1
|
Diagne A, Sambe BS, Gaba FM, Sarr I, Diatta AS, Sadio O, Diaw SOM, Diatta HAM, Diouf B, Vigan-Womas I, Mbengue B, Niang M. Variable effects of non-falciparum species infections on malaria disease severity in high transmission regions in Senegal. Trop Med Health 2024; 52:93. [PMID: 39633482 PMCID: PMC11616377 DOI: 10.1186/s41182-024-00655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
In malaria endemic countries, non-falciparum species are often mixed with Plasmodium falciparum in patients with uncomplicated malaria, and their contribution to malaria severity and death is poorly studied. This study assesses the contribution of non-falciparum species to malaria severity in three regions of Senegal with the highest malaria incidence.We analysed 617 blood samples obtained between 2015 and 2021 from confirmed malaria patients at health facilities in Kedougou, Kolda and Tambacounda in Senegal. Plasmodium species composition was determined by PCR and their distribution were analysed according to age and disease severity, and the relative risk of developing severe malaria.Overall, 94.8% of samples contained P. falciparum either as single or mixed with other species. Non-falciparum P. ovale, P. vivax and P. malariae species were detected in 60.12, 13.61 and 1.62% of samples, respectively. Severe malaria was primarily due to P. falciparum, but co-infection with P. vivax led to a 1.63-fold significant (p = 0.05) increased risk of developing severe malaria, contrasting with the non-significant reduced risk (OR = 0.78; CI 95: 0.55-1.11; p = 0.16) associated with P. ovale infections. Children aged < 15 years old significantly suffered of SM than adults patients, whereas no significant association was found in relation to patient' sex.This study reports the first association of non-falciparum species infections with clinical malaria phenotypes in patients from the three most malaria-affected regions in Senegal. Non-falciparum P. ovale and P. vivax species in combination with P. falciparum had a protective and worsening effect, respectively. The findings suggest that interventions targeting only P. falciparum might not be sufficient to eliminate the overall malaria burden, and should take into account the neglected non-falciparum species.
Collapse
Affiliation(s)
- Aissatou Diagne
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 220, Dakar, Senegal
| | - Babacar Souleymane Sambe
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 220, Dakar, Senegal
| | - Folly Mawulolo Gaba
- Université Cheikh Anta Diop de Dakar, Service d'Immunologie FMPO, Dakar, Senegal
| | - Ibrahima Sarr
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 220, Dakar, Senegal
| | - Arona Sabène Diatta
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 220, Dakar, Senegal
| | - Ousmane Sadio
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 220, Dakar, Senegal
| | | | | | - Babacar Diouf
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 220, Dakar, Senegal
| | - Inès Vigan-Womas
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 220, Dakar, Senegal
| | - Babacar Mbengue
- Université Cheikh Anta Diop de Dakar, Service d'Immunologie FMPO, Dakar, Senegal
| | - Makhtar Niang
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 220, Dakar, Senegal.
| |
Collapse
|
2
|
Badiane AS, Ngom B, Ndiaye T, Cunningham D, Campbell J, Gaye A, Sène A, Sy M, Ndiaye D, Nwakanma D, Langhorne J. Evidence of Plasmodium vivax circulation in western and eastern regions of Senegal: implications for malaria control. Malar J 2024; 23:149. [PMID: 38750583 PMCID: PMC11097470 DOI: 10.1186/s12936-024-04932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Malaria elimination in Senegal requires accurate diagnosis of all Plasmodium species. Plasmodium falciparum is the most prevalent species in Senegal, although Plasmodium malariae, Plasmodium ovale, and recently Plasmodium vivax have also been reported. Nonetheless, most malaria control tools, such as Histidine Rich Protein 2 rapid diagnosis test (PfHRP2-RDT,) can only diagnose P. falciparum. Thus, PfHRP2-RDT misses non-falciparum species and P. falciparum infections that fall below the limit of detection. These limitations can be addressed using highly sensitive Next Generation Sequencing (NGS). This study assesses the burden of the four different Plasmodium species in western and eastern regions of Senegal using targeted PCR amplicon sequencing. METHODS Three thousand samples from symptomatic and asymptomatic individuals in 2021 from three sites in Senegal (Sessene, Diourbel region; Parcelles Assainies, Kaolack region; Gabou, Tambacounda region) were collected. All samples were tested using PfHRP2-RDT and photoinduced electron transfer polymerase chain reaction (PET-PCR), which detects all Plasmodium species. Targeted sequencing of the nuclear 18S rRNA and the mitochondrial cytochrome B genes was performed on PET-PCR positive samples. RESULTS Malaria prevalence by PfHRP2-RDT showed 9.4% (94/1000) and 0.2% (2/1000) in Diourbel (DBL) and Kaolack (KL), respectively. In Tambacounda (TAM) patients who had malaria symptoms and had a negative PfHRP2-RDT were enrolled. The PET-PCR had a positivity rate of 23.5% (295/1255) overall. The PET-PCR positivity rate was 37.6%, 12.3%, and 22.8% in Diourbel, Kaolack, and Tambacounda, respectively. Successful sequencing of 121/295 positive samples detected P. falciparum (93%), P. vivax (2.6%), P. malariae (4.4%), and P. ovale wallikeri (0.9%). Plasmodium vivax was co-identified with P. falciparum in thirteen samples. Sequencing also detected two PfHRP2-RDT-negative mono-infections of P. vivax in Tambacounda and Kaolack. CONCLUSION The findings demonstrate the circulation of P. vivax in western and eastern Senegal, highlighting the need for improved malaria control strategies and accurate diagnostic tools to better understand the prevalence of non-falciparum species countrywide.
Collapse
Affiliation(s)
- Aida S Badiane
- Laboratory of Parasitology and Mycology, Faculty of Medicine, Pharmacy and Odontology, Université Cheikh Anta Diop of Dakar, Darkar, Sénégal.
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal.
| | - Bassirou Ngom
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal
| | - Tolla Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal
| | - Deirdre Cunningham
- Malaria Immunology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - James Campbell
- Bioinformatics and Biostatistics Science Technology Platforms (STP), The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Amy Gaye
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal
| | - Aita Sène
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal
| | - Mouhamad Sy
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Faculty of Medicine, Pharmacy and Odontology, Université Cheikh Anta Diop of Dakar, Darkar, Sénégal
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire (CIGASS), Dakar, Sénégal
| | - Davis Nwakanma
- Medical Research Council Unit The Gambia at London, School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - Jean Langhorne
- Malaria Immunology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
3
|
Lee SK, Crosnier C, Valenzuela-Leon PC, Dizon BLP, Atkinson JP, Mu J, Wright GJ, Calvo E, Gunalan K, Miller LH. Complement receptor 1 is the human erythrocyte receptor for Plasmodium vivax erythrocyte binding protein. Proc Natl Acad Sci U S A 2024; 121:e2316304121. [PMID: 38261617 PMCID: PMC10835065 DOI: 10.1073/pnas.2316304121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
The discovery that Africans were resistant to infection by Plasmodium vivax (P. vivax) led to the conclusion that P. vivax invasion relied on the P. vivax Duffy Binding Protein (PvDBP) interacting with the Duffy Antigen Receptor for Chemokines (DARC) expressed on erythrocytes. However, the recent reporting of P. vivax infections in DARC-negative Africans suggests that the parasite might use an alternate invasion pathway to infect DARC-negative reticulocytes. To identify the parasite ligands and erythrocyte receptors that enable P. vivax invasion of both DARC-positive and -negative erythrocytes, we expressed region II containing the Duffy Binding-Like (DBL) domain of P. vivax erythrocyte binding protein (PvEBP-RII) and verified that the DBL domain binds to both DARC-positive and -negative erythrocytes. Furthermore, an AVidity-based EXtracelluar Interaction Screening (AVEXIS) was used to identify the receptor for PvEBP among over 750 human cell surface receptor proteins, and this approach identified only Complement Receptor 1 (CR1, CD35, or C3b/C4b receptor) as a PvEBP receptor. CR1 is a well-known receptor for P. falciparum Reticulocyte binding protein Homology 4 (PfRh4) and is present on the surfaces of both reticulocytes and normocytes, but its expression decreases as erythrocytes age. Indeed, PvEBP-RII bound to a subpopulation of both reticulocytes and normocytes, and this binding was blocked by the addition of soluble CR1 recombinant protein, indicating that CR1 is the receptor of PvEBP. In addition, we found that the Long Homology Repeat A (LHR-A) subdomain of CR1 is the only subdomain responsible for mediating the interaction with PvEBP-RII.
Collapse
Affiliation(s)
- Seong-Kyun Lee
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Cécile Crosnier
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, YorkYO10 5DD, United Kingdom
| | - Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Brian L. P. Dizon
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
- Rheumatology Fellowship Training Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD20892
| | - John P. Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO63110
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Gavin J. Wright
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, YorkYO10 5DD, United Kingdom
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| |
Collapse
|
4
|
Picón-Jaimes YA, Lozada-Martinez ID, Orozco-Chinome JE, Molina-Franky J, Acevedo-Lopez D, Acevedo-Lopez N, Bolaño-Romero MP, Visconti-Lopez FJ, Bonilla-Aldana DK, Rodriguez-Morales AJ. Relationship between Duffy Genotype/Phenotype and Prevalence of Plasmodium vivax Infection: A Systematic Review. Trop Med Infect Dis 2023; 8:463. [PMID: 37888591 PMCID: PMC10610806 DOI: 10.3390/tropicalmed8100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
The Duffy protein, a transmembrane molecule, functions as a receptor for various chemokines and facilitates attachment between the reticulocyte and the Plasmodium Duffy antigen-binding protein. Duffy expression correlates with the Duffy receptor gene for the chemokine, located on chromosome 1, and exhibits geographical variability worldwide. Traditionally, researchers have described the Duffy negative genotype as a protective factor against Plasmodium vivax infection. However, recent studies suggest that this microorganism's evolution could potentially diminish this protective effect. Nevertheless, there is currently insufficient global data to demonstrate this phenomenon. This study aimed to evaluate the relationship between the Duffy genotype/phenotype and the prevalence of P. vivax infection. The protocol for the systematic review was registered in PROSPERO as CRD42022353427 and involved reviewing published studies from 2012 to 2022. The Medline/PubMed, Web of Science, Scopus, and SciELO databases were consulted. Assessments of study quality were conducted using the STROBE and GRADE tools. A total of 34 studies were included, with Africa accounting for the majority of recorded studies. The results varied significantly regarding the relationship between the Duffy genotype/phenotype and P. vivax invasion. Some studies predominantly featured the negative Duffy genotype yet reported no malaria cases. Other studies identified minor percentages of infections. Conversely, certain studies observed a higher prevalence (99%) of Duffy-negative individuals infected with P. vivax. In conclusion, this systematic review found that the homozygous Duffy genotype positive for the A allele (FY*A/*A) is associated with a higher incidence of P. vivax infection. Furthermore, the negative Duffy genotype does not confer protection against vivax malaria.
