threshold, temporal expression, intensity range, and bifunctional regulation, which will contribute to its broader application in more fields such as industrial production, medical analysis, and environmental protection.
Collapse
Affiliation(s)
- Zheng Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenna Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chang Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
12
|
Jia T, Wu P, Liu B, Liu M, Mu H, Liu D, Huang M, Li L, Wei Y, Wang L, Yang Q, Liu Y, Yang B, Huang D, Yang L, Liu B. The phosphate-induced small RNA EsrL promotes E. coli virulence, biofilm formation, and intestinal colonization. Sci Signal 2023; 16:eabm0488. [PMID: 36626577 DOI: 10.1126/scisignal.abm0488] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Escherichia coli are part of the normal intestinal microbiome, but some enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) strains can cause potentially life-threatening gastroenteritis. Virulence factors underlying the ability of EHEC and EPEC to cause disease include those encoded in the locus of the enterocyte effacement (LEE) pathogenicity island. Here, we demonstrated that EsrL, a small RNA present in many E. coli strains, promoted pathogenicity, adhesion, and biofilm formation in EHEC and EPEC. PhoB, the response regulator of the two-component system that controls cellular responses to phosphate, directly repressed esrL expression under low-phosphate conditions. A phosphate-rich environment, similar to that of the human intestine, relieved PhoB-mediated repression of esrL. EsrL interacted with and stabilized the LEE-encoded regulator (ler) transcript, which encodes a transcription factor for LEE genes, leading to increased bacterial adhesion to cultured cells and colonization of the rabbit colon. EsrL also bound to and stabilized the fimC transcript, which encodes a chaperone that is required for the assembly of type 1 pili, resulting in enhanced cell adhesion in pathogenic E. coli and enhanced biofilm formation in pathogenic and nonpathogenic E. coli. Our findings demonstrate that EsrL stimulates the expression of virulence genes in both EHEC and EPEC under phosphate-rich conditions, thus promoting the pathogenicity of EHEC and EPEC in the nutrient-rich gut environment.
Collapse
Affiliation(s)
- Tianyuan Jia
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Pan Wu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Miaomiao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Huiqian Mu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Dan Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Min Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Linxing Li
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yi Wei
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Lu Wang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Qian Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Bin Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Di Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China.,Nankai International Advanced Research Institute, Shenzhen, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China.,Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China.,Nankai International Advanced Research Institute, Shenzhen, China
| |
Collapse
|
13
|
Pseudomonas aeruginosa Phosphate Transporter PitA (PA4292) Controls Susceptibility to Aminoglycoside Antibiotics by Regulating the Proton Motive Force. Antimicrob Agents Chemother 2022; 66:e0099222. [PMID: 36346250 PMCID: PMC9765264 DOI: 10.1128/aac.00992-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that causes nosocomial infections in immunocompromised patients. β-lactam and aminoglycoside antibiotics are commonly used in the treatment of P. aeruginosa infections. Previously, we found that mutation in a PA4292 gene increases bacterial resistance to β-lactam antibiotics. In this study, we demonstrated that mutation in PA4292 increases bacterial susceptibility to aminoglycoside antibiotics. We further found enhanced uptake of tobramycin by the ΔPA4292 mutant, which might be due to an increase of proton motive force (PMF). Sequence analysis revealed PA4292 is homologous to the Escherichia coli phosphate transporter PitA. Mutation of PA4292 indeed reduces intracellular phosphate concentration. We thus named PA4292 as pitA. Although the PMF is enhanced in the ΔpitA mutant, the intracellular ATP concentration is lower than that in the isogenic wild-type strain PA14, which might be due to lack of the ATP synthesis substrate phosphate. Overexpression of the phosphate transporter complex genes pstSCAB in the ΔpitA mutant restores the intracellular phosphate concentration, PMF, ATP synthesis, and aminoglycosides resistance. In addition, growth of wild-type PA14 in a low-phosphate medium resulted in higher PMF and aminoglycoside susceptibility compared to cells grown in a high-phosphate medium. Overall, our results demonstrate the roles of PitA in phosphate transportation and reveal the relationship between intracellular phosphate and aminoglycoside susceptibility.
Collapse
|
14
|
Yi X, Xu X, Qi X, Chen Y, Zhu Z, Xu G, Li H, Kraco EK, Shen H, Lin M, Zheng J, Qin Y, Jiang X. Mechanisms Underlying the Virulence Regulation of Vibrio alginolyticus ND-01 pstS and pstB with a Transcriptomic Analysis. Microorganisms 2022; 10:2093. [PMID: 36363689 PMCID: PMC9698627 DOI: 10.3390/microorganisms10112093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 05/18/2024] Open
Abstract
Vibrio alginolyticus is a common opportunistic pathogen of fish, shrimp, and shellfish, and many diseases it causes can result in severe economic losses in the aquaculture industry. Causing host disease was confirmed by several virulence factors of V. alginolyticus. To date, there have been no reports on the effect of the pstS gene on its virulence regulation of V. alginolyticus. The virulence mechanism of target genes regulating V. alginolyticus is worthy of further study. Previous studies found that Fructus schisandrae (30 mg/mL) inhibited the growth of V. alginolyticus ND-01 (OD600 = 0.5) for 4 h, while the expressions of pstS and pstB were significantly affected by F. schisandrae stress. So, we speculated that pstS and pstB might be the virulence genes of V. alginolyticus, which were stably silenced by RNAi to construct the silencing strains pstS-RNAi and pstB-RNAi, respectively. After the expression of pstS or pstB gene was inhibited, the adhesion capacity and biofilm formation of V. alginolyticus were significantly down-regulated. The chemotaxis and biofilm formation ability of pstS-RNAi was reduced by 33.33% and 68.13% compared with the wild-type strain, respectively. Sequence alignment and homology analysis showed that pstS was highly conserved, which suggested that pstS played a vital role in the secretion system of V. alginolyticus. The pstS-RNAi with the highest silencing efficiency was selected for transcriptome sequencing. The Differentially Expressed Genes (DEGs) and GO terms were mapped to the reference genome of V. alginolyticus, including 1055 up-regulated genes and 1134 down-regulated genes. The functions of the DEGs were analyzed by GO and categorized into different enriched functional groups, such as ribosome synthesis, organelles, biosynthesis, pathogenesis, and secretion. These DEGs were then mapped to the reference KEGG pathways of V. alginolyticus and enriched in commonalities in the metabolic, ribosomal, and bacterial secretion pathways. Therefore, pstS and pstB could regulate the bacterial virulence of V. alginolyticus by affecting its adhesion, biofilm formation ability, and motility. Understanding the relationship between the expressions of pstS and pstB with bacterial virulence could provide new perspectives to prevent bacterial diseases.
Collapse
Affiliation(s)
- Xin Yi
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xin Qi
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yunong Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhiqin Zhu
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Genhuang Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Huiyao Li
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Emma-Katharine Kraco
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 East Greenfield Avenue, Milwaukee, WI 53204, USA
| | - Haoyang Shen
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Mao Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jiang Zheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xinglong Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
15
|
Choi HY, Le DD, Kim WG. Curvularin Isolated From Phoma macrostoma Is an Antagonist of RhlR Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2022; 13:913882. [PMID: 35903467 PMCID: PMC9315252 DOI: 10.3389/fmicb.2022.913882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Quorum sensing (QS) is an attractive target for the treatment of multidrug-resistant Pseudomonas aeruginosa, against which new antibiotics are urgently needed. Because LasR is at the top of the QS hierarchy controlling Rhl and PQS systems, most QS inhibitors have been targeted to LasR. However, it has recently been reported that in clinical isolates of P. aeruginosa, LasR is frequently mutated and nonfunctional, and RhlR independently acts to produce virulent factors that maintain toxicity. Thus, for effective treatment of chronic cystic fibrosis infections, RhlR antagonists is needed to prevent the LasR-independent Rhl system, but RhlR antagonists have rarely been reported. In this study, we found that curvularin, an aromatic compound with a cyclized alkyl side chain isolated from Phoma macrostoma, at a low micromolar concentration of 1–30 μM potently and selectively inhibited pyocyanin and rhamnolipid production without affecting the cell viability of P. aeruginosa. Only high concentration (more over 100 μM) curvularin negligibly inhibited biofilm formation and elastase production, suggesting that curvularin at low concentrations selectively inhibits RhlR. The QS antagonism by curvularin was investigated in experiments using QS competition and signaling molecules assays with QS gene expression analysis, and the results showed that, indeed, at low concentrations, curvularin selectively antagonized RhlR; in contrast, it negligibly antagonized LasR only when applied at a high concentration. The exclusive RhlR antagonizing activity of curvularin at low concentrations was confirmed using QS mutants; specifically, curvularin at low concentrations inhibited pyocyanin and rhamnolipid production by selectively antagonizing N-butanoyl homoserine lactone (BHL)-activated RhlR. Moreover, by targeting RhlR, curvularin reduced the in vivo virulence of wild-type P. aeruginosa as well as lasR mutants in Caenorhabditis elegans. Overall, low-concentration curvularin is a pure RhlR antagonist in P. aeruginosa, and to the best of our knowledge, this is the first report describing an RhlR antagonist from natural resources. Hence, curvularin has great potential for the development of chronic P. aeruginosa infection therapeutics and for the study of RhlR function in the complex QS system.
