1
|
Alizadeh MM, Gerami M, Majidian P, Ghorbani HR. The potential application of biochar and salicylic acid to alleviate salt stress in soybean ( Glycine max L.). Heliyon 2024; 10:e26677. [PMID: 38434021 PMCID: PMC10906409 DOI: 10.1016/j.heliyon.2024.e26677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/23/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024] Open
Abstract
Salt stress has been one of the major contributor which affect soybean seed germination, its establishment, growth, and physiology stages. Utilization of strategies such as soil amendment and elicitors are of significant importance to reduce the disadvantageous effects of salt stress. In this regard, the objectives of the present study were to evaluate the effect of biochar and salicylic acid on morphological and physiological properties of soybean subjected to salinity. The first experiment was carried out based on completely randomized design with three replications including 11 soybean cultivars such as Williams, Saba, Kowsar, Tapor, Sari, Telar, Caspian, Nekador, Amir, Katol and Sahar and various levels of salinity such as 0, 2, 4, 6 dS/m of NaCl. The second experiment was performed as factorial design in a randomized complete block design with three replications consisting of treatments of biochar (0, 5 and 10 WP), salicylic acid (0, 0.5 and 1 mM), and NaCl (0, 2.5, 5, 7.5 dS/m). With respect to seed germination result, various concentrations of salt stress showed negative impact not only on all studied traits, but also varied among soybean cultivars indicating Amir cultivar as the best salt tolerant soybean genotype among others. In addition, our data exhibited that the interaction effect of biochar and salicylic acid on salt treated soybean plant were positively significant on some morphological traits such as leaf area, shoot dry/fresh weight, total dry/fresh weight and physiological attributes including chlorophyll a, flavonoid, proline contents, catalase and peroxidase activities. Moreover, the resultant data showed that the combination treatment of 5 and 10 WP of biochar and 1 mM of salicylic acid caused increase of the aforementioned parameters in order to improve their performance subjected to higher concentration of salinity. In final, it was concluded that the coupled application of biochar alongside salicylic acid was recommended as proficient strategy to mitigate the injurious influences of salt stress in soybean or other probable crops.
Collapse
Affiliation(s)
| | - Mahyar Gerami
- Department of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Parastoo Majidian
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| | - Hamid Reza Ghorbani
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| |
Collapse
|
2
|
Mady E, Abd El-Wahed AHM, Awad AH, Asar TO, Al-Farga A, Abd El-Raouf HS, Randhir R, Alnuzaili ES, El-Taher AM, Randhir TO, Hamada FA. Evaluation of Salicylic Acid Effects on Growth, Biochemical, Yield, and Anatomical Characteristics of Eggplant (Solanum melongena L.) Plants under Salt Stress Conditions. AGRONOMY 2023; 13:2213. [DOI: 10.3390/agronomy13092213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Salt stress is a major issue in agriculture and crop production that influences global food security. Mitigation options to address salt stress through agronomic practices can help manage this issue. Experiments were performed in two summer seasons in an experimental farm to test the impact of three salinity levels (S): 300 (control), 1000, 2000, and 3000 ppm, and two salicylic acid (SA) levels, including 1.0 and 1.50 mM, and their interaction on growth and yield of eggplant (Solanum melongena L.) hybrid Suma. The results showed that increasing S levels up to 3000 ppm reduced plant and fruit physical characteristics, as well as leaf and fruit chemical characteristics, especially leaf total chlorophyll, carotenoids, relative water, fruit nitrogen, phosphorus, and potassium contents, which led to a reduction in total yield per plant. However, an insignificant effect was observed in the control level and 1000 ppm saline water in leaf area, fruit length, leaf total chlorophyll content, fruit phosphorus content, and total yield per plant. In contrast, leaf sugars, proline contents, electrolyte leakage, fruit TSS (total soluble solids), and ascorbic acid contents were improved with S levels up to the concentration of 3000 ppm compared to the control. However, tested parameters were significantly higher due to the SA foliar spray of 1.0 mM besides photosynthetic pigments of leaves enhanced by using 1.0 and 1.50 mM. Using 1.0 mM SA concentration alleviated the adverse impact of S on eggplant plants until 1000 ppm saline water, reflecting an increase in eggplant yield. The anatomical structure of eggplant leaves revealed positive variations in mature leaf blades in both the stressed and SA-treated plants. Based on these results, the use of SA at a concentration of 1.0 mM may lessen the negative impacts of salt on the growth of eggplant, which increases the overall yield.