Collapse
Affiliation(s)
| | - Ivan David Lozada-Martinez
- Epidemiology Program, Department of Graduate Studies in Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga 44005, Colombia;
| | - Javier Esteban Orozco-Chinome
- Medical and Surgical Research Center, Future Surgeons Chapter, Colombian Surgery Association, Bogotá 10002, Colombia; (J.E.O.-C.); (N.A.-L.); (M.P.B.-R.)
| | - Jessica Molina-Franky
- Department of Inmunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91007, USA;
- Molecular Biology and Inmunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 10001, Colombia
| | - Domenica Acevedo-Lopez
- School of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira 660003, Colombia;
| | - Nicole Acevedo-Lopez
- Medical and Surgical Research Center, Future Surgeons Chapter, Colombian Surgery Association, Bogotá 10002, Colombia; (J.E.O.-C.); (N.A.-L.); (M.P.B.-R.)
| | - Maria Paz Bolaño-Romero
- Medical and Surgical Research Center, Future Surgeons Chapter, Colombian Surgery Association, Bogotá 10002, Colombia; (J.E.O.-C.); (N.A.-L.); (M.P.B.-R.)
| | | | | | - Alfonso J. Rodriguez-Morales
- Clinical Epidemiology and Biostatistics Master Program, Universidad Cientifica del Sur, Lima 15067, Peru;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36, Lebanon
| |
Collapse
|
5
|
Dao F, Dembele L, Diarra B, Sogore F, Marin-Menendez A, Goita S, Haidara AS, Barre YN, Sangare CPO, Kone A, Ouologuem DT, Dara A, Tekete MM, Talman AM, Djimde AA. The Prevalence of Human Plasmodium Species during Peak Transmission Seasons from 2016 to 2021 in the Rural Commune of Ntjiba, Mali. Trop Med Infect Dis 2023; 8:438. [PMID: 37755899 PMCID: PMC10535850 DOI: 10.3390/tropicalmed8090438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Up-to-date knowledge of key epidemiological aspects of each Plasmodium species is necessary for making informed decisions on targeted interventions and control strategies to eliminate each of them. This study aims to describe the epidemiology of plasmodial species in Mali, where malaria is hyperendemic and seasonal. Data reports collected during high-transmission season over six consecutive years were analyzed to summarize malaria epidemiology. Malaria species and density were from blood smear microscopy. Data from 6870 symptomatic and 1740 asymptomatic participants were analyzed. The median age of participants was 12 years, and the sex ratio (male/female) was 0.81. Malaria prevalence from all Plasmodium species was 65.20% (95% CI: 60.10-69.89%) and 22.41% (CI: 16.60-28.79%) for passive and active screening, respectively. P. falciparum was the most prevalent species encountered in active and passive screening (59.33%, 19.31%). This prevalence was followed by P. malariae (1.50%, 1.15%) and P. ovale (0.32%, 0.06%). Regarding frequency, P. falciparum was more frequent in symptomatic individuals (96.77% vs. 93.24%, p = 0.014). In contrast, P. malariae was more frequent in asymptomatic individuals (5.64% vs. 2.45%, p < 0.001). P. ovale remained the least frequent species (less than 1%), and no P. vivax was detected. The most frequent coinfections were P. falciparum and P. malariae (0.56%). Children aged 5-9 presented the highest frequency of P. falciparum infections (41.91%). Non-falciparum species were primarily detected in adolescents (10-14 years) with frequencies above 50%. Only P. falciparum infections had parasitemias greater than 100,000 parasites per µL of blood. P. falciparum gametocytes were found with variable prevalence across age groups. Our data highlight that P. falciparum represented the first burden, but other non-falciparum species were also important. Increasing attention to P. malariae and P. ovale is essential if malaria elimination is to be achieved.
Collapse
Affiliation(s)
- Francois Dao
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali; (F.D.); (B.D.); (F.S.); (S.G.); (A.S.H.); (Y.N.B.); (C.P.O.S.); (A.K.); (D.T.O.); (A.D.); (M.M.T.)
- MIVEGEC, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France; (A.M.-M.); (A.M.T.)
| | - Laurent Dembele
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali; (F.D.); (B.D.); (F.S.); (S.G.); (A.S.H.); (Y.N.B.); (C.P.O.S.); (A.K.); (D.T.O.); (A.D.); (M.M.T.)
| | - Bakoroba Diarra
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali; (F.D.); (B.D.); (F.S.); (S.G.); (A.S.H.); (Y.N.B.); (C.P.O.S.); (A.K.); (D.T.O.); (A.D.); (M.M.T.)
| | - Fanta Sogore
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali; (F.D.); (B.D.); (F.S.); (S.G.); (A.S.H.); (Y.N.B.); (C.P.O.S.); (A.K.); (D.T.O.); (A.D.); (M.M.T.)
| | | | - Siaka Goita
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali; (F.D.); (B.D.); (F.S.); (S.G.); (A.S.H.); (Y.N.B.); (C.P.O.S.); (A.K.); (D.T.O.); (A.D.); (M.M.T.)
| | - Aboubacrin S. Haidara
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali; (F.D.); (B.D.); (F.S.); (S.G.); (A.S.H.); (Y.N.B.); (C.P.O.S.); (A.K.); (D.T.O.); (A.D.); (M.M.T.)
| | - Yacouba N. Barre
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali; (F.D.); (B.D.); (F.S.); (S.G.); (A.S.H.); (Y.N.B.); (C.P.O.S.); (A.K.); (D.T.O.); (A.D.); (M.M.T.)
| | - Cheick P. O. Sangare
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali; (F.D.); (B.D.); (F.S.); (S.G.); (A.S.H.); (Y.N.B.); (C.P.O.S.); (A.K.); (D.T.O.); (A.D.); (M.M.T.)
| | - Aminatou Kone
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali; (F.D.); (B.D.); (F.S.); (S.G.); (A.S.H.); (Y.N.B.); (C.P.O.S.); (A.K.); (D.T.O.); (A.D.); (M.M.T.)
| | - Dinkorma T. Ouologuem
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali; (F.D.); (B.D.); (F.S.); (S.G.); (A.S.H.); (Y.N.B.); (C.P.O.S.); (A.K.); (D.T.O.); (A.D.); (M.M.T.)
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali; (F.D.); (B.D.); (F.S.); (S.G.); (A.S.H.); (Y.N.B.); (C.P.O.S.); (A.K.); (D.T.O.); (A.D.); (M.M.T.)
| | - Mamadou M. Tekete
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali; (F.D.); (B.D.); (F.S.); (S.G.); (A.S.H.); (Y.N.B.); (C.P.O.S.); (A.K.); (D.T.O.); (A.D.); (M.M.T.)
| | - Arthur M. Talman
- MIVEGEC, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France; (A.M.-M.); (A.M.T.)
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali; (F.D.); (B.D.); (F.S.); (S.G.); (A.S.H.); (Y.N.B.); (C.P.O.S.); (A.K.); (D.T.O.); (A.D.); (M.M.T.)
| |
Collapse
|
6
|
Oboh-Imafidon MA, Zimmerman PA. Plasmodium vivax in Sub-Saharan Africa: An Advancing Threat to Malaria Elimination? Am J Trop Med Hyg 2023; 109:497-498. [PMID: 37640286 PMCID: PMC10484284 DOI: 10.4269/ajtmh.23-0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Affiliation(s)
- Mary Aigbiremo Oboh-Imafidon
- Postdoctoral Research Fellow I, Malaria Population Biology, Disease Control and Elimination Theme, Medical Research Council, The Gambia Unit at London School of Hygiene and Tropical Medicine, Serrekunda, Gambia
| | - Peter A. Zimmerman
- Professor of International Health, Genetics and Biology, The Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
Abate A, Hassen J, Dembele L, Menard D, Golassa L. Differential transmissibility to Anopheles arabiensis of Plasmodium vivax gametocytes in patients with diverse Duffy blood group genotypes. Malar J 2023; 22:136. [PMID: 37098534 PMCID: PMC10131423 DOI: 10.1186/s12936-023-04570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/21/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Measuring risk of malaria transmission is complex, especially in case of Plasmodium vivax. This may be overcome using membrane feeding assays in the field where P. vivax is endemic. However, mosquito-feeding assays are affected by a number of human, parasite and mosquito factors. Here, this study identified the contributions of Duffy blood group status of P. vivax-infected patients as a risk of parasite transmission to mosquitoes. METHODS A membrane feeding assay was conducted on a total of 44 conveniently recruited P. vivax infected patients in Adama city and its surroundings in East Shewa Zone, Oromia region, Ethiopia from October, 2019 to January, 2021. The assay was performed in Adama City administration. Mosquito infection rates were determined by midgut dissections at seven to 8 days post-infection. Duffy genotyping was defined for each of the 44 P. vivax infected patients. RESULTS The infection rate of Anopheles mosquitoes was 32.6% (296/907) with 77.3% proportion of infectious participants (34/44). Infectiousness of participants to Anopheles mosquitoes appeared to be higher among individuals with homozygous Duffy positive blood group (TCT/TCT) than heterozygous (TCT/CCT), but the difference was not statistically significant. The mean oocyst density was significantly higher among mosquitoes fed on blood of participants with FY*B/FY*BES than other genotypes (P = 0.001). CONCLUSION Duffy antigen polymorphisms appears to contribute to transmissibility difference of P. vivax gametocytes to Anopheles mosquitoes, but further studies are required.
Collapse
Affiliation(s)
- Andargie Abate
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Jifar Hassen
- School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Laurent Dembele
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Didier Menard
- Institut Pasteur, Malaria Genetics and Resistance Unit, Université Paris Cité, INSERM U1201, 75015, Paris, France
- Federation of Translational Medicine, Institute of Parasitology and Tropical Diseases, University of Strasbourg, UR7292 Dynamics of Host-Pathogen Interactions, 67000, Strasbourg, France
- Laboratory of Parasitology and Medical Mycology, Strasbourg University Hospital, Strasbourg, France
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Djigo OKM, Gomez N, Ould Ahmedou Salem MS, Basco L, Ould Mohamed Salem Boukhary A, Briolant S. Performance of a Commercial Multiplex Allele-Specific Polymerase Chain Reaction Kit to Genotype African-Type Glucose-6-Phosphate Dehydrogenase Deficiency. Am J Trop Med Hyg 2023; 108:449-455. [PMID: 36535256 PMCID: PMC9896312 DOI: 10.4269/ajtmh.21-1081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/03/2022] [Indexed: 12/23/2022] Open
Abstract
8-Aminoquinoline antimalarial drugs (primaquine, tafenoquine) are required for complete cure of Plasmodium vivax malaria, but they are contraindicated in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In the absence of spectrophotometry, which is a gold standard for measuring G6PD activity, G6PD genotyping is one of the alternatives to establish a database and distribution map of G6PD enzyme deficiency in Mauritania, which has become a new epicenter of P. vivax malaria in West Africa. The aim of our study was to assess the performance of multiplex allele-specific polymerase chain reaction (PCR) (African-type Diaplex C™ G6PD kit) against PCR-restriction fragment length polymorphism and sequencing. Of 146 mutations associated with G6PD A- genotypes in 177 blood samples from Mauritanian patients, all but two samples were identified correctly using multiplex allele-specific PCR (100% sensitivity and 99% specificity; "almost perfect agreement" between allele-specific PCR and PCR-restriction fragment length polymorphism/sequencing, with a kappa coefficient of 0.977). Despite a suboptimal PCR protocol for dried blood spots and the inability of the commercial assay to predict unequivocally the G6PD enzyme level in heterozygous females, the African-type Diaplex C™ G6PD genotyping kit seemed to be a valuable screening tool for male subjects and for research purposes in resource-limited countries where spectrophotometer and DNA sequencing are not available.
Collapse
Affiliation(s)
- Oum Kelthoum Mamadou Djigo
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania
| | - Nicolas Gomez
- Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France
- Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Mohamed Salem Ould Ahmedou Salem
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania
| | - Leonardo Basco
- Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France
- Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de Recherche “Génomes et Milieux” (Jeune Equipe Associée à l’Institut de Recherche pour le Développement), Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania
| | - Sébastien Briolant
- Aix Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs–Infections Tropicales et Méditerranéennes, Marseille, France
- Institut Hospitalo-Universitaire–Méditerranée Infection, Marseille, France
- Unité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| |
Collapse
|
9
|
Bouyssou I, Martínez FJ, Campagne P, Ma L, Doderer-Lang C, Chitnis CE, Ménard D. Plasmodium vivax blood stage invasion pathways: Contribution of omics technologies in deciphering molecular and cellular mechanisms. C R Biol 2022; 345:91-133. [PMID: 36847467 DOI: 10.5802/crbiol.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022]
Abstract
Vivax malaria is an infectious disease caused by Plasmodium vivax, a parasitic protozoan transmitted by female Anopheline mosquitoes. Historically, vivax malaria has often been regarded as a benign self-limiting infection due to the observation of low parasitemia in Duffy-positive patients in endemic transmission areas and the virtual absence of infections in Duffy-negative individuals in Sub Saharan Africa. However, the latest estimates show that the burden of the disease is not decreasing in many countries and cases of vivax infections in Duffy-negative individuals are increasingly reported throughout Africa. This raised questions about the accuracy of diagnostics and the evolution of interactions between humans and parasites. For a long time, our knowledge on P. vivax biology has been hampered due to the limited access to biological material and the lack of robust in vitro culture methods. Consequently, little is currently known about P. vivax blood stage invasion mechanisms. The introduction of omics technologies with novel and accessible techniques such as third generation sequencing and RNA sequencing at single cell level, two-dimensional electrophoresis, liquid chromatography, and mass spectrometry, has progressively improved our understanding of P. vivax genetics, transcripts, and proteins. This review aims to provide broad insights into P. vivax invasion mechanisms generated by genomics, transcriptomics, and proteomics and to illustrate the importance of integrated multi-omics studies.
