1
|
Nie P, Hu L, You T, Jia T, Xu H. Lead Mediated Lipopolysaccharides Exacerbates Fatty Liver Processes in High-Fat Diets-Induced Mice. ENVIRONMENTAL TOXICOLOGY 2025; 40:750-763. [PMID: 39715151 DOI: 10.1002/tox.24463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/10/2024] [Accepted: 12/08/2024] [Indexed: 12/25/2024]
Abstract
Obesity leads to a variety of health risks, and lead, which is ranked second in Agency for Toxic Substances and Disease Registry's priority list of harmful substances, may be more harmful to individuals that are obese. C57BL/6 mice were fed a normal diet or a high-fat diet with or without exposure to 1 g/L lead exposure in drinking water for 8 consecutive weeks. Serum and hepatic biochemistry analysis, histopathological observation, and RT-qPCR were used to explore the potential mechanism of liver damage in obese individuals after Pb exposure, and fecal microbiota transplantation was performed to investigate the role of the gut microbiota in the progression of fatty liver disease. We found that the progression of fatty liver disease induced by high-fat diets was accelerated by chronic lead intake. In addition, the occurrences of liver injury in recipient mice suggested the role of the gut microbiota. These findings indicated that the combination of lead and a HFD exacerbated hepatic lipotoxicity by activating LPS-mediated inflammation, and that gut microbiota disorders and impaired intestinal barrier function play pivotal roles in the progression of fatty liver disease.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Tao You
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Tiantian Jia
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- International Institute of Food Innovation co. Ltd., Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
2
|
Shahsavari K, Ardekani SS, Ardekani MRS, Esfahani MM, Kazemizadeh H, Jamialahmadi T, Iranshahi M, Khanavi M, Hasanpour M. Are alterations needed in Silybum marianum (Silymarin) administration practices? A novel outlook and meta-analysis on randomized trials targeting liver injury. BMC Complement Med Ther 2025; 25:134. [PMID: 40221681 PMCID: PMC11992775 DOI: 10.1186/s12906-025-04886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
It is widely believed that Silybum marianum (Silymarin) alleviates liver injury arising from various etiologies with different degrees of damage through its anti-inflammatory and antioxidant activities. This meta-analysis investigated the effects of silymarin administration on serum levels of liver enzymes including AST, ALT and ALP. From inception to November, 2023, a comprehensive literature search was conducted. Inclusion criteria for this study were randomized trials that provided sufficient data for each group at the beginning and end of the follow-up period. Ultimately, 55 studies with a total of 3545 patients were included. Comprehensive Meta-Analysis (CMA) V4 software was used for meta-analysis. Begg's funnel plot symmetry status, Begg's rank correlation, and Egger's weighted regression tests were used to examine potential publication bias. According to the findings of this meta-analysis silymarin administration showed a significant reduction in AST (SMD [95% CI]: - 0.670 [- 0.931, - 0.408], p-value = 0.000), and ALT (SMD [95% CI]: - 0.912 [- 1.177, - 0.646], p-value = 0.000) levels. While it had no statistically significant effect on ALP level (SMD [95% CI]: - 0.236 [- 1.929, 1.458], p-value = 0.159). Meta-regression analysis showed that there is no significant association between dose, age, BMI, treatment duration and hepatoprotective effects of silymarin. In subgroup analysis, a greater reduction in liver enzymes levels was observed in patients under 50 years old. The subgroup analysis was also showed significant decrease in AST and ALT levels for patients with BMI less than 30, while silymarin treatment had no significant effects on AST and ALT levels in patients with BMI ≥ 30. Silymarin at a dose of less than 400 mg and treatment duration ≤ 2 months showed greater decreasing effects on AST and ALT levels compared to its high doses and longer treatment duration. AST and ALT levels significantly decreased in patients with NAFLD and viral hepatitis, while it had no significant hepatoprotective effects in patients with drugs induced liver injury and alcohol-related liver disease. Modifying the dose and treatment duration with silymarin is recommended in patients with various causes of liver damage.
Collapse
Affiliation(s)
- Kasra Shahsavari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Shams Ardekani
- Department of Pharmacognosy, Faculty of Pharmacy, and Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, PO Box: 14155 - 6451, Tehran, Iran
| | - Majid Mokaber Esfahani
- Department of Chemistry, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Hossein Kazemizadeh
- Thoracic Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahnaz Khanavi
- Department of Pharmacognosy, Faculty of Pharmacy, and Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, PO Box: 14155 - 6451, Tehran, Iran.
| | - Maede Hasanpour
- Department of Pharmacognosy, Faculty of Pharmacy, and Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, PO Box: 14155 - 6451, Tehran, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Fahmy MI, Sadek MA, Abdou K, El-Dessouki AM, El-Shiekh RA, Khalaf SS. Orientin: a comprehensive review of a promising bioactive flavonoid. Inflammopharmacology 2025; 33:1713-1728. [PMID: 40056319 PMCID: PMC11991976 DOI: 10.1007/s10787-025-01690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/10/2025]
Abstract
Medicinal herbs continue to play an important part in modern drugs and healthcare because customers think that most of them have fewer or milder side effects than traditional modern medicines. Bioactive compounds are typically isolated from plants before being used as a source of therapeutic medicines. As a result, extracting bioactive compounds from medicinal plants is an important step in developing plant-based medications. Orientin is a flavonoid C-glycoside found in many plants, is frequently used in bioactivity studies due to its numerous beneficial properties, which include antioxidants, antiaging, anti-inflammation, vasodilation and cardioprotective, neuroprotective, antidiabetic, hepatoprotective, and adaptogenic effects. In this review, the comprehensive search for the health benefits of orientin was traced. The findings reflected that orientin could be considered one of the important natural candidates as a potential nutraceutical. This underscores its promising attributes and potential applications in health and wellness. Further research may be guaranteed to fully elucidate its benefits and mechanisms of action.
Collapse
Affiliation(s)
- Mohamed I Fahmy
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Mohamed A Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Kareem Abdou
- College of Pharmacy, Al-Ain University, Abu Dhabi, United Arab Emirates
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Samar S Khalaf
- Biochemistry Department Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
4
|
Wang J, Miao Z, Gao Y, Xie Z, Liu M, Zou W. Formyl peptide receptor 2: a potential therapeutic target for inflammation-related diseases. Pharmacol Rep 2025:10.1007/s43440-025-00704-x. [PMID: 40102363 DOI: 10.1007/s43440-025-00704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 03/20/2025]
Abstract
Formyl peptide receptor 2 (FPR2) is a G protein-coupled receptor with seven transmembrane domains, widely distributed in human cells. It plays a crucial role in inflammation-related diseases. Known for its "double-edged sword" nature, FPR2 can bind a variety of exogenous and endogenous ligands, mediating both pro-inflammatory and anti-inflammatory responses in tissues such as eyes, liver, joints, lungs, nerves, and blood vessels. FPR2's bioactivities are regulated by a complex network of genes and signaling pathways. However, the precise regulatory mechanisms governing its functions in different inflammatory conditions are still not well understood. This review summarizes the FPR2's activities in various inflammation-related diseases and looks into its potential as a therapeutic target. This review highlights recent advances in developing exogenous agonists for FPR2 and discusses receptor expression across species to support nonclinical research. Overall, this review aims to clarify FPR2's role in inflammation and provide insights for the development of new drugs against inflammatory diseases.
Collapse
Affiliation(s)
- Jiaying Wang
- School of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, University of South China, Hengyang, 421001, China
| | - Zhishuo Miao
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yinhuang Gao
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - ZhiZhong Xie
- School of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, University of South China, Hengyang, 421001, China
| | - Menghua Liu
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Zou
- School of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, University of South China, Hengyang, 421001, China.
| |
Collapse
|
5
|
Zheng H, Xu B, Fan Y, Tuekprakhon A, Stamataki Z, Wang F. The role of immune regulation in HBV infection and hepatocellular carcinogenesis. Front Immunol 2025; 16:1506526. [PMID: 40160817 PMCID: PMC11949809 DOI: 10.3389/fimmu.2025.1506526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatitis B virus (HBV) infection is a well-documented independent risk factor for developing hepatocellular carcinoma (HCC). Consequently, extensive research has focused on elucidating the mechanisms by which HBV induces hepatocarcinogenesis. The majority of studies are dedicated to understanding how HBV DNA integration into the host genome, viral RNA expression, and the resulting protein transcripts affect cellular processes and promote the malignant transformation of hepatocytes. However, considering that most acute HBV infections are curable, immune suppression potentially contributes to the critical challenges in the treatment of chronic infections. Regulatory T cells (Tregs) are crucial in immune tolerance. Understanding the interplay of Tregs within the liver microenvironment following HBV infection could offer novel therapeutic approaches for treating HBV infections and preventing HBV-related HCC. Two viewpoints to targeting Tregs in the liver microenvironment include means of reducing their inhibitory function and decreasing Treg frequency. As these strategies may disrupt the immune balance and lead to autoimmune responses, careful and comprehensive profiling of the patient's immunological status and genetic factors is required to successfully employ this promising therapeutic approach.
Collapse
Affiliation(s)
- Hailong Zheng
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Bingchen Xu
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yiyu Fan
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Aekkachai Tuekprakhon
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Fei Wang
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
6
|
Prajapati J, Bhatt N, Rawal R. Hepatoprotective effects of phytochemicals and plant extracts against chemotherapy-induced liver damage in animal models: a systematic review. Arch Toxicol 2025; 99:887-914. [PMID: 39729113 DOI: 10.1007/s00204-024-03928-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Chemotherapy, a cornerstone of cancer treatment, is frequently marred by its hepatotoxic effects, which can significantly impede therapeutic efficacy. This systematic review meticulously evaluates the hepatoprotective properties of phytochemicals and plant extracts against chemotherapy-induced liver damage, primarily in experimental animal models. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, an exhaustive search was conducted across databases like SCOPUS, PubMed, and Web of Science, culminating in the inclusion of 61 pertinent studies. These studies illustrate those natural compounds, spanning a diverse array of phytochemicals and plant extracts that can effectively mitigate biochemical markers of liver damage, enhance antioxidant defences, and modulate inflammatory responses in model organisms subjected to hepatotoxic chemotherapeutic agents such as cyclophosphamide, cisplatin, and doxorubicin. Notably, the natural agents reviewed have demonstrated significant reductions in liver enzymes, improved histopathological outcomes, and bolstered cellular antioxidant capacities. The systematic synthesis of data underscores the potential of these natural substances to diminish liver toxicity associated with chemotherapy in preclinical settings. However, the review also highlights critical gaps in research, notably the underreporting of molecular mechanisms and inconsistent data on clinical translatability. To optimize the therapeutic utility of these compounds, future studies should focus on detailed molecular analyses and rigorous clinical trials to validate efficacy and safety, paving the way for integrated approaches in oncological care that minimize hepatic complications.
Collapse
Affiliation(s)
- Jignesh Prajapati
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
- INVENTAYU Private Limited, AIC-LMCP Foundation, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Narendra Bhatt
- INVENTAYU Private Limited, AIC-LMCP Foundation, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Rakesh Rawal
- Department of Medical Biotechnology, Gujarat Biotechnology University, GIFT City, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
7
|
Sultana M, Islam MA, Khairnar R, Kumar S. A guide to pathophysiology, signaling pathways, and preclinical models of liver fibrosis. Mol Cell Endocrinol 2025; 598:112448. [PMID: 39755140 DOI: 10.1016/j.mce.2024.112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Liver fibrosis is potentially a reversible form of liver disease that evolved from the early stage of liver scarring as a consequence of chronic liver injuries. Recurrent injuries in the liver without any appropriate medication cause the injuries to get intense and deeper, which gradually leads to the progression of irreversible cirrhosis or carcinoma. Unfortunately, there are no approved treatment strategies for reversing hepatic fibrosis, making it one of the significant risk factors for developing advanced liver disorders and liver disease-associated mortality. Consequently, the interpretation of the fundamental mechanisms, etiology, and pathogenesis is crucial for identifying the potential therapeutic target as well as evaluating novel anti-fibrotic therapy. However, despite innumerable research, the functional mechanism and disease characteristics are still obscure. To accelerate the understanding of underlying disease pathophysiology, molecular pathways and disease progression mechanism, it is crucial to mimic human liver disease through the formation of precise disease models. Although various in vitro and in vivo liver fibrotic models have emerged and developed already, a perfect clinical model replicating human liver diseases is yet to be established, which is one of the major challenges in discovering proper therapeutics. This review paper will shed light on pathophysiology, signaling pathways, preclinical models of liver fibrosis, and their limitations.