Collapse
Affiliation(s)
- Emad Mady
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Asaad H. Awad
- Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Turky O. Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Hany S. Abd El-Raouf
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Reena Randhir
- Department of Biological Sciences, Springfield Technical Community College, Springfield, MA 01105, USA
| | - Ehab S. Alnuzaili
- English Department, College of Science and Arts, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed M. El-Taher
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Timothy O. Randhir
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA
| | - Fatma A. Hamada
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
| |
Collapse
|
3
|
Tanin MJ, Sharma A, Ram H, Singh S, Srivastava P, Mavi GS, Saini DK, Gudi S, Kumar P, Goyal P, Sohu VS. Application of potassium nitrate and salicylic acid improves grain yield and related traits by delaying leaf senescence in Gpc-B1 carrying advanced wheat genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1107705. [PMID: 37528976 PMCID: PMC10389087 DOI: 10.3389/fpls.2023.1107705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/29/2023] [Indexed: 08/03/2023]
Abstract
Grain protein content (GPC) is an important quality trait that effectively modulates end-use quality and nutritional characteristics of wheat flour-based food products. The Gpc-B1 gene is responsible for the higher protein content in wheat grain. In addition to higher GPC, the Gpc-B1 is also generally associated with reduced grain filling period which eventually causes the yield penalty in wheat. The main aim of the present study was to evaluate the effect of foliar application of potassium nitrate (PN) and salicylic acid (SA) on the physiological characteristics of a set of twelve genotypes, including nine isogenic wheat lines carrying the Gpc-B1 gene and three elite wheat varieties with no Gpc-B1 gene, grown at wheat experimental area of the Department of Plant Breeding and Genetics, PAU, Punjab, India. The PN application significantly increased the number of grains per spike (GPS) by 6.42 grains, number of days to maturity (DTM) by 1.03 days, 1000-grain weight (TGW) by 1.97 g and yield per plot (YPP) by 0.2 kg/plot. As a result of PN spray, the flag leaf chlorophyll content was significantly enhanced by 2.35 CCI at anthesis stage and by 1.96 CCI at 10 days after anthesis in all the tested genotypes. Furthermore, the PN application also significantly increased the flag leaf nitrogen content by an average of 0.52% at booting stage and by 0.35% at both anthesis and 10 days after anthesis in all the evaluated genotypes. In addition, the yellow peduncle colour at 30 days after anthesis was also increased by 19.08% while the straw nitrogen content was improved by 0.17% in all the genotypes. The preliminary experiment conducted using SA demonstrated a significant increase in DTM and other yield component traits. The DTM increased by an average of 2.31 days, GPS enhanced by approximately 3.17 grains, TGW improved by 1.13g, and YPP increased by 0.21 kg/plot. The foliar application of PN and SA had no significant effect on GPC itself. The findings of the present study suggests that applications of PN and SA can effectively mitigate the yield penalty associated with Gpc-B1 gene by extending grain filling period in the wheat.
Collapse
Affiliation(s)
| | - Achla Sharma
- *Correspondence: Mohammad Jafar Tanin, ; Achla Sharma,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Bano A, Noreen Z, Tabassum F, Zafar F, Rashid M, Aslam M, Shah AA, Shah AN, Jaremko M, Alasmael N, Abdelsalam NR, Hasan ME. Induction of salt tolerance in Brassica rapa by nitric oxide treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:995837. [PMID: 36466280 PMCID: PMC9709477 DOI: 10.3389/fpls.2022.995837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Salinity is one of the major plant abiotic stresses increasing over time worldwide. The most important biological role of nitric oxide (NO) in plants is related to their development and growth under abiotic conditions. The present experiment was conducted to study the effect of salt stress (0 and 100 mM) and NO (0 and 80 μM) on two different ecotypes of Brassica rapa (L.): PTWG-HL and PTWG-PK. The different growth attributes, biochemical and physiological parameters, and the mineral contents were examined. The results indicated increased hydrogen peroxide (H2O2), relative membrane permeability, malondialdehyde (MDA), and Na+ content and decreased plant biomass in both ecotypes (PTWG-PK and PTWG-HL) under salt stress. In contrast, NO treatment resulted in increased plant biomass, chlorophyll content, and total soluble proteins and decreased H2O2, relative membrane permeability, MDA, total phenolic content, catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and Na+. The combined effect of salt stress and NO application increased the chlorophyll a content, total phenolic content, and total soluble proteins, but decreased H2O2, relative membrane permeability, MDA, and Na+. The response of carotenoids, anthocyanins, and K+, Ca2+, and Cl- ions varied in both ecotypes under all treatment conditions. The PTWG-PK ecotype showed maximum overall growth response with the application of NO. Henceforth, it is proposed that the molecular mechanisms associated with NO-induced stress tolerance in plants may be exploited to attain sustainability in agriculture under changing climate scenarios.
