1
|
Sethi N, Khokhar M, Mathur M, Batra Y, Mohandas A, Tomo S, Rao M, Banerjee M. Therapeutic Potential of Nutraceuticals against Drug-Induced Liver Injury. Semin Liver Dis 2024. [PMID: 39393795 DOI: 10.1055/s-0044-1791559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Drug-induced liver injury (DILI) continues to be a major concern in clinical practice, thus necessitating a need for novel therapeutic approaches to alleviate its impact on hepatic function. This review investigates the therapeutic potential of nutraceuticals against DILI, focusing on examining the underlying molecular mechanisms and cellular pathways. In preclinical and clinical studies, nutraceuticals, such as silymarin, curcumin, and N-acetylcysteine, have demonstrated remarkable efficacy in attenuating liver injury induced by diverse pharmaceutical agents. The molecular mechanisms underlying these hepatoprotective effects involve modulation of oxidative stress, inflammation, and apoptotic pathways. Furthermore, this review examines cellular routes affected by these nutritional components focusing on their influence on hepatocytes, Kupffer cells, and stellate cells. Key evidence highlights that autophagy modulation as well as unfolded protein response are essential cellular processes through which nutraceuticals exert their cytoprotective functions. In conclusion, nutraceuticals are emerging as promising therapeutic agents for mitigating DILI, by targeting different molecular pathways along with cell processes involved in it concurrently.
Collapse
Affiliation(s)
- Namya Sethi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mitali Mathur
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Yashi Batra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Amal Mohandas
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
2
|
Roza JM, Srivastava S. Effect of SophorOx ® on Oxidative Stress and Body Composition in Individuals with High BMI: A Randomized Controlled Trial. Diabetes Metab Syndr Obes 2024; 17:2221-2234. [PMID: 38854444 PMCID: PMC11162634 DOI: 10.2147/dmso.s452451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/23/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose The study aimed to investigate the efficacy and safety of SophorOx® (LN-OS-22) on oxidative stress and body composition in adults with excessive body weight and obesity. Participants and Methods The 56-days randomized, double-blind, placebo-controlled, parallel-group, multi-centric clinical trial had individuals aged 30-60 years with body mass index (BMI) ≥25 to ≤34.9 kg/m2. 68 participants were randomly allocated to LN-OS-22 or placebo groups. The primary outcome was improvement in the oxidative stress. Secondary outcomes were changes in plasma lipopolysaccharide (LPS) and serum malondialdehyde (MDA) levels, weight and waist circumference, inflammatory markers, and quality of life. Results At day 56, a statistically significant change in the 8-Isoprostane levels between LN-OS-22 vs placebo was observed (p = 0.0222). As compared to placebo, at the end of study, statistically significant reductions were demonstrated in body weight, waist circumference and BMI in the LN-OS-22 group (p < 0.0001). Also, a statistically significant change when compared to placebo for the energy/stamina domain (p = 0.0300) of the Impact of Weight on Quality of Life-Lite-Clinical Trials Version (IWQOL-Lite-CT) questionnaire was depicted in LN-OS-22 group. Conclusion The study demonstrates that LN-OS-22 was effective in reducing the oxidative stress, anthropometrics and improving the quality of life in individuals with overweight and obesity.
Collapse
Affiliation(s)
- James M Roza
- Research & Development, Layn Natural Ingredients, Irvine, CA, 92602, USA
| | - Shalini Srivastava
- Clinical Development Department, Vedic Lifesciences Pvt. Ltd, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Kazura W, Michalczyk K, Skrzep-Poloczek B, Chełmecka E, Zalejska-Fiolka J, Michalski M, Kukla M, Jochem J, Rutkowski J, Stygar D. Liver Oxidative Status, Serum Lipids Levels after Bariatric Surgery and High-Fat, High-Sugar Diet in Animal Model of Induced Obesity. Int J Mol Sci 2023; 24:16535. [PMID: 38003721 PMCID: PMC10671458 DOI: 10.3390/ijms242216535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Nutritional status is a major determinant of hepatocyte injuries associated with changed metabolism and oxidative stress. This study aimed to determine the relations between oxidative stress, bariatric surgery, and a high-fat/high-sugar (HFS) diet in a diet-induced obesity rat model. Male rats were maintained on a control diet (CD) or high-fat/high-sugar diet (HFS) inducing obesity. After 8 weeks, the animals underwent SHAM (n = 14) or DJOS (n = 14) surgery and the diet was either changed or unchanged. Eight weeks after the surgeries, the activity of superoxide dismutase isoforms (total SOD, MnSOD, and CuZnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and lutathione S-transferase, as well as the thiol groups (-SH) concentration, total antioxidant capacity (TAC), total oxidative stress (TOS) levels, and malondialdehyde (MDA) concentration liver tissue were assessed. The total cholesterol, triglycerides (TG), and high-density lipoprotein (HDL) concentrations were measured in the serum. The total SOD and GPX activities were higher in the SHAM-operated rats than in the DJOS-operated rats. The MnSOD activity was higher in the HFS/HFS than the CD/CD groups. Higher CuZnSOD, GST, GR activities, -SH, and MDA concentrations in the liver, and the triglyceride and cholesterol concentrations in the serum were observed in the SHAM-operated rats than in the DJOS-operated rats. The CAT activity was significantly higher in the HFS-fed rats. Lower TAC and higher TOS values were observed in the SHAM-operated rats. Unhealthy habits after bariatric surgery may be responsible for treatment failure and establishing an obesity condition with increased oxidative stress.
Collapse
Affiliation(s)
- Wojciech Kazura
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Bronisława Skrzep-Poloczek
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Elżbieta Chełmecka
- Department of Medical Statistics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 31 Ostrogórska Street, 41-200 Sosnowiec, Poland
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Marek Michalski
- Department of Histology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Michał Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagellonian University Medical College, 31-688 Kraków, Poland
- Department of Endoscopy, University Hospital, 30-688 Kraków, Poland
| | - Jerzy Jochem
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Jakub Rutkowski
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808 Zabrze, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
4
|
Li L, Dong Y, Liu X, Wang M. Mangiferin for the Management of Liver Diseases: A Review. Foods 2023; 12:2469. [PMID: 37444207 DOI: 10.3390/foods12132469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The liver is a digestive and metabolic organ, and several factors can induce liver damage, which is a severe threat to human health. As a natural polyphenolic compound, mangiferin belongs to xanthone glucoside and mainly exists in many plants, such as mango. It is notorious that mangiferin has remarkable pharmacological activities such as anti-inflammatory, anti-tumor, antioxidative stress, antiviral and so on. Emerging evidence indicates the therapeutic benefits of mangiferin against liver disease, including liver injury, nonalcoholic fatty liver disease, alcoholic liver disease, liver fibrosis, and hepatocellular carcinoma. This review aims to summarize the possible underlying signaling mediated by mangiferin in liver disease treatment and the available findings of mangiferin, which can be used to treat different liver diseases and may contribute to mangiferin as a therapeutic agent for liver disease in humans.
Collapse
Affiliation(s)
- Lisi Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yujia Dong
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Meng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100086, China
| |
Collapse
|
5
|
Zheleva-Dimitrova D, Simeonova R, Kondeva-Burdina M, Savov Y, Balabanova V, Zengin G, Petrova A, Gevrenova R. Antioxidant and Hepatoprotective Potential of Echinops ritro L. Extracts on Induced Oxidative Stress In Vitro/In Vivo. Int J Mol Sci 2023; 24:9999. [PMID: 37373147 DOI: 10.3390/ijms24129999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Echinops ritro L. (Asteraceae) is traditionally used in the treatment of bacterial/fungal infections and respiratory and heart ailments. The aim of this study was to evaluate the potential of extracts from E. ritro leaves (ERLE) and flowering heads (ERFE) as antioxidant and hepatoprotective agents on diclofenac-induced lipid peroxidation and oxidative stress under in vitro and in vivo conditions. In isolated rat microsomes and hepatocytes, the extracts significantly alleviated oxidative stress by increasing cell viability and GSH levels and reducing LDH efflux and MDA production. During in vivo experiments, the administration of the ERFE alone or in combination with diclofenac resulted in a significant increase in cellular antioxidant protection and a decrease in lipid peroxidation witnessed by key markers and enzymes. A beneficial influence on the activity of the drug-metabolizing enzymes ethylmorphine-N-demetylase and aniline hydroxylase in liver tissue was found. In the acute toxicity test evaluation, the ERFE showed no toxicity. In the ultrahigh-performance liquid chromatography-high-resolution mass spectrometry analysis, 95 secondary metabolites were reported for the first time, including acylquinic acids, flavonoids, and coumarins. Protocatechuic acid O-hexoside, quinic, chlorogenic and 3, 5-dicaffeoylquinic acid, apigenin; apigenin 7-O-glucoside, hyperoside, jaceosidene, and cirsiliol dominated the profiles. The results suggest that both extracts should be designed for functional applications with antioxidant and hepatoprotective capacity.
Collapse
Affiliation(s)
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Yonko Savov
- Institute of Emergency Medicine "N. I Pirogov", Bul. Totleben 21, 1606 Sofia, Bulgaria
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya 42130, Turkey
| | - Alexandra Petrova
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
6
|
Qiao JY, Li W, Zeng RY, Yu YJ, Chen QW, Liu XH, Cheng SX, Zhang XZ. An orally delivered bacteria-based coacervate antidote for alcohol detoxification. Biomaterials 2023; 296:122072. [PMID: 36878091 DOI: 10.1016/j.biomaterials.2023.122072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Alcohol intoxication causes serious diseases, whereas current treatments are mostly supportive and unable to convert alcohol into nontoxic products in the digestive tract. To address this issue, an oral intestinal-coating coacervate antidote containing acetic acid bacteria (AAB) and sodium alginate (SA) mixture was constructed. After oral administration, SA reduces absorption of ethanol and promotes the proliferation of AAB, and AAB converts ethanol to acetic acid or carbon dioxide and water by two sequential catalytic reactions in the presence of membrane-bound alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). In vivo study shows that the bacteria-based coacervate antidote can significantly reduce the blood alcohol concentration (BAC) and effectively alleviates alcoholic liver injury in mice. Given the convenience and effectiveness of oral administration, AAB/SA can be used as a promising candidate antidote for relieving alcohol-induced acute liver injury.