Collapse
Affiliation(s)
- Mehonaz Sultana
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Md Asrarul Islam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Rhema Khairnar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
8
|
Zhang N, Niu W, Niu W, Li Y, Guo S, Li Y, He W, He H. Isovalerylspiramycin I alleviates liver injury and liver fibrosis by targeting the nucleotide-binding protein 2 (NUBP2)-vascular non-inflammatory molecule-1 (VNN1) pathway. J Pharm Anal 2025; 15:101048. [PMID: 40177065 PMCID: PMC11964639 DOI: 10.1016/j.jpha.2024.101048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 04/05/2025] Open
Abstract
Liver fibrosis is a vital cause of morbidity in patients with liver diseases and developing novel anti-fibrotic drugs is imperative. Isovalerylspiramycin I (ISP I) as a major component of carrimycin applied to upper respiratory infections, was first found to possess anti-fibrotic potential. The present study aims to evaluate the functions and mechanisms of ISP I in protecting against liver fibrosis. According to our results, ISP I not only reduced the expressions of fibrogenic markers in LX-2 cells but also appeared great protective effects on liver injury and liver fibrosis in bile duct ligation (BDL) rats and carbon tetrachloride (CCl4) mice. We proved that nucleotide-binding protein 2 (NUBP2) was the direct target of ISP I. ISP I through targeting NUBP2, increased the amount of vascular non-inflammatory molecule-1 (VNN1) on the cell membrane, which will inhibit oxidative stress and fibrosis. Simultaneously, the original carrimycin's protective effect on liver damage and fibrosis was verified. Therefore, our study provides potential agents for patients with liver fibrosis-related diseases, and the clear mechanism supports wide application in the clinic.
Collapse
Affiliation(s)
- Na Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Weixiao Niu
- Medical Department of Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Weiping Niu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yiming Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Simin Guo
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yang Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Weiqing He
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongwei He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
9
|
Seo HY, Park JY, Lee SH, Cho SH, Han E, Hwang JS, Kim MK, Jang BK. Clusterin inhibits lipopolysaccharide induced liver injury. Sci Rep 2025; 15:5975. [PMID: 39966409 PMCID: PMC11836311 DOI: 10.1038/s41598-024-80903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/22/2024] [Indexed: 02/20/2025] Open
Abstract
Lipopolysaccharide (LPS) exacerbates liver injury by activating various inflammatory pathways. Clusterin, a glycoprotein involved in lipid transport, and cytoprotection, is known to have inhibitory effects on liver steatosis and fibrosis. In this study, we investigated the role of clusterin in regulating LPS-induced liver injury and its effects on liver injury in C57BL/6 mice and clusterin knockout mice injected with LPS for 3 h. Primary Kupffer cells (KCs) and hepatocytes (HCs) were isolated from these mice and examined using immunohistochemistry, real-time RT-PCR, ELISA, and western blot analysis to assess the effects of clusterin. Clusterin deficiency significantly exacerbated LPS-induced liver injury, as evidenced by increased inflammatory cell infiltration, elevated serum alanine aminotransferase and aspartate aminotransferase levels, and upregulated expression of pro-inflammatory cytokines and components of the NLRP3 inflammasome. By contrast, overexpression of clusterin in primary Kupffer cells and hepatocytes significantly reduced these inflammatory markers. Furthermore, the protective mechanism of clusterin involved inhibition of the STAT3 signaling pathway. These findings suggest that clusterin is a useful therapeutic target to modulate cytokine production and key inflammatory signaling pathways in inflammatory liver diseases.
Collapse
|
10
|
Abdelrahman RS, Elnfarawy AA, Nashy AE, Abdelsalam RA, Zaghloul MS. Targeting angiogenic and proliferative mediators by montelukast & trimetazidine Ameliorates thioacetamide-induced liver fibrosis in rats. Toxicol Appl Pharmacol 2025; 495:117208. [PMID: 39716576 DOI: 10.1016/j.taap.2024.117208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Liver fibrosis is a significant health complication with the potential to result in serious mortality and morbidity. However, there is no standard treatment due to its complex pathogenesis. The drug montelukast reversibly and selectively antagonizes the cysteinyl-leukotrienes-1 receptor and reduces inflammation; thus, it is used in the treatment of asthma. Trimetazidine, an anti-anginal agent, selectively inhibits the activity of mitochondrial long-chain 3-ketoacyl-CoA thiolase, inhibition of free fatty acid (FFA) oxidation. This study explores the efficacy of montelukast (5 and 10 mg/kg) and trimetazidine (10-20 mg/kg) against liver fibrosis induced by thioacetamide (TAA) in rats. Impaired liver function tests were significantly improved by montelukast and trimetazidine. The antioxidant and anti-inflammatory effects of montelukast and trimetazidine were proved by the inhibition of malondialdehyde (MDA) and nitric oxide (NO) accumulation, with elevation of glutathione (GSH) and superoxide dismutase activity, decreased heat shock protein (HSP-70) expression, and a decline in interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) levels in liver tissue. Also, the antifibrotic effects were explored by reducing levels of hydroxyproline and alpha-smooth muscle actin (α-SMA) expression in liver tissue and attenuating hepatic expression of hepatic expression of angiogenic mediator vascular endothelium growth factor (VEGF) and proliferative mediator Antigen Kiel 67 (Ki-67).
Collapse
Affiliation(s)
- Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia.
| | - Ahmed A Elnfarawy
- Biotechnology Lab, Central Administration of Biological and Innovative Products and Clinical Studies, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Ramy A Abdelsalam
- Lecturer of Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt
| |
Collapse
|
11
|
Saponara I, Aloisio Caruso E, Cofano M, De Nunzio V, Pinto G, Centonze M, Notarnicola M. Anti-Inflammatory and Anti-Fibrotic Effects of a Mixture of Polyphenols Extracted from "Navelina" Orange in Human Hepa-RG and LX-2 Cells Mediated by Cannabinoid Receptor 2. Int J Mol Sci 2025; 26:512. [PMID: 39859241 PMCID: PMC11765147 DOI: 10.3390/ijms26020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Navelina oranges (Citrus sinensis) are rich in phytonutrients and bioactive compounds, especially flavonoids like hesperidin. This study investigates the anti-inflammatory and anti-fibrotic properties of hesperidin (HE) and a polyphenol mixture from Navelina oranges (OE) in human hepatocytes (Hepa-RG) and hepatic stellate cells (LX-2), in order to elucidate the underlying molecular mechanisms. In Hepa-RG cells, HE treatment increased expression of cannabinoid receptor 2 (CB2R), which was associated with down-regulation of p38 mitogen-activated protein kinases (p38 MAPK) but had minimal impact on cyclooxygenase-2 (COX-2) and transforming growth factor-β (TGF-β) levels. Conversely, OE treatment not only enhanced CB2R levels and reduced p38 MAPK, but also promoted a significant reduction in both COX-2 and TGF-β levels, suggesting that OE might be more effective in mitigating inflammatory and fibrotic processes than HE. In LX-2 cells, HE treatment caused a notable decrease in both COX-2 and TGF-β levels, reflecting its efficacy in targeting fibrosis-associated inflammation. OE treatment, on the other hand, reduced Nuclear Factor-Kappa B p65 (NF-κB) expression, a critical transcription factor involved in inflammatory responses, though it did not significantly affect COX-2. LX-2 cells induced to fibrosis with TGF-β and treated with HE and OE showed a reduction in the expression levels of several fibrosis markers. In addition, HE and OE showed antioxidant effects by increasing protein levels of Cu, Zn superoxide dismutase (SOD1), Mn superoxide dismutase (SOD2) and catalase (CAT) and influencing the state of lipid peroxidation. Further research is needed to explore the effects of the treatments in activated hepatic stellate cells and in vivo liver disease models.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (I.S.); (E.A.C.); (M.C.); (V.D.N.); (G.P.); (M.C.)
| |
Collapse
|
12
|
Zhao H, Zhou J, Yuan L, Sun Z, Liu Y, Zhao X, Ye F. Exploring the alleviating effects of Bifidobacterium metabolite lactic acid on non-alcoholic steatohepatitis through the gut-liver axis. Front Microbiol 2025; 15:1518150. [PMID: 39850131 PMCID: PMC11756523 DOI: 10.3389/fmicb.2024.1518150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Objective This study investigates the protective effects of lactic acid, a metabolite of Bifidobacterium, on non-alcoholic fatty liver disease (NAFLD) induced by a high-sugar, high-fat diet (HFD) in mice, in the context of the gut-liver axis. Methods A NAFLD mouse model was established using a HFD, and different intervention groups were set up to study the protective effects of Bifidobacterium and its metabolite lactic acid. The groups included a control group, NAFLD group, Bifidobacterium treatment group, Glyceraldehyde-3-P (G-3P) co-treatment group, and NOD-like receptor family pyrin domain containing 3 (NLRP3) overexpression group. The evaluation of liver function and lipid metabolism was conducted using the liver-to-body weight ratio, histological staining, and biochemical assays. Enzyme-linked immunosorbent assay (ELISA) was performed to measure inflammatory cytokines, and western blotting was used to analyze the expression of NLRP3 inflammasome and autophagy-related molecules. In vitro, an NAFLD cell model was established using oleic acid, with cells treated with lactic acid and NLRP3 overexpression to assess lipid droplet accumulation and inflammation. Results In vivo findings indicated that, in comparison to CBX group (Control group without antibiotic treatment), NAFLD/CBX group (NAFLD group without antibiotic administration) and NAFLD/ABX group (NAFLD group with antibiotic administration) exhibited increased liver-to-body weight ratio, higher lipid droplet accumulation, aggravated liver histopathological damage, and elevated levels of AST (Aspartate Aminotransferase), ALT (Alanine Aminotransferase), TC (Total Cholesterol), TG (Triglycerides), LDL-C (Low-Density Lipoprotein Cholesterol), IL-6 (Interleukin-6), TNF-α (Tumor Necrosis Factor-alpha), IL-1β (Interleukin-1 beta), and NLRP3-related molecules, while HDL-C (High-Density Lipoprotein Cholesterol) levels significantly decreased. Intervention with Bifidobacterium significantly reversed these adverse changes. Further addition of G-3P led to more pronounced improvement in NAFLD symptoms, while overexpression of NLRP3 weakened the protective effects of Bifidobacterium. In vitro results indicated that Ole group exhibited heightened lipid droplet accumulation and expression of NLRP3 inflammasome-related molecules relative to the control group. Treatment with lactic acid effectively reversed these changes; however, the protective effect of lactic acid was significantly weakened with NLRP3 overexpression. Conclusion Lactic acid can alleviate lipid metabolism disorders in NAFLD induced by diet through the inhibition of inflammation mediated by the NLRP3 inflammasome and the regulation of the autophagy process.
Collapse
Affiliation(s)
- Hongmei Zhao
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Gastroenterology and Nutrition, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Juan Zhou
- Department of Gastroenterology and Nutrition, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Lingzhi Yuan
- Department of Gastroenterology and Nutrition, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, China
| | - Zhiyi Sun
- University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yi Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyu Zhao
- Department of Pediatrics, Changsha County Maternal and Child Health Hospital, Changsha, China
| | - Feng Ye
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Ou H, Qiu S, Ye X, Wang X. Screening of Herbs with Potential Modulation of NLRP3 Inflammasomes for Acute Liver Failure: A Study Based on the Herb-Compound-Target Network and the ssGSEA Algorithm. Curr Top Med Chem 2025; 25:318-334. [PMID: 39528455 DOI: 10.2174/0115680266331775241024064136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE NLRP3 inflammasomes are considered to be key factors in the pathogenesis of Acute Liver Failure (ALF). Some Traditional Chinese Medicines (TCMs) have shown protective and therapeutic effects against ALF by inhibiting NLRP3 inflammasomes. However, the inhibitory effects of most TCMs on ALF remain to be further elucidated. This study aimed to screen potential herbs that can treat ALF based on the inhibition of NLRP3 inflammasomes. METHODS Initially, we constructed the target set for 502 herbs. Subsequently, based on the target set and the gene set related to the NLRP3 inflammasome, using the ssGSEA algorithm, we evaluated herb scores and NLRP3 scores in the ALF expression matrix and performed a preliminary herb screening based on score correlations. Through bioinformatics approaches, we identified the key targets for candidate herbs and determined core herbs based on the herb-compound-target network. Furthermore, molecular docking and molecular biology methods validated the screening results of the herbs. RESULTS A total of 18 crucial targets associated with the inhibition of the NLRP3 inflammasome were identified, which included ALDH2, HMOX1, and VEGFA. Subsequently, based on these key targets, a set of 10 primary herbs was chosen, notably Qinghao, Duzhong, and Gouteng. Moreover, the results were verified through molecular docking and molecular dynamic simulation. CONCLUSION Ten key herbs have been identified as potential inhibitors of the NLRP3 inflammasome, offering insights into ALF therapy for drug development.