Collapse
|
10
|
Molina-Franky J, Reyes C, Picón Jaimes YA, Kalkum M, Patarroyo MA. The Black Box of Cellular and Molecular Events of Plasmodium vivax Merozoite Invasion into Reticulocytes. Int J Mol Sci 2022; 23:ijms232314528. [PMID: 36498854 PMCID: PMC9739029 DOI: 10.3390/ijms232314528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Plasmodium vivax is the most widely distributed malaria parasite affecting humans worldwide, causing ~5 million cases yearly. Despite the disease's extensive burden, there are gaps in the knowledge of the pathophysiological mechanisms by which P. vivax invades reticulocytes. In contrast, this crucial step is better understood for P. falciparum, the less widely distributed but more often fatal malaria parasite. This discrepancy is due to the difficulty of studying P. vivax's exclusive invasion of reticulocytes, which represent 1-2% of circulating cells. Its accurate targeting mechanism has not yet been clarified, hindering the establishment of long-term continuous in vitro culture systems. So far, only three reticulocyte invasion pathways have been characterised based on parasite interactions with DARC, TfR1 and CD98 host proteins. However, exposing the parasite's alternative invasion mechanisms is currently being considered, opening up a large field for exploring the entry receptors used by P. vivax for invading host cells. New methods must be developed to ensure better understanding of the parasite to control malarial transmission and to eradicate the disease. Here, we review the current state of knowledge on cellular and molecular mechanisms of P. vivax's merozoite invasion to contribute to a better understanding of the parasite's biology, pathogenesis and epidemiology.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - César Reyes
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Animal Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | | | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Correspondence: (M.K.); (M.A.P.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence: (M.K.); (M.A.P.)
| |
Collapse
|
11
|
Abate A, Bouyssou I, Mabilotte S, Doderer-Lang C, Dembele L, Menard D, Golassa L. Vivax malaria in Duffy-negative patients shows invariably low asexual parasitaemia: implication towards malaria control in Ethiopia. Malar J 2022; 21:230. [PMID: 35915453 PMCID: PMC9341100 DOI: 10.1186/s12936-022-04250-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The increase in detections of Plasmodium vivax infection in Duffy-negative individuals in Africa has challenged the dogma establishing the unique P. vivax Duffy Binding Protein-Duffy antigen receptor for chemokines (PvDBP-DARC) pathway used by P. vivax merozoites to invade reticulocytes. Information on the impact of Duffy antigen polymorphisms on the epidemiology of P. vivax malaria remains elusive. The objective of this study was to determine the distribution of asexual parasitaemia of P. vivax according to the Duffy antigen polymorphisms in Ethiopia. METHODS DNA was extracted from dried blood spots (DBS) collected from prospectively recruited 138 P. vivax-infected patients from health centres. The identification and estimation of P. vivax asexual parasitaemia were performed by microscopic examination and quantitative real-time polymerase chain reaction (PCR). Duffy genotyping was conducted by DNA sequencing in a total of 138 P.vivax infected samples. RESULTS The proportion of Duffy-negatives (FY*BES/FY*BES) in P. vivax infected patients was 2.9% (4/138). Duffy genotype FY*B/FY*BES (48.6%) was the most common, followed by FY*A/FY*BES genotype (25.4%). In one patient, the FY*02 W.01/FY*02 N.01 genotype conferring a weak expression of the Fyb antigen was observed. All P.vivax infected Duffy-negative patients showed low asexual parasitaemia (≤ 110 parasites/µL). The median P. vivax parasitaemia in Duffy-negative patients (53 parasites/µL) was significantly lower than those found in homozygous and heterozygous individuals (P < 0.0001). CONCLUSION Plasmodium vivax in Duffy-negative patients shows invariably low asexual parasitaemia. This finding suggests that the pathway used by P. vivax to invade Duffy-negative reticulocytes is much less efficient than that used in Duffy-positives. Moreover, the low asexual parasitaemia observed in Duffy-negative individuals could constitute an 'undetected silent reservoir', thus likely delaying the elimination of vivax malaria in Ethiopia.
Collapse
Affiliation(s)
- Andargie Abate
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Isabelle Bouyssou
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, Paris, France
- ED515 Complexité du Vivant, Sorbonne Université, Paris, France
| | - Solenne Mabilotte
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Federation of Translational Medicine, University of Strasbourg, Strasbourg, France
| | - Cecile Doderer-Lang
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Federation of Translational Medicine, University of Strasbourg, Strasbourg, France
| | - Laurent Dembele
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Didier Menard
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, Paris, France
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Federation of Translational Medicine, University of Strasbourg, Strasbourg, France
- Laboratory of Parasitology and Medical Mycology, Strasbourg University Hospital, Strasbourg, France
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Mbama Ntabi JD, Lissom A, Djontu JC, Diafouka-Kietela S, Vouvoungui C, Boumpoutou RK, Mayela J, Nguiffo-Nguete D, Nkemngo FN, Ndo C, Akoton R, Agonhossou R, Lenga A, Boussougou-Sambe ST, Djogbénou L, Wondji C, Adegnika AA, Borrmann S, Ntoumi F. Prevalence of non-Plasmodium falciparum species in southern districts of Brazzaville in The Republic of the Congo. Parasit Vectors 2022; 15:209. [PMID: 35706053 PMCID: PMC9200623 DOI: 10.1186/s13071-022-05312-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although Plasmodium falciparum infection is largely documented and this parasite is the main target for malaria eradication, other Plasmodium species persist, and these require more attention in Africa. Information on the epidemiological situation of non-P. falciparum species infections is scarce in many countries, including in the Democratic Republic of the Congo (hereafter Republic of the Congo) where malaria is highly endemic. The aim of this study was to determine the prevalence and distribution of non-P. falciparum species infections in the region south of Brazzaville. METHODS A cross-sectional survey was conducted in volunteers living in rural and urban settings during the dry and rainy seasons in 2021. Socio-demographic and clinical parameters were recorded. Plasmodium infection in blood samples was detected by microscopic analysis and nested PCR (sub-microscopic analysis). RESULTS Of the 773 participants enrolled in the study, 93.7% were from the rural area, of whom 97% were afebrile. The prevalence of microscopic and sub-microscopic Plasmodium spp. infection was 31.2% and 63.7%, respectively. Microscopic Plasmodium malariae infection was found in 1.3% of participants, while sub-microscopic studies detected a prevalence of 14.9% for P. malariae and 5.3% for Plasmodium ovale. The rate of co-infection of P. malariae or P. ovale with P. falciparum was 8.3% and 2.6%, respectively. Higher rates of sub-microscopic infection were reported for the urban area without seasonal fluctuation. In contrast, non-P. falciparum species infection was more pronounced in the rural area, with the associated risk of the prevalence of sub-microscopic P. malariae infection increasing during the dry season. CONCLUSION There is a need to include non-P. falciparum species in malaria control programs, surveillance measures and eradication strategies in the Republic of the Congo.
Collapse
Affiliation(s)
- Jacques Dollon Mbama Ntabi
- Fondation Congolaise Pour la Recherche Médicale, Brazzaville, Republic of Congo.,Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Abel Lissom
- Fondation Congolaise Pour la Recherche Médicale, Brazzaville, Republic of Congo. .,Department of Biological Science, Faculty of Science, University of Bamenda, Bamenda, Cameroon.
| | - Jean Claude Djontu
- Fondation Congolaise Pour la Recherche Médicale, Brazzaville, Republic of Congo
| | | | - Christevy Vouvoungui
- Fondation Congolaise Pour la Recherche Médicale, Brazzaville, Republic of Congo.,Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | | | - Jolivet Mayela
- Fondation Congolaise Pour la Recherche Médicale, Brazzaville, Republic of Congo
| | - Daniel Nguiffo-Nguete
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Cameroon
| | - Francis Nongley Nkemngo
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Cameroon.,Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Cyrille Ndo
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Cameroon.,Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Romaric Akoton
- Fondation Pour la Recherche Scientifique (FORS), Institut des Sciences Biomédicales Appliquées (ISBA), BP 88, Cotonou, Benin.,Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Romuald Agonhossou
- Fondation Pour la Recherche Scientifique (FORS), Institut des Sciences Biomédicales Appliquées (ISBA), BP 88, Cotonou, Benin.,Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Arsène Lenga
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | | | - Luc Djogbénou
- Fondation Pour la Recherche Scientifique (FORS), Institut des Sciences Biomédicales Appliquées (ISBA), BP 88, Cotonou, Benin.,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Charles Wondji
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Cameroon.,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Ayola Akim Adegnika
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Fondation Pour la Recherche Scientifique (FORS), Institut des Sciences Biomédicales Appliquées (ISBA), BP 88, Cotonou, Benin.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,German Center of Infection Research (DZIF), Tübingen, Germany
| | - Steffen Borrmann
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,German Center of Infection Research (DZIF), Tübingen, Germany
| | - Francine Ntoumi
- Fondation Congolaise Pour la Recherche Médicale, Brazzaville, Republic of Congo. .,Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo. .,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
African Plasmodium vivax malaria improbably rare or benign. Trends Parasitol 2022; 38:683-696. [PMID: 35667992 DOI: 10.1016/j.pt.2022.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
The overwhelming dominance of Duffy blood group negativity among most people living in sub-Saharan Africa has been considered the basis of their protection from endemic Plasmodium vivax malaria. New evidence demonstrates widespread transmission of P. vivax in Duffy-negative Africa, though currently of unknown distribution, magnitude, or consequences. Other new evidence from outside of Africa demonstrates marked tropisms of P. vivax for extravascular tissues of bone marrow and spleen. Those establish states of proliferative infection with low-grade or undetectable parasitemia of peripheral blood causing acute and chronic disease. This review examines the plausibility of those infectious processes also operating in Duffy-negative Africans and causing harm of unrecognized origin.
Collapse
|
14
|
Stratification at the health district level for targeting malaria control interventions in Mali. Sci Rep 2022; 12:8271. [PMID: 35585101 PMCID: PMC9117674 DOI: 10.1038/s41598-022-11974-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/22/2022] [Indexed: 01/13/2023] Open
Abstract
Malaria is the leading cause of morbidity and mortality in Mali. Between 2017 and 2020, the number of cases increased in the country, with 2,884,827 confirmed cases and 1454 reported deaths in 2020. We performed a malaria risk stratification at the health district level in Mali with a view to proposing targeted control interventions. Data on confirmed malaria cases were obtained from the District Health Information Software 2, data on malaria prevalence and mortality in children aged 6-59 months from the 2018 Demographic and Health Survey, entomological data from Malian research institutions working on malaria in the sentinel sites of the National Malaria Control Program (NMCP), and environmental data from the National Aeronautics and Space Administration. A stratification of malaria risk was performed. Targeted malaria control interventions were selected based on spatial heterogeneity of malaria incidence, malaria prevalence in children, vector resistance distribution, health facility usage, child mortality, and seasonality of transmission. These interventions were discussed with the NMCP and the different funding partners. In 2017-2019, median incidence across the 75 health districts was 129.34 cases per 1000 person-years (standard deviation = 86.48). Risk stratification identified 12 health districts in very low transmission areas, 19 in low transmission areas, 20 in moderate transmission areas, and 24 in high transmission areas. Low health facility usage and increased vector resistance were observed in high transmission areas. Eight intervention combinations were selected for implementation. Our work provides an updated risk stratification using advanced statistical methods to inform the targeting of malaria control interventions in Mali. This stratification can serve as a template for continuous malaria risk stratifications in Mali and other countries.
Collapse
|
15
|
Wilairatana P, Masangkay FR, Kotepui KU, De Jesus Milanez G, Kotepui M. Prevalence and risk of Plasmodium vivax infection among Duffy-negative individuals: a systematic review and meta-analysis. Sci Rep 2022; 12:3998. [PMID: 35256675 PMCID: PMC8901689 DOI: 10.1038/s41598-022-07711-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
A better understanding of the occurrence and risk of Plasmodium vivax infection among Duffy-negative individuals is required to guide further research on these infections across Africa. To address this, we used a meta-analysis approach to investigate the prevalence of P. vivax infection among Duffy-negative individuals and assessed the risk of infection in these individuals when compared with Duffy-positive individuals. This study was registered with The International Prospective Register of Systematic Reviews website (ID: CRD42021240202) and followed Preferred Reporting Items for Systematic review and Meta-Analyses guidelines. Literature searches were conducted using medical subject headings to retrieve relevant studies in Medline, Web of Science, and Scopus, from February 22, 2021 to January 31, 2022. Selected studies were methodologically evaluated using the Joanna Briggs Institute (JBI) Critical Appraisal Tools to assess the quality of cross-sectional, case-control, and cohort studies. The pooled prevalence of P. vivax infection among Duffy-negative individuals and the odds ratio (OR) of infection among these individuals when compared with Duffy-positive individuals was estimated using a random-effects model. Results from individual studies were represented in forest plots. Heterogeneity among studies was assessed using Cochrane Q and I2 statistics. We also performed subgroup analysis of patient demographics and other relevant variables. Publication bias among studies was assessed using funnel plot asymmetry and the Egger's test. Of 1593 retrieved articles, 27 met eligibility criteria and were included for analysis. Of these, 24 (88.9%) reported P. vivax infection among Duffy-negative individuals in Africa, including Cameroon, Ethiopia, Sudan, Botswana, Nigeria, Madagascar, Angola, Benin, Kenya, Mali, Mauritania, Democratic Republic of the Congo, and Senegal; while three reported occurrences in South America (Brazil) and Asia (Iran). Among studies, 11 reported that all P. vivax infection cases occurred in Duffy-negative individuals (100%). Also, a meta-analysis on 14 studies showed that the pooled prevalence of P. vivax infection among Duffy-negative individuals was 25% (95% confidence interval (CI) - 3%-53%, I2 = 99.96%). A meta-analysis of 11 studies demonstrated a decreased odds of P. vivax infection among Duffy-negative individuals (p = 0.009, pooled OR 0.46, 95% CI 0.26-0.82, I2 = 80.8%). We confirmed that P. vivax infected Duffy-negative individuals over a wide prevalence range from 0 to 100% depending on geographical area. Future investigations on P. vivax infection in these individuals must determine if Duffy-negativity remains a protective factor for P. vivax infection.