Collapse
Affiliation(s)
- Atiyyah Bano
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Fariha Tabassum
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Fizza Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Madiha Rashid
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Noura Alasmael
- Smart Hybrid Materials Laboratory, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
5
|
Lekshmi RS, Sora S, Anith KN, Soniya EV. Root colonization by the endophytic fungus Piriformospora indica shortens the juvenile phase of Piper nigrum L. by fine tuning the floral promotion pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:954693. [PMID: 36479508 PMCID: PMC9720737 DOI: 10.3389/fpls.2022.954693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Piriformospora indica, the mutualistic biotrophic root colonizing endosymbiotic fungus belonging to the order Sebacinales, offers host plants various benefits and enhances its growth and performance. The effect of colonization of P. indica in Piper nigrum L. cv. Panniyur1 on growth advantages, floral induction and evocation was investigated. Growth and yield benefits are credited to the alteration in the phytohormone levels fine-tuned by plants in response to the fungal colonization and perpetuation. The remarkable upregulation in the phytohormone levels, as estimated by LC- MS/MS and quantified by qRT-PCR, revealed the effectual contribution by the endophyte. qRT-PCR results revealed a significant shift in the expression of putative flowering regulatory genes in the photoperiod induction pathway (FLOWERING LOCUS T, LEAFY, APETALA1, AGAMOUS, SUPPRESSOR OF CONSTANS 1, GIGANTEA, PHYTOCHROMEA, and CRYPTOCHROME1) gibberellin biosynthetic pathway genes (GIBBERELLIN 20-OXIDASE2, GIBBERELLIN 2-OXIDASE, DELLA PROTEIN REPRESSOR OF GA1-3 1) autonomous (FLOWERING LOCUS C, FLOWERING LOCUS VE, FLOWERING LOCUS CA), and age pathway (SQUAMOSA PROMOTER LIKE9, APETALA2). The endophytic colonization had no effect on vernalization (FLOWERING LOCUS C) or biotic stress pathways (SALICYLIC ACID INDUCTION DEFICIENT 2, WRKY family transcription factor 22). The data suggest that P. nigrum responds positively to P. indica colonization, affecting preponement in floral induction as well as evocation, and thereby shortening the juvenile phase of the crop.
Collapse
Affiliation(s)
- R. S. Lekshmi
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S. Sora
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - K. N. Anith
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - E. V. Soniya
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
6
|
Abdi N, Van Biljon A, Steyn C, Labuschagne MT. Salicylic Acid Improves Growth and Physiological Attributes and Salt Tolerance Differentially in Two Bread Wheat Cultivars. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11141853. [PMID: 35890487 PMCID: PMC9323149 DOI: 10.3390/plants11141853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 06/01/2023]
Abstract
Abiotic constraints such as salinity stress reduce cereal production. Salicylic acid is an elicitor of abiotic stress tolerance in plants. The aim of this study was to investigate the effects of salicylic acid on two bread wheat cultivars (SST806 and PAN3497) grown under salt stress (100 and 200 mM NaCl) in the presence and absence of 0.5 mM salicylic acid. The highest salt concentration (200 mM), in both PAN3497 and SST806, increased the days to germination and reduced the coleoptile and radicle dry weights. The shoot dry weight was reduced by 75 and 39%, root dry weight by 73 and 37%, spike number of both by 50%, spike weight by 73 and 54%, grain number by 62 and 15%, grain weight per spike by 80 and 45%, and 1000 grain weight by 9 and 29% for 200 and 100 mM NaCl, respectively. Salicylic acid in combination with 100 mM and 200 mM NaCl increased the shoot, root, and yield attributes. Salicylic acid increased the grain protein content, especially at 200 mM NaCl, and the increase was higher in SST806 than PAN3497. The macro-mineral concentration was markedly increased by an increase of NaCl. This was further increased by salicylic acid treatment for both SST806 and PAN3497. Regarding micro-minerals, Na was increased more than the other minerals in both cultivars. Mn, Zn, Fe, and Cu were increased under 100 mM and 200 Mm of salt, and salicylic acid application increased these elements further in both cultivars. These results suggested that salicylic acid application improved the salt tolerance of these two bread wheat cultivars.
Collapse
|
7
|
Farooq M, Asif S, Jang YH, Park JR, Zhao DD, Kim EG, Kim KM. Effect of Different Salts on Nutrients Uptake, Gene Expression, Antioxidant, and Growth Pattern of Selected Rice Genotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:895282. [PMID: 35783927 PMCID: PMC9244628 DOI: 10.3389/fpls.2022.895282] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/16/2022] [Indexed: 06/12/2023]
Abstract
Climate change leads to soil salinization, and the dynamic scarcity of freshwater has negatively affected crop production worldwide, especially Oryza sativa. The association among ion uptake, gene expression, antioxidant, biomass, and root and shoot development under different salt stress are not fully understood. Many studies are related to the effect of NaCl only. This study used two salts (CaCl2 and MgCl2) along with NaCl and analyzed their effects on mineral uptake (macronutrients and micronutrients), gene expression, seed germination, antioxidants, plant growth, and biomass in different rice genotypes. CaCl2 (up to 200 mM) slightly increased the germination percentage and seedling growth, whereas, 150 mM MgCl2 in the soil increased the root, shoot length, and fresh and dry weight in cultivars IR 28 and Cheongcheong. All agronomic traits among rice genotypes were drastically reduced by NaCl stress compared to other salts. Different salt stress differentially regulated ion uptake in the roots and shoots among different rice genotypes. Under different salt stress, a consistent decrease in Ca2+, Mn2+, and Fe2+ ions was observed in the roots of Cheongcheong, Nagdong, and IR 28. Similarly, under different salts, the stress in the shoots of Cheongcheong (Ca2+, Na+, and Zn2+) and Nagdong (Ca2+, Mg2+, Na+, and Zn2+) and the shoots of IR 28 (Ca2+ and Mg2+) consistently increased. Under different salts, a salt stress-related gene was expressed differentially in the roots of rice genotypes. However, after 6 and 12 h, there was consistent OsHKT1, OsNHX1, and OsSOS1 gene upregulation in the shoots of Nagdong and roots and shoots of the salt-tolerant cultivar Pokkali. Under different salt stress, glutathione (GSH) content increased in the shoot of IR 28 and Nagdong by NaCl, and MgCl2 salt, whereas, POD activity increased significantly by CaCl2 and MgCl2 in cultivar Cheongcheong and IR 28 shoot. Therefore, this study suggested that Pokkali responded well to NaCl stress only, whereas, the plant molecular breeding lab cultivar Nagdong showed more salt tolerance to different salts (NaCl, CaCl2, and MgCl2). This can potentially be used by agriculturists to develop the new salt-tolerant cultivar "Nagdong"-like Pokkali.