Collapse
Affiliation(s)
- Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Wen Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Run-Yao Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yun-Jian Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Videla LA, Hernandez-Rodas MC, Metherel AH, Valenzuela R. Influence of the nutritional status and oxidative stress in the desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Prostaglandins Leukot Essent Fatty Acids 2022; 181:102441. [PMID: 35537354 DOI: 10.1016/j.plefa.2022.102441] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Polyunsaturated fatty acids (PUFA) play essential roles in cell membrane structure and physiological processes including signal transduction, cellular metabolism and tissue homeostasis to combat diseases. PUFA are either consumed from food or synthesized by enzymatic desaturation, elongation and peroxisomal β-oxidation. The nutritionally essential precursors α-linolenic acid (C18:3n-3; ALA) and linoleic acid (C18:2n-6; LA) are subjected to desaturation by Δ6D/Δ5D desaturases and elongation by elongases 2/5, enzymes that are induced by insulin and repressed by PUFA. Maintaining an optimally low n-6/n-3 PUFA ratio is linked to prevention of the development of several diseases, including nonalcoholic fatty liver disease (NAFLD) that is characterized by depletion of PUFA promoting hepatic steatosis and inflammation. In this context, supplementation with n-3 PUFA revealed significant lowering of hepatic steatosis in obese patients, whereas prevention of fatty liver by high-fat diet in mice is observed in n-3 PUFA and hydroxytyrosol co-administration. The aim of this work is to review the role of nutritional status and nutrient availability on markers of PUFA biosynthesis. In addition, the impact of oxidative stress developed as a result of NAFLD, a redox imbalance that may alter the expression and activity of the enzymes involved, and diminished n-3 PUFA levels by free-radical dependent peroxidation processes will be discussed.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Videla LA, Valenzuela R. Perspectives in liver redox imbalance: Toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action. Biofactors 2022; 48:400-415. [PMID: 34687092 DOI: 10.1002/biof.1797] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023]
Abstract
Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control, and/or molecular damage altering cellular functions. This redox imbalance may trigger different responses depending on the antioxidant potential of a given cell, the level of reactive oxygen/nitrogen species (ROS/RNS) attained and the time of exposure, with protective effects being induced at low ROS/RNS levels in acute or short-term conditions, and harmful effects after high ROS/RNS exposure in prolonged situations. Relevant conditions underlying liver redox imbalance include iron overload associated with ROS production via Fenton chemistry and the magnitude of the iron labile pool achieved, with low iron exposure inducing protective effects related to nuclear factor-κB, signal transducer and activation of transcription 3, and nuclear factor erythroid-related factor 2 (Nrf2) activation and upregulation of ferritin, hepcidin, acute-phase response and antioxidant components, whereas high iron exposure causes drastic oxidation of biomolecules, mitochondrial dysfunction, and cell death due to necrosis, apoptosis and/or ferroptosis. Redox imbalance in nonalcoholic fatty liver disease (NAFLD) is related to polyunsaturated fatty acid depletion, lipogenic factor sterol regulatory element-binding protein-1c upregulation, fatty acid oxidation-dependent peroxisome proliferator-activated receptor-α downregulation, low antioxidant factor Nrf2 and insulin resistance, a phenomenon that is exacerbated in nonalcoholic steatohepatitis triggering an inflammatory response. Thyroid hormone (T3 ) administration determines liver preconditioning against ischemia-reperfusion injury due to the redox activation of several transcription factors, AMP-activated protein kinase, unfolded protein response and autophagy. High grade liver redox imbalance occurring in severe iron overload is adequately handled by iron chelation, however, that underlying NAFLD/NASH is currently under study in several Phase II and Phase III trials.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
9
|
Ji J, Feng M, Huang Y, Niu X. Liraglutide inhibits receptor for advanced glycation end products (RAGE)/reduced form of nicotinamide-adenine dinucleotide phosphate (NAPDH) signaling to ameliorate non-alcoholic fatty liver disease (NAFLD) in vivo and vitro. Bioengineered 2022; 13:5091-5102. [PMID: 35164657 PMCID: PMC8974036 DOI: 10.1080/21655979.2022.2036902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The study was designed to investigate the effects of liraglutide and reveal its action mechanism associated with RAGE/NAPDH in NAFLD. The liver tissue was collected for HE, Masson, and ROS staining. Apoptosis levels were detected through TUNEL staining and ROS levels were evaluated through ROS staining. The expression levels of c-Jun N-terminal kinase (JNK) and transforming growth factor-β (TGF-β) were detected through Western blot. JNK and the expression of Collagenα1, Collagenα2 and connective tissue growth factor (CTGF) were detected through RT-qPCR and Western blot and the expression in mouse liver stellate cells (JS-1) cells were evaluated through immunofluorescence staining. We detected the effects of liraglutide on NAFLD in high-fat diet (HFD)-fed mice. Liraglutide treatment improved bridging fibrosis and liver function, as well as lessening ROS levels and the protein levels of RAGE, NOX1, NOX2 and NOX4. In PA and H2O2-induced AML12 cells, liraglutide treatment was able to decrease cell apoptosis, ROS levels and the levels of inflammatory factors including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, while it effects were reversed by the induction of RAGE overexpression or NOX2 overexpression. In JS-1 cells treated with medium culturing AML12 cells, liraglutide markedly suppressed cell proliferation and activation, while RAGE overexpression or NOX2 overexpression blunted these effects of liraglutide. Taken together, liraglutide exerts a protective role in improving liver injury caused by HFD, which could be related to decreased apoptosis and oxidative stress of liver cells, as well as decreased proliferation and activation of hepatic stellate cells through RAGE/NOX2.
Collapse
Affiliation(s)
- Jingquan Ji
- Department of Pathophysiology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Ming Feng
- Department of Neurosurgery, Changzhi People's Hospital, Changzhi, Shanxi, China
| | - Yan Huang
- Department of Biochemistry, Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaohong Niu
- Department of Endocrinology, The Heji Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
10
|
Shchegolkov EV, Boltneva NP, Burgart YV, Lushchekina SV, Serebryakova OG, Elkina NA, Rudakova EV, Perminova AN, Makhaeva GF, Saloutin VI. 3-(2-Arylhydrazono)-1,1,1-trifluro-3-(phenylsulfonyl)propan-2-ones as selective carboxylesterase inhibitors. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3390-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Tang D, Zhang Q, Duan H, Ye X, Liu J, Peng W, Wu C. Polydatin: A Critical Promising Natural Agent for Liver Protection via Antioxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9218738. [PMID: 35186191 PMCID: PMC8853764 DOI: 10.1155/2022/9218738] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
Polydatin, one of the natural active small molecules, was commonly applied in protecting and treating liver disorders in preclinical studies. Oxidative stress plays vital roles in liver injury caused by various factors, such as alcohol, viral infections, dietary components, drugs, and other chemical reagents. It is reported that oxidative stress might be one of the main reasons in the progressive development of alcohol liver diseases (ALDs), nonalcoholic liver diseases (NAFLDs), liver injury, fibrosis, hepatic failure (HF), and hepatocellular carcinoma (HCC). In this paper, we comprehensively summarized the pharmacological effects and potential molecular mechanisms of polydatin for protecting and treating liver disorders via regulation of oxidative stress. According to the previous studies, polydatin is a versatile natural compound and exerts significantly protective and curative effects on oxidative stress-associated liver diseases via various molecular mechanisms, including amelioration of liver function and insulin resistance, inhibition of proinflammatory cytokines, lipid accumulation, endoplasmic reticulum stress and autophagy, regulation of PI3K/Akt/mTOR, and activation of hepatic stellate cells (HSCs), as well as increase of antioxidant enzymes (such as catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), superoxide dismutase (SOD), glutathione reductase (GR), and heme oxygenase-1 (HO-1)). In addition, polydatin acts as a free radical scavenger against reactive oxygen species (ROS) by its phenolic and ethylenic bond structure. However, further clinical investigations are still needed to explore the comprehensive molecular mechanisms and confirm the clinical treatment effect of polydatin in liver diseases related to regulation of oxidative stress.
Collapse
Affiliation(s)
- Dandan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Huxinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
12
|
Hua H, Xu X, Tian W, Li P, Zhu H, Wang W, Liu Y, Xiao K. Glycine alleviated diquat-induced hepatic injury via inhibiting ferroptosis in weaned piglets. Anim Biosci 2022; 35:938-947. [PMID: 34991220 PMCID: PMC9066045 DOI: 10.5713/ab.21.0298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The beneficial effects of glycine were tested in piglets with diquat-induced hepatic injury. Methods Thirty-two piglets were assigned by a 2 × 2 factorial experimental design including glycine supplementation and diquat challenge. After 3 weeks of feeding with a basic diet or a 1% glycine supplemented diet, piglets were challenged with diquat or saline. After 1 week later, the piglets were slaughtered and samples were collected. Results Our results indicated that glycine alleviated diquat induced morphological hepatic injury, decreased the activities of plasma alanine aminotransferase, aspartate aminotransferase and glutamyl transpeptidase in the piglets under diquat challenge, and increased total antioxidant capacity and antioxidative enzyme activity significantly. Adding glycine enhanced the concentrations of hepatic adenosine triphosphate and adenosine diphosphate. Transmission electron microscope observation showed that diquat induced clear hepatocytes ferroptosis and its effect could be alleviated by glycine to a certain degree. Moreover, glycine significantly affected mRNA and protein expression of ferroptosis-related signals in the liver. Conclusion These results demonstrated that glycine attenuated liver damage via inhibiting ferroptosis.