Collapse
Affiliation(s)
- Ha-Young Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Duc Dat Le
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Won-Gon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
- *Correspondence: Won-Gon Kim,
| |
Collapse
|
16
|
Teschler JK, Nadell CD, Drescher K, Yildiz FH. Mechanisms Underlying Vibrio cholerae Biofilm Formation and Dispersion. Annu Rev Microbiol 2022; 76:503-532. [PMID: 35671532 DOI: 10.1146/annurev-micro-111021-053553] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer K Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| |
Collapse
|
17
|
Regulatory Networks Controlling Neurotoxin Synthesis in Clostridium botulinum and Clostridium tetani. Toxins (Basel) 2022; 14:toxins14060364. [PMID: 35737025 PMCID: PMC9229411 DOI: 10.3390/toxins14060364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022] Open
Abstract
Clostridium botulinum and Clostridium tetani are Gram-positive, spore-forming, and anaerobic bacteria that produce the most potent neurotoxins, botulinum toxin (BoNT) and tetanus toxin (TeNT), responsible for flaccid and spastic paralysis, respectively. The main habitat of these toxigenic bacteria is the environment (soil, sediments, cadavers, decayed plants, intestinal content of healthy carrier animals). C. botulinum can grow and produce BoNT in food, leading to food-borne botulism, and in some circumstances, C. botulinum can colonize the intestinal tract and induce infant botulism or adult intestinal toxemia botulism. More rarely, C. botulinum colonizes wounds, whereas tetanus is always a result of wound contamination by C. tetani. The synthesis of neurotoxins is strictly regulated by complex regulatory networks. The highest levels of neurotoxins are produced at the end of the exponential growth and in the early stationary growth phase. Both microorganisms, except C. botulinum E, share an alternative sigma factor, BotR and TetR, respectively, the genes of which are located upstream of the neurotoxin genes. These factors are essential for neurotoxin gene expression. C. botulinum and C. tetani share also a two-component system (TCS) that negatively regulates neurotoxin synthesis, but each microorganism uses additional distinct sets of TCSs. Neurotoxin synthesis is interlocked with the general metabolism, and CodY, a master regulator of metabolism in Gram-positive bacteria, is involved in both clostridial species. The environmental and nutritional factors controlling neurotoxin synthesis are still poorly understood. The transition from amino acid to peptide metabolism seems to be an important factor. Moreover, a small non-coding RNA in C. tetani, and quorum-sensing systems in C. botulinum and possibly in C. tetani, also control toxin synthesis. However, both species use also distinct regulatory pathways; this reflects the adaptation of C. botulinum and C. tetani to different ecological niches.
Collapse
|
18
|
Medeiros Filho F, do Nascimento APB, Costa MDOCE, Merigueti TC, de Menezes MA, Nicolás MF, Dos Santos MT, Carvalho-Assef APD, da Silva FAB. A Systematic Strategy to Find Potential Therapeutic Targets for Pseudomonas aeruginosa Using Integrated Computational Models. Front Mol Biosci 2021; 8:728129. [PMID: 34616771 PMCID: PMC8488468 DOI: 10.3389/fmolb.2021.728129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that has been a constant global health problem due to its ability to cause infection at different body sites and its resistance to a broad spectrum of clinically available antibiotics. The World Health Organization classified multidrug-resistant Pseudomonas aeruginosa among the top-ranked organisms that require urgent research and development of effective therapeutic options. Several approaches have been taken to achieve these goals, but they all depend on discovering potential drug targets. The large amount of data obtained from sequencing technologies has been used to create computational models of organisms, which provide a powerful tool for better understanding their biological behavior. In the present work, we applied a method to integrate transcriptome data with genome-scale metabolic networks of Pseudomonas aeruginosa. We submitted both metabolic and integrated models to dynamic simulations and compared their performance with published in vitro growth curves. In addition, we used these models to identify potential therapeutic targets and compared the results to analyze the assumption that computational models enriched with biological measurements can provide more selective and (or) specific predictions. Our results demonstrate that dynamic simulations from integrated models result in more accurate growth curves and flux distribution more coherent with biological observations. Moreover, identifying drug targets from integrated models is more selective as the predicted genes were a subset of those found in the metabolic models. Our analysis resulted in the identification of 26 non-host homologous targets. Among them, we highlighted five top-ranked genes based on lesser conservation with the human microbiome. Overall, some of the genes identified in this work have already been proposed by different approaches and (or) are already investigated as targets to antimicrobial compounds, reinforcing the benefit of using integrated models as a starting point to selecting biologically relevant therapeutic targets.
Collapse
|
19
|
Lawal OU, Fraqueza MJ, Bouchami O, Worning P, Bartels MD, Gonçalves ML, Paixão P, Gonçalves E, Toscano C, Empel J, Urbaś M, Domínguez MA, Westh H, de Lencastre H, Miragaia M. Foodborne Origin and Local and Global Spread of Staphylococcus saprophyticus Causing Human Urinary Tract Infections. Emerg Infect Dis 2021; 27:880-893. [PMID: 33622483 PMCID: PMC7920669 DOI: 10.3201/eid2703.200852] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus saprophyticus is a primary cause of community-acquired urinary tract infections (UTIs) in young women. S. saprophyticus colonizes humans and animals but basic features of its molecular epidemiology are undetermined. We conducted a phylogenomic analysis of 321 S. saprophyticus isolates collected from human UTIs worldwide during 1997–2017 and 232 isolates from human UTIs and the pig-processing chain in a confined region during 2016–2017. We found epidemiologic and genomic evidence that the meat-production chain is a major source of S. saprophyticus causing human UTIs; human microbiota is another possible origin. Pathogenic S. saprophyticus belonged to 2 lineages with distinctive genetic features that are globally and locally disseminated. Pangenome-wide approaches identified a strong association between pathogenicity and antimicrobial resistance, phages, platelet binding proteins, and an increased recombination rate. Our study provides insight into the origin, transmission, and population structure of pathogenic S. saprophyticus and identifies putative new virulence factors.
Collapse
|
20
|
Grillo-Puertas M, Villegas JM, Pankievicz VCS, Tadra-Sfeir MZ, Teles Mota FJ, Hebert EM, Brusamarello-Santos L, Pedraza RO, Pedrosa FO, Rapisarda VA, Souza EM. Transcriptional Responses of Herbaspirillum seropedicae to Environmental Phosphate Concentration. Front Microbiol 2021; 12:666277. [PMID: 34177845 PMCID: PMC8222739 DOI: 10.3389/fmicb.2021.666277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/29/2021] [Indexed: 12/02/2022] Open
Abstract
Herbaspirillum seropedicae is a nitrogen-fixing endophytic bacterium associated with important cereal crops, which promotes plant growth, increasing their productivity. The understanding of the physiological responses of this bacterium to different concentrations of prevailing nutrients as phosphate (Pi) is scarce. In some bacteria, culture media Pi concentration modulates the levels of intracellular polyphosphate (polyP), modifying their cellular fitness. Here, global changes of H. seropedicae SmR1 were evaluated in response to environmental Pi concentrations, based on differential intracellular polyP levels. Cells grown in high-Pi medium (50 mM) maintained high polyP levels in stationary phase, while those grown in sufficient Pi medium (5 mM) degraded it. Through a RNA-seq approach, comparison of transcriptional profiles of H. seropedicae cultures revealed that 670 genes were differentially expressed between both Pi growth conditions, with 57% repressed and 43% induced in the high Pi condition. Molecular and physiological analyses revealed that aspects related to Pi metabolism, biosynthesis of flagella and chemotaxis, energy production, and polyhydroxybutyrate metabolism were induced in the high-Pi condition, while those involved in adhesion and stress response were repressed. The present study demonstrated that variations in environmental Pi concentration affect H. seropedicae traits related to survival and other important physiological characteristics. Since environmental conditions can influence the effectiveness of the plant growth-promoting bacteria, enhancement of bacterial robustness to withstand different stressful situations is an interesting challenge. The obtained data could serve not only to understand the bacterial behavior in respect to changes in rhizospheric Pi gradients but also as a base to design strategies to improve different bacterial features focusing on biotechnological and/or agricultural purposes.