Collapse
Affiliation(s)
- Muhammad Farooq
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, South Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, South Korea
| | - Yoon-Hee Jang
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, South Korea
| | - Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| | - Dan-Dan Zhao
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, South Korea
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, South Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, South Korea
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, South Korea
| |
Collapse
|
8
|
Amoanimaa-Dede H, Su C, Yeboah A, Zhou H, Zheng D, Zhu H. Growth regulators promote soybean productivity: a review. PeerJ 2022; 10:e12556. [PMID: 35265396 PMCID: PMC8900611 DOI: 10.7717/peerj.12556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/05/2021] [Indexed: 01/06/2023] Open
Abstract
Soybean [Glycine max (L.) Merrill] is a predominant edible plant and a major supply of plant protein worldwide. Global demand for soybean keeps increasing as its seeds provide essential proteins, oil, and nutraceuticals. In a quest to meet heightened demands for soybean, it has become essential to introduce agro-technical methods that promote adaptability to complex environments, improve soybean resistance to abiotic stress , and increase productivity. Plant growth regulators are mainly exploited to achieve this due to their crucial roles in plant growth and development. Increasing research suggests the influence of plant growth regulators on soybean growth and development, yield, quality, and abiotic stress responses. In an attempt to expatiate on the topic, current knowledge, and possible applications of plant growth regulators that improve growth and yield have been reviewed and discussed. Notably, the application of plant growth regulators in their appropriate concentrations at suitable growth periods relieves abiotic stress thereby increasing the yield and yield components of soybean. Moreover, the regulation effects of different growth regulators on the morphology, physiology, and yield quality of soybean are discoursed in detail.
Collapse
Affiliation(s)
- Hanna Amoanimaa-Dede
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Chuntao Su
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Akwasi Yeboah
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong Province, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
9
|
Li B, Wang W. Salicylic acid induces tolerance of Vitisriparia×V.labrusca to chilling stress by altered photosynthetic, antioxidant mechanisms and expression of cold stress responsive genes. PLANT SIGNALING & BEHAVIOR 2021; 16:1973711. [PMID: 34523393 PMCID: PMC8526021 DOI: 10.1080/15592324.2021.1973711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 05/21/2023]
Abstract
The yield and quality of wine grapes are severely persecuted by low-temperaturestresses. Salicylic acid (SA) assists plants in coping with abiotic stresses such as drought, heavy metal toxicity, and osmotic stress. The objective of this study was to evaluate the effect of foliar spraying of different concentrations of SA on the mitigation of cold damage in grapes, which is useful for the cultivation of wine grapes.Vitisriparia×V.labruscaseedlings were treated with foliar-sprayedSA at concentrations of 0-2 mM and then subjected to chilling stress at 4°C for 2 or 4 days, while the expression of relevant physiological indicators and cold response genes (CBF1, CBF2, CBF3) were measured. The findings indicated that low temperature stresses markedly reduced chlorophyll content, and increased proline as well as soluble sugar content, enhanced superoxide dismutase (SOD) and peroxidase (POD) activities, decreased catalase (CAT) activity and inducedCBFgene expression in leaves. Physiologically, foliar spraying of different concentrations of SA greatly increased antioxidant enzyme activity (P < .05), soluble sugars, proline, and chlorophyll content of grapes leave under low temperature stress. With regard to gene expression, SA has significantly regulated the cold response genesCBF1, CBF2, andCBF3. Therefore, SA could reduce cold damage in grapevines under low-temperaturestress, and the effect of SA was most pronounced in the 1 and 2 mM concentrates.