Collapse
Affiliation(s)
- Hongwei Hua
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wei Tian
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.,College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Pei Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenjun Wang
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
13
|
Deneysel İskemi/Reperfüzyon Modelinde İlioprostun Karaciğer Dokusu Üzerindeki Koruyucu Etkisi. ANADOLU KLINIĞI TIP BILIMLERI DERGISI 2021. [DOI: 10.21673/anadoluklin.1030797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Omidifar N, Nili-Ahmadabadi A, Nakhostin-Ansari A, Lankarani KB, Moghadami M, Mousavi SM, Hashemi SA, Gholami A, Shokripour M, Ebrahimi Z. The modulatory potential of herbal antioxidants against oxidative stress and heavy metal pollution: plants against environmental oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61908-61918. [PMID: 34550520 DOI: 10.1007/s11356-021-16530-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023]
Abstract
Free radicals, principally reactive oxygen species (ROS), contribute to oxidative stress in human beings. Free radicals have different mechanisms of action and affect lipids, proteins, and DNA. Heavy metals including cadmium (Cd), lead (Pb), and arsenic are environmental pollutants that may induce oxidative stress and produce ROS, leading to harmful effects on different body systems such as the liver and brain. On the other side, antioxidants can have protective effects against oxidative stress and decrease their toxicity. Herbal antioxidants have potential antioxidative effects. These antioxidants positively affect neurodegenerative diseases, atherosclerotic diseases, lung fibrosis, kidney injuries, and liver toxicities induced by oxidative agents, including heavy metals. In this manuscript, we explained the mechanisms of oxidative stress, and also discussed heavy metals which contribute to human oxidative stress. We further discussed different herbal antioxidants, their mechanisms of action, and their clinical use for various diseases.
Collapse
Affiliation(s)
- Navid Omidifar
- Clinical Education Research Center, and Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Nili-Ahmadabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghadami
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansoureh Shokripour
- Depatment of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Orel VE, Krotevych M, Dasyukevich O, Rykhalskyi O, Syvak L, Tsvir H, Tsvir D, Garmanchuk L, Orel VВ, Sheina I, Rybka V, Shults NV, Suzuki YJ, Gychka SG. Effects induced by a 50 Hz electromagnetic field and doxorubicin on Walker-256 carcinosarcoma growth and hepatic redox state in rats. Electromagn Biol Med 2021; 40:475-487. [PMID: 34392747 DOI: 10.1080/15368378.2021.1958342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We compare the effects of an extremely low-frequency electromagnetic field (EMF) with the chemotherapeutic agent doxorubicin (DOX) on tumor growth and the hepatic redox state in Walker-256 carcinosarcoma-bearing rats. Animals were divided into five groups with one control (no tumor) and four tumor-bearing groups: no treatment, DOX, DOX combined with EMF and EMF. While DOX and DOX + EMF provided greater inhibition of tumor growth, treatment with EMF alone resulted in some level of antitumor effect (p < .05). Superoxide dismutase, catalase activity and glutathione content were significantly decreased in the liver of tumor-bearing animals as compared with the control group (p < .05). The decreases in antioxidant defenses accompanied histological findings of suspected liver damage. However, hepatic levels of thiobarbituric acid reactive substances, an indicator of lipid peroxidation, were three times lower in EMF and DOX + EMF groups than in no treatment and DOX (p < .05). EMF and DOX + EMF showed significantly lower activity of serum ALT than DOX alone (p < .05). These results indicate that EMF treatment can inhibit tumor growth, causing less pronounced oxidative stress damage to the liver. Therefore, EMF can be used as a therapeutic strategy to influence the hepatic redox state and combat cancer with reduced side-effects.
Collapse
Affiliation(s)
- Valerii E Orel
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine.,Biomedical Engineering Department, NTUU "Igor Sikorsky KPI", Kyiv, Ukraine
| | - Mykhailo Krotevych
- Research Department of the Pathological Anatomy, National Cancer Institute, Kyiv, Ukraine
| | - Olga Dasyukevich
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine
| | - Oleksandr Rykhalskyi
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine
| | - Liubov Syvak
- Research Department of Chemotherapy Solid Tumors, National Cancer Institute, Kyiv, Ukraine
| | | | - Dmytro Tsvir
- Medical Faculty, Bogomolets National Medical University, Kyiv, Ukraine
| | - Lyudmyla Garmanchuk
- Department of Biomedicine, NSC "Institute of Biology and Medicine" of the Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Valerii В Orel
- Biomedical Engineering Department, NTUU "Igor Sikorsky KPI", Kyiv, Ukraine.,Research Department of Radiodiagnostics, National Cancer Institute, Kyiv, Ukraine
| | - Iryna Sheina
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Vladyslava Rybka
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Nataliia V Shults
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Yuichiro J Suzuki
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Sergiy G Gychka
- Department of Pathological Anatomy 2, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
16
|
Makhaeva GF, Lushchekina SV, Boltneva NP, Serebryakova OG, Kovaleva NV, Rudakova EV, Elkina NA, Shchegolkov EV, Burgart YV, Stupina TS, Terentiev AA, Radchenko EV, Palyulin VA, Saloutin VI, Bachurin SO, Richardson RJ. Novel potent bifunctional carboxylesterase inhibitors based on a polyfluoroalkyl-2-imino-1,3-dione scaffold. Eur J Med Chem 2021; 218:113385. [PMID: 33831780 DOI: 10.1016/j.ejmech.2021.113385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023]
Abstract
An expanded series of alkyl 2-arylhydrazinylidene-3-oxo-3-polyfluoroalkylpropionates (HOPs) 3 was obtained via Cu(OAc)2-catalyzed azo coupling. All were nanomolar inhibitors of carboxylesterase (CES), while moderate or weak inhibitors of acetylcholinesterase and butyrylcholinesterase. Steady-state kinetics studies showed that HOPs 3 are mixed type inhibitors of the three esterases. Molecular docking studies demonstrated that two functional groups in the structure of HOPs, trifluoromethyl ketone (TFK) and ester groups, bind to the CES active site suggesting subsequent reactions: formation of a tetrahedral adduct, and a slow hydrolysis reaction. The results of molecular modeling allowed us to explain some structure-activity relationships of CES inhibition by HOPs 3: their selectivity toward CES in comparison with cholinesterases and the high selectivity of pentafluoroethyl-substituted HOP 3p to hCES1 compared to hCES2. All compounds were predicted to have good intestinal absorption and blood-brain barrier permeability, low cardiac toxicity, good lipophilicity and aqueous solubility, and reasonable overall drug-likeness. HOPs with a TFK group and electron-donor substituents in the arylhydrazone moiety were potent antioxidants. All compounds possessed low cytotoxicity and low acute toxicity. Overall, a new promising type of bifunctional CES inhibitors has been found that are able to interact with the active site of the enzyme with the participation of two functional groups. The results indicate that HOPs have the potential to be good candidates as human CES inhibitors for biomedicinal applications.
Collapse
Affiliation(s)
- Galina F Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Sofya V Lushchekina
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia; Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow, 119334, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Olga G Serebryakova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Natalia A Elkina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Ekaterinburg, 620990, Russia
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Ekaterinburg, 620990, Russia
| | - Yanina V Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Ekaterinburg, 620990, Russia
| | - Tatyana S Stupina
- Institute of Problems of Chemical Physics Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Alexey A Terentiev
- Institute of Problems of Chemical Physics Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Eugene V Radchenko
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir A Palyulin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Ekaterinburg, 620990, Russia
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Rudy J Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA; Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
Camellia sinesis leaves extract ameliorates high fat diet-induced nonalcoholic steatohepatitis in rats: analysis of potential mechanisms. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-020-00500-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Benedicto A, Sanz E, Márquez J. Ocoxin as a complement to first line treatments in cancer. Int J Med Sci 2021; 18:835-845. [PMID: 33437220 PMCID: PMC7797552 DOI: 10.7150/ijms.50122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy and radiotherapy are the most frequent treatment for patients suffering from malignant progression of cancer. Even though new treatments are now being implemented, administration of these chemotherapeutic agents remains as the first line option in many tumor types. However, the secondary effects of these compounds represent one of the main reasons cancer patients lose life quality during disease progression. Recent data suggests that Ocoxin, a plant extract and natural compound based nutritional complement rich in antioxidants and anti-inflammatory mediators exerts a positive effect in patients receiving chemotherapy and radiotherapy. This mixture attenuates the chemotherapy and radiotherapy-related side effects such as radiation-induced skin burns and mucositis, chemotherapy-related diarrhea, hepatic toxicity and blood-infection. Moreover, it has been proven to be effective as anticancer agent in different tumor models both in vitro and in vivo, potentiating the cytotoxic effect of several chemotherapy compounds such as Lapatinib, Gemcitabine, Paclitaxel, Sorafenib and Irinotecan. The aim of this review is to put some light on the potential of this nutritional mixture as an anticancer agent and complement for the standard chemotherapy routine.