Collapse
Affiliation(s)
- Haiya Ou
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Susu Qiu
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaopeng Ye
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaotong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Yaribeygi H, Kashian K, Moghaddam KI, Karim SR, Bagheri N, Karav S, Jamialahmadi T, Rizzo M, Sahebkar A. Hepatic effects of GLP-1 mimetics in diabetic milieu: A mechanistic review of involved pathways. J Diabetes Complications 2025; 39:108928. [PMID: 39644538 DOI: 10.1016/j.jdiacomp.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Patients with diabetic are at a higher risk of developing hepatic disorders compared to non-diabetic individuals. This increased risk can be attributed to the diabetic environment, which triggers and exacerbates harmful pathways involved in both diabetic complications and hepatic disorders. Therefore, it is important to consider the use of antidiabetic agents that offer benefits beyond glycemic control and have positive effects on liver tissues. Glucagon-like peptide-1 (GLP-1) mimetics are a novel class of antidiabetic medications known for their potent blood sugar-lowering effects. Emerging evidence suggests that these drugs also have favorable effects on the liver. However, the precise effects and underlying mechanisms are not yet fully understood. In this review, we aim to provide a mechanistic perspective on the liver benefits of GLP-1 mimetics and outline the mediating mechanisms involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Kiana Kashian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | - Narges Bagheri
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy; Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Alfwuaires MA. Rosmarinic acid protects against cyclophosphamide-induced hepatotoxicity via inhibition of oxidative stress, inflammation, and apoptosis and upregulation of Nrf2 in mice. J Mol Histol 2024; 56:49. [PMID: 39702535 DOI: 10.1007/s10735-024-10290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/29/2024] [Indexed: 12/21/2024]
Abstract
Cyclophosphamide (CP) is widely used in chemotherapy to treat various types of cancer. However, it is toxic to the liver and other organs. Rosmarinic acid (RA) possesses anti-inflammatory, antioxidant, and cytoprotective properties. This study investigated the protective effects of RA against CP-induced liver injury in mice. Mice were treated with RA (25, 50, and 100 mg/kg) for 15 days and followed by a single injection of CP on day 16th. CP injection resulted in an elevation in serum AST, ALT, and ALP, along with multiple histopathological alterations in the liver. CP also induced increased levels of MDA and NO, associated with declined GSH, SOD and CAT. RA pretreatment prevented liver injury, alleviated the enhanced levels of MDA and NO, and restored antioxidants defenses, hence avoiding the oxidative injury in the liver. Moreover, RA pretreatment attenuated NF-κB p65 and proinflammatory cytokines levels. Liver of CP-injected mice also showed a decrease in Bcl2, accompanied with elevated BAX and caspase-3 expression, an effect that RA pretreatment alleviated. In addition, pretreatment of CP-administrated mice with RA restored the Nrf2 expression in the liver. Taken together, this study suggests a potential application value of RA in preventing CP hepatotoxicity and sheds light on the possible mechanism.
Collapse
Affiliation(s)
- Manal A Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, 31982, Al Hofuf, Al-Ahsa, Saudi Arabia.
| |
Collapse
|
16
|
Yao L, Chen T. A combined association of alanine aminotransferase, aspartate transaminase and bilirubin with sleep duration in aged 16-85 years (2005-2010). Medicine (Baltimore) 2024; 103:e40915. [PMID: 39654161 PMCID: PMC11630931 DOI: 10.1097/md.0000000000040915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Sleep is a vital restorative process that plays a pivotal role in maintaining the delicate equilibrium of mental and physical well-being. Both short and long sleep duration are associated with a range of adverse health outcomes. Numerous studies have consistently demonstrated a robust association between sleep duration and liver disease. In this study, we conducted statistical tests and performed subgroup analyses to explore potential variations in this association across different contexts, aiming to elucidate the correlation between ALT, AST, and TB with sleep duration. This cross-sectional investigation utilized datasets from the National Health and Nutrition Examination Survey 2005 to 2010. Multivariate linear regression models were used to examine the linear association between ALT, AST, and TB with sleep duration. Test for interaction is commonly conducted using multivariabte models to assess statistically significant subgroup disparities. Fitted smoothied curves and threshold effect analyses were employed to depict nonlinear relationships. The study enrolled 17,491 participants aged 16 to 85 years who met the inclusion and exclusion criteria, with a mean age of the participants was 45.58 ± 19.94 years. Multivariate linear regression analysis showed a significant positive association between sleep duration and ALT [-0.23 (-0.45, -0.00) 0.0455] and AST[-0.20 (-0.38, -0.01) 0.0338] in Model 3. Using a two-segment linear regression model, we found an U-shaped relationship and significant inflection point between between ALT and AST with sleep duration. The present study unveiled a significant inverse correlation between sleep duration and levels of ALT and AST, while no significant association was observed with TB levels. Furthermore, variations in the optimal sleep duration for liver function recovery were identified across diverse populations, thereby offering valuable healthcare recommendations to public.
Collapse
Affiliation(s)
- Lishuai Yao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Tiantian Chen
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Subramaniam NK, Mann KK. Mechanisms of Metal-Induced Hepatic Inflammation. Curr Environ Health Rep 2024; 11:547-556. [PMID: 39499483 DOI: 10.1007/s40572-024-00463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE OF REVIEW Worldwide, there is an increasing prevalence of hepatic diseases. The most common diseases include alcoholic-associated liver disease (ALD), metabolic dysfunction-associated fatty liver disease/ metabolic dysfunction-associated steatohepatitis (MAFLD/MASH) and viral hepatitis. While there are many important mediators of these diseases, there is increasing recognition of the importance of the inflammatory immune response in hepatic disease pathogenesis. RECENT FINDINGS Hepatic inflammation triggers the onset and progression of liver diseases. Chronic and sustained inflammation can lead to fibrosis, then cirrhosis and eventually end-stage cancer, hepatocellular carcinoma. Importantly, growing evidence suggest that metal exposure plays a role in hepatic disease pathogenesis. While in recent years, studies have linked metal exposure and hepatic steatosis, studies emphasizing metal-induced hepatic inflammation are limited. Hepatic inflammation is an important hallmark of fatty liver disease. This review aims to summarize the mechanisms of arsenic (As), cadmium (Cd) and chromium (Cr)-induced hepatic inflammation as they contribute to hepatic toxicity and to identify data gaps for future investigation.
Collapse
Affiliation(s)
| | - Koren K Mann
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Cote Ste Catherine Rd. Rm 202.1, Montréal, Québec, H3T 1E2, Canada.
| |
Collapse
|
18
|
Hassan FE, El-Mosallamy AEMK, Khalifa MM, Aljuaydi SH, Ali ME, Hosny SA, Bastawy N. Evaluating the potential impact of sodium-glucose cotransporter-2 inhibitor "canagliflozin" on the hepatic damage triggered by hypertension in rats. Microsc Res Tech 2024; 87:2929-2942. [PMID: 39051105 DOI: 10.1002/jemt.24665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Hypertension (HTN) is a prevalent chronic disease. HTN and liver disease association is extensively noted. Thus, finding a medication that can alleviate HTN and its accompanying liver insult would be promising. This study investigated the potential impacts of canagliflozin "sodium-glucose cotransporter-2 inhibitor" on the liver of the Nω-nitro-L-arginine methyl ester (L-NAME)-induced HTN rat model. Twenty-four adult male rats were divided into four groups; negative control group, canagliflozin group, L-NAME group: 50 mg/kg of L-NAME was injected daily for 5 weeks and L-NAME + canagliflozin group: 1 week after L-NAME injection both L-NAME + canagliflozin (40 mg/kg) were given concomitantly daily for further 4 weeks. Liver functions, serum lipid profile, hepatic oxidative/nitrative stress biomarkers, gene expression of lipogenic enzymes, B-cell lymphoma 2 (Bcl2), and DNA fragmentation, were measured. Besides, hepatic histology and immunohistochemistry of nuclear factor kappa B (NF-κB) and endothelial nitric oxide synthase (eNOS) were assessed. Canagliflozin improved hepatic lipogenesis via the downregulation of fatty acid synthase (FAS) and transcriptional regulatory element binding protein 1c (SREBP1c) genes leading to an improved serum lipid profile. Further, canagliflozin modified the eNOS/inducible nitric oxide synthase (iNOS) pathway and decreased the NF-κB immunoreactivity besides restoring the oxidants-antioxidants balance; increased reduced glutathione concomitant with declined malondialdehyde. This improvement of the liver was mirrored by the significant restoration of liver architecture and confirmed by the preserved liver DNA content and upregulation of the antiapoptotic Bcl2 mRNA level and attenuation of the alanine transaminase, aspartate aminotransferase. In conclusion, canagliflozin is a promising anti-hypertensive and hepatic-supportive medication. RESEARCH HIGHLIGHTS: Canagliflozin's antioxidant, anti-inflammatory, anti-lipogenic, and antiapoptotic characteristics mitigate remote liver compromise caused by hypertension. Canagliflozin can be exploited as a hepatoprotective and antihypertensive medication.
Collapse
Affiliation(s)
- Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
- General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Aliaa E M K El-Mosallamy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Center, Giza, Egypt
| | - Mohamed Mansour Khalifa
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Human Physiology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Samira H Aljuaydi
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sara Adel Hosny
- Histology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nermeen Bastawy
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
19
|
Lubau NSA, Chengebroyen N, Subramaniyan V. Investigation of Uncovering Molecular Mechanisms of Alcohol-Induced Female Infertility-A Rational Approach. Reprod Sci 2024; 31:3660-3672. [PMID: 39485609 PMCID: PMC11611948 DOI: 10.1007/s43032-024-01692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/06/2024] [Indexed: 11/03/2024]
Abstract
This study aimed to investigate the molecular mechanisms by which chronic alcohol consumption impacts female infertility, highlighting significant societal implications. By conducting a comprehensive literature review, we examined existing evidence on the association between long-term alcohol use and female reproductive health. Relevant studies were identified through systematic searches of electronic databases and key journals. We synthesized information on the molecular pathways affected by alcohol consumption, with particular emphasis on oxidative stress, inflammation, and hormonal disruptions. Additionally, we reviewed efforts to address alcohol-related health issues, including public health interventions, regulatory measures, and educational initiatives. Our study found strong evidence linking chronic alcohol consumption to increased mortality rates and a range of preventable diseases globally. Alcohol's effects extend beyond physiological consequences to psychological, social, and economic burdens. Chronic alcohol consumption disrupts hormonal balance and reproductive function, contributing to female infertility. Future research should focus on quantifying mortality risks associated with alcohol consumption, understanding gender-specific patterns in alcohol-related health outcomes, and elucidating the molecular mechanisms underlying female infertility. Addressing these gaps will inform strategies to mitigate the burden of alcohol-induced health issues and promote overall well-being. Collaborative efforts among diverse stakeholders are essential for advancing research agendas and translating findings into effective interventions.
Collapse
Affiliation(s)
- Natasha Sura Anak Lubau
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Neevashini Chengebroyen
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
20
|
Gulzar F, Chhikara N, Kumar P, Ahmad S, Yadav S, Gayen JR, Tamrakar AK. ER stress aggravates NOD1-mediated inflammatory response leading to impaired nutrient metabolism in hepatoma cells. Biochem Biophys Res Commun 2024; 735:150827. [PMID: 39423570 DOI: 10.1016/j.bbrc.2024.150827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Nucleotide-binding Oligomerization Domain 1 (NOD1) is a cytosolic pattern recognition receptor that senses specific bacterial peptidoglycan moieties, leading to the induction of inflammatory response. Besides, sensing peptidoglycan, NOD1 has been reported to sense metabolic disturbances including the ER stress-induced unfolded protein response (UPR). However, the underpinning crosstalk between the NOD1 activating microbial ligands and the metabolic cues to alter metabolic response is not yet comprehensively defined. Here, we show that underlying ER stress aggravated peptidoglycan-induced NOD1-mediated inflammatory response in hepatoma cells. The HepG2 cells, undergoing ER stress induced by thapsigargin exhibited an amplified inflammatory response induced by peptidoglycan ligand of NOD1 (i.e. iE-DAP). This aggravated inflammatory response disrupted lipid and glucose metabolism, characterized by de novo lipogenic response, and increased gluconeogenesis in HepG2 cells. Further, we characterized that the aggravation of NOD1-induced inflammatory response was dependent on inositol-requiring enzyme 1-α (IRE1-α) and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) activation, in conjunction with calcium flux. Altogether, our findings suggest that differential UPR activation makes liver cells more sensitive towards bacterial-derived ligands to pronounce inflammatory response in a NOD1-dependent manner that impairs hepatic nutrient metabolism.