Collapse
Affiliation(s)
- Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Giovanni De Jesus Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
16
|
Ou C, Tian Y, Liang K, He J. "Mysterious veil" between the blood group system and pathogens. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1159-1166. [PMID: 34911848 PMCID: PMC10930226 DOI: 10.11817/j.issn.1672-7347.2021.200659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 11/03/2022]
Abstract
As a stable genetic marker of human, blood group is expressed in a polymorphic system in the population. Blood group and pathogens mainly produce effects through the interaction between antigens and antibodies. On the one hand, they can promote pathogen colonization, invasion or evasion of host clearance mechanism, and on the other hand, they can make some hosts less susceptible to corresponding pathogens. By exploring the molecular mechanism between the blood group system and pathogenic microorganisms, it can provide a scientific basis for the treatment of human related diseases and the development of vaccines.
Collapse
Affiliation(s)
- Chun Ou
- Department of Blood Transfusion, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001.
| | - Ying Tian
- Department of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Keying Liang
- Department of Blood Transfusion, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001
| | - Jun He
- Department of Blood Transfusion, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001.
- Department of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China.
| |
Collapse
|
17
|
Hang JW, Tukijan F, Lee EQH, Abdeen SR, Aniweh Y, Malleret B. Zoonotic Malaria: Non- Laverania Plasmodium Biology and Invasion Mechanisms. Pathogens 2021; 10:889. [PMID: 34358039 PMCID: PMC8308728 DOI: 10.3390/pathogens10070889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
Malaria, which is caused by Plasmodium parasites through Anopheles mosquito transmission, remains one of the most life-threatening diseases affecting hundreds of millions of people worldwide every year. Plasmodium vivax, which accounts for the majority of cases of recurring malaria caused by the Plasmodium (non-Laverania) subgenus, is an ancient and continuing zoonosis originating from monkey hosts probably outside Africa. The emergence of other zoonotic malarias (P. knowlesi, P. cynomolgi, and P. simium) further highlights the seriousness of the disease. The severity of this epidemic disease is dependent on many factors, including the parasite characteristics, host-parasite interactions, and the pathology of the infection. Successful infection depends on the ability of the parasite to invade the host; however, little is known about the parasite invasion biology and mechanisms. The lack of this information adds to the challenges to malaria control and elimination, hence enhancing the potential for continuation of this zoonosis. Here, we review the literature describing the characteristics, distribution, and genome details of the parasites, as well as host specificity, host-parasite interactions, and parasite pathology. This information will provide the basis of a greater understanding of the epidemiology and pathogenesis of malaria to support future development of strategies for the control and prevention of this zoonotic infection.
Collapse
Affiliation(s)
- Jing-Wen Hang
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Farhana Tukijan
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Erica-Qian-Hui Lee
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Shifana Raja Abdeen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| | - Yaw Aniweh
- West Africa Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana;
| | - Benoit Malleret
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| |
Collapse
|
18
|
The Pan African Vivax and Ovale Network (PAVON): Refocusing on Plasmodium vivax, ovale and asymptomatic malaria in sub-Saharan Africa. Parasitol Int 2021; 84:102415. [PMID: 34216801 DOI: 10.1016/j.parint.2021.102415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022]
Abstract
The recent World Malaria report shows that progress in malaria elimination has stalled. Current data acquisition by NMCPs depend on passive case detection and clinical reports focused mainly on Plasmodium falciparum (Pf). In recent times, several countries in sub-Saharan Africa have reported cases of Plasmodium vivax (Pv) with a considerable number being Duffy negative. The burden of Pv and Plasmodium ovale (Po) appear to be more than acknowledged. Similarly, the contribution of asymptomatic malaria in transmission is hardly considered by NMCPs in Africa. Inclusion of these as targets in malaria elimination agenda is necessary to achieve elimination goal, as these harbor hypnozoites. The Pan African Vivax and Ovale Network (PAVON) is a new consortium of African Scientists working in Africa on the transmission profile of Pv and Po. The group collaborates with African NMCPs to train in Plasmodium molecular diagnostics, microscopy, and interpretation of molecular data from active surveys to translate into policy. Details of the mission, rational and modus operandi of the group are outlined.
Collapse
|
19
|
Thomson-Luque R, Bautista JM. Home Sweet Home: Plasmodium vivax-Infected Reticulocytes-The Younger the Better? Front Cell Infect Microbiol 2021; 11:675156. [PMID: 34055670 PMCID: PMC8162270 DOI: 10.3389/fcimb.2021.675156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/16/2021] [Indexed: 01/17/2023] Open
Abstract
After a century of constant failure to produce an in vitro culture of the most widespread human malaria parasite Plasmodium vivax, recent advances have highlighted the difficulties to provide this parasite with a healthy host cell to invade, develop, and multiply under in vitro conditions. The actual level of understanding of the heterogeneous populations of cells—framed under the name ‘reticulocytes’—and, importantly, their adequate in vitro progression from very immature reticulocytes to normocytes (mature erythrocytes) is far from complete. The volatility of its individual stability may suggest the reticulocyte as a delusory cell, particularly to be used for stable culture purposes. Yet, the recent relevance gained by a specific subset of highly immature reticulocytes has brought some hope. Very immature reticulocytes are characterized by a peculiar membrane harboring a plethora of molecules potentially involved in P. vivax invasion and by an intracellular complexity dynamically changing upon its quick maturation into normocytes. We analyze the potentialities offered by this youngest reticulocyte subsets as an ideal in vitro host cell for P. vivax.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - José M Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Lo E, Russo G, Pestana K, Kepple D, Abagero BR, Dongho GBD, Gunalan K, Miller LH, Hamid MMA, Yewhalaw D, Paganotti GM. Contrasting epidemiology and genetic variation of Plasmodium vivax infecting Duffy-negative individuals across Africa. Int J Infect Dis 2021; 108:63-71. [PMID: 33991680 DOI: 10.1016/j.ijid.2021.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Plasmodium vivax malaria was thought to be rare in Africans who lack the Duffy blood group antigen expression. However, recent studies indicate that P. vivax can infect Duffy-negative individuals and has spread into areas of high Duffy negativity across Africa. Our study compared epidemiological and genetic features of P. vivax between African regions. METHODS A standardized approach was used to identify and quantify P. vivax from Botswana, Ethiopia, and Sudan, where Duffy-positive and Duffy-negative individuals coexist. The study involved sequencing the Duffy binding protein (DBP) gene and inferring genetic relationships among P. vivax populations across Africa. RESULTS Among 1215 febrile patients, the proportions of Duffy negativity ranged from 20-36% in East Africa to 84% in southern Africa. Average P. vivax prevalence among Duffy-negative populations ranged from 9.2% in Sudan to 86% in Botswana. Parasite density in Duffy-negative infections was significantly lower than in Duffy-positive infections. P. vivax in Duffy-negative populations were not monophyletic, with P. vivax in Duffy-negative and Duffy-positive populations sharing similar DBP haplotypes and occurring in multiple, well-supported clades. CONCLUSIONS Duffy-negative Africans are not resistant to P. vivax, and the public health significance of this should not be neglected. Our study highlights the need for a standardized approach and more resources/training directed towards the diagnosis of vivax malaria in Africa.
Collapse
Affiliation(s)
- Eugenia Lo
- Biological Sciences, University of North Carolina at Charlotte, USA.
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy.
| | - Kareen Pestana
- Biological Sciences, University of North Carolina at Charlotte, USA
| | - Daniel Kepple
- Biological Sciences, University of North Carolina at Charlotte, USA
| | - Beka Raya Abagero
- Tropical Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | - Ghyslaine Bruna Djeunang Dongho
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy; Evangelical University of Cameroon, Bandjoun, Cameroon
| | | | - Louis H Miller
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, USA
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Delenasaw Yewhalaw
- Tropical Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana; Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
21
|
Feufack-Donfack LB, Sarah-Matio EM, Abate LM, Bouopda Tuedom AG, Ngano Bayibéki A, Maffo Ngou C, Toto JC, Sandeu MM, Eboumbou Moukoko CE, Ayong L, Awono-Ambene P, Morlais I, Nsango SE. Epidemiological and entomological studies of malaria transmission in Tibati, Adamawa region of Cameroon 6 years following the introduction of long-lasting insecticide nets. Parasit Vectors 2021; 14:247. [PMID: 33964974 PMCID: PMC8106832 DOI: 10.1186/s13071-021-04745-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/23/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Malaria remains a serious public health problem in Cameroon. Implementation of control interventions requires prior knowledge of the local epidemiological situation. Here we report the results of epidemiological and entomological surveys carried out in Tibati, Adamawa Region, Cameroon, an area where malaria transmission is seasonal, 6 years after the introduction of long-lasting insecticidal bed nets. METHODS Cross-sectional studies were carried out in July 2015 and 2017 in Tibati. Thick blood smears and dried blood spots were collected from asymptomatic and symptomatic individuals in the community and at health centers, respectively, and used for the molecular diagnosis of Plasmodium species. Adult mosquitoes were collected by indoor residual spraying and identified morphologically and molecularly. The infection status of Plasmodium spp. was determined by quantitative PCR, and positivity of PCR-positive samples was confirmed by Sanger sequencing. RESULTS Overall malaria prevalence in our study population was 55.0% (752/1367) and Plasmodium falciparum was the most prevalent parasite species (94.3%), followed by P. malariae (17.7%) and P. ovale (0.8%); 92 (12.7%) infections were mixed infections. Infection parameters varied according to clinical status (symptomatic/asymptomatic) and age of the sampled population and the collection sites. Infection prevalence was higher in asymptomatic carriers (60.8%), but asexual and sexual parasite densities were lower. Prevalence and intensity of infection decreased with age in both the symptomatic and asymptomatic groups. Heterogeneity in infections was observed at the neighborhood level, revealing hotspots of transmission. Among the 592 Anopheles mosquitoes collected, 212 (35.8%) were An. gambiae, 172 (29.1%) were An. coluzzii and 208 (35.1%) were An. funestus (s.s.). A total of 26 (4.39%) mosquito specimens were infected by Plasmodium sp. and the three Anopheles mosquitoes transmitted Plasmodium at equal efficiency. Surprisingly, we found an An. coluzzii specimen infected by Plasmodium vivax, which confirms circulation of this species in Cameroon. The positivity of all 26 PCR-positive Plasmodium-infected mosquitoes was successively confirmed by sequencing analysis. CONCLUSION Our study presents the baseline malaria parasite burden in Tibati, Adamawa Region, Cameroon. Our results highlight the high malaria endemicity in the area, and hotspots of disease transmission are identified. Parasitological indices suggest low bednet usage and that implementation of control interventions in the area is needed to reduce malaria burden. We also report for the first time a mosquito vector with naturally acquired P. vivax infection in Cameroon.