Collapse
Affiliation(s)
- Aitor Benedicto
- Department of Cellular Biology and Histology, School of Medicine and Nursing, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| | | | - Joana Márquez
- Department of Cellular Biology and Histology, School of Medicine and Nursing, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| |
Collapse
|
19
|
Yu L, Zhang SD, Zhao XL, Ni HY, Song XR, Wang W, Yao LP, Zhao XH, Fu YJ. Cyanidin-3-glucoside protects liver from oxidative damage through AMPK/Nrf2 mediated signaling pathway in vivo and in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
20
|
Ekpo DE, Joshua PE, Ogidigo JO, Nwodo OFC. High resolution UPLC-PDA-QTOF-ESI-MS/MS analysis of the flavonoid-rich fraction of Lasianthera africana leaves, and in vivo evaluation of its renal and cardiac function effects. Heliyon 2020; 6:e04154. [PMID: 32642576 PMCID: PMC7334432 DOI: 10.1016/j.heliyon.2020.e04154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 01/21/2023] Open
Abstract
Lasianthera africana P. Beauv. (Icacinaceae) is a traditional Nigerian medicinal plant used for treatment of ulcers, diarrhea, parasitic infections and diabetes. This study was aimed at characterizing the bioactive principles extractable from the flavonoid-rich fraction of L. africana leaves (LAFRF), and to evaluate its effects on renal and cardiac functions. Isolation, and purification of the LAFRF was achieved using standard methods. The in vitro antioxidant activity was evaluated on DPPH∗ and ferric reducing antioxidant potential (FRAP). The total flavonoids (281.05 ± 7.44 mg QE/g), were identified, structurally characterized and quantified using high resolution ultra-performance liquid chromatography, in tandem with quadrupole-time-of-flight electrospray ionization mass spectrometer (UPLC-PDA-QTOF-ESI-MS/MS). Fifty Wistar rats of both sexes (110-130 g), were distributed into 10 groups (n = 5). Groups 1 and 2 served as the normal and CCl4 controls respectively. Groups 3A-6B constituted the preventive and curative studies. The effects of the LAFRF at 3, 10, and 30 mg/kg body weight on urea and creatinine concentrations, lactate dehydrogenase (LDH), and creatine kinase (CK) activities of CCl4-intoxicated rats were assessed. The LAFRF displayed remarkable in vitro antioxidant property by scavenging the DPPH∗, with an IC50 of 5.40 ± 0.00 μg/ml which is more potent than the scavenging activity of the ascorbic acid (IC50 of 7.18 ± 0.00 μg/ml), and also effectively reduced Fe3+ to Fe2+ when compared to gallic acid. The UPLC-PDA-QTOF-ESI-MS/MS fingerprint of the LAFRF indicated presence of quercetin (758983.6 mg/kg), rutin (17540.4 mg/kg), luteolin (126524.3 mg/kg), isorhamnetin (197949.0 mg/kg), and other non-phenolic compounds. The LAFRF significantly (p < 0.05) improved renal function, and normalized cardiac enzyme activities in vivo. The ability of the LAFRF to scavenge the DPPH and Fe3+ radicals, improve renal and cardiac functions following CCl4 intoxication shows its potential in the development of alternative therapy for combating oxidative stress-related complications.
Collapse
Affiliation(s)
- Daniel Emmanuel Ekpo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
| | - Joyce Oloaigbe Ogidigo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
- Bioresources Development Centre, National Biotechnology Development Agency (NABDA), Federal Capital Territory, Abuja, Nigeria
| | - Okwesilieze Fred Chiletugo Nwodo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001, Nsukka, Enugu State, Nigeria
- Department of Biochemistry, Faculty of Medical, Pharmaceutical and Health Sciences, University of Mkar, Mkar, Benue State, Nigeria
| |
Collapse
|
21
|
Gallic Acid Inhibits Lipid Accumulation via AMPK Pathway and Suppresses Apoptosis and Macrophage-Mediated Inflammation in Hepatocytes. Nutrients 2020; 12:nu12051479. [PMID: 32443660 PMCID: PMC7285059 DOI: 10.3390/nu12051479] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease, sometimes ranges from simple steatosis to nonalcoholic steatohepatitis (NASH). Various hits including excessive hepatic steatosis, oxidative stress, apoptosis, and inflammation, contribute to NASH development. Gallic acid (GA), a natural polyphenol, was reported to exert a protective effect on hepatic steatosis in animal models, but the precise molecular mechanisms remain unclear. Here, we examined the effect of GA on hepatic lipid accumulation, apoptosis, and inflammatory response caused by hepatocyte–macrophage crosstalk. We demonstrated that GA attenuated palmitic acid (PA)-induced fat accumulation via the activation of AMP-activated protein kinase (AMPK) in HepG2 cells. GA also ameliorated cell viability and suppressed apoptosis-related gene expression and caspase 3/7 activity induced by PA and H2O2. In a co-culture of lipid-laden Hepa 1-6 hepatocytes and RAW 264 macrophages, GA reduced inflammatory mediator expression and induced antioxidant enzyme expression. These results indicate that GA suppresses hepatic lipid accumulation, apoptosis, and inflammation caused by the interaction between hepatocytes and macrophages. The potential effects of GA observed in our study could be effective in preventing NASH and its complications.
Collapse
|
22
|
Nonalcoholic Fatty Liver Disease and Coronary Artery Disease: Big Brothers in Patients with Acute Coronary Syndrome. ScientificWorldJournal 2020; 2020:8489238. [PMID: 32327942 PMCID: PMC7174950 DOI: 10.1155/2020/8489238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 01/01/2023] Open
Abstract
Background The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing. This study aimed to evaluate the prevalence of NAFLD, as diagnosed by ultrasound, in patients with acute coronary syndrome (ACS) and to assess whether NAFLD is associated with the severity of coronary obstruction as diagnosed by coronary angiography. Methods We performed a prospective single-center study in patients hospitalized due to acute coronary syndrome who underwent diagnostic coronary angiography. Consecutive patients who presented to the emergency room were diagnosed with acute coronary syndrome and were included. All patients underwent ultrasonography of the upper abdomen to determine the presence or absence of NAFLD; NAFLD severity was graded from 0 to 3 based on a previously validated scale. All patients underwent diagnostic coronary angiography in the same hospital, with the same team of interventional cardiologists, who were blinded to the patients' clinical and ultrasonographic data. CAD was then angiographically graded from none to severe based on well-established angiographic criteria. Results This study included 139 patients, of whom 83 (59.7%) were male, with a mean age of 59.7 years. Of the included patients, 107 (77%) patients had CAD, 63 (45%) with serious injury. Regarding the presence of NAFLD, 76 (55.2%) had NAFLD including 18 (23.6%) with grade III disease. In severe CAD, 47 (60.5%) are associated with NAFLD, and 15 (83.3%) of the patients had severe CAD and NAFLD grade III. Conclusions NAFLD is common in patients with ACS. The intensity of NAFLD detected by ultrasonography is strongly associated with the severity of coronary artery obstruction on angiography.
Collapse
|
23
|
Wikan N, Tocharus J, Sivasinprasasn S, Kongkaew A, Chaichompoo W, Suksamrarn A, Tocharus C. Capsaicinoid nonivamide improves nonalcoholic fatty liver disease in rats fed a high-fat diet. J Pharmacol Sci 2020; 143:188-198. [PMID: 32414691 DOI: 10.1016/j.jphs.2020.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic disease that causes morbidity associated with metabolic syndrome. NAFLD is a worldwide problem and represents a major cause of liver injury, which can lead to liver cell death. We investigated the effects of nonivamide (pelargonic acid vanillylamide, PAVA; 1 mg/kg) and rosuvastatin (RSV; 10 mg/kg) on hepatic steatosis induced by a high-fat diet (HFD). Male Sprague-Dawley rats were fed a HFD for 16 weeks then received PAVA or RSV for 4 additional weeks. We examined the metabolic parameters, function, fat content, histological alterations, reactive oxygen species production, and apoptotic cell death of the liver, in addition to the expression of the following important molecules: transient receptor potential cation channel subfamily V member 1 (TRPV1) phosphorylation of sterol regulatory element binding protein (pSREBP-1c/SREBP-1c), total and membrane glucose transporter 2 (GLUT2), 4-hydroxynonenal (4-HNE), and cleaved caspase-3. HFD-induced hepatic steatosis was associated with significantly increased morphological disorganization, injury markers, oxidative stress, lipid peroxidation, and apoptosis. However, metabolic dysfunction and hepatic injury were reduced by RSV and PAVA treatment. PAVA regulated lipid deposition, improved insulin resistance, and decreased oxidative stress and apoptotic cell death. Therefore, PAVA represents a promising therapeutic approach for treating metabolic disorders in patients with NAFLD.
Collapse
Affiliation(s)
- Naruemon Wikan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
24
|
Soto G, Rodríguez MJ, Fuentealba R, Treuer AV, Castillo I, González DR, Zúñiga-Hernández J. Maresin 1, a Proresolving Lipid Mediator, Ameliorates Liver Ischemia-Reperfusion Injury and Stimulates Hepatocyte Proliferation in Sprague-Dawley Rats. Int J Mol Sci 2020; 21:ijms21020540. [PMID: 31952110 PMCID: PMC7014175 DOI: 10.3390/ijms21020540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Maresin-1 (MaR1) is a specialized pro-resolving mediator, derived from omega-3 fatty acids, whose functions are to decrease the pro-inflammatory and oxidative mediators, and also to stimulate cell division. We investigated the hepatoprotective actions of MaR1 in a rat model of liver ischemia-reperfusion (IR) injury. MaR1 (4 ng/gr body weight) was administered prior to ischemia (1 h) and reperfusion (3 h), and controls received isovolumetric vehicle solution. To analyze liver function, transaminases levels and tissue architecture were assayed, and serum cytokines TNF-α, IL-6, and IL-10, mitotic activity index, and differential levels of NF-κB and Nrf-2 transcription factors, were analyzed. Transaminase, TNF-α levels, and cytoarchitecture were normalized with the administration of MaR1 and associated with changes in NF-κB. IL-6, mitotic activity index, and nuclear translocation of Nrf-2 increased in the MaR1-IR group, which would be associated with hepatoprotection and cell proliferation. Taken together, these results suggest that MaR1 alleviated IR liver injury, facilitated by the activation of hepatocyte cell division, increased IL-6 cytokine levels, and the nuclear localization of Nrf-2, with a decrease of NF-κB activity. All of them were related to an improvement of liver injury parameters. These results open the possibility of MaR1 as a potential therapeutic tool in IR and other hepatic pathologies.