Collapse
Affiliation(s)
- Farah Gulzar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Nikita Chhikara
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Pawan Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Shadab Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Shubhi Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India.
| |
Collapse
|
21
|
Bai Z, Li H, Jiao B. Potential Therapeutic Effect of Sinigrin on Diethylnitrosamine-Induced Liver Cancer in Mice: Exploring the Involvement of Nrf-2/HO-1, PI3K-Akt-mTOR Signaling Pathways, and Apoptosis. ACS OMEGA 2024; 9:46064-46073. [PMID: 39583716 PMCID: PMC11579720 DOI: 10.1021/acsomega.4c06203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
Sinigrin is a glucosinolate present in plants of the family Brassicaceae and has been considered for its anticancer potential. This study examines the efficacy of sinigrin on the liver cancer caused by diethylnitrosamine (DEN) in mice through the analysis of its impact on the Nrf-2/HO-1, PI3K-Akt-mTOR, and apoptotic pathways. Development of liver cancer was induced by intraperitoneal injection at the age of 14 days with DEN (25 mg/kg) in mice. Thereafter, sinigrin was orally administered at doses of 10 and 20 mg/kg body weight per day the last 28 days. At the end of 10 weeks, mice were sacrificed and then we conducted hepatic biochemical and molecular assessments. Sinigrin reduced the serum level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), alpha-fetoprotein (AFP), and bilirubin but increased total protein, and albumin, levels. Sinigrin increased the antioxidant enzymes (SOD, CAT, GPx, and GST) as indicated by reduced 8-OHdG, TBARS and increased glutathione. Sinigrin reduced the levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, and NF-κB p65) and PI3K/AKT/mTOR signaling pathway. Sinigrin also activated the intrinsic mitochondrial apoptosis pathway mediated by p53, downregulated antiapoptotic proteins (Bcl-2), up-regulated pro-apoptosis regulatory proteins like Bax and caspase-3. All these results indicate that the protective effects of sinigrin against liver cancer are likely to be applied as an effective therapeutic agent through its antioxidant and pro-apoptotic activities.
Collapse
Affiliation(s)
- Zhe Bai
- Department
of Hepatobiliary Pancreatic and Gastrosurgery, Shanxi Province Cancer
Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital
Affiliated to Shanxi Medical University, Xinghualing District Workers New Street 3, Taiyuan 030013, China
| | - Hui Li
- Department
of Gastroenterology, The First Hospital
of Shanxi Medical University, No. 85, Jiefang South Road, Taiyuan, Shanxi 030001, China
| | - Baoping Jiao
- Department
of Hepatobiliary Pancreatic and Gastrosurgery, Shanxi Province Cancer
Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital
Affiliated to Shanxi Medical University, Xinghualing District Workers New Street 3, Taiyuan 030013, China
| |
Collapse
|
22
|
Yang Y, Chen Y, Feng D, Wu H, Long C, Zhang J, Wang J, Zhou B, Li S, Xiang S. Ficus hirta Vahl. ameliorates liver fibrosis by triggering hepatic stellate cell ferroptosis through GSH/GPX4 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118557. [PMID: 39009327 DOI: 10.1016/j.jep.2024.118557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ficus hirta Vahl., a traditional Chinese medicine commonly used in the Lingnan region, has been extensively used for liver disease treatment in China. Its notable antioxidant and anti-inflammatory properties have been reported in previous studies. However, its potential effect and underlying mechanism on liver fibrosis remains unclear. AIM OF STUDY This study was aimed to investigate the effect and its underlying mechanism of Ficus hirta Vahl on liver fibrosis in vitro and in vivo. MATERIALS AND METHODS The main components of Ficus hirta Vahl in blood were investigated by using UPLC-Q/TOF-MS/MS. Two animal models of liver fibrosis, the CCl4 and MCD induced mice, were used to assess the efficacy of Ficus hirta Vahl on liver fibrosis. Metabolomics was used to detect the level of metabolites in the serum of liver fibrosis mice after Ficus hirta Vahl treatment. Furthermore, the mechanism was validated in vitro using the human liver stellate cell line LX-2. The binding affinities of the active ingredients of Ficus hirta Vahl to the main targets of liver fibrosis were also determined. Finally, we identified the key active ingredients responsible for the treatment of liver fibrosis in vivo. RESULTS Fibrosis and inflammatory markers were significant down-regulation in both CCl4 and MCD induced liver fibrosis mice after Ficus hirta Vahl administration in a dose-dependent manner. We found that Ficus hirta Vahl may primarily exert its effect on liver fibrosis through the glutathione metabolic pathway. Importantly, the glutathione metabolic pathway is closely associated with ferroptosis, and our subsequent in vitro experiments provided evidence supporting this association. Ficus hirta Vahl was found to modulate the GSH/GPX4 pathway, ultimately leading to the amelioration of liver fibrosis. Moreover, using serum pharmacochemistry and molecular docking, we successfully identified apigenin as a probable efficacious monomer for the management of liver fibrosis and subsequently validated its efficacy in mice with CCl4-induced hepatic fibrosis. CONCLUSION Ficus hirta Vahl triggered the ferroptosis of hepatic stellate cell by regulating the GSH/GPX4 pathway, thereby alleviating liver fibrosis in mice. Moreover, apigenin is a key compound in Ficus hirta Vahl responsible for the effective treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yuxuan Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China; School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yanchun Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China; School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Dongge Feng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China; School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Huixing Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Changrui Long
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Jianping Zhang
- School of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, PR China.
| | - Shasha Li
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| | - Shijian Xiang
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, PR China.
| |
Collapse
|
23
|
Miracle CE, McCallister CL, Egleton RD, Salisbury TB. Mechanisms by which obesity regulates inflammation and anti-tumor immunity in cancer. Biochem Biophys Res Commun 2024; 733:150437. [PMID: 39074412 PMCID: PMC11455618 DOI: 10.1016/j.bbrc.2024.150437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Obesity is associated with an increased risk for 13 different cancers. The increased risk for cancer in obesity is mediated by obesity-associated changes in the immune system. Obesity has distinct effects on different types of inflammation that are tied to tumorigenesis. For example, obesity promotes chronic inflammation in adipose tissue that is tumor-promoting in peripheral tissues. Conversely, obesity inhibits acute inflammation that rejects tumors. Obesity therefore promotes cancer by differentially regulating chronic versus acute inflammation. Given that obesity is chronic, the initial inflammation in adipose tissue will lead to systemic inflammation that could induce compensatory anti-inflammatory reactions in peripheral tissues to suppress chronic inflammation. The overall effect of obesity in peripheral tissues is therefore dependent on the duration and severity of obesity. Adipose tissue is a complex tissue that is composed of many cell types in addition to adipocytes. Further, adipose tissue cellularity is different at different anatomical sites throughout the body. Consequently, the sensitivity of adipose tissue to obesity is dependent on the anatomical location of the adipose depot. For example, obesity induces more inflammation in visceral than subcutaneous adipose tissue. Based on these studies, the mechanisms by which obesity promotes tumorigenesis are multifactorial and immune cell type-specific. The objective of our paper is to discuss the cellular mechanisms by which obesity promotes tumorigenesis by regulating distinct types of inflammation in adipose tissue and the tumor microenvironment.
Collapse
Affiliation(s)
- Cora E Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Chelsea L McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Richard D Egleton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
24
|
Selvarani R, Nguyen HM, Pazhanivel N, Raman M, Lee S, Wolf RF, Deepa SS, Richardson A. The role of inflammation induced by necroptosis in the development of fibrosis and liver cancer in novel knockin mouse models fed a western diet. GeroScience 2024:10.1007/s11357-024-01418-3. [PMID: 39514172 DOI: 10.1007/s11357-024-01418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Non-resolving, chronic inflammation (inflammaging) is believed to play an important role in aging and age-related diseases. The goal of this study was to determine if inflammation induced by necroptosis arising from the liver plays a role in chronic liver disease (CLD) and liver cancer in mice fed a western diet (WD). Necroptosis was induced in liver using two knockin (KI) mouse models that overexpress genes involved in necroptosis (Ripk3 or Mlkl) specifically in liver (i.e., hRipk3-KI and hMlkl-KI mice). These mice and control mice (not overexpressing Ripk3 or Mlkl) were fed a WD (high in fat, sucrose, and cholesterol) starting at 2 months of age for 3, 6, and 12 months. Feeding the WD induced necroptosis in the control mice, which was further elevated in the hRipk3-KI and hMlkl-KI mice and was associated with a significant increase in inflammation in the livers of the hRipk3-KI and hMlkl-KI mice compared to control mice fed the WD. Overexpressing Ripk3 or Mlkl significantly increased steatosis and fibrosis compared to control mice fed the WD. Mice fed the WD for 12 months developed liver tumors (hepatocellular adenomas): 28% of the control mice developing tumors compared to 62% of the hRipk3-KI and hMlkl-KI mice. The hRipk3-KI and hMlkl-KI mice showed significantly more and larger tumor nodules. Our study provides the first direct evidence that inflammation induced by necroptosis arising from hepatocytes can lead to the progression of hepatic steatosis to fibrosis in obese mice that eventually results in an increased incidence in hepatocellular adenomas.
Collapse
Affiliation(s)
- Ramasamy Selvarani
- Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Natesan Pazhanivel
- Department of Veterinary Pathology, TANUVAS, Chennai City, Tamilnadu, India
| | | | - Sunho Lee
- Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roman F Wolf
- Oklahoma Veteran Affairs Medical Center, Oklahoma City, OK, USA
| | - Sathyaseelan S Deepa
- Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience & Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience & Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Veteran Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
25
|
Ojo OA, Adeyemo TR, Iyobhebhe M, Adams MD, Asaleye RM, Evbuomwan IO, Abdurrahman J, Maduakolam-Aniobi TC, Nwonuma CO, Odesanmi OE, Ojo AB. Beta vulgaris L. beetroot protects against iron-induced liver injury by restoring antioxidant pathways and regulating cellular functions. Sci Rep 2024; 14:25205. [PMID: 39448782 PMCID: PMC11502780 DOI: 10.1038/s41598-024-77503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
Beta vulgaris L. is a root vegetable that is consumed mainly as a food additive. This study aimed to describe the protective effect of B. vulgaris on Fe2+-mediated oxidative liver damage through in vitro, ex vivo, and in silico studies to establish a strong rationale for its protective effect. To induce oxidative damage, we incubated the livers of healthy male rats with 0.1 mM FeSO4 to induce oxidative injury and coincubated them with an aqueous extract of B. vulgaris root (BVFE) (15-240 µg/mL). Induction of liver damage significantly (p < .05) decreased the levels of GSH, SOD, CAT, and ENTPDase activities, with a corresponding increase in MDA and NO levels and Na+/K+ ATPase, G6 Pase, and F-1,6-BPase enzyme activities. BVFE treatment (p < .05) reduced these levels and activities to almost normal levels, with the most prominent effects observed at 240 µg/mL BVFE. An HPLC investigation revealed sixteen compounds in BVFE, with quercetin being the most abundant. Chlorogenic acid and iso-orientation showed the highest binding affinities for G6 Pase and Na+/K + ATPase, respectively. These findings suggest that B. vulgaris can protect against Fe2+-mediated liver damage by suppressing oxidative stress and cholinergic and purinergic activities while regulating gluconeogenesis. Overall, the hepatoprotective activity of this extract might be driven by the synergistic effect of the identified compounds and their probable interactions with target proteins.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria.