Collapse
Affiliation(s)
- Lionel Brice Feufack-Donfack
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- CNRS UPR 9022, Inserm U 963, Université de Strasbourg, 2, allée Konrad Roentgen, 67084 Strasbourg Cedex, France
| | - Elangwe Milo Sarah-Matio
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Institut de Recherche pour le Développement, 911 avenue Agropolis, 34394 Montpellier, France
| | - Luc Marcel Abate
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Institut de Recherche pour le Développement, 911 avenue Agropolis, 34394 Montpellier, France
| | - Aline Gaelle Bouopda Tuedom
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- Faculté de Médecine et des Sciences Pharmaceutiques de l’Université de Douala (FMSP–UD), BP 2701 Douala, Cameroon
| | - Albert Ngano Bayibéki
- Université Catholique d’Afrique Centrale, Yaoundé-Campus Messa, BP 1110, Yaounde, Cameroon
| | - Christelle Maffo Ngou
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Institut de Recherche pour le Développement, 911 avenue Agropolis, 34394 Montpellier, France
| | - Jean-Claude Toto
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, BP 288, Yaounde, Cameroon
| | - Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases, Yaounde, 13591 Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
| | - Carole Else Eboumbou Moukoko
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- Faculté de Médecine et des Sciences Pharmaceutiques de l’Université de Douala (FMSP–UD), BP 2701 Douala, Cameroon
| | - Lawrence Ayong
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, BP 288, Yaounde, Cameroon
| | - Isabelle Morlais
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Institut de Recherche pour le Développement, 911 avenue Agropolis, 34394 Montpellier, France
| | - Sandrine Eveline Nsango
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- Faculté de Médecine et des Sciences Pharmaceutiques de l’Université de Douala (FMSP–UD), BP 2701 Douala, Cameroon
| |
Collapse
|
22
|
De SL, May S, Shah K, Slawinski M, Changrob S, Xu S, Barnes SJ, Chootong P, Ntumngia FB, Adams JH. Variable immunogenicity of a vivax malaria blood-stage vaccine candidate. Vaccine 2021; 39:2668-2675. [PMID: 33840564 DOI: 10.1016/j.vaccine.2021.03.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/25/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Relapsing malaria caused by Plasmodium vivax is a neglected tropical disease and an important cause of malaria worldwide. Vaccines to prevent clinical disease and mosquito transmission of vivax malaria are needed to overcome the distinct challenges of this important public health problem. In this vaccine immunogenicity study in mice, we examined key variables of responses to a P. vivax Duffy binding protein vaccine, a leading candidate to prevent the disease-causing blood-stages. Significant sex-dependent differences were observed in B cell (CD80+) and T cell (CD8+) central memory subsets, resulting in significant differences in functional immunogenicity and durability of anti-DBP protective efficacy. These significant sex-dependent differences in inbred mice were in the CD73+CD80+ memory B cell, H2KhiCD38hi/lo, and effector memory subsets. This study highlights sex and immune genes as critical variables that can impact host responses to P. vivax antigens and must be taken into consideration when designing clinical vaccine studies.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Samuel May
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Keshav Shah
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Michelle Slawinski
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Siriruk Changrob
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Shulin Xu
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Samantha J Barnes
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Francis B Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States.
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, United States.
| |
Collapse
|
23
|
Brown CA, Pappoe-Ashong PJ, Duah N, Ghansah A, Asmah H, Afari E, Koram KA. High frequency of the Duffy-negative genotype and absence of Plasmodium vivax infections in Ghana. Malar J 2021; 20:99. [PMID: 33596926 PMCID: PMC7888148 DOI: 10.1186/s12936-021-03618-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/02/2021] [Indexed: 01/01/2023] Open
Abstract
Background Recent studies from different malaria-endemic regions including western Africa have now shown that Plasmodium vivax can infect red blood cells (RBCs) and cause clinical disease in Duffy-negative people, though the Duffy-negative phenotype was thought to confer complete refractoriness against blood invasion with P. vivax. The actual prevalence of P. vivax in local populations in Ghana is unknown and little information is available about the distribution of Duffy genotypes. The aim of this study was to assess the prevalence of P. vivax in both asymptomatic and symptomatic outpatients and the distribution of Duffy genotypes in Ghana. Methods DNA was extracted from dried blood spots (DBS) collected from 952 subjects (845 malaria patients and 107 asymptomatic persons) from nine locations in Ghana. Plasmodium species identification was carried out by nested polymerase chain reaction (PCR) amplification of the small-subunit (SSU) rRNA genes. For P. vivax detection, a second PCR of the central region of the Pvcsp gene was carried out. Duffy blood group genotyping was performed by allele-specific PCR to detect the presence of the FYES allele. Results No cases of P. vivax were detected in any of the samples by both PCR methods used. Majority of infections (542, 94.8%) in the malaria patient samples were due to P. falciparum with only 1 infection (0.0017%) due to Plasmodium malariae, and 2 infections (0.0034%) due to Plasmodium ovale. No case of mixed infection was identified. Of the samples tested for the FYES allele from all the sites, 90.5% (862/952) had the FYES allele. All positive samples were genotyped as FY*B-33/FY*B-33 (Duffy-negative homozygous) and therefore classified as Fy(a−b−). Conclusions No cases of P. vivax were detected by both PCRs and majority of the subjects tested carried the FYES allele. The lack of P. vivax infections observed can be attributed to the high frequency of the FYES allele that silences erythroid expression of the Duffy. These results provide insights on the host susceptibility for P. vivax infections that had not been investigated in Ghana before.
Collapse
Affiliation(s)
- Charles A Brown
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon, Ghana.
| | - Prince J Pappoe-Ashong
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Nancy Duah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Harry Asmah
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Edwin Afari
- School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo A Koram
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
24
|
Djeunang Dongho GB, Gunalan K, L'Episcopia M, Paganotti GM, Menegon M, Sangong RE, Georges BM, Fondop J, Severini C, Sobze MS, Miller LH, Russo G. Plasmodium vivax Infections Detected in a Large Number of Febrile Duffy-Negative Africans in Dschang, Cameroon. Am J Trop Med Hyg 2021; 104:987-992. [PMID: 33534776 DOI: 10.4269/ajtmh.20-1255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023] Open
Abstract
The Duffy blood group is a critical receptor for Plasmodium vivax (Pv) invasion of red blood cells, and consequently, Pv infections were considered rare in sub-Saharan Africa where the prevalence of Duffy-negativity is high. However, recently, Pv infections have been found in Duffy-negative Africans throughout the malaria transmission area of sub-Saharan Africa, raising important questions concerning the molecular composition of these Pv clones and the red blood cell receptors that facilitate their invasion. Here, we describe an unusually high number of Pv infections in febrile Duffy-negative Africans in Dschang, Cameroon (177 of 500 outpatients), as compared with Santchou (two of 400 outpatients) and Kye'-Ossi (two of 101 outpatients), other areas in Cameroon. In the discussion, we speculate on the possible reasons why Dschang might account for the unusually large numbers of Pv infections in Duffy-negative individuals living there.
Collapse
Affiliation(s)
- Ghyslaine Bruna Djeunang Dongho
- 1Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,2Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Karthigayan Gunalan
- 3Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | | | - Giacomo Maria Paganotti
- 5Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.,6Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,7Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Michela Menegon
- 4Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Joseph Fondop
- 9Dschang District Hospital, Dschang, Cameroon.,10Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Carlo Severini
- 4Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Martin Sanou Sobze
- 10Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Louis H Miller
- 3Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Gianluca Russo
- 1Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Kepple D, Pestana K, Tomida J, Abebe A, Golassa L, Lo E. Alternative Invasion Mechanisms and Host Immune Response to Plasmodium vivax Malaria: Trends and Future Directions. Microorganisms 2020; 9:E15. [PMID: 33374596 PMCID: PMC7822457 DOI: 10.3390/microorganisms9010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Plasmodium vivax malaria is a neglected tropical disease, despite being more geographically widespread than any other form of malaria. The documentation of P. vivax infections in different parts of Africa where Duffy-negative individuals are predominant suggested that there are alternative pathways for P. vivax to invade human erythrocytes. Duffy-negative individuals may be just as fit as Duffy-positive individuals and are no longer resistant to P.vivax malaria. In this review, we describe the complexity of P. vivax malaria, characterize pathogenesis and candidate invasion genes of P. vivax, and host immune responses to P. vivax infections. We provide a comprehensive review on parasite ligands in several Plasmodium species that further justify candidate genes in P. vivax. We also summarize previous genomic and transcriptomic studies related to the identification of ligand and receptor proteins in P. vivax erythrocyte invasion. Finally, we identify topics that remain unclear and propose future studies that will greatly contribute to our knowledge of P. vivax.
Collapse
Affiliation(s)
- Daniel Kepple
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Kareen Pestana
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Junya Tomida
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Abnet Abebe
- Ethiopian Public Health Institute, Addis Ababa 1000, Ethiopia;
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa 1000, Ethiopia;
| | - Eugenia Lo
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| |
Collapse
|
26
|
Ba H, Auburn S, Jacob CG, Goncalves S, Duffy CW, Stewart LB, Price RN, Deh YB, Diallo MY, Tandia A, Kwiatkowski DP, Conway DJ. Multi-locus genotyping reveals established endemicity of a geographically distinct Plasmodium vivax population in Mauritania, West Africa. PLoS Negl Trop Dis 2020; 14:e0008945. [PMID: 33326439 PMCID: PMC7773413 DOI: 10.1371/journal.pntd.0008945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/30/2020] [Accepted: 11/03/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Plasmodium vivax has been recently discovered as a significant cause of malaria in Mauritania, although very rare elsewhere in West Africa. It has not been known if this is a recently introduced or locally remnant parasite population, nor whether the genetic structure reflects epidemic or endemic transmission. METHODOLOGY/PRINCIPAL FINDINGS To investigate the P. vivax population genetic structure in Mauritania and compare with populations previously analysed elsewhere, multi-locus genotyping was undertaken on 100 clinical isolates, using a genome-wide panel of 38 single nucleotide polymorphisms (SNPs), plus seven SNPs in drug resistance genes. The Mauritanian P. vivax population is shown to be genetically diverse and divergent from populations elsewhere, indicated consistently by genetic distance matrix analysis, principal components analyses, and fixation indices. Only one isolate had a genotype clearly indicating recent importation, from a southeast Asian source. There was no linkage disequilibrium in the local parasite population, and only a small number of infections appeared to be closely genetically related, indicating that there is ongoing genetic recombination consistent with endemic transmission. The P. vivax diversity in a remote mining town was similar to that in the capital Nouakchott, with no indication of local substructure or of epidemic population structure. Drug resistance alleles were virtually absent in Mauritania, in contrast with P. vivax in other areas of the world. CONCLUSIONS/SIGNIFICANCE The molecular epidemiology indicates that there is long-standing endemic transmission that will be very challenging to eliminate. The virtual absence of drug resistance alleles suggests that most infections have been untreated, and that this endemic infection has been more neglected in comparison to P. vivax elsewhere.
Collapse
Affiliation(s)
- Hampate Ba
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | - Sonia Goncalves
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Craig W. Duffy
- London School of Hygiene & Tropical Medicine, Keppel St, London, United Kingdom
| | - Lindsay B. Stewart
- London School of Hygiene & Tropical Medicine, Keppel St, London, United Kingdom
| | - Ric N. Price
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Yacine Boubou Deh
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | | | - Abderahmane Tandia
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | | | - David J. Conway
- London School of Hygiene & Tropical Medicine, Keppel St, London, United Kingdom
| |
Collapse
|
27
|
Oboh MA, Oyebola KM, Idowu ET, Badiane AS, Otubanjo OA, Ndiaye D. Rising report of Plasmodium vivax in sub-Saharan Africa: Implications for malaria elimination agenda. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
28
|
Ayadi I, Balam S, Audran R, Bikorimana JP, Nebie I, Diakité M, Felger I, Tanner M, Spertini F, Corradin G, Arevalo M, Herrera S, Agnolon V. P. falciparum and P. vivax Orthologous Coiled-Coil Candidates for a Potential Cross-Protective Vaccine. Front Immunol 2020; 11:574330. [PMID: 33193361 PMCID: PMC7609509 DOI: 10.3389/fimmu.2020.574330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/11/2020] [Indexed: 12/03/2022] Open
Abstract
Over the last four decades, significant efforts have been invested to develop vaccines against malaria. Although most efforts are focused on the development of P. falciparum vaccines, the current availability of the parasite genomes, bioinformatics tools, and high throughput systems for both recombinant and synthetic antigen production have helped to accelerate vaccine development against the P. vivax parasite. We have previously in silico identified several P. falciparum and P. vivax proteins containing α-helical coiled-coil motifs that represent novel putative antigens for vaccine development since they are highly immunogenic and have been associated with protection in many in vitro functional assays. Here, we selected five pairs of P. falciparum and P. vivax orthologous peptides to assess their sero-reactivity using plasma samples collected in P. falciparum- endemic African countries. Pf-Pv cross-reactivity was also investigated. The pairs Pf27/Pv27, Pf43/Pv43, and Pf45/Pv45 resulted to be the most promising candidates for a cross-protective vaccine because they showed a high degree of recognition in direct and competition ELISA assays and cross-reactivity with their respective ortholog. The recognition of P. vivax peptides by plasma of P. falciparum infected individuals indicates the existence of a high degree of cross-reactivity between these two Plasmodium species. The design of longer polypeptides combining these epitopes will allow the assessment of their immunogenicity and protective efficacy in animal models.