Collapse
Affiliation(s)
- Mariana Grillo-Puertas
- Instituto de Química Biológica, “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT) and Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Josefina M. Villegas
- Instituto de Química Biológica, “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT) and Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Vânia C. S. Pankievicz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Michelle Z. Tadra-Sfeir
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Francisco J. Teles Mota
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Elvira M. Hebert
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | | | - Raul O. Pedraza
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - Fabio O. Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviana A. Rapisarda
- Instituto de Química Biológica, “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT) and Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Emanuel M. Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
21
|
Zeng Y, Charkowski AO. The Role of ATP-Binding Cassette Transporters in Bacterial Phytopathogenesis. PHYTOPATHOLOGY 2021; 111:600-610. [PMID: 33225831 DOI: 10.1094/phyto-06-20-0212-rvw] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacteria use selective membrane transporting strategies to support cell survival in different environments. Of the membrane transport systems, ATP-binding cassette (ABC) transporters, which utilize the energy of ATP hydrolysis to deliver substrate across the cytoplasmic membrane, are the largest and most diverse superfamily. These transporters import nutrients, export molecules, and are required for diverse cell functions, including cell division and morphology, gene regulation, surface motility, chemotaxis, and interspecies competition. Phytobacterial pathogens encode numerous ABC transporter homologs compared with related nonphytopathogens, with up to 160 transporters per genome, suggesting that plant pathogens must be able to import or respond to a greater number of molecules compared with saprophytes or animal pathogens. Despite their importance, ABC transporters have been little examined in plant pathogens. To understand bacterial phytopathogenesis and evolution, we need to understand the roles that ABC transporters play in plant-microbe interactions. In this review, we outline a multitude of roles that bacterial ABC transporters play, using both plant and animal pathogens as examples, to emphasize the importance of exploring these transporters in phytobacteriology.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
22
|
Acinetobacter baumannii: An Ancient Commensal with Weapons of a Pathogen. Pathogens 2021; 10:pathogens10040387. [PMID: 33804894 PMCID: PMC8063835 DOI: 10.3390/pathogens10040387] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is regarded as a life-threatening pathogen associated with community-acquired and nosocomial infections, mainly pneumonia. The rise in the number of A. baumannii antibiotic-resistant strains reduces effective therapies and increases mortality. Bacterial comparative genomic studies have unraveled the innate and acquired virulence factors of A. baumannii. These virulence factors are involved in antibiotic resistance, environmental persistence, host-pathogen interactions, and immune evasion. Studies on host–pathogen interactions revealed that A. baumannii evolved different mechanisms to adhere to in order to invade host respiratory cells as well as evade the host immune system. In this review, we discuss current data on A. baumannii genetic features and virulence factors. An emphasis is given to the players in host–pathogen interaction in the respiratory tract. In addition, we report recent investigations into host defense systems using in vitro and in vivo models, providing new insights into the innate immune response to A. baumannii infections. Increasing our knowledge of A. baumannii pathogenesis may help the development of novel therapeutic strategies based on anti-adhesive, anti-virulence, and anti-cell to cell signaling pathways drugs.
Collapse
|
23
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Gil-Marqués ML, Labrador Herrera G, Miró Canturri A, Pachón J, Smani Y, Pachón-Ibáñez ME. Role of PstS in the Pathogenesis of Acinetobacter baumannii Under Microaerobiosis and Normoxia. J Infect Dis 2021; 222:1204-1212. [PMID: 32324853 DOI: 10.1093/infdis/jiaa201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/20/2020] [Indexed: 01/15/2023] Open
Abstract
Acinetobacter baumannii is a successful pathogen responsible for infections with high mortality rate. During the course of infection it can be found in microaerobic environments, which influences virulence factor expression. From a previous transcriptomic analysis of A. baumannii ATCC 17978 under microaerobiosis, we know the gene pstS is overexpressed under microaerobiosis. Here, we studied its role in A. baumannii virulence. pstS loss significantly decreased bacterial adherence and invasion into A549 cells and increased A549 cell viability. pstS loss also reduced motility and biofilm-forming ability of A. baumannii. In a peritoneal sepsis murine model, the minimum lethal dose required by A. baumannii ATCC 17978 ΔpstS was lower compared to the wild type (4.3 vs 3.2 log colony forming units/mL, respectively), and the bacterial burden in tissues and fluids was lower. Thus, the loss of the phosphate sensor PstS produced a decrease in A. baumannii pathogenesis, supporting its role as a virulence factor.
Collapse
Affiliation(s)
- María Luisa Gil-Marqués
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain
| | - Gema Labrador Herrera
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain
| | - Andrea Miró Canturri
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain
| | - María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
25
|
Zarattini M, Farjad M, Launay A, Cannella D, Soulié MC, Bernacchia G, Fagard M. Every cloud has a silver lining: how abiotic stresses affect gene expression in plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1020-1033. [PMID: 33188434 PMCID: PMC7904152 DOI: 10.1093/jxb/eraa531] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/10/2020] [Indexed: 05/03/2023]
Abstract
Current environmental and climate changes are having a pronounced influence on the outcome of plant-pathogen interactions, further highlighting the fact that abiotic stresses strongly affect biotic interactions at various levels. For instance, physiological parameters such as plant architecture and tissue organization together with primary and specialized metabolism are affected by environmental constraints, and these combine to make an individual plant either a more or less suitable host for a given pathogen. In addition, abiotic stresses can affect the timely expression of plant defense and pathogen virulence. Indeed, several studies have shown that variations in temperature, and in water and mineral nutrient availability affect the expression of plant defense genes. The expression of virulence genes, known to be crucial for disease outbreak, is also affected by environmental conditions, potentially modifying existing pathosystems and paving the way for emerging pathogens. In this review, we summarize our current knowledge on the impact of abiotic stress on biotic interactions at the transcriptional level in both the plant and the pathogen side of the interaction. We also perform a metadata analysis of four different combinations of abiotic and biotic stresses, which identifies 197 common modulated genes with strong enrichment in Gene Ontology terms related to defense . We also describe the multistress-specific responses of selected defense-related genes.
Collapse
Affiliation(s)
- Marco Zarattini
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Mahsa Farjad
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Alban Launay
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - David Cannella
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Marie-Christine Soulié
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Sorbonne Universités, UPMC Univ. Paris 06, UFR 927, 4 place Jussieu, Paris, France
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, Ferrara, Italy
| | - Mathilde Fagard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
26
|
Oliveira VDC, Souza MT, Zanotto ED, Watanabe E, Coraça-Huber D. Biofilm Formation and Expression of Virulence Genes of Microorganisms Grown in Contact with a New Bioactive Glass. Pathogens 2020; 9:E927. [PMID: 33182533 PMCID: PMC7696213 DOI: 10.3390/pathogens9110927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Bioactive glass F18 (BGF18), a glass containing SiO2-Na2O-K2O-MgO-CaO-P2O5, is highly effective as an osseointegration buster agent when applied as a coating in titanium implants. Biocompatibility tests using this biomaterial exhibited positive results; however, its antimicrobial activity is still under investigation. In this study we evaluated biofilm formation and expression of virulence-factor-related genes in Candida albicans, Staphylococcus epidermidis, and Pseudomonas aeruginosa grown on surfaces of titanium and titanium coated with BGF18. C. albicans, S. epidermidis, and P. aeruginosa biofilms were grown on specimens for 8, 24, and 48 h. After each interval, the pH was measured and the colony-forming units were counted for the biofilm recovery rates. In parallel, quantitative real-time polymerase chain reactions were carried out to verify the expression of virulence-factor-related genes. Our results showed that pH changes of the culture in contact with the bioactive glass were merely observed. Reduction in biofilm formation was not observed at any of the studied time. However, changes in the expression level of genes related to virulence factors were observed after 8 and 48 h of culture in BGF18. BGF18 coating did not have a clear inhibitory effect on biofilm growth but promoted the modulation of virulence factors.