| | | | | | - Moses Dele Adams
- Clinical Biochemistry, Phytopharmacology and Biochemical Toxicology Research Laboratory (CBPBT-RL), Department of Biochemistry, Baze University, Abuja, Nigeria
| | | | | | | | | | | | | | - Adebola Busola Ojo
- Department of Environmental Management and Toxicology, University of Ilesa, Ilesa, Nigeria
| |
Collapse
|
26
|
Zhang H, Zong R, Wu H, Jiang J, Liu C, Liu S. Transcription factor ASCL1 targets SLC6A13 to inhibit the progression of hepatocellular carcinoma via the glycine-inflammasome signaling. BIOMOLECULES & BIOMEDICINE 2024; 24:1606-1619. [PMID: 38780447 PMCID: PMC11496862 DOI: 10.17305/bb.2024.10328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, typically arises from chronic liver conditions such as hepatitis, cirrhosis, or other chronic liver diseases, and is characterized by its aggressive nature and poor prognosis. The purpose of this research was to clarify the function of achaete-scute family bHLH transcription factor 1 (ASCL1) and solute carrier family 6 member 13 (SLC6A13) in influencing tumor cell behavior, inflammatory responses, and the regulation of inflammasomes. We analyzed the differentially expressed genes (DEGs) in the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) database, as well as in the GSE14520 and GSE67764 datasets, to identify the expression changes of SLC6A13 in liver cancer. The prognostic significance of SLC6A13 in LIHC was assessed through Kaplan-Meier survival curve analysis. Transcriptional regulation of SLC6A13 by ASCL1 was explored using the Joint Annotation of the Human Genome and other species by the Systematic Pipeline for the Annotation of Regulatory Regions (JASPAR) database and dual-luciferase assays. In vitro experiments investigated the impact of ASCL1 and SLC6A13 overexpression on HCC cell growth. Additionally, the effects of ethanol treatment and glycine modulation on the inflammatory response in HCC cell lines were evaluated. HCC samples showed reduced levels of SLC6A13, which correlates with a better prognosis for liver metastases. Elevated SLC6A13 expression correlated with improved overall survival (OS), progression-free survival (PFS), recurrence-free survival (RFS), and disease-specific survival (DSS). ASCL1 upregulated SLC6A13 and inhibited proliferation, migration, and invasion of HCC cells. Ethanol induced the production of inflammatory cytokines, which was enhanced by overexpression of SLC6A13 but counteracted by glycine. This study highlighted elevated expression of SLC6A13 in LIHC which has been correlated with improved OS, PFS, RFS, and DSS. Overexpression of SLC6A13 and ASCL1 in HCC cells enhanced inflammasome activation, which was exacerbated by ethanol and attenuated by glycine.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Intensive Care Medicine, The Third Hospital Affiliated to Naval Medical University, Jiading District, Shanghai, China
| | - Ruiqing Zong
- Department of Intensive Care Medicine, The Third Hospital Affiliated to Naval Medical University, Jiading District, Shanghai, China
| | - Huiqi Wu
- Department of Intensive Care Medicine, The Third Hospital Affiliated to Naval Medical University, Jiading District, Shanghai, China
| | - Jun Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Chuanyong Liu
- Department of Medical Services, The First Hospital Affiliated to Naval Medical University, Yangpu District, Shanghai, China
| | - Suiyi Liu
- Department of Medical Engineering, The Third Hospital Affiliated to Naval Medical University, Jiading District, Shanghai, China
| |
Collapse
|
27
|
Elsabaawy M. Liver at crossroads: unraveling the links between obesity, chronic liver diseases, and the mysterious obesity paradox. Clin Exp Med 2024; 24:240. [PMID: 39402270 PMCID: PMC11473604 DOI: 10.1007/s10238-024-01493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Obesity is a global health issue that is intricately linked to the development and progression of chronic liver disease (CLD). This bidirectional connection, coupled with the obesity paradox (OP), presents a management dilemma. The established influence of obesity on the development and progression of chronic liver disease (CLD) is surpassed by the liver's impact on the onset and advancement of obesity. Patients with CLD always experience increased energy expenditure, reduced appetite, and low protein synthesis, all of which might lead to weight loss. However, metabolic disturbances, hormonal imbalances, inflammatory signaling, immobility, drugs, and alterations in nutrient metabolism can contribute to the development and exacerbation of obesity. Despite the propagation of the OP concept, none of the guidelines has changed, recommending being overweight. Research bias and confounders might be the lifebuoy explanation. Additionally, overlooking the lethal morbidities of obesity for survival benefits full of suffering seems to be an illogical idea. Therefore, rather than endorsing an overweight status, emphasis should be placed on improving cardiorespiratory fitness and preventing sarcopenia to achieve better outcomes in patients with CLD. Accordingly, the complex interplay between obesity, CLD, and the concept of OP requires a sophisticated individualized management approach. Maximizing cardiorespiratory fitness and mitigating sarcopenia should be considered essential strategies for attaining the most favourable outcomes in patients with chronic liver disease (CLD).
Collapse
Affiliation(s)
- Maha Elsabaawy
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebeen El-Kom, Egypt.
| |
Collapse
|
28
|
Lim J, Kim SE, Jo AJ, Kim JH, Han SK, Kim TH, Yim HJ, Jung YK, Song DS, Yoon EL, Kim HY, Kang SH, Chang Y, Yoo JJ, Lee SW, Park JG, Park JW, Jeong SW, Jin YJ, Kim HS, Suk KT, Kim MY, Kim SG, Kim W, Jang JY, Yang JM, Kim DJ. Effect of diabetes on mortality and liver transplantation in alcoholic liver cirrhotic patients with acute decompensation. Hepatol Int 2024; 18:1579-1588. [PMID: 39020135 DOI: 10.1007/s12072-024-10710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/14/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Previous studies have investigated the influence of diabetes on alcoholic liver cirrhosis patients, leaving its impact unclear. Thus, we conducted a study to reveal the association of diabetes and clinical outcomes of such patients. MATERIALS AND METHODS We prospectively collected data from multicenter pertaining to 965 patients diagnosed with alcoholic liver cirrhosis, all of whom were admitted due to acute decompensation between 2015 and 2019. Risk of major precipitating factors and incidences of death or liver transplantation in patients with and without diabetes was comparatively assessed. Propensity score (PS) matching was performed at a 1:2 ratio for accurate comparisons. RESULTS The mean age was 53.4 years, and 81.0% of the patients were male. Diabetes was prevalent in 23.6% of the cohort and was positively correlated with hepatic encephalopathy and upper gastrointestinal bleeding, although not statistically significant. During a median follow-up of 903.5 person-years (PYs), 64 patients with and 171 without diabetes died or underwent liver transplantation, with annual incidence of 33.6/100 PYs and 24.0/100 PYs, respectively. In the PS-matched cohort, the incidence of death or liver transplantation was 36.8/100 PYs and 18.6/100 PYs in the diabetes and matched control group, respectively. After adjusting for various factors, coexisting diabetes significantly heightened the risk of death or liver transplantation in the short and long term, in addition to prolonged prothrombin time, low serum albumin, elevated total bilirubin and creatinine, and decreased serum sodium levels. CONCLUSIONS Diabetes increases the risk of death or liver transplantation in patients with alcoholic liver cirrhosis.
Collapse
Affiliation(s)
- Jihye Lim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Eun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hallym Medical Center, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea.
| | - Ae Jeong Jo
- Department of Information Statistics, Andong National University, Andong-si, Republic of Korea
| | - Jung Hee Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hallym Medical Center, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Seul Ki Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Ilsanro, Wonju, 26426, Republic of Korea
| | - Tae Hyung Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hallym Medical Center, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Hyung Joon Yim
- Division of Gastroenterology, Department of Internal Medicine, Korea University Medical Center, Seoul, Republic of Korea
| | - Young Kul Jung
- Division of Gastroenterology, Department of Internal Medicine, Korea University Medical Center, Seoul, Republic of Korea
| | - Do Seon Song
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eileen L Yoon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Hee Yeon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong Hee Kang
- Division of Gastroenterology, Department of Internal Medicine, Korea University Medical Center, Seoul, Republic of Korea
| | - Young Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, 04401, Republic of Korea
| | - Jeong-Ju Yoo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Sung Won Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Gil Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, 42415, Republic of Korea
| | - Ji Won Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hallym Medical Center, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Soung Won Jeong
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, 04401, Republic of Korea
| | - Young Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hyoung Su Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hallym Medical Center, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Ki Tae Suk
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hallym Medical Center, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Moon Young Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Ilsanro, Wonju, 26426, Republic of Korea
| | - Sang Gyune Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Jae Young Jang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, 04401, Republic of Korea
| | - Jin Mo Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Joon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hallym Medical Center, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
29
|
Yi YS. The Regulatory Roles of Inflammation and Inflammasomes in Liver Diseases. Int J Mol Sci 2024; 25:9864. [PMID: 39337352 PMCID: PMC11432471 DOI: 10.3390/ijms25189864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Inflammation is an innate immune response that protects our body from various pathogens and cellular dangers [...].
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
30
|
Dhasmana A, Preetam S, Malik S, Jadon VS, Joshi N, Bhandari G, Gupta S, Mishra R, Rustagi S, Samal SK. Revitalizing elixir with orange peel amplification of alginate fish oil beads for enhanced anti-aging efficacy. Sci Rep 2024; 14:20404. [PMID: 39223248 PMCID: PMC11369103 DOI: 10.1038/s41598-024-71042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The research introduces a novel method for creating drug-loaded hydrogel beads that target anti-aging, anti-oxidative, and anti-inflammatory effects, addressing the interconnected processes underlying various pathological conditions. The study focuses on the development of hydrogel beads containing anti-aging compounds, antioxidants, and anti-inflammatory drugs to effectively mitigate various processes. The synthesis, characterization and in vitro evaluations, and potential applications of these multifunctional hydrogel beads are discussed. A polymeric alginate-orange peel extract (1:1) hydrogel was synthesized for encapsulating fish oil. Beads prepared with variable fish oil concentrations (0.1, 0.3, and 0.5 ml) were characterized, showing no significant decrease in size i.e., 0.5 mm and a reduction in pore size from 23 to 12 µm. Encapsulation efficiency reached up to 98% within 2 min, with controlled release achieved upto 45 to 120 min with increasing oil concentration, indicating potential for sustained delivery. Fourier-transform infrared spectroscopy confirmed successful encapsulation by revealing peak shifting, interaction between constituents. In vitro degradation studies showed the hydrogel's biodegradability improved from 30 to 120 min, alongside anti-inflammatory, anti-oxidative, anti-collagenase and anti-elastase activities, cell proliferation rate enhanced after entrapping fish oil. In conclusion, the synthesized hydrogel beads are a promising drug delivery vehicle because they provide stable and effective oil encapsulation with controlled release for notable anti-aging and regenerative potential. Targeted delivery for inflammatory and oxidative stress-related illnesses is one set of potential uses. Further research may optimize this system for broader applications in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jollygrant, Dehradun, Uttarakhand, India, 248140.
| | - Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu, 42988, South Korea
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834002, India.
| | - Vikash Singh Jadon
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jollygrant, Dehradun, Uttarakhand, India, 248140
| | - Nupur Joshi
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jollygrant, Dehradun, Uttarakhand, India, 248140
| | - Geeta Bhandari
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jollygrant, Dehradun, Uttarakhand, India, 248140
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Jollygrant, Dehradun, Uttarakhand, India, 248140
| | - Richa Mishra
- Department of Computer Engineering, Parul Institute of Engineering and Technology ( PIET), Parul University, Ta. Waghodia, Vadodara, Gujarat, 391760, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, 22 Dehradun, Uttarakhand, India
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
31
|
Bharti A, Sharma I, Mahajan R, Langer S, Kapoor N. From Cirrhosis to the Dysbiosis (A Loop of Cure or Complications?). Indian J Microbiol 2024; 64:810-820. [PMID: 39282182 PMCID: PMC11399373 DOI: 10.1007/s12088-024-01267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/18/2024] [Indexed: 09/18/2024] Open
Abstract
Gut dysbiosis and liver cirrhosis are two corelated complications that highly disturbs the metabolism of a normal human body. Liver cirrhosis is scarring of the hepatic tissue and gut dysbiosis is the imbalance in the microbiome of the gut. Gut dysbiosis in cirrhosis occurs due to increased permeability of the intestinal membrane which might induce immune responses and damage the normal functioning of the body. Dysbiosis can cause liver damage from cirrhosis and can further lead to liver failure by hepatocellular carcinoma. In this review we discuss if eubiosis can revert the poorly functioning cirrhotic liver to normal functioning state? A normal microbiome converts various liver products into usable forms that regulates the overgrowth of microbiome in the gut. The imbalance caused by dysbiosis retards the normal functioning of liver and increases the complications. To correct this dysbiosis, measures like use of antibiotics with probiotics and prebiotics are used. This correction of the gut microbiome serves as a ray of hope to recover from this chronic illness. In case of alcohol induced liver cirrhosis, intervention of microbes can possibly be helpful in modulating the addiction as well as associated complications like depression as microbes are known to produce and consume neurotransmitters that are involved in alcohol addiction. Hence a correction of gut liver brain axis using microbiome can be a milestone achieved not only for treatment of liver cirrhosis but also for helping alcohol addicts quit and live a healthy or at least a near healthy life.