Collapse
Affiliation(s)
- Bin Li
- College of Life Science and Technology,Gansu Agricultural University,Lanzhou,China
| | - Wangtian Wang
- Key Laboratory of Arid Land Crop Science of Gansu Province, College of Life Science and Technology,Gansu Agricultural University,Lanzhou,China
- CONTACTWangtian Wang Key Laboratory of Arid Land Crop Science of Gansu Province, College of Life Science and Technology,Gansu Agricultural University,Lanzhou730070,China
| |
Collapse
|
10
|
Foliar Supplementation of Clove Fruit Extract and Salicylic Acid Maintains the Performance and Antioxidant Defense System of Solanum tuberosum L. under Deficient Irrigation Regimes. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A field trial was conducted twice (in 2020 and 2021) to evaluate the effect of clove fruit extract (CFE) and/or salicylic acid (SA), which were used as a foliar nourishment, on growth and yield traits, as well as physiological and biochemical indices utilizing potato (Solanum tuberosum L.) plants irrigated with deficient regimes in an arid environment. Three drip irrigation regimes [e.g., well watering (7400 m3 ha−1), moderate drought (6200 m3 ha−1), and severe drought (5000 m3 ha−1)] were designed for this study. The tested growth, yield, and photosynthetic traits, along with the relative water content, were negatively affected, whereas markers of oxidative stress (hydrogen peroxide and superoxide), electrolyte leakage, and peroxidation of membrane lipids (assessed as malondialdehyde level) were augmented along with increased antioxidative defense activities under drought stress. These effects were gradually increased with the gradual reduction in the irrigation regime. However, under drought stress, CFE and/or SA significantly enhanced growth characteristics (fresh and dry weight of plant shoot and plant leaf area) and yield components (average tuber weight, number of plant tubers, and total tuber yield). In addition, photosynthetic attributes (chlorophylls and carotenoids contents, net photosynthetic and transpiration rates, and stomatal conductance) were also improved, and defensive antioxidant components (glutathione, free proline, ascorbate, soluble sugars, and α-tocopherol levels, and activities of glutathione reductase, peroxidase, superoxide dismutase, catalase, and ascorbate peroxidase) were further enhanced. The study findings advocate the idea of using a CFE+SA combined treatment, which was largely efficient in ameliorating potato plant growth and productivity by attenuating the limiting influences of drought stress in dry environments.
Collapse
|
11
|
SA-Mediated Regulation and Control of Abiotic Stress Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22115591. [PMID: 34070465 PMCID: PMC8197520 DOI: 10.3390/ijms22115591] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Environmental or abiotic stresses are a common threat that remains a constant and common challenge to all plants. These threats whether singular or in combination can have devastating effects on plants. As a semiaquatic plant, rice succumbs to the same threats. Here we systematically look into the involvement of salicylic acid (SA) in the regulation of abiotic stress in rice. Studies have shown that the level of endogenous salicylic acid (SA) is high in rice compared to any other plant species. The reason behind this elevated level and the contribution of this molecule towards abiotic stress management and other underlying mechanisms remains poorly understood in rice. In this review we will address various abiotic stresses that affect the biochemistry and physiology of rice and the role played by SA in its regulation. Further, this review will elucidate the potential mechanisms that control SA-mediated stress tolerance in rice, leading to future prospects and direction for investigation.
Collapse
|
12
|
Prakash V, Singh VP, Tripathi DK, Sharma S, Corpas FJ. Nitric oxide (NO) and salicylic acid (SA): A framework for their relationship in plant development under abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:39-49. [PMID: 33590621 DOI: 10.1111/plb.13246] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/03/2021] [Indexed: 05/28/2023]
Abstract
The free radical nitric oxide (NO) and the phenolic phytohormone salicylic acid (SA) are signal molecules which exert key functions at biochemical and physiological levels. Abiotic stresses, especially in early plant development, impose the biggest threats to agricultural systems and crop yield. These stresses impair plant growth and subsequently cause a reduction in root development, affecting nutrient uptake and crop productivity. The molecules NO and SA have been identified as robust tools for efficiently mitigating the negative effects of abiotic stress in plants. SA is engaged in an array of tasks under adverse environmental situations. The function of NO depends on its cellular concentration; at a low level, it acts as a signal molecule, while at a high level, it triggers nitro-oxidative stress. The crosstalk between NO and SA involving different signalling molecules and regulatory factors modulate plant function during stressful situations. Crosstalk between these two signalling molecules induces plant tolerance to abiotic stress and needs further investigation. This review aims to highlight signalling aspects of NO and SA in higher plants and critically discusses the roles of these two molecules in alleviating abiotic stress.
Collapse
Affiliation(s)
- V Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - V P Singh
- Department of Botany, C.M.P. Degree College, A Constitute PG College of University of Allahabad, Prayagraj, India
| | - D K Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - S Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - F J Corpas
- Department of Biochemistry, Cell and Molecular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
13
|
Khanna RR, Jahan B, Iqbal N, Khan NA, AlAjmi MF, Tabish Rehman M, Khan MIR. GABA reverses salt-inhibited photosynthetic and growth responses through its influence on NO-mediated nitrogen-sulfur assimilation and antioxidant system in wheat. J Biotechnol 2020; 325:73-82. [PMID: 33189727 DOI: 10.1016/j.jbiotec.2020.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 01/05/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a newly recognized signaling molecule participating in physiological processes, growth, and development of plants under optimal and stressful environments. In the present reported research, we investigated the role of GABA in imparting salt stress tolerance in wheat (Triticum aestivum L.). Exposure of wheat plants to 100 mM NaCl resulted in increased oxidative stress, glucose content, nitric oxide (NO) production together with reduced growth and photosynthetic traits of plants. Contrarily, GABA application improved nitrogen (N) metabolism, sulfur (S) assimilation, ion homeostasis, growth and photosynthesis under salt stress. Additionally, GABA mitigated oxidative stress induced by salt stress with the increased ascorbate-glutathione cycle and proline metabolism. The study with NO inhibitor, c-PTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide] in GABA experiment suggested that the impact of GABA on improvement of growth and photosynthesis under salt stress was mediated by NO and influenced N and S assimilation and antioxidant systems. The results suggested that the GABA has a significant potential in reversing the salt stress response in wheat plants, and GABA-mediated signals are manifested through NO.