Collapse
Affiliation(s)
- Viviane de Cássia Oliveira
- Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto 14040-904, São Paulo, Brazil; (V.d.C.O.); (E.W.)
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, São Paulo, Brazil
| | - Marina Trevelin Souza
- Vitreous Materials Laboratory—LaMaV, Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luiz km 235, São Carlos 13565-905, São Paulo, Brazil; (M.T.S.); (E.D.Z.)
| | - Edgar Dutra Zanotto
- Vitreous Materials Laboratory—LaMaV, Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luiz km 235, São Carlos 13565-905, São Paulo, Brazil; (M.T.S.); (E.D.Z.)
| | - Evandro Watanabe
- Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto 14040-904, São Paulo, Brazil; (V.d.C.O.); (E.W.)
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, São Paulo, Brazil
| | - Débora Coraça-Huber
- Department of Orthopedic Surgery, Experimental Orthopedics, Medical University of Innsbruck, Peter‒Mayr-Strasse 4b, 6020 Innsbruck, Austria
| |
Collapse
|
27
|
Staphylococcus aureus Preferentially Liberates Inorganic Phosphate from Organophosphates in Environments where This Nutrient Is Limiting. J Bacteriol 2020; 202:JB.00264-20. [PMID: 32868400 DOI: 10.1128/jb.00264-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/27/2020] [Indexed: 11/20/2022] Open
Abstract
Phosphate is an essential nutrient that Staphylococcus aureus and other pathogens must acquire from the host during infection. While inorganic monophosphate (Pi) is the preferred source of this nutrient, bacteria can also obtain it from phosphate-containing organic molecules. The Pi-responsive regulator PhoPR is necessary for S. aureus to cause infection, suggesting that Pi is not freely available during infection and that this nutrient must be obtained from other sources. However, the organophosphates from which S. aureus can obtain phosphate are unknown. We evaluated the ability of 58 phosphorus-containing molecules to serve as phosphate sources for S. aureus Forty-six of these compounds, including phosphorylated amino acids, sugars, and nucleotides, supported growth. Among the organophosphate sources was glycerol-3-phosphate (G3P), which is commonly found in the mammalian host. Differing from the model organism Escherichia coli, S. aureus does not import G3P intact to obtain Pi Instead, S. aureus relies on the phosphatase PhoB to release Pi from G3P, which is subsequently imported by Pi transporters. To determine if this strategy is used by S. aureus to extract phosphate from other phosphate sources, we assessed the ability of PhoB- and Pi transporter-deficient strains to grow on the same library of phosphorus-containing molecules. Sixty percent of the substrates (28/46) relied on the PhoB/Pi transporter pathway, and an additional 10/46 (22%) were PhoB independent but still required Pi transport through the Pi transporters. Cumulatively, these results suggest that in Pi-limited environments, S. aureus preferentially generates Pi from organophosphates and then relies on Pi transporters to import this nutrient.IMPORTANCE For bacteria, the preferred form of the essential nutrient phosphate is inorganic monophosphate (Pi), but phosphate can also be extracted from a variety of phosphocompounds. Pathogens, including Staphylococcus aureus, experience Pi limitation within the host, suggesting that the use of alternative phosphate sources is important during infection. However, the alternative phosphate sources that can be used by S. aureus and others remain largely unexplored. We screened a library of phosphorus-containing compounds for the ability to support growth as a phosphate source. S. aureus could use a variety of phosphocompounds, including nucleotides, phosphosugars, and phosphoamino acids. Subsequent genetic analysis determined that a majority of these alternative phosphate sources are first processed extracellularly to liberate Pi, which is then imported through Pi transporters.
Collapse
|
28
|
Ramamurthy T, Nandy RK, Mukhopadhyay AK, Dutta S, Mutreja A, Okamoto K, Miyoshi SI, Nair GB, Ghosh A. Virulence Regulation and Innate Host Response in the Pathogenicity of Vibrio cholerae. Front Cell Infect Microbiol 2020; 10:572096. [PMID: 33102256 PMCID: PMC7554612 DOI: 10.3389/fcimb.2020.572096] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
The human pathogen Vibrio cholerae is the causative agent of severe diarrheal disease known as cholera. Of the more than 200 "O" serogroups of this pathogen, O1 and O139 cause cholera outbreaks and epidemics. The rest of the serogroups, collectively known as non-O1/non-O139 cause sporadic moderate or mild diarrhea and also systemic infections. Pathogenic V. cholerae circulates between nutrient-rich human gut and nutrient-deprived aquatic environment. As an autochthonous bacterium in the environment and as a human pathogen, V. cholerae maintains its survival and proliferation in these two niches. Growth in the gastrointestinal tract involves expression of several genes that provide bacterial resistance against host factors. An intricate regulatory program involving extracellular signaling inputs is also controlling this function. On the other hand, the ability to store carbon as glycogen facilitates bacterial fitness in the aquatic environment. To initiate the infection, V. cholerae must colonize the small intestine after successfully passing through the acid barrier in the stomach and survive in the presence of bile and antimicrobial peptides in the intestinal lumen and mucus, respectively. In V. cholerae, virulence is a multilocus phenomenon with a large functionally associated network. More than 200 proteins have been identified that are functionally linked to the virulence-associated genes of the pathogen. Several of these genes have a role to play in virulence and/or in functions that have importance in the human host or the environment. A total of 524 genes are differentially expressed in classical and El Tor strains, the two biotypes of V. cholerae serogroup O1. Within the host, many immune and biological factors are able to induce genes that are responsible for survival, colonization, and virulence. The innate host immune response to V. cholerae infection includes activation of several immune protein complexes, receptor-mediated signaling pathways, and other bactericidal proteins. This article presents an overview of regulation of important virulence factors in V. cholerae and host response in the context of pathogenesis.
Collapse
Affiliation(s)
| | - Ranjan K Nandy
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ankur Mutreja
- Global Health-Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Keinosuke Okamoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - G Balakrish Nair
- Microbiome Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Amit Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
29
|
Naha A, Kumar Miryala S, Debroy R, Ramaiah S, Anbarasu A. Elucidating the multi-drug resistance mechanism of Enterococcus faecalis V583: A gene interaction network analysis. Gene 2020; 748:144704. [DOI: 10.1016/j.gene.2020.144704] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
|
30
|
Disruption of Phosphate Homeostasis Sensitizes Staphylococcus aureus to Nutritional Immunity. Infect Immun 2020; 88:IAI.00102-20. [PMID: 32205403 DOI: 10.1128/iai.00102-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
To control infection, mammals actively withhold essential nutrients, including the transition metal manganese, by a process termed nutritional immunity. A critical component of this host response is the manganese-chelating protein calprotectin. While many bacterial mechanisms for overcoming nutritional immunity have been identified, the intersection between metal starvation and other essential inorganic nutrients has not been investigated. Here, we report that overexpression of an operon encoding a highly conserved inorganic phosphate importer, PstSCAB, increases the sensitivity of Staphylococcus aureus to calprotectin-mediated manganese sequestration. Further analysis revealed that overexpression of pstSCAB does not disrupt manganese acquisition or result in overaccumulation of phosphate by S. aureus However, it does reduce the ability of S. aureus to grow in phosphate-replete defined medium. Overexpression of pstSCAB does not aberrantly activate the phosphate-responsive two-component system PhoPR, nor was this two-component system required for sensitivity to manganese starvation. In a mouse model of systemic staphylococcal disease, a pstSCAB-overexpressing strain is significantly attenuated compared to wild-type S. aureus This defect is partially reversed in a calprotectin-deficient mouse, in which manganese is more readily available. Given that expression of pstSCAB is regulated by PhoPR, these findings suggest that overactivation of PhoPR would diminish the ability of S. aureus to resist nutritional immunity and cause infection. As PhoPR is also necessary for bacterial virulence, these findings imply that phosphate homeostasis represents a critical regulatory node whose activity must be precisely controlled in order for S. aureus and other pathogens to cause infection.