Collapse
Affiliation(s)
- Aanchal Bharti
- School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir 180006 India
| | - Isar Sharma
- School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir 180006 India
| | - Ritu Mahajan
- School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir 180006 India
| | - Seema Langer
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir 180006 India
| | - Nisha Kapoor
- School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir 180006 India
| |
Collapse
|
32
|
Saeki C, Saito M, Tsubota A. Association of chronic liver disease with bone diseases and muscle weakness. J Bone Miner Metab 2024; 42:399-412. [PMID: 38302761 DOI: 10.1007/s00774-023-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/16/2023] [Indexed: 02/03/2024]
Abstract
The liver is a vital organ involved in nutrient metabolism, hormone regulation, immunity, cytokine production, and gut homeostasis. Impairment in liver function can result in malnutrition, chronic inflammation, decreased anabolic hormone levels, and dysbiosis. These conditions eventually cause an imbalance in osteoblast and osteoclast activities, resulting in bone loss. Osteoporosis is a frequent complication of chronic liver disease (CLD) that adversely affects quality of life and increases early mortality. Sarcopenia is another common complication of CLD characterized by progressive loss of skeletal muscle mass and function. Assessment criteria for sarcopenia specific to liver disease have been established, and sarcopenia has been reported to be associated with an increase in the risk of liver disease-related events and mortality in patients with CLD. Owing to their similar risk factors and underlying pathophysiological mechanisms, osteoporosis and sarcopenia often coexist (termed osteosarcopenia), progress in parallel, and further exacerbate the conditions mentioned above. Therefore, comprehensive management of these musculoskeletal disorders is imperative. This review summarizes the clinical implications and characteristics of osteoporosis, extending to sarcopenia and osteosarcopenia, in patients with CLD caused by different etiologies.
Collapse
Affiliation(s)
- Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Akihito Tsubota
- Project Research Units, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
33
|
Lim JJ, Goedken M, Jin Y, Gu H, Cui JY. Single-cell transcriptomics unveiled that early life BDE-99 exposure reprogrammed the gut-liver axis to promote a proinflammatory metabolic signature in male mice at late adulthood. Toxicol Sci 2024; 200:114-136. [PMID: 38648751 PMCID: PMC11199921 DOI: 10.1093/toxsci/kfae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are legacy flame retardants that bioaccumulate in the environment. The gut microbiome is an important regulator of liver functions including xenobiotic biotransformation and immune regulation. We recently showed that neonatal exposure to polybrominated diphenyl ether-99 (BDE-99), a human breast milk-enriched PBDE congener, up-regulated proinflammation-related and down-regulated drug metabolism-related genes predominantly in males in young adulthood. However, the persistence of this dysregulation into late adulthood, differential impact among hepatic cell types, and the involvement of the gut microbiome from neonatal BDE-99 exposure remain unknown. To address these knowledge gaps, male C57BL/6 mouse pups were orally exposed to corn oil (10 ml/kg) or BDE-99 (57 mg/kg) once daily from postnatal days 2-4. At 15 months of age, neonatal BDE-99 exposure down-regulated xenobiotic and lipid-metabolizing enzymes and up-regulated genes involved in microbial influx in hepatocytes. Neonatal BDE-99 exposure also increased the hepatic proportion of neutrophils and led to a predicted increase of macrophage migration inhibitory factor signaling. This was associated with decreased intestinal tight junction protein (Tjp) transcripts, altered gut environment, and dysregulation of inflammation-related metabolites. ScRNA-seq using germ-free (GF) mice demonstrated the necessity of a normal gut microbiome in maintaining hepatic immune tolerance. Microbiota transplant to GF mice using large intestinal microbiome from adults neonatally exposed to BDE-99 down-regulated Tjp transcripts and up-regulated several cytokines in large intestine. In conclusion, neonatal BDE-99 exposure reprogrammed cell type-specific gene expression and cell-cell communication in liver towards proinflammation, and this may be partly due to the dysregulated gut environment.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
- Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington 98105, USA
| | - Michael Goedken
- Rutgers Research Pathology Services, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St Lucie, Florida 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St Lucie, Florida 34987, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
- Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington 98105, USA
| |
Collapse
|
34
|
Juliar BA, Stanaway IB, Sano F, Fu H, Smith KD, Akilesh S, Scales SJ, El Saghir J, Bhatraju PK, Liu E, Yang J, Lin J, Eddy S, Kretzler M, Zheng Y, Himmelfarb J, Harder JL, Freedman BS. Interferon-γ induces combined pyroptotic angiopathy and APOL1 expression in human kidney disease. Cell Rep 2024; 43:114310. [PMID: 38838223 PMCID: PMC11216883 DOI: 10.1016/j.celrep.2024.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
Elevated interferon (IFN) signaling is associated with kidney diseases including COVID-19, HIV, and apolipoprotein-L1 (APOL1) nephropathy, but whether IFNs directly contribute to nephrotoxicity remains unclear. Using human kidney organoids, primary endothelial cells, and patient samples, we demonstrate that IFN-γ induces pyroptotic angiopathy in combination with APOL1 expression. Single-cell RNA sequencing, immunoblotting, and quantitative fluorescence-based assays reveal that IFN-γ-mediated expression of APOL1 is accompanied by pyroptotic endothelial network degradation in organoids. Pharmacological blockade of IFN-γ signaling inhibits APOL1 expression, prevents upregulation of pyroptosis-associated genes, and rescues vascular networks. Multiomic analyses in patients with COVID-19, proteinuric kidney disease, and collapsing glomerulopathy similarly demonstrate increased IFN signaling and pyroptosis-associated gene expression correlating with accelerated renal disease progression. Our results reveal that IFN-γ signaling simultaneously induces endothelial injury and primes renal cells for pyroptosis, suggesting a combinatorial mechanism for APOL1-mediated collapsing glomerulopathy, which can be targeted therapeutically.
Collapse
Affiliation(s)
- Benjamin A Juliar
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ian B Stanaway
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Fumika Sano
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Hongxia Fu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Division of Hematology, Department of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Bloodworks Northwest Research Institute, Seattle, WA 98102, USA; Plurexa, Seattle, WA 98109, USA
| | - Kelly D Smith
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Shreeram Akilesh
- Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Suzie J Scales
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jamal El Saghir
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pavan K Bhatraju
- Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Esther Liu
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Johnson Yang
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jennie Lin
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ying Zheng
- Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jennifer L Harder
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Benjamin S Freedman
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Plurexa, Seattle, WA 98109, USA.
| |
Collapse
|
35
|
Jang H, Woo H, Corvino O, Kang H, Kim MB, Lee JY, Park YK. Dietary sugar kelp ( Saccharina latissima) consumption did not attenuate atherosclerosis in low-density lipoprotein receptor knockout mice. Food Funct 2024; 15:6684-6691. [PMID: 38819217 DOI: 10.1039/d4fo01037j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We previously demonstrated the beneficial effects of U.S.-grown sugar kelp (Saccharina latissima), a brown seaweed, on reducing serum triglycerides (TG) and total cholesterol (TC) and protecting against inflammation and fibrosis in the adipose tissue of diet-induced obesity mice. In this current study, we aimed to explore whether the dietary consumption of sugar kelp can prevent atherosclerosis using low-density lipoprotein receptor knockout (Ldlr KO) mice fed an atherogenic diet. Eight-week-old male Ldlr KO mice were fed either an atherogenic high-fat/high-cholesterol control (HF/HC) diet or a HF/HC diet supplemented with 6% (w/w) sugar kelp (HF/HC-SK) for 16 weeks. Consumption of sugar kelp significantly increased the body weight gain without altering fat mass and lean mass. Also, there were no significant differences in energy expenditure and physical activities between the groups. The two groups did not show significant differences in serum and hepatic TG and TC levels or the hepatic expression of genes involved in cholesterol and lipid metabolism. Although serum alanine aminotransferase (ALT) activity did not differ significantly between the two groups, there were significant increases in the expression of macrophage markers, including adhesion G protein-coupled receptor E1 and cluster of differentiation 68, as well as tumor necrosis factor alpha in the HF/HC-SK group compared to the HF/HC mice. The consumption of sugar kelp did not elicit a significant effect on the development of aortic lesions. Moreover, lipopolysaccharide-stimulated splenocytes isolated from HF/HC-SK-fed mice showed no significant changes in the mRNA levels of pro-inflammatory genes compared with those from the HF/HC mice. In summary, the consumption of dietary sugar kelp did not elicit anti-atherogenic and hepatoprotective effects in Ldlr KO mice.
Collapse
Affiliation(s)
- Hyungryun Jang
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Hayoung Woo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Olivia Corvino
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, 27 Manter Rd, Storrs, CT 06269, USA.
| |
Collapse
|
36
|
Cheng C, Hsu SK, Chen YC, Liu W, Shu ED, Chien CM, Chiu CC, Chang WT. Burning down the house: Pyroptosis in the tumor microenvironment of hepatocellular carcinoma. Life Sci 2024; 347:122627. [PMID: 38614301 DOI: 10.1016/j.lfs.2024.122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
A high mortality rate makes hepatocellular carcinoma (HCC) a difficult cancer to treat. When surgery is not possible, liver cancer patients are treated with chemotherapy. However, HCC management and treatment are difficult. Sorafenib, which is a first-line treatment for hepatocellular carcinoma, initially slows disease progression. However, sorafenib resistance limits patient survival. Recent studies have linked HCC to programmed cell death, which has increased researcher interest in therapies targeting cell death. Pyroptosis, which is an inflammatory mode of programmed cell death, may be targeted to treat HCC. Pyroptosis pathways, executors, and effects are examined in this paper. This review summarizes how pyroptosis affects the tumor microenvironment (TME) in HCC, including the role of cytokines such as IL-1β and IL-18 in regulating immune responses. The use of chemotherapies and their ability to induce cancer cell pyroptosis as alternative treatments and combining them with other drugs to reduce side effects is also discussed. In conclusion, we highlight the potential of inducing pyroptosis to treat HCC and suggest ways to improve patient outcomes. Studies on cancer cell pyroptosis may lead to new HCC treatments.
Collapse
Affiliation(s)
- Chi Cheng
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Chun Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - En-De Shu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Ming Chien
- Department of Medical Sciences Industry, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; The Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
37
|
Zhang Y, Cao C, Li C, Witt RG, Huang H, Tsung A, Zhang H. Physical exercise in liver diseases. Hepatology 2024:01515467-990000000-00900. [PMID: 38836646 DOI: 10.1097/hep.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Liver diseases contribute to ~2 million deaths each year and account for 4% of all deaths globally. Despite various treatment options, the management of liver diseases remains challenging. Physical exercise is a promising nonpharmacological approach to maintain and restore homeostasis and effectively prevent and mitigate liver diseases. In this review, we delve into the mechanisms of physical exercise in preventing and treating liver diseases, highlighting its effects on improving insulin sensitivity, regulating lipid homeostasis, and modulating immune function. In addition, we evaluate the impact of physical exercise on various liver diseases, including liver ischemia/reperfusion injury, cardiogenic liver disease, metabolic dysfunction-associated steatotic liver disease, portal hypertension, cirrhosis, and liver cancer. In conclusion, the review underscores the effectiveness of physical exercise as a beneficial intervention in combating liver diseases.