Collapse
Affiliation(s)
- Imen Ayadi
- Biochemistry Department, University of Lausanne, Epalinges, Switzerland
| | - Saidou Balam
- University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali.,Department of Internal Medicine II-Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Régine Audran
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jean-Pierre Bikorimana
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Issa Nebie
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Mahamadou Diakité
- University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - Ingrid Felger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Marcel Tanner
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - François Spertini
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Myriam Arevalo
- Malaria Vaccine and Drug Development Center, Cali, Colombia.,Caucaseco Scientific Research Center, Cali, Colombia
| | | | - Valentina Agnolon
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
29
|
Mittal P, Mishra S, Kar S, Pande V, Sinha A, Sharma A. Global distribution of single amino acid polymorphisms in Plasmodium vivax Duffy-binding-like domain and implications for vaccine development efforts. Open Biol 2020; 10:200180. [PMID: 32993415 PMCID: PMC7536081 DOI: 10.1098/rsob.200180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plasmodium vivax (Pv) malaria continues to be geographically widespread with approximately 15 million worldwide cases annually. Along with other proteins, Duffy-binding proteins (DBPs) are used by plasmodium for RBC invasion and the parasite-encoded receptor binding regions lie in their Duffy-binding-like (DBL) domains-thus making it a prime vaccine candidate. This study explores the sequence diversity in PvDBL globally, with an emphasis on India as it remains a major contributor to the global Pv malaria burden. Based on 1358 PvDBL protein sequences available in NCBI, we identified 140 polymorphic sites within 315 residues of PvDBL. Alarmingly, country-wise mapping of SAAPs from field isolates revealed varied and distinct polymorphic profiles for different nations. We report here 31 polymorphic residue positions in the global SAAP profile, most of which map to the PvDBL subdomain 2 (α1-α6). A distinct clustering of SAAPs distal to the DARC-binding sites is indicative of immune evasive strategies by the parasite. Analyses of PvDBL-neutralizing antibody complexes revealed that between 24% and 54% of interface residues are polymorphic. This work provides a framework to recce and expand the polymorphic space coverage in PvDBLs as this has direct implications for vaccine development studies. It also emphasizes the significance of surveying global SAAP distributions before or alongside the identification of vaccine candidates.
Collapse
Affiliation(s)
- Payal Mittal
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.,ICMR-National Institute of Malaria Research, New Delhi, 110077, India
| | - Siddhartha Mishra
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.,ICMR-National Institute of Malaria Research, New Delhi, 110077, India
| | - Sonalika Kar
- ICMR-National Institute of Malaria Research, New Delhi, 110077, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001 India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001 India
| | - Abhinav Sinha
- ICMR-National Institute of Malaria Research, New Delhi, 110077, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.,ICMR-National Institute of Malaria Research, New Delhi, 110077, India
| |
Collapse
|
30
|
Large Variations in Malaria Parasite Carriage by Afebrile School Children Living in Nearby Communities in the Central Region of Ghana. J Trop Med 2020; 2020:4125109. [PMID: 33029151 PMCID: PMC7528039 DOI: 10.1155/2020/4125109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023] Open
Abstract
Background Indicators of successful malaria control interventions include a reduction in the prevalence and densities of malaria parasites contained in both symptomatic and asymptomatic infections as well as a reduction in malaria transmission. Individuals harboring malaria parasites in asymptomatic infections serve as reservoirs for malaria transmission. This study determined the prevalence of asymptomatic malaria parasite carriage in afebrile children attending six different schools in two districts, the Cape Coast Metropolitan Assembly (CCMA) and the Komenda Edina Eguafo Abirem (KEEA) of the Central Region of Ghana. Methods This cross sectional study recruited afebrile children aged between 3 and 15 years old from six randomly selected schools in the Central Region of Ghana. Finger-pricked blood was collected and used to prepare thick and thin blood smears as well as spot a strip of filter paper (Whatman #3). Nested PCR was used to identify Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale, and Plasmodium vivax in DNA extracted from the filter paper spots. The multiplicity of P. falciparum infection was determined using merozoite surface protein 2 genotyping. Results Out of the 528 children sampled, PCR identified 27.1% to harbor Plasmodium parasites in asymptomatic infections, whilst microscopy identified malaria parasites in 10.6% of the children. The overall PCR estimated prevalence of P. falciparum and P. malariae was 26.6% and 1.3%, respectively, with no P. ovale or P. vivax identified by PCR or microscopy. The RDT positivity rate ranged from 55.8% in Simiw to 4.5% in Kuful. Children from the Simiw Basic School accounted for 87.5% of all the asymptomatic infections. The multiplicity of P. falciparum infection was predominantly monoclonal and biclonal. Conclusions The low prevalence of asymptomatic malaria parasite carriage by the children living in the Cape Coast Metropolis suggests that the malaria control interventions in place in CCMA are highly effective and that additional malaria control interventions are required for the KEEA district to reduce the prevalence of asymptomatic malaria parasite carriers. No molecular evidence of P. ovale and P. vivax was identified in the afebrile children sampled from the selected schools.
Collapse
|
31
|
Golassa L, Amenga-Etego L, Lo E, Amambua-Ngwa A. The biology of unconventional invasion of Duffy-negative reticulocytes by Plasmodium vivax and its implication in malaria epidemiology and public health. Malar J 2020; 19:299. [PMID: 32831093 PMCID: PMC7443611 DOI: 10.1186/s12936-020-03372-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022] Open
Abstract
Plasmodium vivax has been largely neglected over the past century, despite a widespread recognition of its burden across region where it is endemic. The parasite invades reticulocytes, employing the interaction between Plasmodium vivax Duffy binding protein (PvDBP) and human Duffy antigen receptor for chemokines (DARC). However, P. vivax has now been observed in Duffy-negative individuals, presenting a potentially serious public health problem as the majority of African populations are Duffy-negative. Invasion of Duffy-negative reticulocytes is suggested to be through duplication of the PvDBP and a novel protein encoded by P. vivax erythrocyte binding protein (EBP) genes. The emergence and spread of specific P. vivax strains with ability to invade Duffy-negative reticulocytes has, therefore, drawn substantial attention and further complicated the epidemiology and public health implication of vivax malaria. Given the right environment and vectorial capacity for transmission coupled with the parasite’s ability to invade Duffy-negative individuals, P. vivax could increase its epidemiological significance in Africa. In this review, authors present accruing knowledge on the paradigm shift in P. vivax invasion of Duffy-negative reticulocytes against the established mechanism of invading only Duffy-positive individuals and offer a perspective on the epidemiological diagnostic and public health implication in Africa.
Collapse
Affiliation(s)
- Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Lucas Amenga-Etego
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
32
|
Host and Parasite Transcriptomic Changes upon Successive Plasmodium falciparum Infections in Early Childhood. mSystems 2020; 5:5/4/e00116-20. [PMID: 32636334 PMCID: PMC7343306 DOI: 10.1128/msystems.00116-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We show that dual RNA-seq from patient blood samples allows characterization of host/parasite interactions during malaria infections and can provide a solid framework to study the acquisition of antimalarial immunity, as well as the adaptations of P. falciparum to malaria-experienced hosts. Children are highly susceptible to clinical malaria, and in regions where malaria is endemic, their immune systems must face successive encounters with Plasmodium falciparum parasites before they develop immunity, first against severe disease and later against uncomplicated malaria. Understanding cellular and molecular interactions between host and parasites during an infection could provide insights into the processes underlying this gradual acquisition of immunity, as well as to how parasites adapt to infect hosts that are successively more malaria experienced. Here, we describe methods to analyze the host and parasite gene expression profiles generated simultaneously from blood samples collected from five consecutive symptomatic P. falciparum infections in three Malian children. We show that the data generated enable statistical assessment of the proportions of (i) each white blood cell subset and (ii) the parasite developmental stages, as well as investigations of host-parasite gene coexpression. We also use the sequences generated to analyze allelic variations in transcribed regions and determine the complexity of each infection. While limited by the modest sample size, our analyses suggest that host gene expression profiles primarily clustered by individual, while the parasite gene expression profiles seemed to differentiate early from late infections. Overall, this study provides a solid framework to examine the mechanisms underlying acquisition of immunity to malaria infections using whole-blood transcriptome sequencing (RNA-seq). IMPORTANCE We show that dual RNA-seq from patient blood samples allows characterization of host/parasite interactions during malaria infections and can provide a solid framework to study the acquisition of antimalarial immunity, as well as the adaptations of P. falciparum to malaria-experienced hosts.
Collapse
|
33
|
Oboh MA, Singh US, Ndiaye D, Badiane AS, Ali NA, Bharti PK, Das A. Presence of additional Plasmodium vivax malaria in Duffy negative individuals from Southwestern Nigeria. Malar J 2020; 19:229. [PMID: 32590997 PMCID: PMC7318376 DOI: 10.1186/s12936-020-03301-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background Malaria in sub-Saharan Africa (sSA) is thought to be mostly caused by Plasmodium falciparum. Recently, growing reports of cases due to Plasmodium ovale, Plasmodium malariae, and Plasmodium vivax have been increasingly observed to play a role in malaria epidemiology in sSA. This in fact is due to the usage of very sensitive diagnostic tools (e.g. PCR), which have highlighted the underestimation of non-falciparum malaria in this sub-region. Plasmodium vivax was historically thought to be absent in sSA due to the high prevalence of the Duffy negativity in individuals residing in this sub-continent. Recent studies reporting detection of vivax malaria in Duffy-negative individuals from Mali, Mauritania, Cameroon challenge this notion. Methods Following previous report of P. vivax in Duffy-negative individuals in Nigeria, samples were further collected and assessed RDT and/or microscopy. Thereafter, malaria positive samples were subjected to conventional PCR method and DNA sequencing to confirm both single/mixed infections as well as the Duffy status of the individuals. Results Amplification of Plasmodium gDNA was successful in 59.9% (145/242) of the evaluated isolates and as expected P. falciparum was the most predominant (91.7%) species identified. Interestingly, four P. vivax isolates were identified either as single (3) or mixed (one P. falciparum/P. vivax) infection. Sequencing results confirmed all vivax isolates as truly vivax malaria and the patient were of Duffy-negative genotype. Conclusion Identification of additional vivax isolates among Duffy-negative individuals from Nigeria, substantiate the expanding body of evidence on the ability of P. vivax to infect RBCs that do not express the DARC gene. Hence, such genetic-epidemiological study should be conducted at the country level in order to evaluate the true burden of P. vivax in Nigeria.
Collapse
Affiliation(s)
- Mary Aigbiremo Oboh
- Medical Research Council Unit The Gambia at LSHTM, Fajara, P.O. Box 273, Banjul, Gambia.
| | - Upasana Shyamsunder Singh
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK.,Genomic Epidemiology Laboratory, Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Daouda Ndiaye
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Aida Sadikh Badiane
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Nazia Anwar Ali
- National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, 482003, India
| | - Praveen Kumar Bharti
- National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, 482003, India
| | - Aparup Das
- Genomic Epidemiology Laboratory, Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India.
| |
Collapse
|
34
|
Abstract
Malaria has been the pre-eminent cause of early mortality in many parts of the world throughout much of the last five thousand years and, as a result, it is the strongest force for selective pressure on the human genome yet described. Around one third of the variability in the risk of severe and complicated malaria is now explained by additive host genetic effects. Many individual variants have been identified that are associated with malaria protection, but the most important all relate to the structure or function of red blood cells. They include the classical polymorphisms that cause sickle cell trait, α-thalassaemia, G6PD deficiency, and the major red cell blood group variants. More recently however, with improving technology and experimental design, others have been identified that include the Dantu blood group variant, polymorphisms in the red cell membrane protein ATP2B4, and several variants related to the immune response. Characterising how these genes confer their effects could eventually inform novel therapeutic approaches to combat malaria. Nevertheless, all together, only a small proportion of the heritable component of malaria resistance can be explained by the variants described so far, underscoring its complex genetic architecture and the need for continued research.
Collapse
Affiliation(s)
- Silvia N Kariuki
- Department of Epidemiology, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Thomas N Williams
- Department of Epidemiology, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Department of Medicine, Imperial College of Science and Technology, London, UK.
| |
Collapse
|
35
|
Popovici J, Roesch C, Rougeron V. The enigmatic mechanisms by which Plasmodium vivax infects Duffy-negative individuals. PLoS Pathog 2020; 16:e1008258. [PMID: 32078643 PMCID: PMC7032691 DOI: 10.1371/journal.ppat.1008258] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The absence of the Duffy protein at the surface of erythrocytes was considered for decades to confer full protection against Plasmodium vivax as this blood group is the receptor for the key parasite ligand P. vivax Duffy binding protein (PvDBP). However, it is now clear that the parasite is able to break through this protection and induce clinical malaria in Duffy-negative people, although the underlying mechanisms are still not understood. Here, we briefly review the evidence of Duffy-negative infections by P. vivax and summarize the current hypothesis at the basis of this invasion process. We discuss those in the perspective of malaria-elimination challenges, notably in African countries.