Collapse
|
31
|
Tetanus Toxin Synthesis is Under the Control of A Complex Network of Regulatory Genes in Clostridium tetani. Toxins (Basel) 2020; 12:toxins12050328. [PMID: 32429286 PMCID: PMC7290440 DOI: 10.3390/toxins12050328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Clostridium tetani produces a potent neurotoxin, the tetanus toxin (TeNT), which is responsible for an often-fatal neurological disease (tetanus) characterized by spastic paralysis. Prevention is efficiently acquired by vaccination with the TeNT toxoid, which is obtained by C.tetani fermentation and subsequent purification and chemical inactivation. C.tetani synthesizes TeNT in a regulated manner. Indeed, the TeNT gene (tent) is mainly expressed in the late exponential and early stationary growth phases. The gene tetR (tetanus regulatory gene), located immediately upstream of tent, encodes an alternative sigma factor which was previously identified as a positive regulator of tent. In addition, the genome of C.tetani encodes more than 127 putative regulators, including 30 two-component systems (TCSs). Here, we investigated the impact of 12 regulators on TeNT synthesis which were selected based on their homology with related regulatory elements involved in toxin production in other clostridial species. Among nine TCSs tested, three of them impact TeNT production, including two positive regulators that indirectly stimulate tent and tetR transcription. One negative regulator was identified that interacts with both tent and tetR promoters. Two other TCSs showed a moderate effect: one binds to the tent promoter and weakly increases the extracellular TeNT level, and another one has a weak inverse effect. In addition, CodY (control of dciA (decoyinine induced operon) Y) but not Spo0A (sporulation stage 0) or the DNA repair protein Mfd (mutation frequency decline) positively controls TeNT synthesis by interacting with the tent promoter. Moreover, we found that inorganic phosphate and carbonate are among the environmental factors that control TeNT production. Our data show that TeNT synthesis is under the control of a complex network of regulators that are largely distinct from those involved in the control of toxin production in Clostridium botulinum or Clostridium difficile.
Collapse
|
32
|
Phosphate in Virulence of Candida albicans and Candida glabrata. J Fungi (Basel) 2020; 6:jof6020040. [PMID: 32224872 PMCID: PMC7344514 DOI: 10.3390/jof6020040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/22/2022] Open
Abstract
Candida species are the most commonly isolated invasive human fungal pathogens. A role for phosphate acquisition in their growth, resistance against host immune cells, and tolerance of important antifungal medications is becoming apparent. Phosphorus is an essential element in vital components of the cell, including chromosomes and ribosomes. Producing the energy currency of the cell, ATP, requires abundant inorganic phosphate. A comparison of the network of regulators and effectors that controls phosphate acquisition and intracellular distribution, the PHO regulon, between the model yeast Saccharomyces cerevisiae, a plant saprobe, its evolutionarily close relative C. glabrata, and the more distantly related C. albicans, highlights the need to coordinate phosphate homeostasis with adenylate biosynthesis for ATP production. It also suggests that fungi that cope with phosphate starvation as they invade host tissues, may link phosphate acquisition to stress responses as an efficient mechanism of anticipatory regulation. Recent work indicates that connections among the PHO regulon, Target of Rapamycin Complex 1 signaling, oxidative stress management, and cell wall construction are based both in direct signaling links, and in the provision of phosphate for sufficient metabolic intermediates that are substrates in these processes. Fundamental differences in fungal and human phosphate homeostasis may offer novel drug targets.
Collapse
|
33
|
Abstract
It is not fully understood how phosphate deficiency could influence the virulence of Pseudomonas aeruginosa through modulation of the bacterial QS systems. This report presents a systemic investigation on the impact of phosphate depletion on the hierarchy of quorum sensing systems of P. aeruginosa. The results showed that phosphate stress could have an extensive impact on the QS networks of this bacterial pathogen. Among the 7 QS regulatory genes representing the 3 sets of QS systems tested, 4 were significantly upregulated by phosphate depletion stress through the PhoR/PhoB two-component regulatory system, especially the upstream QS regulatory gene lasI. We also present evidence that the response regulator PhoB was a strong competitor against the las regulators LasR and RsaL for the lasI promoter, unveiling the mechanistic basis of the process by which phosphate stress could modulate the bacterial QS systems. The hierarchical quorum sensing (QS) systems of Pseudomonas aeruginosa, consisting of las, pqs, and rhl, coordinate the expression of bacterial virulence genes. Previous studies showed that under phosphate deficiency conditions, two-component regulatory system PhoRB could activate various genes involved in cytotoxicity through modulation of QS systems, but the mechanism by which PhoR/PhoB influences QS remains largely unknown. Here, we provide evidence that among the key QS regulatory genes in P. aeruginosa, rhlR, pqsA, mvfR, and lasI were activated by the response regulator PhoB under phosphate-depleted conditions. We show that PhoB is a strong competitor against LasR and RsaL for binding to the promoter of lasI and induces significant expression of lasI, rhlR, and mvfR. However, expression of lasI, encoding the signal 3-oxo-C12-HSL, was increased only marginally under the same phosphate-depleted conditions. This seeming inconsistency was attributed to the induction of pvdQ, which encodes an enzyme for degradation of 3-oxo-C12-HSL signal molecules. Taken together, the results from this study demonstrate that through the two-component regulatory system PhoR/PhoB, phosphate depletion stress could influence the QS network by modulating several key regulators, including lasI, rhlR, mvfR, and pvdQ. The findings highlight not only the potency of the PhoR/PhoB-mediated bacterial stress response mechanism but also the plasticity of the P. aeruginosa QS systems in coping with the changed environmental conditions. IMPORTANCE It is not fully understood how phosphate deficiency could influence the virulence of Pseudomonas aeruginosa through modulation of the bacterial QS systems. This report presents a systemic investigation on the impact of phosphate depletion on the hierarchy of quorum sensing systems of P. aeruginosa. The results showed that phosphate stress could have an extensive impact on the QS networks of this bacterial pathogen. Among the 7 QS regulatory genes representing the 3 sets of QS systems tested, 4 were significantly upregulated by phosphate depletion stress through the PhoR/PhoB two-component regulatory system, especially the upstream QS regulatory gene lasI. We also present evidence that the response regulator PhoB was a strong competitor against the las regulators LasR and RsaL for the lasI promoter, unveiling the mechanistic basis of the process by which phosphate stress could modulate the bacterial QS systems.
Collapse
|
34
|
Phosphate Transporter PstSCAB of Campylobacter jejuni Is a Critical Determinant of Lactate-Dependent Growth and Colonization in Chickens. J Bacteriol 2020; 202:JB.00716-19. [PMID: 31932316 DOI: 10.1128/jb.00716-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Campylobacter jejuni causes acute gastroenteritis worldwide and is transmitted primarily through poultry, in which it is often a commensal member of the intestinal microbiota. Previous transcriptome sequencing (RNA-Seq) experiment showed that transcripts from an operon encoding a high-affinity phosphate transporter (PstSCAB) of C. jejuni were among the most abundant when the bacterium was grown in chickens. Elevated levels of the pstSCAB mRNA were also identified in an RNA-Seq experiment from human infection studies. In this study, we explore the role of PstSCAB in the biology and colonization potential of C. jejuni Our results demonstrate that cells lacking PstSCAB survive poorly in stationary phase, in nutrient-limiting media, and under osmotic conditions reflective of those in the chicken. Polyphosphate levels in the mutant cells were elevated at stationary phase, consistent with alterations in expression of polyphosphate metabolism genes. The mutant strain was highly attenuated for colonization of newly hatched chicks, with levels of bacteria at several orders of magnitude below wild-type levels. Mutant and wild type grew similarly in complex media, but the pstS::kan mutant exhibited a significant growth defect in minimal medium supplemented with l-lactate, postulated as a carbon source in vivo Poor growth in lactate correlated with diminished expression of acetogenesis pathway genes previously demonstrated as important for colonizing chickens. The phosphate transport system is thus essential for diverse aspects of C. jejuni physiology and in vivo fitness and survival.IMPORTANCE Campylobacter jejuni causes millions of human gastrointestinal infections annually, with poultry a major source of infection. Due to the emergence of multidrug resistance in C. jejuni, there is need to identify alternative ways to control this pathogen. Genes encoding the high-affinity phosphate transporter PstSCAB are highly expressed by C. jejuni in chickens and humans. In this study, we address the role of PstSCAB on chicken colonization and other C. jejuni phenotypes. PstSCAB is required for colonization in chicken, metabolism and survival under different stress responses, and during growth on lactate, a potential growth substrate in chickens. Our study highlights that PstSCAB may be an effective target to develop mechanisms for controlling bacterial burden in both chicken and human.