Collapse
Affiliation(s)
- Yunwei Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Chunyan Cao
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Chaofan Li
- Department of Medicine, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Russell G Witt
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hai Huang
- Division of Hepatology, Center for Immunology and Inflammation, Departments of Molecular Medicine, Medicine, and Surgery at the School of Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Allan Tsung
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hongji Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
38
|
Kim J, Zimmermann MT, Mathison AJ, Lomberk G, Urrutia R, Hong JC. Transcriptional Profiling Underscores the Role of Preprocurement Allograft Metabolism and Innate Immune Status on Outcomes in Human Liver Transplantation. ANNALS OF SURGERY OPEN 2024; 5:e444. [PMID: 38911661 PMCID: PMC11191965 DOI: 10.1097/as9.0000000000000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/21/2024] [Indexed: 06/25/2024] Open
Abstract
Objective The adverse effects of ischemia-reperfusion injury (IRI) remain a principal barrier to a successful outcome after lifesaving orthotopic liver transplantation (OLT). Gene expression during different phases of IRI is dynamic and modified by individual exposures, making it attractive for identifying potential therapeutic targets for improving the number of suitable organs for transplantation and patient outcomes. However, data remain limited on the functional landscape of gene expression during liver graft IRI, spanning procurement to reperfusion and recovery. Therefore, we sought to characterize transcriptomic profiles of IRI during multiple phases in human OLT. Methods We conducted clinical data analyses, histologic evaluation, and RNA sequencing of 17 consecutive human primary OLT. We performed liver allograft biopsies at 4 time points: baseline (B, before donor cross-clamp), at the end of cold ischemia (CI), during early reperfusion (ER, after revascularization), and during late reperfusion (LR). Data were generated and then recipients grouped by post-OLT outcomes categories: immediate allograft function (IAF; n = 11) versus early allograft dysfunction (EAD; n = 6) groups. Results We observed that CI (vs B) modified a transcriptomic landscape enriched for a metabolic and immune process. Expression levels of hallmark inflammatory response genes were higher transitioning from CI to ER and decreased from ER to LR. IAF group predominantly showed higher bile and fatty acid metabolism activity during LR compared with EAD group, while EAD group maintained more immunomodulatory activities. Throughout all time points, EAD specimens exhibited decreased metabolic activity in both bile and fatty acid pathways. Conclusions We report transcriptomic profiles of human liver allograft IRI from prepreservation in the donor to posttransplantation in the recipient. Immunomodulatory and metabolic landscapes across ER and LR phases were different between IAF and EAD allografts. Our study also highlights marker genes for these biological processes that we plan to explore as novel therapeutic targets or surrogate markers for severe allograft injury in clinical OLT.
Collapse
Affiliation(s)
- Joohyun Kim
- From the Division of Transplant Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
| | - Michael T. Zimmermann
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Angela J. Mathison
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee WI
| | - Gwen Lomberk
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee WI
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Johnny C. Hong
- Division of Transplantation, Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, PA
| |
Collapse
|
39
|
Zhou H, Liu Y, Su Y, Ji P, Kong L, Sun R, Zhang D, Xu H, Li W, Li W. Ginsenoside Rg1 attenuates lipopolysaccharide-induced chronic liver damage by activating Nrf2 signaling and inhibiting inflammasomes in hepatic cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117794. [PMID: 38244950 DOI: 10.1016/j.jep.2024.117794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng C. A. Meyer) is a precious traditional Chinese medicine with multiple pharmacological effects. Ginsenoside Rg1 is a main active ingredient extracted from ginseng, which is known for its age-delaying and antioxidant effects. Increasing evidence indicates that Rg1 exhibits anti-inflammatory properties in numerous diseases and may ameliorate oxidative damage and inflammation in many chronic liver diseases. AIM OF THE STUDY Chronic inflammatory injury in liver cells is an important pathological basis of many liver diseases. However, its mechanism remains unclear and therapeutic strategies to prevent its development need to be further explored. Thus, our study is to delve the protective effect and mechanism of Rg1 against chronic hepatic inflammatory injuries induced by lipopolysaccharide (LPS). MATERIALS AND METHODS The chronic liver damage model in mice was build up by injecting intraperitoneally with LPS (200 μg/kg) for 21 days. Serum liver function indicators and levels of IL-1β, IL-6 and TNF-α were examined by using corresponding Kits. Hematoxylin and Eosin (H&E), Periodic acid-Schiff (PAS), and Masson stains were utilized to visualize hepatic histopathological damage, glycogen deposition, and liver fibrosis. The nuclear import of p-Nrf2 and the generation of Col4 in the liver were detected by IF, while IHC was employed to detect the expressions of NLRP3 and AIM2 in the hepatic. The Western blot and q-PCR were used to survey the expressions of proteins and mRNAs of fibrosis and apoptosis, and the expressions of Keap1, p-Nrf2 and NLRP3, NLRP1, AIM2 inflammasome-related proteins in mouse liver. The cell viability of human hepatocellular carcinoma cells (HepG2) was detected by Cell Counting Kit-8 to select the action concentration of LPS, and intracellular ROS generation was detected using a kit. The expressions of Nuclear Nrf2, HO-1, NQO1 and NLRP3, NLRP1, and AIM2 inflammasome-related proteins in HepG2 cells were detected by Western blot. Finally, the feasibility of the molecular interlinking between Rg1 and Nrf2 was demonstrated by molecular docking. RESULTS Rg1 treatment for 21 days decreased the levels of ALT, AST, and inflammatory factors of serum IL-1β, IL-6 and TNF-α in mice induced by LPS. Pathological results indicated that Rg1 treatment obviously alleviated hepatocellular injury and apoptosis, inflammatory cell infiltration and liver fibrosis in LPS stimulated mice. Rg1 promoted Keap1 degradation and enhanced the expressions of p-Nrf2, HO-1 and decreased the levels of NLRP1, NLRP3, AIM2, cleaved caspase-1, IL-1β and IL-6 in livers caused by LPS. Furthermore, Rg1 effectively suppressed the rise of ROS in HepG2 cells induced by LPS, whereas inhibition of Nrf2 reversed the role of Rg1 in reducing the production of ROS and NLRP3, NLRP1, and AIM2 expressions in LPS-stimulated HepG2 cells. Finally, the molecular docking illustrated that Rg1 exhibits a strong affinity towards Nrf2. CONCLUSION The findings indicate that Rg1 significantly ameliorates chronic liver damage and fibrosis induced by LPS. The mechanism may be mediated through promoting the dissociation of Nrf2 from Keap1 and then activating Nrf2 signaling and further inhibiting NLRP3, NLRP1, and AIM2 inflammasomes in liver cells.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong Su
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Pengmin Ji
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liangliang Kong
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ran Sun
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Duoduo Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Hanyang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weiping Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Weizu Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
40
|
Jin Y, Song Q, He R, Diao H, Gaoyang H, Wang L, Fan L, Wang D. Nod-like receptor protein 3 inflammasome-mediated pyroptosis contributes to chronic NaAsO 2 exposure-induced fibrotic changes and dysfunction in the liver of SD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116282. [PMID: 38564859 DOI: 10.1016/j.ecoenv.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.
Collapse
Affiliation(s)
- Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Huijie Gaoyang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lei Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
41
|
Li X, Zhang Q, Wang A, Shan S, Wang X, Wang Y, Wan J, Ning P, Hong C, Tian H, Zhao Y. Hepatotoxicity induced in rats by chronic exposure to F-53B, an emerging replacement of perfluorooctane sulfonate (PFOS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123544. [PMID: 38367689 DOI: 10.1016/j.envpol.2024.123544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
A plethora of studies have shown the prominent hepatotoxicity caused by perfluorooctane sulfonate (PFOS), yet the research on the causality of F-53 B (an alternative for PFOS) exposure and liver toxicity, especially in mammals, is largely limited. To investigate the effects that chronic exposure to F-53 B exert on livers, in the present study, male SD rats were administrated with F-53 B in a certain dose range (0, 1, 10, 100, 1000 μg/L, eight rats per group) for 6 months via drinking water and the hepatotoxicity resulted in was explored. We reported that chronic exposure to 100 and 1000 μg/L F-53 B induced remarkable histopathological changes in liver tissues such as distinct swollen cells and portal vein congestion. In addition, the increase of cytokines IL-6, IL-2, and IL-8 upon long-term administration of F-53 B demonstrated the high level of inflammation. Moreover, F-53 B exposure was revealed to disrupt the lipid metabolism in the rat livers, mainly manifesting as the upregulation of some proteins involved in lipid synthesis and degradation, including ACC, FASN, SREBP-1c as well as ACOX1. These findings provided new evidence for the adverse effects caused by chronic exposure to F-53 B in rodents. It is crucial for industries, regulatory agencies as well as the public to remain vigilant about the adverse health effects associated with the emerging PFOS substitutes such as F-53 B. Implementation of regular monitoring and risk assessments is of great importance to alleviate environmental concerns towards PFOS alternatives exposure, and furthermore, to minimize the latent health risks to the public health.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, China
| | - Qian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, China
| | - Aiqing Wang
- Department of Experimental Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Shan Shan
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xueying Wang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yarong Wang
- Department of Experimental Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jianmei Wan
- Department of Experimental Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Ping Ning
- Department of Experimental Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chengjiao Hong
- Department of Experimental Center, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hailin Tian
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yun Zhao
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, China.
| |
Collapse
|
42
|
Kalaitzakis ZE, Giahnakis E, Koutroubakis IE, Mouzas IA, Kalaitzakis E. Bariatric Nutritional Intervention in Obese Patients with Compensated Liver Cirrhosis: A Four-Year Prospective Study. Dig Dis Sci 2024; 69:1467-1478. [PMID: 38411795 PMCID: PMC11026188 DOI: 10.1007/s10620-023-08223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/29/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND Obesity and liver cirrhosis represent significant health challenges, often leading to various complications. AIMS This prospective study aimed to investigate the impact of a four-year bariatric intervention, focusing on adherence to the Mediterranean Diet, on anthropometric, hematologic, and biochemical parameters in obese patients with compensated liver cirrhosis. Additionally, the study evaluated the concurrent contribution of weight loss to these health indicators. METHODS The study involved 62 patients with compensated liver cirrhosis (mean age 65.87 ± 6 years) and 44 healthy controls (mean age 59.11 ± 8 years), all with a BMI > 30 kg/m2. Both groups underwent a weight loss intervention based on the Mediterranean diet, with a four-year follow-up. Anthropometric, biochemical and hematologic parameters were evaluated at several time points during the study and their statistical significance was assessed. RESULTS Anthropometric parameters, including weight, BMI, waist and hip circumference, percentage of fat mass, and handgrip strength, exhibited significant improvements (p < 0.05), particularly within the first year of the intervention. Liver function tests and lipid profiles of the patients also showed significant enhancements (p < 0.05). Hematological and biochemical indices, such as hematocrit and ferritin, experienced discreet improvements in the patient cohort (p < 0.05). CONCLUSIONS This study highlights the potential of a structured bariatric intervention rooted in the Mediterranean diet to positively influence the health of obese patients with compensated liver cirrhosis. The observed improvements in anthropometric, biochemical, and hematologic parameters, particularly within the first year of the intervention, suggest the importance of dietary modifications in managing the health of this patient population.
Collapse
Affiliation(s)
| | | | - Ioannis E Koutroubakis
- Department of Gastroenterology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Ioannis A Mouzas
- Department of Gastroenterology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Evangelos Kalaitzakis
- Department of Gastroenterology, University Hospital of Heraklion, Heraklion, Crete, Greece
| |
Collapse
|
43
|
Peng Y, Cui H, Shu C, Wei Z, Ni X, Liu J. Triclosan induces liver injury in long-life exposed mice via activation of TLR4/NF-κB/NLRP3 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116115. [PMID: 38377781 DOI: 10.1016/j.ecoenv.2024.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Triclosan (TCS) is a widely used synthetic, with broad-spectrum antibacterial properties found in both pharmaceuticals and personal care products. More specifically, it is hepatotoxic in rodents and exhibits differential effects in mice and humans. However, the mechanisms underlying TCS-induced liver toxicity have not been elucidated. This study examined the role of the toll-like receptor 4 (TLR4)/ nuclear factor kappa B (NF-κB)/ nod-like receptor protein 3 (NLRP3) pathway in TCS-exposed liver toxicity by established a long-life TCS-exposed mice liver injury model. The 24 C57BL/6 pregnant mice exposed to TCS (0, 50 and 100 mg/kg) every day during the gestation and nursing period. After weaning, the male mice were left to continue administrate with TCS until 8 weeks of age. Then, mice in each group were sacrificed for investigation. Long-life exposure to TCS resulted in a reduction of body weight in growth mice. TCS exposure caused the increase of serum ALT, AST and ALP. The situation of inflammatory cell infiltration, macrophage recruitment and collagen fiber deposition in TCS-exposed mice liver tissues were performed by histological analysis including hematoxylin-eosin, Masson, Sirius red, and immunohistochemistry staining. Protein expression levels in TLR4/NF-κB/NLRP3 pathway was measured through Western blot, and the NLRP3 inflammasome activation was measured using real-time quantitative PCR (RT-qPCR). The results showed that exposure to TCS elevated TLR4, myeloid differentiation factor 88 (Myd88), TNF receptor associated factor 6 (TRAF6), enhanced NF-κB activation, and affected NLRP3 inflammasome activation in mice liver. Collectively, these findings indicate that long-life exposure to TCS-induced mice by upregulating the TLR4-Myd88-TRAF6 pathway, activating the NF-κB signaling cascade, initiating the NLRP3 inflammasome pathway, and ultimately leading to liver injury, including inflammation, hepatocyte pyroptosis and hepatofibrosis. Henceforth, the TLR4/NF-κB/NLRP3 pathway may now provide a theoretical basis and valuable therapeutic targets for overcoming TCS-induced liver toxicity.