Collapse
Affiliation(s)
- Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh Cambodia
- Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh Cambodia
- Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), Montpellier, France
| |
Collapse
|
36
|
Amoah LE, Donu D, Abuaku B, Ahorlu C, Arhinful D, Afari E, Malm K, Koram KA. Probing the composition of Plasmodium species contained in malaria infections in the Eastern region of Ghana. BMC Public Health 2019; 19:1617. [PMID: 31791319 PMCID: PMC6889690 DOI: 10.1186/s12889-019-7989-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/21/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Asymptomatic falciparum and non-falciparum malaria infections are major challenges to malaria control interventions, as they remain a source of continual infection in the community. This becomes even more important as the debate moves towards elimination and eradication. This study sought to quantify the burden of Plasmodium malaria infection in seven communities in the Eastern Region of Ghana. METHODS The cross-sectional study recruited 729 participants aged 85 years old and below from 7 closely linked communities. Finger pricked blood was used to prepare thick and thin blood smears as well as spot filter paper and an histidine rich protein 2 (HRP2) rapid diagnostic test kit (RDT). Genomic DNA was extracted from the filter paper dry blood spot (DBS) and used in PCR to amplify the Plasmodium 18S rRNA gene using species specific PCR. RESULTS 96.6% of the participants were identified as afebrile, with axillary temperatures below 37.5 °C. PCR identified 66% of the participants to harbor malaria parasites, with 9 P. malariae and 7 P. ovale mono-infections accounting for 2.2% and P. falciparum combined with either 36 P. malariae or 25 P. ovale infections, accounting for 13.3%. Parasite prevalence by microscopy (32%) was similar to the RDT positivity rate (33%). False positive RDT results ranged from 64.6% in children aged between 5 and 9 years to 10% in adults aged 20 years and above. No significant differences were observed in falciparum and non-falciparum parasite carriage at the community level, however young adults aged between 15 and 19 years had the highest prevalence (34.8% (16/46)) of P. falciparum and P. malariae parasite carriage whilst children aged between 5 and 9 years had the highest level (11.4% (14/123)) of P. ovale carriage. CONCLUSION The high rate of misidentification of non-falciparum parasites and the total absence of detection of P. ovale by microscopy suggests that more sensitive malaria diagnostic tools including molecular assays are required to accurately determine the prevalence of carriers of non-falciparum parasites and low density P. falciparum infections, especially during national surveillance exercises. Additionally, malaria control interventions targeting the non-falciparum species P. malariae and P. ovale parasites are needed.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana. .,West Africa Center for Cell biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
| | - Dickson Donu
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Benjamin Abuaku
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Colins Ahorlu
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Daniel Arhinful
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Edwin Afari
- School of Public Health, University of Ghana, Accra, Ghana
| | - Keziah Malm
- National Malaria Control Program, Accra, Ghana
| | - Kwadwo Ansah Koram
- West Africa Center for Cell biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
37
|
Lo E, Hostetler JB, Yewhalaw D, Pearson RD, Hamid MMA, Gunalan K, Kepple D, Ford A, Janies DA, Rayner JC, Miller LH, Yan G. Frequent expansion of Plasmodium vivax Duffy Binding Protein in Ethiopia and its epidemiological significance. PLoS Negl Trop Dis 2019; 13:e0007222. [PMID: 31509523 PMCID: PMC6756552 DOI: 10.1371/journal.pntd.0007222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/23/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023] Open
Abstract
Plasmodium vivax invasion of human erythrocytes depends on the Duffy Binding Protein (PvDBP) which interacts with the Duffy antigen. PvDBP copy number has been recently shown to vary between P. vivax isolates in Sub-Saharan Africa. However, the extent of PvDBP copy number variation, the type of PvDBP multiplications, as well as its significance across broad samples are still unclear. We determined the prevalence and type of PvDBP duplications, as well as PvDBP copy number variation among 178 Ethiopian P. vivax isolates using a PCR-based diagnostic method, a novel quantitative real-time PCR assay and whole genome sequencing. For the 145 symptomatic samples, PvDBP duplications were detected in 95 isolates, of which 81 had the Cambodian and 14 Malagasy-type PvDBP duplications. PvDBP varied from 1 to >4 copies. Isolates with multiple PvDBP copies were found to be higher in symptomatic than asymptomatic infections. For the 33 asymptomatic samples, PvDBP was detected with two copies in two of the isolates, and both were the Cambodian-type PvDBP duplication. PvDBP copy number in Duffy-negative heterozygotes was not significantly different from that in Duffy-positives, providing no support for the hypothesis that increased copy number is a specific association with Duffy-negativity, although the number of Duffy-negatives was small and further sampling is required to test this association thoroughly. Plasmodium vivax invasion of human erythrocytes relies on interaction between the Duffy antigen and P. vivax Duffy Binding Protein (PvDBP). Whole genome sequences from P. vivax field isolates in Madagascar identified a duplication of the PvDBP gene and PvDBP duplication has also been detected in non-African P. vivax-endemic countries. Two types of PvDBP duplications have been reported, termed Cambodian and Malagasy-type duplications. Our study used a combination of PCR-based diagnostic method, a novel quantitative real-time PCR assay, and whole genome sequencing to determine the prevalence and type of PvDBP duplications, as well as PvDBP copy number on a broad number of P. vivax samples in Ethiopia. We found that over 65% of P. vivax isolated from the symptomatic infections were detected with PvDBP duplications and PvDBP varied from 1 to >4 copies. The majority of PvDBP duplications belongs to the Cambodian-type while the Malagasy-type duplications was also detected. For the asymptomatic infections, despite a small sample size, the majority of P. vivax were detected with a single-copy based on both PCR and qPCR assays. There was no significant difference in PvDBP copy number between Duffy-null heterozygote and Duffy-positive homozygote/heterozygote. Further investigation is needed with expanded Duffy-null homozygotes to examine the functional significance of PvDBP expansion.
Collapse
Affiliation(s)
- Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- * E-mail: (EL); (LHM); (GY)
| | - Jessica B. Hostetler
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Richard D. Pearson
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Muzamil M. A. Hamid
- Department of Parasitology and Medical Entomology, University of Khartoum, Khartoum, Sudan
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (EL); (LHM); (GY)
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, United States of America
- * E-mail: (EL); (LHM); (GY)
| |
Collapse
|
38
|
Zhang SY, Jouanguy E, Zhang Q, Abel L, Puel A, Casanova JL. Human inborn errors of immunity to infection affecting cells other than leukocytes: from the immune system to the whole organism. Curr Opin Immunol 2019; 59:88-100. [PMID: 31121434 PMCID: PMC6774828 DOI: 10.1016/j.coi.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/29/2019] [Indexed: 01/19/2023]
Abstract
Studies of vertebrate immunity have traditionally focused on professional cells, including circulating and tissue-resident leukocytes. Evidence that non-professional cells are also intrinsically essential (i.e. not via their effect on leukocytes) for protective immunity in natural conditions of infection has emerged from three lines of research in human genetics. First, studies of Mendelian resistance to infection have revealed an essential role of DARC-expressing erythrocytes in protection against Plasmodium vivax infection, and an essential role of FUT2-expressing intestinal epithelial cells for protection against norovirus and rotavirus infections. Second, studies of inborn errors of non-hematopoietic cell-extrinsic immunity have shown that APOL1 and complement cascade components secreted by hepatocytes are essential for protective immunity to trypanosome and pyogenic bacteria, respectively. Third, studies of inborn errors of non-hematopoietic cell-intrinsic immunity have suggested that keratinocytes, pulmonary epithelial cells, and cortical neurons are essential for tissue-specific protective immunity to human papillomaviruses, influenza virus, and herpes simplex virus, respectively. Various other types of genetic resistance or predisposition to infection in human populations are not readily explained by inborn variants of genes operating in leukocytes and may, therefore, involve defects in other cells. The probing of this unchartered territory by human genetics is reshaping immunology, by scaling immunity to infection up from the immune system to the whole organism.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Descartes University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
39
|
Deida J, Tahar R, Khalef YO, Lekweiry KM, Hmeyade A, Khairy MLO, Simard F, Bogreau H, Basco L, Boukhary AOMS. Oasis Malaria, Northern Mauritania 1. Emerg Infect Dis 2019; 25:273-280. [PMID: 30666926 PMCID: PMC6346462 DOI: 10.3201/eid2502.180732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A malaria survey was conducted in Atar, the northernmost oasis city in Mauritania, during 2015–2016. All febrile patients in whom malaria was suspected were screened for malaria by using rapid diagnostic testing and microscopic examination of blood smears and later confirmed by PCR. Of 453 suspected malaria cases, 108 (23.8%) were positive by rapid diagnostic testing, 154 (34.0%) by microscopic examination, and 162 (35.7%) by PCR. Malaria cases were observed throughout the year and among all age groups. Plasmodium vivax was present in 120/162 (74.1%) cases, P. falciparum in 4/162 (2.4%), and mixed P. falciparum–P. vivax in 38/162 (23.4%). Malaria is endemic in northern Mauritania and could be spreading farther north in the Sahara, possibly because of human-driven environmental changes. Further entomologic and parasitologic studies and monitoring are needed to relate these findings to major Anopheles mosquito vectors and to design and implement strategies for malaria prevention and control.
Collapse
|
40
|
Affiliation(s)
- Peter A Zimmerman
- Professor of International Health, Genetics and Biology, The Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
41
|
Transcriptome profiling of Plasmodium vivax in Saimiri monkeys identifies potential ligands for invasion. Proc Natl Acad Sci U S A 2019; 116:7053-7061. [PMID: 30872477 DOI: 10.1073/pnas.1818485116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Unlike the case in Asia and Latin America, Plasmodium vivax infections are rare in sub-Saharan Africa due to the absence of the Duffy blood group antigen (Duffy antigen), the only known erythrocyte receptor for the P. vivax merozoite invasion ligand, Duffy binding protein 1 (DBP1). However, P. vivax infections have been documented in Duffy-negative individuals throughout Africa, suggesting that P. vivax may use ligands other than DBP1 to invade Duffy-negative erythrocytes through other receptors. To identify potential P. vivax ligands, we compared parasite gene expression in Saimiri and Aotus monkey erythrocytes infected with P. vivax Salvador I (Sal I). DBP1 binds Aotus but does not bind to Saimiri erythrocytes; thus, P. vivax Sal I must invade Saimiri erythrocytes independent of DBP1. Comparing RNA sequencing (RNAseq) data for late-stage infections in Saimiri and Aotus erythrocytes when invasion ligands are expressed, we identified genes that belong to tryptophan-rich antigen and merozoite surface protein 3 (MSP3) families that were more abundantly expressed in Saimiri infections compared with Aotus infections. These genes may encode potential ligands responsible for P. vivax infections of Duffy-negative Africans.
Collapse
|
42
|
Ararat-Sarria M, Patarroyo MA, Curtidor H. Parasite-Related Genetic and Epigenetic Aspects and Host Factors Influencing Plasmodium falciparum Invasion of Erythrocytes. Front Cell Infect Microbiol 2019; 8:454. [PMID: 30693273 PMCID: PMC6339890 DOI: 10.3389/fcimb.2018.00454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023] Open
Abstract
Malaria, a disease caused by Plasmodium parasites, is widespread throughout tropical and sub-tropical regions worldwide; it mostly affects children and pregnant woman. Eradication has stalled despite effective prevention measures and medication being available for this disease; this has mainly been due to the parasite's resistance to medical treatment and the mosquito vector's resistance to insecticides. Tackling such resistance involves using renewed approaches and techniques for accruing a deep understanding of the parasite's biology, and developing new drugs and vaccines. Studying the parasite's invasion of erythrocytes should shed light on its ability to switch between invasion phenotypes related to the expression of gene sets encoding proteins acting as ligands during target cell invasion, thereby conferring mechanisms for evading a particular host's immune response and adapting to changes in target cell surface receptors. This review considers some factors influencing the expression of such phenotypes, such as Plasmodium's genetic, transcriptional and epigenetic characteristics, and explores some host-related aspects which could affect parasite phenotypes, aiming at integrating knowledge regarding this topic and the possible relationship between the parasite's biology and host factors playing a role in erythrocyte invasion.