Collapse
Affiliation(s)
| | - Badar Jahan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | - Nafees A Khan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
14
|
Abdallah MMS, Bakry BA, El-Bassiouny HMS, El-Monem AAA. Growth, Yield and Biochemical Impact of Anti-transpirants on Sunflower Plant Grown under Water Deficit. Pak J Biol Sci 2020; 23:454-466. [PMID: 32363831 DOI: 10.3923/pjbs.2020.454.466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Climate change affecting on weather in many different ways especially drought and temperature rise. This will drastically down plant production, if not start looking for another source to increase water productivity to cope up with water stress conditions. In this study efforts were conducted to interpret the use of anti-transpirants to conserving irrigation water, aiding plant survival under dry conditions and protecting plant against drought stress. MATERIALS AND METHODS Two field experiments were carried out during 2017 and 2018 successive growing summer seasons at the experimental farm of National Research Centre, Nubaria, El-Beheira Governorate, Egypt. Anti-transparent ,i.e., chitosan (100 and 150 mg L-1), calcium carbonate (5 and 10 g L-1), salicylic acid (200 and 300 mg L-1) were foliar sprayed on sunflower plants grown under two water levels (normal 100% and deficit 50%). RESULTS The results showed that water stress decreased growth criteria, photosynthetic pigments, osmoprotectants, yield components, oil and carbohydrate (%) as compared to 100% of irrigation requirements. Meanwhile, water deficit induced significant increases in (proline). Foliar treatments of sunflower plant with chitosan, calcium carbonate, salicylic acid increased growth criteria, yield components, photosynthetic pigments, total soluble sugars, proline and free amino acid as compared to control plant. Data also illustrated that, all used treatment improved seed yield, oil and carbohydrate% of sunflower plants. CONCLUSION Generally, it could be concluded that 10 g L-1 CaCO3 and 300 mg L-1 SA at 50% level of water irrigation could be recommended for sunflower plant grown under similar field conditions in order to get optimum yield and to save irrigation water.
Collapse
|
15
|
Bakry BA, Sadak MS, El-Monem AAA. Physiological Aspects of Tyrosine and Salicylic Acid on Morphological, Yield and Biochemical Constituents of Peanut Plants. Pak J Biol Sci 2020; 23:375-384. [DOI: 10.3923/pjbs.2020.375.384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
VÂȘCĂ-ZAMFIR DIANA, BĂLAN DANIELA, LUȚĂ GABRIELA, GHERGHINA EVELINA, TUDOR VALENTINACONSTANȚA. Effect of fertilization regime on Murraya exotica plants growth and bioactive compounds. ROMANIAN BIOTECHNOLOGICAL LETTERS 2019. [DOI: 10.25083/rbl/24.2/245.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Changes in Photosynthetic Pigments, Total Phenolic Content, and Antioxidant Activity of Salvia coccinea Buc'hoz Ex Etl. Induced by Exogenous Salicylic Acid and Soil Salinity. Molecules 2018; 23:molecules23061296. [PMID: 29843455 PMCID: PMC6099562 DOI: 10.3390/molecules23061296] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022] Open
Abstract
Salvia coccinea (Lamiaceae) is a promising source of potential antioxidants, and its extracts can be used in pharmaceutical industry, as well as in food products and cosmetics. Salicylic acid (SA) affects many physiological and metabolic processes in vascular plants under salinity stress. The aim of this study was to investigate the response of S. coccinea to either SA, or sodium chloride (NaCl), or a combination of both. The plants were sprayed with a solution of 0.5 or 1.0 mM SA and watered with 0, 100, 200, or 300 mM NaCl. Exogenous application of SA increased the number of branches, fresh herbal weight, and total chlorophyll content vs control plants. Salinity-exposed plants showed reduced growth, content of photosynthetic pigments total polyphenols, and antioxidant activity. However, foliar application of SA relieved the adverse effects of 100 mM NaCl, as demonstrated by increased number of branches, greater fresh herbal weight, higher content of total chlorophyll, total carotenoids, and total polyphenols, as well as antioxidant potential, detected using ferric-reducing ability of plasma (FRAP) and 2.2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), compared with untreated plants.