Collapse
|
35
|
Możejko-Ciesielska J, Serafim LS. Proteomic Response of Pseudomonas putida KT2440 to Dual Carbon-Phosphorus Limitation during mcl-PHAs Synthesis. Biomolecules 2019; 9:E796. [PMID: 31795154 PMCID: PMC6995625 DOI: 10.3390/biom9120796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas putida KT2440, one of the best characterized pseudomonads, is a metabolically versatile producer of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) that serves as a model bacterium for molecular studies. The synthesis of mcl-PHAs is of great interest due to their commercial potential. Carbon and phosphorus are the essential nutrients for growth and their limitation can trigger mcl-PHAs' production in microorganisms. However, the specific molecular mechanisms that drive this synthesis in Pseudomonas species under unfavorable growth conditions remain poorly understood. Therefore, the proteomic responses of Pseudomonas putida KT2440 to the limited carbon and phosphorus levels in the different growth phases during mcl-PHAs synthesis were investigated. The data indicated that biopolymers' production was associated with the cell growth of P. putida KT2440 under carbon- and phosphorus-limiting conditions. The protein expression pattern changed during mcl-PHAs synthesis and accumulation, and during the different physiological states of the microorganism. The data suggested that the majority of metabolic activities ceased under carbon and phosphorus limitation. The abundance of polyhydroxyalkanoate granule-associated protein (PhaF) involved in PHA synthesis increased significantly at 24 and 48 h of the cultivations. The activation of proteins belonging to the phosphate regulon was also detected. Moreover, these results indicated changes in the protein profiles related to amino acids metabolism, replication, transcription, translation, stress response mechanisms, transport or signal transduction. The presented data allowed the investigation of time-course proteome alterations in response to carbon and phosphorus limitation, and PHAs synthesis. This study provided information about proteins that can be potential targets in improving the efficiency of mcl-PHAs synthesis.
Collapse
Affiliation(s)
- Justyna Możejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10719 Olsztyn, Poland
- Chemistry Department, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Luísa S. Serafim
- Chemistry Department, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
36
|
Zhang H, Song X, Wang P, Lv R, Ma S, Jiang L. YaeB, Expressed in Response to the Acidic pH in Macrophages, Promotes Intracellular Replication and Virulence of Salmonella Typhimurium. Int J Mol Sci 2019; 20:ijms20184339. [PMID: 31487966 PMCID: PMC6770890 DOI: 10.3390/ijms20184339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that infects humans and animals. Survival and growth in host macrophages represents a crucial step for S. Typhimurium virulence. Many genes that are essential for S. Typhimurium proliferation in macrophages and associated with virulence are highly expressed during the intracellular lifecycle. yaeB, which encodes an RNA methyltransferase, is also upregulated during S. Typhimurium growth in macrophages. However, the involvement of YaeB in S. Typhimurium pathogenicity is still unclear. In this study, we investigated the role of YaeB in S. Typhimurium virulence. Deletion of yaeB significantly impaired S. Typhimurium growth in macrophages and virulence in mice. The effect of yaeB on pathogenicity was related to its activation of pstSCAB, a phosphate (Pi)-specific transport system that is verified here to be important for bacterial replication and virulence. Moreover, qRT-PCR data showed YaeB was induced by the acidic pH inside macrophages, and the acidic pH passed to YeaB through inhibiting global regulator histone-like nucleoid structuring (H-NS) which confirmed in this study can repress the expression of yaeB. Overall, these findings identified a new virulence regulatory network involving yaeB and provided valuable insights to the mechanisms through which acidic pH and low Pi regulate virulence.
Collapse
Affiliation(s)
- Huan Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaorui Song
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Peisheng Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Runxia Lv
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Shuangshuang Ma
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, China.
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China.
| |
Collapse
|
37
|
Velmourougane K, Prasanna R, Supriya P, Ramakrishnan B, Thapa S, Saxena AK. Transcriptome profiling provides insights into regulatory factors involved in Trichoderma viride-Azotobacter chroococcum biofilm formation. Microbiol Res 2019; 227:126292. [PMID: 31421719 DOI: 10.1016/j.micres.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
Azotobacter chroococcum (Az) and Trichoderma viride (Tv) represent agriculturally important and beneficial plant growth promoting options which contribute towards nutrient management and biocontrol, respectively. When Az and Tv are co-cultured, they form a biofilm, which has proved promising as an inoculant in several crops; however, the basic aspects related to regulation of biofilm formation were not investigated. Therefore, whole transcriptome sequencing (Illumina NextSeq500) and gene expression analyses were undertaken, related to biofilm formation vis a vis Tv and Az growing individually. Significant changes in the transcriptome profiles of biofilm were recorded and validated through qPCR analyses. In-depth evaluation also identified several genes (phoA, phoB, glgP, alg8, sipW, purB, pssA, fadD) specifically involved in biofilm formation in Az, Tv and Tv-Az. Genes coding for RNA-dependent RNA polymerase, ABC transporters, translation elongation factor EF-1, molecular chaperones and double homeobox 4 were either up-regulated or down-regulated during biofilm formation. To our knowledge, this is the first report on the modulation of gene expression in an agriculturally beneficial association, as a biofilm. Our results provide insights into the regulatory factors involved during biofilm formation, which can help to improve the beneficial effects and develop more effective and promising plant- microbe associations.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Puram Supriya
- Centre for Agricultural Bioinformatics, ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kusmaur, PO Kaitholi, Mau Nath Bhanjan, Uttar Pradesh 275101, India
| |
Collapse
|
38
|
Regulatory rewiring through global gene regulations by PhoB and alarmone (p)ppGpp under various stress conditions. Microbiol Res 2019; 227:126309. [PMID: 31421713 DOI: 10.1016/j.micres.2019.126309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
The phosphorus availability in soil ranged from <0.01 to 1 ppm and found limiting for the utilization by plants. Hence, phosphate solubilizing bacteria (PSB) proficiently fulfill the phosphorus requirement of plants in an eco-friendly manner. The PSB encounter dynamic and challenging environmental conditions viz., high temperature, osmotic, acid, and climatic changes often hamper their activity and proficiency. The modern trend is shifting from isolation of the PSB to their genetic potentials and genome annotation not only for their better performance in the field trials but also to study their ability to cope up with stresses. In order to withstand environmental stress, bacteria need to restructure its metabolic network to ensure its survival. Pi starving condition response regulator (PhoB) and the mediator of stringent stress response alarmone (p)ppGpp known to regulate the global regulatory network of bacteria to provide balanced physiology under various stress condition. The current review discusses the global regulation and crosstalk of genes involved in phosphorus homeostasis, solubilization, and various stress response to fine tune the bacterial physiology. The knowledge of these network crosstalk help bacteria to respond efficiently to the challenging environmental parameters, and their physiological plasticity lead us to develop proficient long-lasting consortia for plant growth promotion.
Collapse
|
39
|
Uluşeker C, Torres-Bacete J, García JL, Hanczyc MM, Nogales J, Kahramanoğulları O. Quantifying dynamic mechanisms of auto-regulation in Escherichia coli with synthetic promoter in response to varying external phosphate levels. Sci Rep 2019; 9:2076. [PMID: 30765722 PMCID: PMC6376016 DOI: 10.1038/s41598-018-38223-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli have developed one of the most efficient regulatory response mechanisms to phosphate starvation. The machinery involves a cascade with a two-component system (TCS) that relays the external signal to the genetic circuit, resulting in a feedback response. Achieving a quantitative understanding of this system has implications in synthetic biology and biotechnology, for example, in applications for wastewater treatment. To this aim, we present a computational model and experimental results with a detailed description of the TCS, consisting of PhoR and PhoB, together with the mechanisms of gene expression. The model is parameterised within the feasible range, and fitted to the dynamic response of our experimental data on PhoB as well as PhoA, the product of this network that is used in alkaline phosphatase production. Deterministic and stochastic simulations with our model predict the regulation dynamics in higher external phosphate concentrations while reproducing the experimental observations. In a cycle of simulations and experimental verification, our model predicts and explores phenotypes with various synthetic promoter designs that can optimise the inorganic phosphate intake in E. coli. Sensitivity analysis demonstrates that the Pho-controlled genes have a significant influence over the phosphate response. Together with experimental findings, our model should thus provide insights for the investigations on engineering new sensors and regulators for living technologies.