Collapse
Affiliation(s)
- Monica Ararat-Sarria
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Hernando Curtidor
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
43
|
Traore K, Konate S, Thera MA, Niangaly A, Ba A, Niare A, Arama C, Di Cristofaro J, Baby M, Picot S, Chiaroni J, Boetsch G, Doumbo OK. Genetic polymorphisms with erythrocyte traits in malaria endemic areas of Mali. PLoS One 2019; 14:e0209966. [PMID: 30608964 PMCID: PMC6319707 DOI: 10.1371/journal.pone.0209966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022] Open
Abstract
African populations are characterized by high degree of genetic diversity. This high genetic diversity could result from the natural selection pressure. Several studies have described an association between some genetic diversities and difference of susceptibility to infectious diseases like malaria. It seems therefore important to consider genetic diversity impact when interpreting results of clinical trials in malaria endemic areas. This study aimed to determine the genetic polymorphism with erythrocyte traits in different populations of malaria endemic area in Mali. The cross-sectional surveys were carried out in different ethnic groups living in malaria endemic areas in Mali. Six milliliters of whole blood were collected in EDTA vials from each participant after informed consent has been obtained. The ABO, RH, Kell, MNSs, Kidd and Duffy systems phenotypes were assessed by the technique of gel filtration. A total of 231 subjects were included from six villages. The blood groups phenotypes O (40.7%) and A (31.2%) were more frequent with respective allele frequencies of 0.65 and 0.21. In the RH system the haplotypes R0 (0.55), r (0.20) and R1 (0.13) were the most frequent. Seven percent (7%) of Duffy positive and 4% of Glycophorin B deficiency (S-s-) were observed among participants. All participants were Kell negative. ABO and RH systems were polymorphic in these ethnic groups in Mali. Their implication in susceptibility to malaria should be taken into account in clinical trials interpretation, and for prevention of blood transfusion risks during anemia frequently caused by malaria in children.
Collapse
Affiliation(s)
- Karim Traore
- Malaria Research and Training Center, DEAP/FMPOS, UMI3189, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
- Univ Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaire et Supramoléculaire, UMR-5246 CNRS-INSA-CPE, Malaria Research Unit, Lyon, France
- Unité Mixte International UMI 3189 –Environnement—Santé—Sociétés, (CNRS/USTTB, CNRST/UGB/UCAD) Université Cheikh Anta Diop, Dakar, Sénégal
- * E-mail:
| | - Salimata Konate
- Malaria Research and Training Center, DEAP/FMPOS, UMI3189, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Mahamadou A. Thera
- Malaria Research and Training Center, DEAP/FMPOS, UMI3189, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
- Unité Mixte International UMI 3189 –Environnement—Santé—Sociétés, (CNRS/USTTB, CNRST/UGB/UCAD) Université Cheikh Anta Diop, Dakar, Sénégal
| | - Amadou Niangaly
- Malaria Research and Training Center, DEAP/FMPOS, UMI3189, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Alhassane Ba
- Centre National de Transfusion Sanguine (CNTS), Bamako, Mali
| | - Alassane Niare
- Malaria Research and Training Center, DEAP/FMPOS, UMI3189, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Charles Arama
- Malaria Research and Training Center, DEAP/FMPOS, UMI3189, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | | | - Mounirou Baby
- Centre National de Transfusion Sanguine (CNTS), Bamako, Mali
| | - Stephane Picot
- Univ Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaire et Supramoléculaire, UMR-5246 CNRS-INSA-CPE, Malaria Research Unit, Lyon, France
| | - Jacques Chiaroni
- Aix-Marseille Université,CNRS, EFS, ADES UMR 7268, Marseille, France
| | - Gilles Boetsch
- Unité Mixte International UMI 3189 –Environnement—Santé—Sociétés, (CNRS/USTTB, CNRST/UGB/UCAD) Université Cheikh Anta Diop, Dakar, Sénégal
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, DEAP/FMPOS, UMI3189, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
- Unité Mixte International UMI 3189 –Environnement—Santé—Sociétés, (CNRS/USTTB, CNRST/UGB/UCAD) Université Cheikh Anta Diop, Dakar, Sénégal
| |
Collapse
|
44
|
Niang M, Sane R, Sow A, Sadio BD, Chy S, Legrand E, Faye O, Diallo M, Sall AA, Menard D, Toure-Balde A. Asymptomatic Plasmodium vivax infections among Duffy-negative population in Kedougou, Senegal. Trop Med Health 2018; 46:45. [PMID: 30618490 PMCID: PMC6311047 DOI: 10.1186/s41182-018-0128-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/11/2018] [Indexed: 02/08/2023] Open
Abstract
Background In the southeastern Senegal, the report of Plasmodium vivax infections among febrile patients in Kedougou constitutes a new emerging health problem. Methods Samples from 48 asymptomatic schoolchildren sampled twice a year over 2 years were used to explore the reservoir of P. vivax parasite infections in this region. Both Duffy genotyping and Plasmodium species diagnostic assays were performed. Results PCR assays detected Plasmodium genomic DNA in 38.5% (74/192) of samples. Pure P. falciparum and P. vivax infections were identified in 79.7% (59/74) and 20.3% (15/74) of samples, respectively. All schoolchildren were classified as Duffy-negative by genotyping. P. vivax infections were detected in five children: in two children during both years, in one child in 2010 and on May 2011, and only in 2010 for the remaining two children. Conclusions This unexpectedly high proportion of P. vivax infections in asymptomatic Duffy-negative children highlights to consider vivax malaria as an emerging problem in Senegal.
Collapse
Affiliation(s)
- Makhtar Niang
- 1Immunology Unit, Pasteur Institute of Dakar, BP 220 Dakar, Senegal
| | - Rokhaya Sane
- 1Immunology Unit, Pasteur Institute of Dakar, BP 220 Dakar, Senegal.,2Department of Animal Biology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Abdourahmane Sow
- 3Arbovirus and Viral Hemorrhagic Fevers Unit, Pasteur Institute of Dakar, BP 220 Dakar, Senegal.,West African Health Organization, Ouagadougou, Burkina Faso
| | - Bacary D Sadio
- 3Arbovirus and Viral Hemorrhagic Fevers Unit, Pasteur Institute of Dakar, BP 220 Dakar, Senegal
| | - Sophy Chy
- Malaria Molecular Epidemiology Unit, Institute Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Eric Legrand
- 6Groupe Génétique du Paludisme et Résistance, Unité Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France
| | - Ousmane Faye
- 3Arbovirus and Viral Hemorrhagic Fevers Unit, Pasteur Institute of Dakar, BP 220 Dakar, Senegal
| | - Mawlouth Diallo
- 7Medical Entomology Unit, Pasteur Institute of Dakar, BP 220 Dakar, Senegal
| | - Amadou A Sall
- 3Arbovirus and Viral Hemorrhagic Fevers Unit, Pasteur Institute of Dakar, BP 220 Dakar, Senegal
| | - Didier Menard
- 6Groupe Génétique du Paludisme et Résistance, Unité Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France
| | | |
Collapse
|
45
|
Djimdé A, Miller LH, Plowe CV. Professor Ogobara K. Doumbo (1956–June 9, 2018). Am J Trop Med Hyg 2018. [PMCID: PMC6221236 DOI: 10.4269/ajtmh.18-1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Abdoulaye Djimdé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | |
Collapse
|
46
|
Arama C, Quin JE, Kouriba B, Östlund Farrants AK, Troye-Blomberg M, Doumbo OK. Epigenetics and Malaria Susceptibility/Protection: A Missing Piece of the Puzzle. Front Immunol 2018; 9:1733. [PMID: 30158923 PMCID: PMC6104485 DOI: 10.3389/fimmu.2018.01733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
A better understanding of stable changes in regulation of gene expression that result from epigenetic events is of great relevance in the development of strategies to prevent and treat infectious diseases. Histone modification and DNA methylation are key epigenetic mechanisms that can be regarded as marks, which ensure an accurate transmission of the chromatin states and gene expression profiles over generations of cells. There is an increasing list of these modifications, and the complexity of their action is just beginning to be understood. It is clear that the epigenetic landscape plays a fundamental role in most biological processes that involve the manipulation and expression of DNA. Although the molecular mechanism of gene regulation is relatively well understood, the hierarchical order of events and dependencies that lead to protection against infection remain largely unknown. In this review, we propose that host epigenetics is an essential, though relatively under studied, factor in the protection or susceptibility to malaria.
Collapse
Affiliation(s)
- Charles Arama
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Jaclyn E Quin
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Bourèma Kouriba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | | | - Marita Troye-Blomberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| |
Collapse
|
47
|
Abstract
Following unsuccessful eradication attempts there was a resurgence of malaria towards the end of the 20th century. Renewed control efforts using a range of improved tools, such as long-lasting insecticide-treated bednets and artemisinin-based combination therapies, have more than halved the global burden of disease, but it remains high with 445 000 deaths and more than 200 million cases in 2016. Pitfalls in individual patient management are delayed diagnosis and overzealous fluid resuscitation in severe malaria. Even in the absence of drug resistance, parasite recurrence can occur, owing to high parasite densities, low host immunity, or suboptimal drug concentrations. Malaria elimination is firmly back as a mainstream policy but resistance to the artemisinin derivatives, their partner drugs, and insecticides present major challenges. Vaccine development continues on several fronts but none of the candidates developed to date have been shown to provide long-lasting benefits at a population level. Increased resources and unprecedented levels of regional cooperation and societal commitment will be needed if further substantial inroads into the malaria burden are to be made.
Collapse
Affiliation(s)
- Elizabeth A Ashley
- Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mae Sot, Thailand; Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Charles J Woodrow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
48
|
Gunalan K, Niangaly A, Thera MA, Doumbo OK, Miller LH. Plasmodium vivax Infections of Duffy-Negative Erythrocytes: Historically Undetected or a Recent Adaptation? Trends Parasitol 2018. [PMID: 29530446 DOI: 10.1016/j.pt.2018.02.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmodium vivax is the main cause of malarial disease in Asia and South America. Plasmodium vivax infection was thought to be absent in African populations who are Duffy blood group antigen negative (Duffy-negative). However, many cases of P. vivax infection have recently been observed in Duffy-negative Africans. This raises the question: were P. vivax infections in Duffy-negative populations previously missed or has P. vivax adapted to infect Duffy-negative populations? This review focuses on recent P. vivax findings in Africa and reports views on the parasite ligands that may play a role in Duffy-negative P. vivax infections. In addition, clues gained from studying P. vivax infection of reticulocytes are presented, which may provide possible avenues for establishing P. vivax culture in vitro.
Collapse
Affiliation(s)
- Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; These authors contributed equally.
| | - Amadou Niangaly
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali; These authors contributed equally
| | - Mahamadou A Thera
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
49
|
Niang M, Diop F, Niang O, Sadio BD, Sow A, Faye O, Diallo M, Sall AA, Perraut R, Toure-Balde A. Unexpected high circulation of Plasmodium vivax in asymptomatic children from Kédougou, southeastern Senegal. Malar J 2017; 16:497. [PMID: 29284488 PMCID: PMC5747145 DOI: 10.1186/s12936-017-2146-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
Background Malaria in Senegal is due essentially to infections by Plasmodium falciparum and, to a lesser extent to Plasmodium malariae and Plasmodium ovale. By the use of molecular methods, detection of Plasmodium vivax has been recently reported in the region of Kedougou, raising the question of appraisal of its potential prevalence in this setting. Methods A retrospective serological study was carried out using 188 samples taken from 2010 to 2011 in a longitudinal school survey during which 48 asymptomatic children (9–11 years) were recruited. Four collections of samples collected during two successive dry and rainy seasons were analysed for antibody responses to P. vivax and P. falciparum. Recombinant P. falciparum and P. vivax MSP1 antigens and total P. falciparum schizont lysate from African 07/03 strain (adapted to culture) were used for ELISA. Nested PCR amplification was used for molecular detection of P. vivax. Results A surprising high prevalence of IgG responses against P. vivax MSP1 was evidenced with 53% of positive samples and 58% of the individuals that were found positive to this antigen. There was 77% of responders to P. falciparum outlined by 63% of positive samples. Prevalence of responders did not differ as function of seasons. Levels of antibodies to P. falciparum fluctuated with significant increasing between dry and rainy season (P < 0.05), contrary to responses to P. vivax. There was a significant reciprocal relationship (P < 10−3) between antibody responses to the different antigens, but with weak coefficient of correlation (Rho around 0.3) underlining a variable profile at the individual level. Clear molecular signature was found in positive IgG to P. vivax msp1 samples by PCR. Conclusion This cross-sectional longitudinal study highlights the unexpected high circulation of P. vivax in this endemic area. Sero-immunology and molecular methods are powerful additive tools to identify endemic sites where relevant control measures have to be settled and monitored.
Collapse
Affiliation(s)
- Makhtar Niang
- Immunology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Fode Diop
- Immunology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oulimata Niang
- Immunology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Bacary D Sadio
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Abdourahmane Sow
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal.,West African Health Organization, Ouagadougou, Burkina Faso
| | - Ousmane Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mawlouth Diallo
- Medical Entomology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amadou A Sall
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Ronald Perraut
- Immunology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | | |
Collapse
|