Collapse
|
18
|
Soliman MH, Alayafi AAM, El Kelish AA, Abu-Elsaoud AM. Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. BOTANICAL STUDIES 2018; 59:6. [PMID: 29450670 PMCID: PMC5814394 DOI: 10.1186/s40529-018-0222-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/08/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND High and low temperatures constitute the most damaging type of abiotic stress and limit the survival, and productivity of plants. The present study aimed to evaluate the role of exogenous applications of acetylsalicylic acid (ASA) in reducing the deleterious effects of cold stress. Phaseolus vulgaris L. seedlings were treated with foliar-sprayed ASA at concentrations of 0-3 mM and then subjected to chilling stress at 4 °C for 2 or 4 days. RESULTS Growth, photosynthesis, biochemical alterations, oxidative damage and antioxidant enzyme activities as well as the expression of cold-responsive genes (CBF3-COR47), were monitored during the experiment. ASA applications substantially improved several growth and photosynthetic parameters, including shoot biomass, dry weight, and photosynthetic pigments, of P. vulgaris seedlings exposed to different durations of chilling stresses. The ASA foliar spray treatments significantly (p < 0.05) rescued the growth and photosynthetic pigments of P. vulgaris seedlings under different chilling stresses. The total soluble sugars markedly increased during 0-4 days of chilling stress following ASA foliar spraying. The exogenous application of ASA significantly (p < 0.05) increased the accumulation of proline in P. vulgaris seedlings under chilling stress. At the gene expression level, ASA significantly (p < 0.05) upregulated the cold-responsive genes CBF3 and COR47. CONCLUSIONS As a result, we speculate that, the application of exogenous ASA alleviated the adverse effects of chilling stress on all measured parameters, and 1 and 2 mM ASA exhibited the greatest effects.
Collapse
Affiliation(s)
- Mona H. Soliman
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, 46429 Kingdom of Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Aisha A. M. Alayafi
- Biological Sciences Department, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Amr A. El Kelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
19
|
Nawaz F, Naeem M, Akram A, Ashraf MY, Ahmad KS, Zulfiqar B, Sardar H, Shabbir RN, Majeed S, Shehzad MA, Anwar I. Seed priming with KNO 3 mediates biochemical processes to inhibit lead toxicity in maize (Zea mays L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4780-4789. [PMID: 28369913 DOI: 10.1002/jsfa.8347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Accumulation of lead (Pb) in agricultural soils has become a major factor for reduced crop yields and poses serious threats to humans consuming agricultural products. The present study investigated the effects of KNO3 seed priming (0 and 0.5% KNO3 ) on growth of maize (Zea mays L.) seedlings exposed to Pb toxicity (0, 1300 and 2550 mg kg-1 Pb). RESULTS Pb exposure markedly reduced the growth of maize seedlings and resulted in higher Pb accumulation in roots than shoots. Pretreatment of seeds with KNO3 significantly improved the germination percentage and increased physiological indices. A stimulating effect of KNO3 seed priming was also observed on pigments (chlorophyll a, b, total chlorophyll and carotenoid contents) of Pb-stressed plants. Low translocation of Pb from roots to shoots caused an increased accumulation of total free amino acids and higher activities of catalase, peroxidase, superoxide dismutase and ascorbate peroxidase in roots as compared to shoot, which were further enhanced by exogenous KNO3 supply to prevent Pb toxicity. CONCLUSION Maize accumulates more Pb in roots than shoot at early growth stages. Priming of seeds with KNO3 prevents Pb toxicity, which may be exploited to improve seedling establishment in crop species grown under Pb contaminated soils. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fahim Nawaz
- Department of Agronomy, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Naeem
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | - Asim Akram
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | | | - Khawaja S Ahmad
- Department of Botany, University of Poonch, Rawalakot, Pakistan
| | - Bilal Zulfiqar
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | - Hasan Sardar
- Department of Horticulture, Agriculture College, Bahauddin Zakariya University, Multan, Pakistan
| | - Rana N Shabbir
- Department of Agronomy, Agriculture College, Bahauddin Zakariya University, Multan, Pakistan
| | - Sadia Majeed
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| | | | - Irfan Anwar
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Pakistan
| |
Collapse
|
20
|
Woźniak A, Formela M, Bilman P, Grześkiewicz K, Bednarski W, Marczak Ł, Narożna D, Dancewicz K, Mai VC, Borowiak-Sobkowiak B, Floryszak-Wieczorek J, Gabryś B, Morkunas I. The Dynamics of the Defense Strategy of Pea Induced by Exogenous Nitric Oxide in Response to Aphid Infestation. Int J Mol Sci 2017; 18:E329. [PMID: 28165429 PMCID: PMC5343865 DOI: 10.3390/ijms18020329] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to investigate the effect of exogenous nitric oxide (NO), i.e., S-nitrosoglutathione (GSNO) and sodium nitroprusside (SNP), on the metabolic status of Pisum sativum L. cv. Cysterski leaves infested by Acyrthosiphon pisum Harris, population demographic parameters and A. pisum feeding activity. A reduction in the level of semiquinone radicals in pea seedling leaves pretreated with exogenous NO occurred 24 h after A. pisum infestation, which was earlier than in non-pretreated leaves. A decrease in the level of O₂•- was observed in leaves pretreated with GSNO and infested by aphids at 48 and 72 h post-infestation (hpi). Directly after the pretreatment with GSNO, an increase in the level of metal ions was recorded. NO considerably induced the relative mRNA levels for phenylalanine ammonia-lyase in 24-h leaves pretreated with NO donors, both non-infested and infested. NO stimulated the accumulation of pisatin in leaves until 24 h. The Electrical Penetration Graph revealed a reduction in the feeding activity of the pea aphid on leaves pretreated with NO. The present study showed that foliar application of NO donors induced sequentially defense reactions of pea against A. pisum and had a deterrent effect on aphid feeding and limited the population growth rate.