Collapse
Affiliation(s)
- Gonzalo Soto
- Escuela de Tecnología Medica, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile;
| | - María José Rodríguez
- Programa de Doctorado en Ciencias mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (R.F.)
- Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile
| | - Roberto Fuentealba
- Programa de Doctorado en Ciencias mención Investigación y Desarrollo de Productos Bioactivos, Instituto de Química de los Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; (M.J.R.); (R.F.)
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (A.V.T.); (D.R.G.)
| | - Adriana V. Treuer
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (A.V.T.); (D.R.G.)
- Centro de Bioinformática, Simulación y Modelado, Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile
| | - Iván Castillo
- Unidad de Anatomía Patológica, Hospital Regional de Talca, Talca 3460001, Chile;
- Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca 3466706, Chile
| | - Daniel R. González
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; (A.V.T.); (D.R.G.)
| | - Jessica Zúñiga-Hernández
- Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile
- Correspondence: ; Tel.: +56-71-2201667
| |
Collapse
|
25
|
Khudina OG, Makhaeva GF, Elkina NA, Boltneva NP, Serebryakova OG, Shchegolkov EV, Rudakova EV, Lushchekina SV, Burgart YV, Bachurin SO, Richardson RJ, Saloutin VI. Synthesis of 2-arylhydrazinylidene-3-oxo-4,4,4-trifluorobutanoic acids as new selective carboxylesterase inhibitors and radical scavengers. Bioorg Med Chem Lett 2019; 29:126716. [DOI: 10.1016/j.bmcl.2019.126716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
|
26
|
Glypican-3 Enhances Reprogramming of Glucose Metabolism in Liver Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2560650. [PMID: 31781603 PMCID: PMC6875211 DOI: 10.1155/2019/2560650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
Glypican-3(GPC3) is a transmembrane protein which has been found to be frequently overexpressed on the surfaces of liver cancer (LC) cells, which contributes to both the growth and metastasis of LC cells. Recently, the expression of GPC3 has been reported to be inversely associated with glucose metabolism activity in LC patients, suggesting that GPC3 may play a role in the regulation of glucose metabolism in LC. However, the role of GPC3 in glucose metabolism reprogramming, as well as in LC cell growth and metastasis, is unknown. Here, we found that GPC3 significantly contributed to the reprogramming of glucose metabolism in LC cells. On the one hand, GPC3 enhanced the glycolysis of LC cells through upregulation of the glycolytic genes of Glut1, HK2, and LDH-A. On the other hand, GPC3 repressed mitochondrial respiration through downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), which has been well known as a crucial regulator in mitochondrial biogenesis. Mechanistic investigations revealed that HIF-1α was involved in both GPC3-regulated upregulation of glycolytic genes of HK2, PKM2, and Glut1 and downregulation of mitochondrial biogenesis regulator PGC-1α in LC cells. Additionally, GPC3-regulated reprogramming of glucose metabolism played a critical role in the growth and metastasis of LC cells. Conclusion. Our findings demonstrate that GPC3 is a critical regulator of glucose metabolism reprogramming in LC cells, which provides a strong line of evidence for GPC3 as an important therapeutic target to normalize glucose metabolic aberrations responsible for LC progression.
Collapse
|
27
|
Makhaeva GF, Elkina NA, Shchegolkov EV, Boltneva NP, Lushchekina SV, Serebryakova OG, Rudakova EV, Kovaleva NV, Radchenko EV, Palyulin VA, Burgart YV, Saloutin VI, Bachurin SO, Richardson RJ. Synthesis, molecular docking, and biological evaluation of 3-oxo-2-tolylhydrazinylidene-4,4,4-trifluorobutanoates bearing higher and natural alcohol moieties as new selective carboxylesterase inhibitors. Bioorg Chem 2019; 91:103097. [DOI: 10.1016/j.bioorg.2019.103097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/30/2022]
|
28
|
Xia T, Zhang B, Duan W, Li Y, Zhang J, Song J, Zheng Y, Wang M. Hepatoprotective efficacy of Shanxi aged vinegar extract against oxidative damage in vitro and in vivo. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Li S, Fujino M, Takahara T, Li XK. Protective role of heme oxygenase-1 in fatty liver ischemia-reperfusion injury. Med Mol Morphol 2019; 52:61-72. [PMID: 30171344 PMCID: PMC6542780 DOI: 10.1007/s00795-018-0205-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
Ischemia-reperfusion (IR) injury is a kind of injury resulting from the restoration of the blood supply after blood vessel closure during liver transplantation and is the main cause of graft failure. The pathophysiological mechanisms of hepatic IR include a variety of oxidative stress responses. Hepatic IR is characterized by ischemia and hypoxia inducing oxidative stress, immune response and apoptosis. Fat-denatured livers are also used as donors due to the lack of liver donors. Fatty liver is less tolerant to IR than normal liver. Heme oxygenase (HO) is an enzyme that breaks down hemoglobin to bilirubin, ferrous iron and carbon monoxide (CO). Inducible HO subtype HO-1 is an important protective molecule in mammalian cells used to improve acute and chronic liver injury owing to its characteristic anti-inflammatory and anti-apoptotic qualities. HO-1 degrades heme, and its reaction product CO has been shown to reduce hepatic IR injury and increase the survival rate of grafts. As an induced form of HO, HO-1 also exerts a protective effect against liver IR injury and may be useful as a new strategy of ameliorating this kind of damage. This review summarizes the protective effects of HO-1 in liver IR injury, especially in fatty liver.
Collapse
Affiliation(s)
- Shaowei Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Terumi Takahara
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
30
|
Videla LA. Combined docosahexaenoic acid and thyroid hormone supplementation as a protocol supporting energy supply to precondition and afford protection against metabolic stress situations. IUBMB Life 2019; 71:1211-1220. [PMID: 31091354 DOI: 10.1002/iub.2067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
Liver preconditioning (PC) refers to the development of an enhanced tolerance to injuring stimuli. For example, the protection from ischemia-reperfusion (IR) in the liver that is obtained by previous maneuvers triggering beneficial molecular and functional changes. Recently, we have assessed the PC effects of thyroid hormone (T3; single dose of 0.1 mg/kg) and n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs; daily doses of 450 mg/kg for 7 days) that abrogate IR injury to the liver. This feature is also achieved by a combined T3 and the n-3 LCPUFA docosahexaenoic acid (DHA) using a reduced period of supplementation of the FA (daily doses of 300 mg/kg for 3 days) and half of the T3 dosage (0.05 mg/kg). T3 -dependent protective mechanisms include (i) the reactive oxygen species (ROS)-dependent activation of transcription factors nuclear factor-κB (NF-κB), AP-1, signal transducer and activator of transcription 3, and nuclear factor erythroid-2-related factor 2 (Nrf2) upregulating the expression of protective proteins. (ii) ROS-induced endoplasmic reticulum stress affording proper protein folding. (iii) The autophagy response to produce FAs for oxidation and ATP supply and amino acids for protein synthesis. (iv) Downregulation of inflammasome nucleotide-bonding oligomerization domain leucine-rich repeat containing family pyrin containing 3 and interleukin-1β expression to prevent inflammation. N-3 LCPUFAs induce antioxidant responses due to Nrf2 upregulation, with inflammation resolution being related to production of oxidation products and NF-κB downregulation. Energy supply to achieve liver PC is met by the combined DHA plus T3 protocol through upregulation of AMPK coupled to peroxisome proliferator-activated receptor-γ coactivator 1α signaling. In conclusion, DHA plus T3 coadministration favors hepatic bioenergetics and lipid homeostasis that is of crucial importance in acute and clinical conditions such as IR, which may be extended to long-term or chronic situations including steatosis in obesity and diabetes. © 2019 IUBMB Life, 71(9):1211-1220, 2019.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
31
|
Mahdavinia M, Alizadeh S, Raesi Vanani A, Dehghani MA, Shirani M, Alipour M, Shahmohammadi HA, Rafiei Asl S. Effects of quercetin on bisphenol A-induced mitochondrial toxicity in rat liver. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:499-505. [PMID: 31217929 PMCID: PMC6556511 DOI: 10.22038/ijbms.2019.32486.7952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Recognized as a distinguished environmental and global toxicant, Bisphenol A (BPA) affects the liver, which is a vital body organ, by the induction of oxidative stress. The present study was designed to investigate the protective effect of quercetin against BPA in hepatotoxicity in Wistar rats and also, the activity of mitochondrial enzymes were evaluated. MATERIALS AND METHODS To this end, 32 male Wistar rats were divided into four groups (six rats per group), including control, BPA (250 mg/kg), BPA + quercetin (75 mg/kg), and quercetin (75 mg/kg). RESULTS The BPA-induced alterations were restored in concentrations of alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) due to the quercetin treatment (75 mg/kg) (all P<0.001). While the levels of mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and malondialdehyde (MDA) decreased by the quercetin treatment in the liver mitochondria (P<0.001), catalase (CAT) and glutathione (GSH) increased (P<0.001). CONCLUSION According to the results, the potential hepatotoxicity of BPA can be prevented by quercetin, which protects the body against oxidative stress and BPA-induced biochemical toxicity. Moreover, the reproductive toxicity of BPA after environmental or occupational exposures can be potentially prohibited by quercetin.