Collapse
Affiliation(s)
- Yuxuan Peng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China
| | - He Cui
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Chang Shu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Ziyun Wei
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiao Ni
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
44
|
Zhao X, Yin F, Huang Y, Fu L, Ma Y, Ye L, Fan W, Gao W, Cai Y, Mou X. Oral administration of grape-derived nanovesicles for protection against LPS/D-GalN-induced acute liver failure. Int J Pharm 2024; 652:123812. [PMID: 38237707 DOI: 10.1016/j.ijpharm.2024.123812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
Although the exploration of the molecular mechanisms of Acute liver failure (ALF) is supported by a growing number of studies, the lack of effective therapeutic agents and measures indicates an urgent clinical need for the development of new drugs and treatment strategies. Herein, we focused on the treatment of ALF with grape-derived nanovesicles (GDNVs), and assessed its protective effects and molecular mechanisms against liver injury. In the mice model of ALF, prophylactic administration for three consecutive days and treatment with GDNVs after successful induction of ALF showed a significant reduction of ALT and AST activity in mouse serum, as well as a blockade of the release of inflammatory cytokines IL6, IL-1β and TNF-α. Treatment with GDNVs significantly prevented the massive apoptosis of hepatocytes caused by LPS/D-GalN and down-regulated the activation and expression of the mitochondrial apoptosis-related proteins p53, Caspase 9, Caspase 8, Caspase 3 and Bax. GDNVs downregulated the release of chemokines during the inflammatory eruption in mice and inhibited the infiltration of peripheral monocytes into the liver by inhibiting CCR2/CCR5. Moreover, the pro-inflammatory phenotype of macrophages in the liver was reversed by GDNVs. GDNVs further reduced the activation of NLRP3-related pathways, and treatment with GDNVs activated the expression of autophagy-related proteins Foxo3a, Sirt1 and LC3-II in the damaged mouse liver, inducing autophagy to occur. GDNVs could exert hepatoprotective and inflammatory suppressive functions by increasing nuclear translocation of Nrf2 and upregulating HO-1 expression against exogenous toxin-induced oxidative stress in the liver. In conclusion, these results demonstrate that GDNVs alleviate LPS/D-GalN-induced ALF and have the potential to be used as a novel hepatoprotective agent for clinical treatment.
Collapse
Affiliation(s)
- Xin Zhao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Fang Yin
- Shanghai Engineering Research Center of Human Intestinal Microflora Function Development, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - Yilin Huang
- College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China
| | - Luoqin Fu
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yingyu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Luyi Ye
- College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China
| | - Weijiao Fan
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Wenxue Gao
- Clinical Research Unit, Shanghai Tenth People's Hospital, Shanghai 200072, China.
| | - Yu Cai
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; College of Pharmacy, Hangzhou Medical College, Hangzhou 310059, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
45
|
Liu Z, Sun M, Liu W, Feng F, Li X, Jin C, Zhang Y, Wang J. Deficiency of purinergic P2X4 receptor alleviates experimental autoimmune hepatitis in mice. Biochem Pharmacol 2024; 221:116033. [PMID: 38301964 DOI: 10.1016/j.bcp.2024.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Purinergic P2X4 receptor (P2X4R) has been shown to have immunomodulatory properties in infection, inflammation, and organ damage including liver regeneration and fibrosis. However, the mechanisms and pathophysiology associated with P2X4R during acute liver injury remain unknown. We used P2X4R-/- mice to explore the role of P2X4R in three different models of acute liver injury caused by concanavalin A (ConA), carbon tetrachloride, and acetaminophen. ConA treatment results in an increased expression of P2X4R in the liver of mice, which was positively correlated with higher levels of aspartate aminotransferase and alanine aminotransferase in the serum. However, P2X4R gene ablation significantly reduced the severity of acute hepatitis in mice caused by ConA, but not by carbon tetrachloride or acetaminophen. The protective benefits against immune-mediated acute hepatitis were achieved via modulating inflammation (Interleukin (IL)-1β, IL-6, IL-17A, interferon-γ, tumor necrosis factor-α), oxidative stress (malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase), apoptosis markers (Bax, Bcl-2, and Caspase-3), autophagy biomarkers (LC3, Beclin-1, and p62), and nucleotide oligomerization domain-likereceptorprotein 3(NLRP3) inflammasome-activated pyroptosis markers (NLRP3, Gasdermin D, Caspase-1, ASC, IL-1β). Additionally, administration of P2X4R antagonist (5-BDBD) or agonist (cytidine 5'-triphosphate) either improved or worsened ConA-induced autoimmune hepatitis, respectively. This study is the first to reveal that the absence of the P2X4 receptor may mitigate immune-mediated liver damage, potentially by restraining inflammation, oxidation, and programmed cell death mechanisms. And highlight P2X4 receptor is essential for ConA-induced acute hepatitis.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mengyang Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Wenhua Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Fangyu Feng
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Xinyu Li
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China.
| |
Collapse
|
46
|
Wu B, Wang J, Chen Y, Fu Y. Inflammation-Targeted Drug Delivery Strategies via Albumin-Based Systems. ACS Biomater Sci Eng 2024; 10:743-761. [PMID: 38194444 DOI: 10.1021/acsbiomaterials.3c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Albumin, being the most abundant serum protein, has the potential to significantly enhance the physicochemical properties of therapeutic payloads, thereby improving their pharmacological effects. Apart from its passive transport via the enhanced permeability and retention effect, albumin can actively accumulate in tumor microenvironments or inflammatory tissues via receptor-mediated processes. This unique property makes albumin a promising scaffold for targeted drug delivery. This review focuses on exploring different delivery strategies that combine albumin with drug payloads to achieve targeted therapy for inflammatory diseases. Also, albumin-derived therapeutic products on the market or undergoing clinical trials in the past decade have been summarized to gain insight into the future development of albumin-based drug delivery systems. Given the involvement of inflammation in numerous diseases, drug delivery systems utilizing albumin demonstrate remarkable advantages, including enhanced properties, improved in vivo behavior and efficacy. Albumin-based drug delivery systems have been demonstrated in clinical trials, while more advanced strategies for improving the capacity of drug delivery systems with the help of albumin remain to be discovered. This could pave the way for biomedical applications in more effective and precise treatments.
Collapse
Affiliation(s)
- Bangqing Wu
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Jingwen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
47
|
Mao S, Yao J, Zhang T, Zhang X, Tan W, Li C. Bilobalide attenuates lipopolysaccharide‑induced HepG2 cell injury by inhibiting TLR4‑NF‑κB signaling via the PI3K/Akt pathway. Exp Ther Med 2024; 27:24. [PMID: 38125341 PMCID: PMC10728898 DOI: 10.3892/etm.2023.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2023] Open
Abstract
Inflammation is involved in the pathological process underlying a number of liver diseases. Bilobalide (BB) is a natural compound from Ginkgo biloba leaves that was recently demonstrated to exert hepatoprotective effects by inhibiting oxidative stress in the liver cancer cell line HepG2. The anti-inflammatory activity of BB has been reported in recent studies. The major objective of the present study was to investigate whether BB could attenuate inflammation-associated cell damage. HepG2 cells were cultured with lipopolysaccharide (LPS) and BB, and cell damage was evaluated by measuring cell viability using MTT assay. The activity of the NF-κB signaling pathway was assessed by measuring the levels of IκBα, NF-κB p65, phosphorylated (p)-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines IL-1β, IL-6 and TNF-α. A toll-like receptor (TLR)4 inhibitor (CLI-095) was used to detect the involvement of TLR4 in cell injury caused by LPS. In addition, the PI3K/Akt inhibitor LY294002 was applied to explore the involvement of the PI3K/Akt axis in mediating the effects of BB. The results demonstrated that LPS induced HepG2 cell injury. LPS also elevated the levels of p-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines. However, CLI-095 significantly attenuated the LPS-induced cell damage and inhibited the activation of NF-κB signaling. BB also dose-dependently attenuated the LPS-induced cell damage, activation of NF-κB signaling and TLR4 overexpression. Furthermore, it was observed that LY294002 diminished the cytoprotective effects of BB on cell injury, TLR4 expression and NF-κB activation. These findings indicated that BB could attenuate LPS-induced inflammatory injury to HepG2 cells by regulating TLR4-NF-κB signaling.
Collapse
Affiliation(s)
- Shumei Mao
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jinpeng Yao
- Department of Cardiology, Yantai Kaifaqu Hospital, Yantai, Shandong 264006, P.R. China
| | - Teng Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiang Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wei Tan
- Department of Respiratory Medicine, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chengde Li
- Department of Clinical Pharmacy, Key Laboratory of Applied Pharmacology in Universities of Shandong, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
48
|
Yahyazadeh R, Rahimi VB, Yahyazadeh A, Askari VR. A Mechanistic Review on Protective Effects of Mangosteen and its Xanthones Against Hazardous Materials and Toxins. Curr Neuropharmacol 2024; 22:1986-2015. [PMID: 38486389 PMCID: PMC11333789 DOI: 10.2174/1570159x22666240212142655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2024] Open
Abstract
Due to its pharmacological properties, α-Mangostin, mainly found in Garcinia mangostana (G. mangostana) L. (Mangosteen, queen of fruits), treats wounds, skin infections, and many other disorders. In fact, α-Mangostin and other xanthonoid, including β-Mangostin and γ-Mangostin, are found in G. mangostana, which have various advantages, namely neuroprotective, anti-proliferative, antinociceptive, antioxidant, pro-apoptotic, anti-obesity, anti-inflammatory, and hypoglycemic through multiple signaling mechanisms, for instance, extracellular signal-regulated kinase1/2 (ERK 1/2), mitogenactivated Protein kinase (MAPK), nuclear factor-kappa B (NF-kB), transforming growth factor beta1 (TGF-β1) and AMP-activated protein kinase (AMPK). This review presents comprehensive information on Mangosteen's pharmacological and antitoxic aspects and its xanthones against various natural and chemical toxins. Because of the insufficient clinical study, we hope the current research can benefit from performing clinical and preclinical studies against different toxic agents.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Zhang Z, Zhang Y, Zhang M, Yu C, Yang P, Xu M, Ling J, Wu Y, Zhu Z, Chen Y, Shi A, Liu X, Zhang J, Yu P, Zhang D. Food-derived peptides as novel therapeutic strategies for NLRP3 inflammasome-related diseases: a systematic review. Crit Rev Food Sci Nutr 2023; 65:1433-1464. [PMID: 38153262 DOI: 10.1080/10408398.2023.2294164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.
Collapse
Affiliation(s)
- Ziqi Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhang
- School of Public Health, Nanchang University, Jiangxi, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Chenfeng Yu
- Huankui College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Deju Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
50
|
Barbalho SM, Méndez-Sánchez N, Fornari Laurindo L. AdipoRon and ADP355, adiponectin receptor agonists, in Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH): A systematic review. Biochem Pharmacol 2023; 218:115871. [PMID: 37866803 DOI: 10.1016/j.bcp.2023.115871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Adiponectin replacement therapy holds the potential to benefit numerous human diseases, and ongoing research applies particular interest in how adiponectin acts against Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH). However, the pharmacological limitations of the intact protein have prompted a focus on alternative options, specifically peptidic and small molecule agonists targeting the adiponectin receptor. AdipoRon is an extensively researched non-peptidic drug candidate in adiponectin replacement therapy. In turn, ADP355 is an adiponectin-based active short peptide. They have garnered significant attention due to their potential as substitutes for adiponectin. Researchers have studied AdipoRon's and ADP355's efficacy and therapeutic applications in various disease conditions. However, the effects of AdipoRon and ADP355 against NAFLD and NASH models advanced more, and no systematic review explored this area before. This systematic review was conceived to address the deficiency mentioned above and consider the lack of clinical evidence. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were utilized. To assess the risk of bias in systematic review, The Joanna Briggs Institute (JBI) Critical Appraisal Checklist was employed. Results from pre-clinical evidence show that AdipoRon and ADP355 represent promising effects in NAFLD and NASH-related models, including reducing hepatic steatosis, modulating inflammation, improving insulin sensitivity, enhancing mitochondrial function, and protecting against liver fibrosis. While AdipoRon and ADP355 exhibit promise in pre-clinical studies and experimental models, additional clinical trials are necessary to assess their effectiveness, safety, and potential translational therapeutic potential uses in NAFLD and NASH human cases.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo, Brazil.
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
| |
Collapse
|