Collapse
Affiliation(s)
- Cansu Uluşeker
- University of Trento, Centre for Integrative Biology, Trento, 38123, Italy.,The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, 38068, Italy
| | - Jesús Torres-Bacete
- Centro Nacional de Biotecnología (CNB-CSIC), Systems Biology Department, Madrid, 28049, Spain
| | - José L García
- Centro de Investigaciones Biológicas (CIB-CSIC), Microbial and Plant Biotechnology Department, Madrid, 28040, Spain.,Institute for Integrative Systems Biology (I2Sysbio-CSIC-UV), Applied Systems Biology and Synthetic Biology Department, Paterna, 46980, Spain
| | - Martin M Hanczyc
- University of Trento, Centre for Integrative Biology, Trento, 38123, Italy.,Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Juan Nogales
- Centro Nacional de Biotecnología (CNB-CSIC), Systems Biology Department, Madrid, 28049, Spain
| | | |
Collapse
|
40
|
Jha V, Tikariha H, Dafale NA, Purohit HJ. Exploring the rearrangement of sensory intelligence in proteobacteria: insight of Pho regulon. World J Microbiol Biotechnol 2018; 34:172. [DOI: 10.1007/s11274-018-2551-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
|
41
|
Hu Y, Jiao J, Liu LX, Sun YW, Chen WF, Sui XH, Chen WX, Tian CF. Evidence for Phosphate Starvation of Rhizobia without Terminal Differentiation in Legume Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1060-1068. [PMID: 29663866 DOI: 10.1094/mpmi-02-18-0031-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphate homeostasis is tightly modulated in all organisms, including bacteria, which harbor both high- and low-affinity transporters acting under conditions of fluctuating phosphate levels. It was thought that nitrogen-fixing rhizobia, named bacteroids, inhabiting root nodules of legumes are not phosphate limited. Here, we show that the high-affinity phosphate transporter PstSCAB, rather than the low-affinity phosphate transporter Pit, is essential for effective nitrogen fixation of Sinorhizobium fredii in soybean nodules. Symbiotic and growth defects of the pst mutant can be effectively restored by knocking out PhoB, the transcriptional repressor of pit. The pst homologs of representative rhizobia were actively transcribed in bacteroids without terminal differentiation in nodules of diverse legumes (soybean, pigeonpea, cowpea, common bean, and Sophora flavescens) but exhibited a basal expression level in terminally differentiated bacteroids (alfalfa, pea, and peanut). Rhizobium leguminosarum bv. viciae Rlv3841 undergoes characteristic nonterminal and terminal differentiations in nodules of S. flavescens and pea, respectively. The pst mutant of Rlv3841 showed impaired adaptation to the nodule environment of S. flavescens but was indistinguishable from the wild-type strain in pea nodules. Taken together, root nodule rhizobia can be either phosphate limited or nonlimited regarding the rhizobial differentiation fate, which is a host-dependent feature.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Li Xue Liu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Yan Wei Sun
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
42
|
PhoPR Contributes to Staphylococcus aureus Growth during Phosphate Starvation and Pathogenesis in an Environment-Specific Manner. Infect Immun 2018; 86:IAI.00371-18. [PMID: 30061377 DOI: 10.1128/iai.00371-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/21/2018] [Indexed: 12/31/2022] Open
Abstract
Microbial pathogens must obtain all essential nutrients, including phosphate, from the host. To optimize phosphate acquisition in diverse and dynamic environments, such as mammalian tissues, many bacteria use the PhoPR two-component system. Despite the necessity of this system for virulence in several species, PhoPR has not been studied in the major human pathogen Staphylococcus aureus To illuminate its role in staphylococcal physiology, we initially assessed whether PhoPR controls the expression of the three inorganic phosphate (Pi) importers (PstSCAB, NptA, and PitA) in S. aureus This analysis revealed that PhoPR is required for the expression of pstSCAB and nptA and can modulate pitA expression. Consistent with a role in phosphate homeostasis, PhoPR-mediated regulation of the transporters is influenced by phosphate availability. Further investigations revealed that PhoPR is necessary for growth under Pi-limiting conditions, and in some environments, its primary role is to induce the expression of pstSCAB or nptA Interestingly, in other environments, PhoPR is necessary for growth independent of Pi transporter expression, indicating that additional PhoPR-regulated factors promote S. aureus adaptation to low-Pi conditions. Together, these data suggest that PhoPR differentially contributes to growth in an environment-specific manner. In a systemic infection model, a mutant of S. aureus lacking PhoPR is highly attenuated. Further investigation revealed that PhoPR-regulated factors, in addition to Pi transporters, are critical for staphylococcal pathogenesis. Cumulatively, these findings point to an important role for PhoPR in orchestrating Pi acquisition as well as transporter-independent mechanisms that contribute to S. aureus virulence.
Collapse
|
43
|
Zheng D, Xue B, Shao Y, Yu H, Yao X, Ruan L. Activation of PhoBR under phosphate-rich conditions reduces the virulence of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:2066-2076. [PMID: 29575480 PMCID: PMC6638161 DOI: 10.1111/mpp.12680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 05/20/2023]
Abstract
The two-component signal transduction system PhoBR regulates the adaptation to phosphate limitation and the virulence of many animal bacterial pathogens. However, PhoBR in phytopathogens has rarely been investigated. In this study, we found that PhoBR in Xanthomonas oryzae pv. oryzae (Xoo), the pathogen of rice bacterial leaf blight, also regulates the adaptation to phosphate starvation. Unexpectedly, rice leaves infected by the phoBR-deleted mutant and wild-type PXO99A showed similar lesions, indicating that PhoBR is unnecessary for the virulence of Xoo. phoBR was found to be silenced during host infection, whereas artificially constitutive PhoBR expression attenuated virulence on host rice and growth in phosphate-rich media. RNA-sequencing (RNA-seq) was then performed to investigate the global effect caused by constitutive PhoBR activation. RNA-seq and further experiments revealed that the PhoBR regulon in Xoo comprised a wide range of genes. Nutrient transport and metabolism readjustments that resulted from PhoBR regulon activation may be responsible for growth attenuation. Our findings suggest that growth reduction regulated by PhoBR is a fitness cost of adaptation to phosphate starvation. PhoBR in Xoo is activated under phosphate-limited conditions, which could exist in epiphytic and saprophytic surviving phases, and is strictly repressed within phosphate-rich host plants to minimize fitness costs.
Collapse
Affiliation(s)
- Dehong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
| | - Bingbing Xue
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
| | - Yanan Shao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
| | - Haoquan Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
| | - Xiaoyan Yao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan 430070China
| |
Collapse
|
44
|
Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathog 2018; 14:e1007076. [PMID: 30059535 PMCID: PMC6085062 DOI: 10.1371/journal.ppat.1007076] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/09/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells’ oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells’ hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress. Candida albicans is the species most often isolated from patients with invasive fungal disease, and is also a common colonizer of healthy people. It is well equipped to compete for nutrients with bacteria co-inhabiting human gastrointestinal mucous membranes, since it possesses multiple transporters to internalize important nutrients like sugars, nitrogen sources, and phosphate. During infection, the fungus needs to withstand human defense cells that attack it with noxious chemicals, among which reactive oxygen species (ROS) are critical. We found that a high-affinity phosphate transporter, Pho84, is required for C. albicans’ ability to successfully invade animal hosts and to eliminate ROS. Levels of a fungal enzyme that breaks down ROS, Sod3, were decreased in cells lacking Pho84. A connection between this phosphate transporter and the ROS-detoxifying enzyme was identified in the Target of Rapamycin (TOR) pathway, to which Pho84 is known to provide activating signals when phosphate is abundant. Small molecules that block Pho84 activity impair the ability of C. albicans to detoxify ROS. Since humans manage phosphate differently than fungi and have no Pho84 homolog, a drug that inhibits Pho84 could disable the defense of the fungus against the host.