Collapse
Affiliation(s)
- Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Said Alizadeh
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Raesi Vanani
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Dehghani
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Shirani
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meysam Alipour
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hedayat Allah Shahmohammadi
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sirous Rafiei Asl
- Department of Clinical Pathology, School of Veterinary Medicine, University of Shahid Chamran, Ahvaz, Iran
| |
Collapse
|
32
|
Yildirim N, Yildirim NC, Tatar S, Alp H. Phanerochaete chrysosporium as a model organism to assess the toxicity of municipal landfill leachate from Elazığ, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12807-12812. [PMID: 30887451 DOI: 10.1007/s11356-019-04813-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
In order to evaluate the potential ecological risk and the toxic effect of landfill leachate (LL), Phanerochaete chrysosporium was exposed to LL and their biochemical response was observed by using antioxidant parameters. Phanerochaete chrysosporium, ME 446, was kept at 4 °C after being sub-cultured at 28 °C on Sabouraud Dextrose Agar (SDA). Superoxide dismutase (SOD), catalase (CAT) activities, and malaondialdehyde (MDA) and glutathione (GSH) levels of P. chrysosporium exposed to different dilution rates of leachate (1/10 and 1/20) for 24 and 96 h were analyzed by using the ELISA method. The physiochemical parameters such as pH, conductivity, total dissolved solids (TDS), dissolved oxygen (DO), chemical oxygen demand (COD) of leachate, and reference water were analyzed by using the YSI Professional Plus handheld multiparameter meter. In this study, SOD activities were decreased in the application groups compared with the Control Group at the 24th and 96th hours. CAT activities and GSH levels increased in the application groups compared with the Control Group at the 24th hour but decreased at the 96th hours. MDA levels increased in all of the application groups when compared with the Control Group for both 24 and 96 h. Different concentration of LL induces oxidative stress in P. chrysosporium, increased CAT activity and MDA levels, and decreased SOD activity and GSH levels.
Collapse
Affiliation(s)
- Numan Yildirim
- Department of Environmental Engineering, Faculty of Engineering, Munzur University, TR62000, Tunceli, Turkey.
| | - Nuran Cikcikoglu Yildirim
- Department of Environmental Engineering, Faculty of Engineering, Munzur University, TR62000, Tunceli, Turkey
| | - Sule Tatar
- Department of Environmental Engineering, Faculty of Engineering, Munzur University, TR62000, Tunceli, Turkey
| | - Hevidar Alp
- Department of Food Process, Vocational School, Munzur University, Tunceli, Turkey
| |
Collapse
|
33
|
Ding S, Yuan C, Si B, Wang M, Da S, Bai L, Wu W. Combined effects of ambient particulate matter exposure and a high-fat diet on oxidative stress and steatohepatitis in mice. PLoS One 2019; 14:e0214680. [PMID: 30921449 PMCID: PMC6438678 DOI: 10.1371/journal.pone.0214680] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chronic exposure to ambient particulate matter with aerodynamic diameters < 2.5 (PM2.5) induces oxidative injury and liver pathogenesis. The present study assessed the effect and mechanism of long-term, real-world airborne particulate matter (PM) exposure on oxidative stress and hepatic steatosis in the context of a standard chow diet (STD) and a high-fat diet (HFD); the study further explored whether a combination of PM exposure and HFD treatment exacerbates the adverse effects in mice. METHODS C57BL/6J mice fed with STD or HFD (41.26% kcal fat) were exposed to PM or filtered air (FA) for 5 months. Lipid metabolism, oxidative stress and liver pathogenesis were evaluated. Real-time PCR and western blotting were performed to determine gene expression and molecular signal transduction in liver. RESULTS Chronic airborne PM exposure impaired oxidative homeostasis, caused inflammation and induced hepatic steatosis in mice. Further investigation found that exposure to real-world PM increased the expression of hepatic Nrf2 and Nrf2-regulated antioxidant enzyme gene. The increased protein expression of the sterol regulatory element binding protein-1c (SREBP-1c) and fatty acid synthase (FAS) in the liver were also observed in PM-exposed groups. Furthermore, the combination of PM exposure and HFD treatment caused a synergistic effect on the changes of lipid accumulation oxidative stress, inflammation in the mouse liver. CONCLUSIONS Through in vivo study, we reveal that the combination of real-world ambient PM exposure and HFD treatment aggravates hepatic lipid metabolism disorders, inflammation and oxidative stress. PM exposure may accelerate the progression to non-alcoholic steatohepatitis by regulating SREBP-1c/FAS regulatory axis.
Collapse
Affiliation(s)
- Shibin Ding
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, PR China
- * E-mail:
| | - Chunyan Yuan
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Bingjie Si
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Mengruo Wang
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Shuyan Da
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Lanxin Bai
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Weidong Wu
- Department of nutrition and food hygiene, school of public health, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| |
Collapse
|
34
|
Brkić D, Jorgačević B. The role of cannabinoid receptor 1 in the development of oxidative/nitrosative stress in mice with non-alcoholic fatty liver disease. MEDICINSKI PODMLADAK 2019. [DOI: 10.5937/mp70-17890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
35
|
Erukainure OL, Onifade OF, Odjobo BO, Olasehinde TA, Adesioye TA, Tugbobo-Amisu AO, Adenekan SO, Okonrokwo GI. Ethanol extract of Tetrapleura tetraptera fruit peels: Chemical characterization, and antioxidant potentials against free radicals and lipid peroxidation in hepatic tissues. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2017.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ochuko L. Erukainure
- Department of Food Technology, Federal Institute of Industrial Research, Oshodi, Nigeria
| | | | - Benedict O. Odjobo
- Bio – Resources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria
| | - Tosin A. Olasehinde
- Department of Food Technology, Federal Institute of Industrial Research, Oshodi, Nigeria
| | - Temiloluwa A. Adesioye
- Department of Food Technology, Federal Institute of Industrial Research, Oshodi, Nigeria
| | | | | | - Grace I. Okonrokwo
- Technology Transfer Division, Federal Institute of Industrial Research, Oshodi, Nigeria
| |
Collapse
|
36
|
Apoptosis and autophagy induction of Seleno-β-lactoglobulin (Se-β-Lg) on hepatocellular carcinoma cells lines. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
37
|
Barrera C, Valenzuela R, Rincón MÁ, Espinosa A, Echeverria F, Romero N, Gonzalez-Mañan D, Videla LA. Molecular mechanisms related to the hepatoprotective effects of antioxidant-rich extra virgin olive oil supplementation in rats subjected to short-term iron administration. Free Radic Biol Med 2018; 126:313-321. [PMID: 30153476 DOI: 10.1016/j.freeradbiomed.2018.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022]
Abstract
Enhanced iron levels in liver are associated with oxidative stress development and damage with increased fat accumulation. The aim of this work was to assess the hypothesis that antioxidant-rich extra virgin olive oil (AR-EVOO) counteracts iron-rich diet (IRD)-induced oxidative stress hindering hepatic steatosis. Male Wistar rats were fed and IRD (200 mg iron/kg diet) versus a control diet (CD; 50 mg iron/kg diet) with alternate AR-EVOO supplementation (100 mg/day) for 21 days. IRD induced liver steatosis and oxidative stress (higher levels of protein oxidation and lipid peroxidation with glutathione depletion), mitochondrial dysfunction (decreased citrate synthase and complex I and II activities) and loss of polyunsaturated fatty acids (PUFAs), with a drastic enhancement in the sterol regulatory element-binding protein-1c (SREBP-1c)/peroxisome proliferator-activated receptor-α (PPAR-α) ratio upregulating the expression of lipogenic enzymes (acetyl-CoA carboxylase, fatty acid (FA) synthase and stearoyl desaturase 2) and downregulating those involved in FA oxidation (carnitine palmitoyl transferase and acyl-CoA oxidase) over values in the CD group. IRD also upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and its target genes. AR-EVOO supplementation alone did not modify the studied parameters, however, IRD combined with AR-EVOO administration returned IRD-induced changes to baseline levels of the CD group. It is concluded that IRD-induced non-alcoholic fatty liver disease (NAFLD) is prevented by AR-EVOO supplementation, which might be related to the protective effects of its components such as hydroxytyrosol, oleic acid, tocopherols and/or PUFAs, thus representing a suitable anti-steatotic strategy to avoid progression into more severe stages of the disease, underlying NAFLD associated with iron overloading pathologies or obesity.
Collapse
Affiliation(s)
- Cynthia Barrera
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile; Lipid Center, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile.
| | - Miguel Ángel Rincón
- Lipid Center, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Francisca Echeverria
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | | | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago-7, Chile
| |
Collapse
|
38
|
Curc-mPEG454, a PEGylated Curcumin Derivative, Improves Anti-inflammatory and Antioxidant Activities: a Comparative Study. Inflammation 2018; 41:579-594. [PMID: 29234949 DOI: 10.1007/s10753-017-0714-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We previously demonstrated that a PEGylated curcumin (Curc-mPEG454) significantly inhibited cyclooxygenase 2 (COX-2) expression and improved the progression of liver fibrosis. The current study systematically evaluates its anti-inflammatory and antioxidant activities in vitro in a comparative study with curcumin, aspirin, NS-398, and vitamin C. RAW264.7 murine macrophages were pretreated with Curc-mPEG454, curcumin, aspirin, NS-398, or vitamin C at the indicated concentration for 2 h; then, the cells were stimulated with 1 μg/mL lipopolysaccharide (LPS) for 24 h. The levels of pro-inflammatory cytokines and mediators, including IL-6, TNF-α, PGE2, NO, and GSH, and the activities of COX-2, SOD, and CAT, and the transcription factors involved in inflammation, such as NF-κB, c-Jun, and Nrf2, were measured. Curc-mPEG454 showed lower cytotoxicity (IC50 57.8 μM) when compared with that of curcumin (IC50 32.6 μM) and inhibited the release of the inflammatory cytokines IL-6, TNF-α, IL-1β, and MCP-1 in a concentration-dependent manner. At 16 μM, Curc-mPEG454 was most potent in the suppression of COX-2 expression at a transcriptional level rather than in the suppression of the catalytic activity of COX-2. Like curcumin, Curc-mPEG454 significantly reduced intracellular ROS production and enhanced the activities of SOD and CAT and the level of GSH to protect cells from LPS-induced oxidative injury. Further, its anti-inflammatory and antioxidation mechanisms are related to inhibition of NF-κB p65 nuclear translocation and c-Jun phosphorylation and to activation of Nrf2. Taken together, these findings indicate that PEGylation of curcumin not only improves its biological properties but also interferes with multiple targets involved in the inflammatory response. Curc-mPEG454 is a powerful and beneficial anti-inflammatory and antioxidant agent that merits further investigation. Graphical Abstract ᅟ.