Collapse
Affiliation(s)
- Agnieszka Woźniak
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Magda Formela
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Piotr Bilman
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Katarzyna Grześkiewicz
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland.
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Dorota Narożna
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland.
| | - Katarzyna Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland.
| | - Van Chung Mai
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Beata Borowiak-Sobkowiak
- Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| | | | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland.
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| |
Collapse
|
21
|
Rahman A, Hossain MS, Mahmud JA, Nahar K, Hasanuzzaman M, Fujita M. Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:291-306. [PMID: 27729716 PMCID: PMC5039159 DOI: 10.1007/s12298-016-0371-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/31/2016] [Indexed: 05/06/2023]
Abstract
Hydroponically grown 12-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 150 mM NaCl alone and combined with 0.5 mM MnSO4. Salt stress resulted in disruption of ion homeostasis by Na+ influx and K+ efflux. Higher accumulation of Na+ and water imbalance under salinity caused osmotic stress, chlorosis, and growth inhibition. Salt-induced ionic toxicity and osmotic stress consequently resulted in oxidative stress by disrupting the antioxidant defense and glyoxalase systems through overproduction of reactive oxygen species (ROS) and methylglyoxal (MG), respectively. The salt-induced damage increased with the increasing duration of stress. However, exogenous application of manganese (Mn) helped the plants to partially recover from the inhibited growth and chlorosis by improving ionic and osmotic homeostasis through decreasing Na+ influx and increasing water status, respectively. Exogenous application of Mn increased ROS detoxification by increasing the content of the phenolic compounds, flavonoids, and ascorbate (AsA), and increasing the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), superoxide dismutase (SOD), and catalase (CAT) in the salt-treated seedlings. Supplemental Mn also reinforced MG detoxification by increasing the activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) in the salt-affected seedlings. Thus, exogenous application of Mn conferred salt-stress tolerance through the coordinated action of ion homeostasis and the antioxidant defense and glyoxalase systems in the salt-affected seedlings.
Collapse
Affiliation(s)
- Anisur Rahman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Md. Shahadat Hossain
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| | - Jubayer-Al Mahmud
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795 Japan
| |
Collapse
|
22
|
Rahman A, Nahar K, Hasanuzzaman M, Fujita M. Calcium Supplementation Improves Na(+)/K(+) Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:609. [PMID: 27242816 PMCID: PMC4864017 DOI: 10.3389/fpls.2016.00609] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/20/2016] [Indexed: 05/20/2023]
Abstract
The present study investigates the regulatory role of exogenous calcium (Ca) in developing salt stress tolerance in rice seedlings. Hydroponically grown 13-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 200 mM NaCl alone and combined with 2 mM CaCl2 and 2 mM ethylene glycol tetraacetic acid (EGTA, a Ca scavenger) for 3 days. The salt stress caused growth inhibition, chlorosis and water shortage in the rice seedlings. The salt-induced stress disrupted ion homeostasis through Na(+) influx and K(+) efflux, and decreased other mineral nutrient uptake. Salt stress caused oxidative stress in seedlings through lipid peroxidation, loss of plasma membrane integrity, higher reactive oxygen species (ROS) production and methylglyoxal (MG) formation. The salt-stressed seedlings supplemented with exogenous Ca recovered from water loss, chlorosis and growth inhibition. Calcium supplementation in the salt-stressed rice seedlings improved ion homeostasis by inhibition of Na(+) influx and K(+) leakage. Exogenous Ca also improved ROS and MG detoxification by improving the antioxidant defense and glyoxalase systems, respectively. On the other hand, applying EGTA along with salt and Ca again negatively affected the seedlings as EGTA negated Ca activity. It confirms that, the positive responses in salt-stressed rice seedlings to exogenous Ca were for Ca mediated improvement of ion homeostasis, antioxidant defense and glyoxalase system.
Collapse
Affiliation(s)
- Anisur Rahman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityKagawa, Japan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversityDhaka, Bangladesh
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityKagawa, Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversityDhaka, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversityDhaka, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityKagawa, Japan
| |
Collapse
|
23
|
Maswada H, Abd El-Kader N. Redox halopriming: A Promising Strategy for Inducing Salt Tolerance in Bread Wheat. JOURNAL OF AGRONOMY AND CROP SCIENCE 2016; 202:37-50. [DOI: 10.1111/jac.12123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- H.F. Maswada
- Agricultural Botany Department; Faculty of Agriculture; Tanta University; Tanta Egypt
| | - N.I.K. Abd El-Kader
- Soil and Water Department; Faculty of Agriculture; Tanta University; Tanta Egypt
| |
Collapse
|