Collapse
|
45
|
Adaptation to the coupling of glycolysis to toxic methylglyoxal production in tpiA deletion strains of Escherichia coli requires synchronized and counterintuitive genetic changes. Metab Eng 2018; 48:82-93. [PMID: 29842925 DOI: 10.1016/j.ymben.2018.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 11/21/2022]
Abstract
Methylglyoxal is a highly toxic metabolite that can be produced in all living organisms. Methylglyoxal was artificially elevated by removal of the tpiA gene from a growth optimized Escherichia coli strain. The initial response to elevated methylglyoxal and its toxicity was characterized, and detoxification mechanisms were studied using adaptive laboratory evolution. We found that: 1) Multi-omics analysis revealed biological consequences of methylglyoxal toxicity, which included attack on macromolecules including DNA and RNA and perturbation of nucleotide levels; 2) Counter-intuitive cross-talk between carbon starvation and inorganic phosphate signalling was revealed in the tpiA deletion strain that required mutations in inorganic phosphate signalling mechanisms to alleviate; and 3) The split flux through lower glycolysis depleted glycolytic intermediates requiring a host of synchronized and coordinated mutations in non-intuitive network locations in order to re-adjust the metabolic flux map to achieve optimal growth. Such mutations included a systematic inactivation of the Phosphotransferase System (PTS) and alterations in cell wall biosynthesis enzyme activity. This study demonstrated that deletion of major metabolic genes followed by ALE was a productive approach to gain novel insight into the systems biology underlying optimal phenotypic states.
Collapse
|
46
|
A Proteomic View of Salmonella Typhimurium in Response to Phosphate Limitation. Proteomes 2018; 6:proteomes6020019. [PMID: 29693629 PMCID: PMC6027262 DOI: 10.3390/proteomes6020019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium), an important foodborne pathogen, often encounters phosphate (Pi) shortage both in the environment and inside host cells. To gain a global view on its physiological responses to Pi starvation, we performed proteomic profiling of S. Typhimurium upon the shift from Pi-rich to Pi-low conditions. In addition to the Pho regulon, many metabolic processes were up-regulated, such as glycolysis, pentose phosphate pathway, pyrimidine degradation, glycogen, and trehalose metabolism, allowing us to chart an overview of S. Typhimurium carbon metabolism under Pi starvation. Furthermore, proteomic analysis of a mutant lacking phoB (that encodes a key regulator of Pi shortage response) suggested that only a small subset of the altered proteins upon Pi limitation was PhoB-dependent. Importantly, we present evidence that S. Typhimurium N-acetylglucosamine catabolism was induced under Pi-limiting conditions in a PhoB-dependent manner. Immunoblotting and β-galactosidase assays demonstrated that PhoB was required for the full activation of NagB, a key enzyme of this pathway, in response to low Pi. Thus, our study reveals that N-acetylglucosamine catabolism may represent an additional PhoB-regulated pathway to tackle bacterial Pi shortage.
Collapse
|
47
|
Nakamya MF, Ayoola MB, Park S, Shack LA, Swiatlo E, Nanduri B. The Role of Cadaverine Synthesis on Pneumococcal Capsule and Protein Expression. Med Sci (Basel) 2018; 6:E8. [PMID: 29351189 PMCID: PMC5872165 DOI: 10.3390/medsci6010008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 12/25/2022] Open
Abstract
Invasive infections caused by Streptococcus pneumoniae, a commensal in the nasopharynx, pose significant risk to human health. Limited serotype coverage by the available polysaccharide-based conjugate vaccines coupled with increasing incidence of antibiotic resistance complicates therapeutic strategies. Bacterial physiology and metabolism that allows pathogens to adapt to the host are a promising avenue for the discovery of novel therapeutics. Intracellular polyamine concentrations are tightly regulated by biosynthesis, transport and degradation. We previously reported that deletion of cadA, a gene that encodes for lysine decarboxylase, an enzyme that catalyzes cadaverine synthesis results in an attenuated phenotype. Here, we report the impact of cadA deletion on pneumococcal capsule and protein expression. Our data show that genes for polyamine biosynthesis and transport are downregulated in ∆cadA. Immunoblot assays show reduced capsule in ∆cadA. Reduced capsule synthesis could be due to reduced transcription and availability of precursors for synthesis. The capsule is the predominant virulence factor in pneumococci and is critical for evading opsonophagocytosis and its loss in ∆cadA could explain the reported attenuation in vivo. Results from this study show that capsule synthesis in pneumococci is regulated by polyamine metabolism, which can be targeted for developing novel therapies.
Collapse
Affiliation(s)
- Mary F Nakamya
- Department of Basic Sciences, College of Veterinary Medicine, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Moses B Ayoola
- Department of Basic Sciences, College of Veterinary Medicine, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Seongbin Park
- Department of Basic Sciences, College of Veterinary Medicine, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Leslie A Shack
- Department of Basic Sciences, College of Veterinary Medicine, P.O. Box 6100, Mississippi State, MS 39762, USA.
| | - Edwin Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70112, USA.
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, P.O. Box 6100, Mississippi State, MS 39762, USA.
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
48
|
Vuppada RK, Hansen CR, Strickland KAP, Kelly KM, McCleary WR. Phosphate signaling through alternate conformations of the PstSCAB phosphate transporter. BMC Microbiol 2018; 18:8. [PMID: 29351743 PMCID: PMC5775613 DOI: 10.1186/s12866-017-1126-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022] Open
Abstract
Background Phosphate is an essential compound for life. Escherichia coli employs a signal transduction pathway that controls the expression of genes that are required for the high-affinity acquisition of phosphate and the utilization of alternate sources of phosphorous. These genes are only expressed when environmental phosphate is limiting. The seven genes for this signaling pathway encode the two-component regulatory proteins PhoB and PhoR, as well as the high-affinity phosphate transporter PstSCAB and an auxiliary protein called PhoU. As the sensor kinase PhoR has no periplasmic sensory domain, the mechanism by which these cells sense environmental phosphate is not known. This paper explores the hypothesis that it is the alternating conformations of the PstSCAB transporter which are formed as part of the normal phosphate transport cycle that signal phosphate sufficiency or phosphate limitation. Results We tested two variants of PstB that are predicted to lock the protein in either of two conformations for their signaling output. We observed that the pstBQ160K mutant, predicted to reside in an inward-facing, open conformation signaled phosphate sufficiency whereas the pstBE179Q mutant, predicted to reside in an outward-facing, closed conformation signaled phosphate starvation. Neither mutant showed phosphate transport. Conclusions These results support the hypothesis that the alternating conformations of the PstSCAB transporter are sensed by PhoR and PhoU. This sensory mechanism thus controls the alternate autokinase and phospho-PhoB phosphatase activities of PhoR, which ultimately control the signaling state of the response regulator PhoB.
Collapse
Affiliation(s)
- Ramesh K Vuppada
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Colby R Hansen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Kirsta A P Strickland
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Keilen M Kelly
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - William R McCleary
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
49
|
Jers C, Ravikumar V, Lezyk M, Sultan A, Sjöling Å, Wai SN, Mijakovic I. The Global Acetylome of the Human Pathogen Vibrio cholerae V52 Reveals Lysine Acetylation of Major Transcriptional Regulators. Front Cell Infect Microbiol 2018; 7:537. [PMID: 29376036 PMCID: PMC5768985 DOI: 10.3389/fcimb.2017.00537] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/26/2017] [Indexed: 01/16/2023] Open
Abstract
Protein lysine acetylation is recognized as an important reversible post translational modification in all domains of life. While its primary roles appear to reside in metabolic processes, lysine acetylation has also been implicated in regulating pathogenesis in bacteria. Several global lysine acetylome analyses have been carried out in various bacteria, but thus far there have been no reports of lysine acetylation taking place in the important human pathogen Vibrio cholerae. In this study, we analyzed the lysine acetylproteome of the human pathogen V. cholerae V52. By applying a combination of immuno-enrichment of acetylated peptides and high resolution mass spectrometry, we identified 3,402 acetylation sites on 1,240 proteins. Of the acetylated proteins, more than half were acetylated on two or more sites. As reported for other bacteria, we observed that many of the acetylated proteins were involved in metabolic and cellular processes and there was an over-representation of acetylated proteins involved in protein synthesis. Of interest, we demonstrated that many global transcription factors such as CRP, H-NS, IHF, Lrp and RpoN as well as transcription factors AphB, TcpP, and PhoB involved in direct regulation of virulence in V. cholerae were acetylated. In conclusion, this is the first global protein lysine acetylome analysis of V. cholerae and should constitute a valuable resource for in-depth studies of the impact of lysine acetylation in pathogenesis and other cellular processes.
Collapse
Affiliation(s)
- Carsten Jers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Vaishnavi Ravikumar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mateusz Lezyk
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Abida Sultan
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sun N Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
50
|
Abstract
Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients-Candida, Pneumocystis, and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.
Collapse
|