Collapse
|
39
|
Wu KC, Ho YL, Kuo YH, Huang SS, Huang GJ, Chang YS. Hepatoprotective Effect of Ugonin M, A Helminthostachyszeylanica Constituent, on Acetaminophen-Induced Acute Liver Injury in Mice. Molecules 2018; 23:E2420. [PMID: 30241403 PMCID: PMC6222678 DOI: 10.3390/molecules23102420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to discover the possible effectiveness of Ugonin M, a unique flavonoid isolated from Helminthostachys zeylanica-a traditional Chinese medicine used as anti-inflammatory medicine-and to elucidate the potential mechanisms of Ugonin M in the acute liver injury induced by acetaminophen (APAP). In this study, Ugonin M significantly ameliorated APAP-induced histopathological changes and the typical liver function biomarkers (i.e., alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (T-Bil)). It also affected APAP-induced abnormal lipid metabolism including total cholesterol (TC) and triglyceride (TG) in the serum. In inflammatory pharmacological action, Ugonin M suppressed the pro-inflammatory mediators such as nitric oxide (NO) and the lipid peroxidation indicator malondialdehyde (MDA). In addition, Ugonin M reinforced hemeoxygenase-1 (HO-1) protein expression and the production of antioxidant enzymes viz superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). Furthermore, inflammation-associated cytokines including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β as well as proteins such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were decreased by the pretreatment of Ugonin M. Moreover, this study found that pretreatment of Ugonin M apparently decreased nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) activation via inhibition of the degradation of NF-κB, inhibitory κB-α (IκB-α), extracellular regulated kinase (ERK), c-Jun-N-terminal (JNK), and p38 active phosphorylation. In conclusion, Ugonin M significantly showed a protective effect against APAP-induced liver injury by reducing oxidative stress and inflammation. Thus, Ugonin M could be one of the effective components of H. zeylanica that plays a major role in the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Kun-Chang Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung 43302, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Shyh-Shyun Huang
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Chinese Crude Drug Pharmacy, China Medical University Hospital, Taichung 40402, Taiwan.
| |
Collapse
|
40
|
Siddiqui MA, Ali Z, Chittiboyina AG, Khan IA. Hepatoprotective Effect of Steroidal Glycosides From Dioscorea villosa on Hydrogen Peroxide-Induced Hepatotoxicity in HepG2 Cells. Front Pharmacol 2018; 9:797. [PMID: 30083104 PMCID: PMC6065280 DOI: 10.3389/fphar.2018.00797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/02/2018] [Indexed: 01/04/2023] Open
Abstract
Dioscorea villosa, commonly known as "Wild Yam" and native to North America, is well documented for its pharmacological properties due to the presence of steroidal glycosides. However, the hepatoprotective potential of these compounds has not been studied so far. The present investigation was aimed to study the hepatoprotective effect of the steroidal glycosides from D. villosa against H2O2, a known hepatotoxin, in human liver cell line (HepG2). Cytotoxicity assessment was carried out in cells exposed to various concentrations (10-50 μM) of compounds for 24 h using MTT assay and morphological changes. All tested compounds were known and among them, spirostans (zingiberensis saponin I, dioscin, deltonin and progenin III) were found to be cytotoxic whereas, furostans (huangjiangsu A, pseudoprotodioscin, methyl protobioside, protodioscin, and protodeltonin) were non-cytotoxic. Further, HepG2 cells were pretreated with biologically safe concentrations (10, 30, and 50 μM) of non-cytotoxic compounds and then cytotoxic (0.25 mM) concentration of H2O2. After 24 h, cell viability was assessed by MTT and NRU assays, while morphological changes were observed under the microscope. The results showed that treatment of HepG2 cells with compounds prior to H2O2 exposure effectively increased cell viability in a concentration-dependent manner. Furthermore, huangjiangsu A, pseudoprotodioscin, methyl protobioside, protodioscin, and protodeltonin at 50 μM increased GSH level and decreased intracellular ROS generation against H2O2-induced damages. The results from this study revealed that compounds isolated from D. villosa have hepatoprotective potential against H2O2-induced cytotoxicity and ROS generation and could be promising as potential therapeutic agents for liver diseases.
Collapse
Affiliation(s)
- Maqsood A. Siddiqui
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Al-Jeraisy Chair for DNA Research, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
| |
Collapse
|
41
|
Farzaei MH, Zobeiri M, Parvizi F, El-Senduny FF, Marmouzi I, Coy-Barrera E, Naseri R, Nabavi SM, Rahimi R, Abdollahi M. Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective. Nutrients 2018; 10:E855. [PMID: 29966389 PMCID: PMC6073929 DOI: 10.3390/nu10070855] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress has been considered a key causing factor of liver damage induced by a variety of agents, including alcohol, drugs, viral infections, environmental pollutants and dietary components, which in turn results in progression of liver injury, non-alcoholic steatohepatitis, non-alcoholic liver disease, liver fibrosis and cirrhosis. During the past 30 years and even after the major progress in the liver disease management, millions of people worldwide still suffer from an acute or chronic liver condition. Curcumin is one of the most commonly used indigenous molecules endowed by various shielding functionalities that protects the liver. The aim of the present study is to comprehensively review pharmacological effects and molecular mechanisms, as well as clinical evidence, of curcumin as a lead compound in the prevention and treatment of oxidative associated liver diseases. For this purpose, electronic databases including “Scopus,” “PubMed,” “Science Direct” and “Cochrane library” were extensively searched with the keywords “curcumin or curcuminoids” and “hepatoprotective or hepatotoxicity or liver” along with “oxidative or oxidant.” Results showed that curcumin exerts remarkable protective and therapeutic effects of oxidative associated liver diseases through various cellular and molecular mechanisms. Those mechanisms include suppressing the proinflammatory cytokines, lipid perodixation products, PI3K/Akt and hepatic stellate cells activation, as well as ameliorating cellular responses to oxidative stress such as the expression of Nrf2, SOD, CAT, GSH, GPx and GR. Taking together, curcumin itself acts as a free radical scavenger over the activity of different kinds of ROS via its phenolic, β-diketone and methoxy group. Further clinical studies are still needed in order to recognize the structure-activity relationships and molecular mechanisms of curcumin in oxidative associated liver diseases.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mahdi Zobeiri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Fatemeh Parvizi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Fardous F El-Senduny
- Biochemistry division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Ilias Marmouzi
- Laboratory of Pharmacology and Toxicology Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco.
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá 250247, Colombia.
| | - Rozita Naseri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baghyatollah University of Medical Sciences, Tehran 1435916471, Iran.
| | - Roja Rahimi
- Department of Persian Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1416663361, Iran.
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| |
Collapse
|
42
|
Effects of the Administration of Thyroid Hormones in Cases of Hepatic Ischemia and Reperfusion Injury. Int Surg 2018. [DOI: 10.9738/intsurg-d-17-00108.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective:
Hepatic ischemia and reperfusion (IR) injury is the most important cause of cellular death and hepatic dysfunction following liver transplantation and resection. Our aim in this study is to reveal the early stage effects of thyroid hormone levels on hepatic IR injury that effectively act on cellular homeostasis.
Methods:
Forty-six male Wistar albino rats were divided into 6 groups as follows: euthyroid-sham (n = 8), euthyroid with IR injury (n = 8), hyperthyroid-sham (n = 7), hyperthyroid with IR injury (n = 7), hypothyroid-sham (n = 8), and hypothyroid with IR injury (n = 8). After 90 minutes of partial hepatic ischemia, 90 minutes of reperfusion was applied. Liver tissue malondialdehyde (MDA) levels, catalase (CAT), glutathion peroxidase, and superoxide dismutase (SOD) enzyme activities were measured. Hepatic tissue was immunohistochemically analyzed.
Results:
MDA levels of liver tissue were analyzed, and hepatic MDA levels in the hyper-IR group were found to be significantly lower (P = 0.002) than those of the hypo-IR and euthyroid-IR groups. Serum CAT levels did not differ between control groups, whereas CAT values in the hyper-IR group were detected to be significantly lower than in the euthyroid-IR and hypothyroid-IR groups (P = 0.003). However, levels of SOD and glutathione peroxidase (GPX) were not affected by the functional state of the thyroid. No statistically significant difference was seen in the results of the histopathologic evaluation and immunohistochemical staining of the liver tissue.
Conclusion:
The administration of thyroid hormone within a short time before IR injury may have protective effects.
Collapse
|
43
|
Elgazar AA, Selim NM, Abdel-Hamid NM, El-Magd MA, El Hefnawy HM. Isolates from Alpinia officinarum Hance attenuate LPS-induced inflammation in HepG2: Evidence from in silico and in vitro studies. Phytother Res 2018; 32:1273-1288. [PMID: 29468851 DOI: 10.1002/ptr.6056] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 01/31/2023]
Abstract
In an attempt to connect the legacy of centuries of invaluable knowledge from traditional medicine and the current understanding to the molecular mechanism of diseases, we took the advantage of the emergence of in silico screening as a promising tool for identification of potential leads from libraries of natural products. Traditional Chinese Medicine database was subjected to structure based virtual screening for identification of anti-inflammatory compounds using the 3D crystal structure of p38 alpha mitogen activated protein kinase. The molecular docking studies revealed the potential activity of several classes of compounds known to be the constituents of the rhizomes of Alpinia officinarum Hance (Lesser galangal). Five compounds, galangin, kaempferide, isorhamnetin, and two diarylheptanoids, were isolated from the rhizomes of the plant using vacuum liquid chromatography and flash chromatography techniques. The anti-inflammatory activity of these compounds was investigated on HepG2 cells stimulated by lipopolysaccharide. The latter induced the gene expression of proinflammatory cytokines; interleukin-1β, interleukin-6, tumor necrosis factor alpha. Addition of the 5 isolated compounds downregulated this increased gene expression in a dose dependent manner. Thus, these results indicate that the isolated compounds from A. officinarum could be used as a beneficial source for preventing and treating inflammatory diseases.
Collapse
Affiliation(s)
- Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Nabil M Selim
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nabil M Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Hala M El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
44
|
Ren Z, Chen S, Ning B, Guo L. Use of Liver-Derived Cell Lines for the Study of Drug-Induced Liver Injury. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Chloramine T induced oxidative stress and the response of antioxidant system in Phanerochaete chrysosporium. Folia Microbiol (Praha) 2017; 63:325-333. [PMID: 29197993 DOI: 10.1007/s12223-017-0571-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
Abstract
In this study, the effect of chloramine T (Chl-T) on the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and glutathione S-transferase (GST); the levels of reduced (GSH) and oxidised glutathione (GSSG) and their ratios; and also membrane lipid peroxidation (LPO) levels in Phanerochaete chrysosporium were investigated in a dose- (0.25-1 mmol/L) and time-dependent (1.5-9 h) manner. The highest SOD activity was observed in 0.5 mmol/L Chl-T at 6th hour as 1.48-fold of its control. The observed highest level in CAT activities was 4.6-fold of control in 0.5 and 0.75 mmol/L at the 6th hour. The GSH levels that were over the control showed decreasing tendency from the beginning of incubation, except 0.25 mmol/L. In contrast with GSH level variations, GSSG levels reached 10.0-fold of its control by showing increasing tendency with the increases in concentration and time. While the GSH/GSSG ratios were over the control at 0.25 mmol/L during all incubation, they fell under the control values at the earlier hours of incubation with the increasing concentrations of Chl-T. Glutathione-related enzymes GSH-Px, GR and GST were also induced with Chl-T treatment, and the highest activities were 3.29-, 7.5- and 6.56-fold of their controls, respectively. On the other hand, the increases in LPO levels with increasing concentration and time up to 5.27-fold of its control showed that the inductions observed in antioxidant system could not prevent the Chl-T-based oxidative stress.
Collapse
|
46
|
Low dose administration of Bisphenol A induces liver toxicity in adult rats. Biochem Biophys Res Commun 2017; 494:107-112. [DOI: 10.1016/j.bbrc.2017.10.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/15/2017] [Indexed: 01/01/2023]
|
47
|
Zhang J, Song W, Sun Y, Shan A. Effects of phoxim-induced hepatotoxicity on SD rats and the protection of vitamin E. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24916-24927. [PMID: 28918601 DOI: 10.1007/s11356-017-0104-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Currently, public pay more attention to the adverse effect of organophosphate pesticides on human and animal health and on the environment in developing nations. Vitamin E may protect the hepatocyte and increase the function of liver. The study was to investigate the effects of phoxim-induced hepatotoxicity on Sprague Dawley (SD) rats and the protection of vitamin E. SD rats received by gavage 180 mg kg-1 (per body weight) of phoxim, 200 mg kg-1 (per body weight) of vitamin E, and phoxim + vitamin E. The results showed that exposure to phoxim elevated liver coefficient; glutamyl transpeptidase (GGT), aspartate aminotransferase, alkaline phosphatase, total bilirubin, total bile acid, and alanine aminotransferase in the serum; ROS in the liver; and the expression of p53, Bax, CYP2E1, ROS, caspase-9, caspase-8, and caspase-3, while phoxim caused a reduction of total protein, albumin, and cholinesterase in the serum; acetylcholinesterase, total antioxidant capacity, glutathione peroxidase, and glutathione in the liver; and the expression of Bcl-2. Vitamin E modified the phoxim-induced hepatotoxicity by reducing the GGT in the serum, malondialdehyde in the liver, and the expression of CYP2E1 significantly. There were no significant changes of globulin in the serum, the activity of catalase in the liver, as well as expression levels of Fas and Bad in the liver. Overall, subacute exposure to phoxim induced hepatic injury, oxidative stress damage, and cell apoptosis. Vitamin E modified phoxim-induced hepatotoxicity slightly. And, vitamin E minimized oxidative stress damage and ultrastructural changes in rat hepatocytes notably.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wentao Song
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuecheng Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
48
|
Ali MY, Jannat S, Jung HA, Min BS, Paudel P, Choi JS. Hepatoprotective effect of Cassia obtusifolia
seed extract and constituents against oxidative damage induced by tert
-butyl hydroperoxide in human hepatic HepG2 cells. J Food Biochem 2017. [DOI: 10.1111/jfbc.12439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Md Yousof Ali
- Department of Food and Life Science; Pukyong National University; Busan 608-737 Republic of Korea
| | - Susoma Jannat
- Department of Food and Life Science; Pukyong National University; Busan 608-737 Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition; Chonbuk National University; Jeonju 561-756 Republic of Korea
| | - Byung-Sun Min
- College of Pharmacy; Catholic University of Daegu; Gyeongsan 712-702 Republic of Korea
| | - Pradeep Paudel
- Department of Food and Life Science; Pukyong National University; Busan 608-737 Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science; Pukyong National University; Busan 608-737 Republic of Korea
| |
Collapse
|
49
|
Chiu YJ, Chou SC, Chiu CS, Kao CP, Wu KC, Chen CJ, Tsai JC, Peng WH. Hepatoprotective effect of the ethanol extract of Polygonum orientale on carbon tetrachloride-induced acute liver injury in mice. J Food Drug Anal 2017; 26:369-379. [PMID: 29389576 PMCID: PMC9332667 DOI: 10.1016/j.jfda.2017.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/28/2017] [Accepted: 04/17/2017] [Indexed: 01/19/2023] Open
Abstract
Polygonum orientale L. (Polygonaceae) fruits have various medicinal uses, but their hepatoprotective effects have not yet been studied. This study investigated the hepatoprotective activity of the ethanolic extract of P. orientale (POE) fruits against carbon tetrachloride (CCl4)-induced acute liver injury (ALI). Mice were pretreated with POE (0.1, 0.5, and 1.0 g/kg) or silymarin (0.2 g/kg) for 5 consecutive days and administered a dose of 0.175% CCl4 (ip) on the 5th day to induce ALI. Blood and liver samples were collected to measure antioxidative activity and cytokines. The bioactive components of POE were identified through high-performance liquid chromatography (HPLC). Acute toxicity testing indicated that the LD50 of POE exceeded 10 g/kg in mice. Mice pretreated with POE (0.5, 1.0 g/kg) experienced a significant reduction in their serum aspartate aminotransferase (AST), serum alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels and reduction in the extent of liver lesions. POE reduced the malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) levels, and increased the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GRd) in liver. HPLC revealed peaks at 11.28, 19.55, and 39.40 min for protocatechuic acid, taxifolin, and quercetin, respectively. In summary, the hepatoprotective effect of POE against CCl4-induced ALI was seemingly associated with its antioxidant and anti-proinflammatory activities.
Collapse
Affiliation(s)
- Yung-Jia Chiu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Biopharmaceutical and Food Sciences, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan, ROC
| | - Shen-Chieh Chou
- School of Pharmacy, College of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan, ROC
| | - Chuan-Sung Chiu
- Hsin Sheng College of Medical Care and Management, 418, Sec. Gaoping, Zhongfeng Road, Longtan District, 32544, Taoyuan, Taiwan, ROC
| | - Chun-Pin Kao
- Hsin Sheng College of Medical Care and Management, 418, Sec. Gaoping, Zhongfeng Road, Longtan District, 32544, Taoyuan, Taiwan, ROC
| | - Kun-Chang Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Biopharmaceutical and Food Sciences, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan, ROC
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan, ROC; Graduate Institute of Integrated Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan, ROC
| | - Jen-Chieh Tsai
- Department of Medicinal Botanicals and Health Applications, College of Biotechnology and Bio-Resources, Da-Yeh University, 168 University Road, Dacun, Chang-Hua, 51591, Taiwan, ROC.
| | - Wen-Huang Peng
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Biopharmaceutical and Food Sciences, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan, ROC.
| |
Collapse
|
50
|
Cimini FA, Barchetta I, Carotti S, Bertoccini L, Baroni MG, Vespasiani-Gentilucci U, Cavallo MG, Morini S. Relationship between adipose tissue dysfunction, vitamin D deficiency and the pathogenesis of non-alcoholic fatty liver disease. World J Gastroenterol 2017; 23:3407-3417. [PMID: 28596677 PMCID: PMC5442077 DOI: 10.3748/wjg.v23.i19.3407] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/28/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Its pathogenesis is complex and not yet fully understood. Over the years many studies have proposed various pathophysiological hypotheses, among which the currently most widely accepted is the “multiple parallel hits” theory. According to this model, lipid accumulation in the hepatocytes and insulin resistance increase the vulnerability of the liver to many factors that act in a coordinated and cooperative manner to promote hepatic injury, inflammation and fibrosis. Among these factors, adipose tissue dysfunction and subsequent chronic low grade inflammation play a crucial role. Recent studies have shown that vitamin D exerts an immune-regulating action on adipose tissue, and the growing wealth of epidemiological data is demonstrating that hypovitaminosis D is associated with both obesity and NAFLD. Furthermore, given the strong association between these conditions, current findings suggest that vitamin D may be involved in the relationship between adipose tissue dysfunction and NAFLD. The purpose of this review is to provide an overview of recent advances in the pathogenesis of NAFLD in relation to adipose tissue dysfunction, and in the pathophysiology linking vitamin D deficiency with NAFLD and adiposity, together with an overview of the evidence available on the clinical utility of vitamin D supplementation in cases of NAFLD.
Collapse
|